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Abstract. In this paper and its follow-up [32], we study the deformation theory
of morphisms of properads and props thereby extending Quillen’s deformation theory for
commutative rings to a non-linear framework. The associated chain complex is endowed
with an Ly-algebra structure. Its Maurer-Cartan elements correspond to deformed struc-
tures, which allows us to give a geometric interpretation of these results.

To do so, we endow the category of prop(erad)s with a model category structure. We
provide a complete study of models for prop(erad)s. A new e¤ective method to make min-
imal models explicit, that extends the Koszul duality theory, is introduced and the associ-
ated notion is called homotopy Koszul.

As a corollary, we obtain the (co)homology theories of (al)gebras over a prop(erad)
and of homotopy (al)gebras as well. Their underlying chain complex is endowed with an
Ly-algebra structure in general and a Lie algebra structure only in the Koszul case. In par-
ticular, we make the deformation complex of morphisms from the properad of associative
bialgebras explicit. For any minimal model of this properad, the boundary map of this
chain complex is shown to be the one defined by Gerstenhaber and Schack. As a corollary,
this paper provides a complete proof of the existence of an Ly-algebra structure on the
Gerstenhaber-Schack bicomplex associated to the deformations of associative bialgebras.

Introduction

The theory of props and properads, which generalizes the theory of operads, provides
us with a universal language to describe many algebraic, topological and di¤erential geo-
metric structures. Our main purpose in this paper is to establish a new and surprisingly
strong link between the theory of prop(erad)s and the theory of Ly-algebras.

We introduce several families of Ly-algebras canonically associated with prop(erad)s,
moreover, we develop new methods which explicitly compute the associated Ly-brackets
in terms of prop(erad)ic compositions and di¤erentials. Many important dg Lie algebras
in algebra and geometry (such as Hochschild, Poisson, Schouten, Frölicher-Nijenhuis and
many others) are proven to be of this prop(erad)ic origin.
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The Ly-algebras we construct in our paper out of dg prop(erad)s encode many im-
portant properties of the latter. The most important one controls the deformation theory
of morphisms of prop(erad)s and, in particular, the deformation theory of (al)gebras over
prop(erad)s. Applications of our results to the deformation theory of many algebraic and
geometric structures becomes therefore another major theme of our paper.

On the technical side, the story develops (roughly speaking) as follows: first we asso-
ciate canonically to a pair,

�
FðVÞ; q

�
and ðQ; dÞ, consisting of a di¤erential graded (dg, for

short) quasi-free prop(erad) FðVÞ on an S-bimodule V and an arbitrary dg prop(erad) Q,
a structure of Ly-algebra on the (shifted) graded vector space, s�1 HomS

� ðV ;QÞ, of mor-
phisms of S-bimodules; then we prove the Maurer-Cartan elements of this Ly-algebra are
in one-to-one correspondence with the set of all dg morphisms,��

FðVÞ; q
�
! ðQ; dÞ

�
;

of dg prop(erad)s. This canonical Ly-algebra is used then to define, for any particular
morphism g :

�
FðVÞ; q

�
! ðQ; dÞ, another twisted Ly-algebra which controls deformation

theory of the morphism g. In the special case when ðQ; dÞ is the endomorphism prop(erad),
ðEndX ; dX Þ, of some dg vector space X , our theory gives Ly-algebras which control defor-
mation theory of many classical algebraic and geometric structures on X , for example,
associative algebra structure, Lie algebra structure, commutative algebra structure, Lie
bialgebra structure, associative bialgebra structure, formal Poisson structure, Nijenhuis
structure etc. As the case of associative bialgebras has never been rigorously treated in the
literature before, we discuss this example in full details; we prove, in particular, that the
first term of the canonical Ly-structure controlling deformation theory of bialgebras is
precisely the Gerstenhaber-Schack di¤erential.

We derive and study the deformation complex and its Ly-structure from several dif-
ferent perspectives. One of them can be viewed as a nontrivial generalization to the case of
prop(erad)s of Van der Laan’s approach [43] to the deformation theory of algebras over
operads, while others are completely new and provide us with, perhaps, a conceptual expla-
nation of the observed (long ago) phenomenon that deformation theories are controlled by
dg Lie and, more generally, Ly structures.

First, we define the deformation complex of a morphism of prop(erad)s P! Q gen-
eralizing Quillen’s definition of the deformation complex of a morphism of commutative
rings. When

�
FðCÞ; q

�
is a quasi-free resolution of P, we prove that this chain complex is

isomorphic, up to a shift of degree, to the space of morphisms of S-bimodule HomS
� ðC;QÞ,

where CðF s�1VÞ is a homotopy coprop(erad), that is the dual notion of prop(erad)
with relations up to homotopy. Since Q is a (strict) prop(erad), we prove that the space
HomS

� ðC;QÞ has a rich algebraic structure, namely it is a homotopy non-symmetric
prop(erad), that is a prop(erad) without the action of the symmetric groups and with
relations up to homotopy. From this structure, we extract a canonical Ly-structure on
HomS

� ðC;QÞF s�1 HomS
� ðV ;QÞ. We also obtain higher operations with mþ n inputs

acting on HomS
� ðC;QÞ which are important in applications. In the case of, for example,

the non-symmetric operad, Ass, of associative algebras the deformation complex is the
Hochschild cochain complex of an associative algebra, and the higher homotopy opera-
tions are shown to be non-symmetric braces operations which play a fundamental role in
the proof of Deligne’s conjecture (see [37], [45], [20], [33], [4], [19]).
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Recall that M. Markl proved in [27] a first interesting partial result, that is for a
given minimal model

�
FðCÞ; q

�
a prop(erad) P concentrated in degree 0, there exists a

Ly-structure on the space of derivations from FðCÞ to EndX , where X is a P-(al)gebra.
By using a di¤erent conceptual method based on the notions of homotopy (co)prop(erad)s
and convolution prop(erad)s, we prove here that for any representation Q of any prop(erad)
P, there exists a homotopy prop(erad) structure on the space of derivations from any
quasi-free resolution of P to Q. Moreover this construction is shown to be functorial,
that is does not depend on the model chosen. From this we derive functorially the general
Ly-structure.

Another approach of deriving the deformation complex and its Ly-structure is based
on a canonical enlargement of the category of dg prop(erad)s via an extension of the notion
of morphism; the set of morphisms, MorZðP1;P2Þ, in this enlarged category is identified
with a certain dg a‰ne scheme naturally associated with both P1 and P2; moreover, when
the dg prop(erad) P1 is quasi-free, the dg a‰ne scheme MorðP1;P2Þ is proven to be a
smooth dg manifold for any P2 and hence gives canonically rise to an Ly-structure.

The third major theme of our work is the theory of models and minimal models. To
make explicit the deformation complex, we need models, that is quasi-free resolutions of
prop(erad)s. We extend the bar and cobar construction to prop(erad)s and show that the
bar-cobar construction provides a canonical cofibrant resolution of a prop(erad). Since
this construction is not very convenient to work with because it is too big, we would rather
use minimal models. We give a complete account to the theory of minimal models for
prop(erad)s. We prove that minimal models for prop(erad)s are not in general determined
by resolutions of their genus 0 parts, namely dioperads, giving thereby a negative answer
to a question raised by M. Markl and A. A. Voronov [29], that is we prove that the free
functor from dioperads to prop(erad)s is not exact. We provide an explicit example of
a Koszul dioperad which does not induce the prop(erad)ic resolution of the associated
prop(erad).

A properad is Koszul if and only if it admits a quadratic model. In this case, Koszul
duality theory of properad [42] provides an e¤ective method to compute this special mini-
mal model. Unfortunately, not all properads are Koszul. For instance, the properad
coding associative bialgebras is not. We include this example in a new notion, called
homotopy Koszul. A homotopy Koszul properad is shown to have a minimal model that
can be explicitly computed. Its space of generators is equal to the Koszul dual of a qua-
dratic properad associated to it. And the di¤erential is made explicit by use of the (dual)
formulae of J. Granåker [16] of transfer of homotopy coproperad structure, that is by
perturbing the di¤erential. We apply this notion to show that morphisms of homotopy
P-algebras are in one-to-one correspondence with Maurer-Cartan elements of a convolu-
tion Ly-algebra.

In the appendix of [32], we endow the category of dg prop(erad)s with a model cate-
gory structure which is used throughout the text.

The paper is organized as follows. In §1 we remind key facts about properads and
props and we define the notion of non-symmetric prop(erad). In §2 we introduce and study
the convolution prop(erad) canonically associated with a pair, ðC;PÞ, consisting of an ar-
bitrary coprop(erad) C and an arbitrary prop(erad) P; our main result is the construction
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of a Lie algebra structure on this convolution properad, as well as higher operations. In §3
we discuss bar and cobar constructions for (co)prop(erad)s. We introduce the notion of
twisting morphism (cochain) for prop(erads) and prove Theorem 19 on bar-cobar resolu-
tions extending thereby earlier results of [41] from weight-graded dg properads to arbitrary
dg properads. In §4 we recall to the notion and properties of homotopy properads which
were first introduced in [16] and we define the notions of homotopy (co)prop(erad ). We
apply these notions to convolution prop(erad)s. In §5, we give a complete study of minimal
models for properads. In §6 we define the relaxed notion of homotopy P-gebra and interpret
it in terms of Maurer-Cartan elements.
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In this paper, we will always work over a field K of characteristic 0.

1. (Co)properads and (co)props

In this section, we recall briefly the definitions of (co)properad and (co)prop. For
the reader who does not know what a properad or what a prop is, we strongly advise to
read the first sections of [41] before reading the current article since we will make use of
the notions everywhere in the sequel. Generalizing the notion of non-symmetric operads
to prop(erad), we introduce the notions of non-symmetric properad and non-symmetric

prop.

1.1. S-bimodules, graphs, composition products. A (dg) S-bimodule is a collection
P ¼ fPðm; nÞgm;n AN of dg modules over the symmetric groups Sn on the right and Sm on
the left. These two actions are supposed to commute. In the sequel, we will mainly con-
sider reduced S-bimodules, that is S-bimodules P such that Pðm; nÞ ¼ 0 when n ¼ 0 or
m ¼ 0. We use the homological convention, that is the degree of di¤erentials is �1. An
S-bimodule P is augmented when it naturally splits as P ¼ Pl I where I ¼ fIðm; nÞg
is an S-bimodule with all components Iðm; nÞ vanishing except for Ið1; 1Þ which equals
K. We denote the module of morphisms of S-bimodules by HomðP;QÞ and the module
of equivariant morphisms, with respect to the action of the symmetric groups, by
HomSðP;QÞ.

A graph is given by two sets, the set V of vertices and the set E of edges, and relations
among which say when an edge is attached to one or two vertices (see [15], (2.5)). The egdes
of the graph considered in the sequel will always be directed by a global flow (directed
graphs). The edges can be divided into two parts: the ones with one vertex at each end,
called internal edges, and the ones with just one vertex on one end, called external edges.
The genus of a graph is the first Betti number of the underlying topological space of a
graph. A 2-levelled directed graphs is a directed graph such that the vertices are divided
into two parts, the ones belonging to a bottom level and the ones belonging to a top level.
In the category of S-bimodule, we define two composition products, n based on the com-
position of operations indexing the vertices of a 2-levelled directed graph, and nc based on
the composition of operations indexing the vertices of a 2-levelled directed connected graph
(see Figure 1 for an example). Let G be such a graph with N internal edges between vertices
of the two levels. This set of edges between vertices of the first level and vertices of the
second level induces a permutation of SN .
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Let P and Q be two S-bimodules, their composition product is given by the explicit
formula

PnQðm; nÞ :¼
L

N AN�

� L
l;k; |; {

K½Sm�nS
l
Pðl; kÞnS

k
K½SN �nS|

Qð|; {ÞnS{
K½Sn�

�
S

op
b
�Sa

;

where the second direct sum runs over the b-tuples l, k and the a-tuples |, { such that
jlj ¼ m, jkj ¼ j|j ¼ N, j{j ¼ n and where the coinvariants correspond to the following
action of Sop

b � Sa:

yn p1 n � � �n pb n sn q1n � � �n qa no

@ yt�1
l

n pt�1ð1Þn � � �n pt�1ðbÞn t
k
sn| n qnð1Þn � � �n qnðaÞn n�1{ o;

for y A Sm, o A Sn, s A SN and for t A Sb with t
k
the corresponding block permutation,

n A Sa and n| the corresponding block permutation. This product is associative but has no
unit. To fix this issue, we restrict to connected graphs.

The permutations of SN associated to connected graphs are called connected (for
more details see [41], Section 1.3). We denote the set of connected permutations by Sc.
We define the connected composition product by the following formula

Pnc Qðm; nÞ :¼
L

N AN�

� L
l;k; |; {

K½Sm�nS
l
Pðl; kÞnS

k
K½Sc

k; |
�nS|

Qð|; {ÞnS{
K½Sn�

�
S

op
b
�Sa

:

The unit I for this monoidal product is given by

Ið1; 1Þ :¼ K; and

Iðm; nÞ :¼ 0 otherwise.

�
We denote by ðS-biMod;nc; IÞ this monoidal category.

We define the concatenation product of two bimodules P and Q by

PnQðm; nÞ :¼
L

m 0þm 00¼m
n 0þn 00¼n

K½Sm 0þm 00 �nSm 0�Sm 00
Pðm 0; n 0ÞnK Qðm 00; n 00ÞnSn 0�Sn 00

K½Sn 0þn 00 �:

Figure 1. Example of a 2-level graph.
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This product corresponds to taking the (horizontal) tensor product of the elements of P
and Q (see [41], Figure 3, for an example). It is symmetric, associative and unital. On
the contrary to the two previous products, it is linear on the left and on the right. We
denote by SnðPÞ the free symmetric monoid generated by an S-bimodule P for the con-
catenation product (and SnðPÞ its augmentation ideal). There is a natural embedding
Pnc Q q PnQ. And we obtain the composition product from the connected compo-
sition product by concatenation, that is SnðPnc QÞGPnQ. (From this relation, we can
see that I nP ¼SnðPÞ and not P.)

1.2. Properad. A properad is a monoid in the monoidal category ðS-biMod;nc; IÞ.
We denote the set of morphisms of properads by MorðP;QÞ. A properad P is augmented

if there exists a morphism of properads e : P! I . We denote by P the kernel of the aug-
mentation e and call it the augmentation ideal. When ðP; m; h; eÞ is an augmented properad,
P is canonically isomorphic to I lP. We denote by ðI l P|{z}

r

Þnc ðI l P|{z}
s

Þ the sub-

S-bimodule of Pnc P generated by compositions of s non-trivial elements of P on the first
level with r non-trivial elements of P on the second level. The corresponding restriction of
the composition product m on this sub-S-bimodule is denoted mðr; sÞ. The bilinear part of
Pnc P is the S-bimodule ðI l P|{z}

1

Þnc ðI l P|{z}
1

Þ. It corresponds to the compositions

of only 2 non-trivial operations of P. We denote it by Pnð1;1ÞP. The composition of two
elements p1 and p2 of P is written p1 nð1;1Þ p2 to lighten the notations. The restriction
mð1;1Þ of the composition product m of a properad P on Pnð1;1ÞP is called the partial

product.

A properad is called reduced when the underlying S-bimodule is reduced, that is when
Pðm; nÞ ¼ 0 for n ¼ 0 or m ¼ 0.

1.3. Connected coproperad. Dually, we defined the notion of coproperad, which is
a comonoid in ðS-biMod;ncÞ. Recall that the partial coproduct Dð1;1Þ of a coproperad
C is the projection of the coproduct D on Cnð1;1ÞC :¼ ðI l C|{z}

1

Þnc ðI l C|{z}
1

Þ. More

generally, one can define the ðr; sÞ-part of the coproduct by the projection of the image of D
on ðI l C|{z}

r

Þnc ðI l C|{z}
s

Þ.

Since the dual of the notion of coproduct is the notion of product, we have to be care-
ful with coproperad. For instance, the target space of a morphism of coproperads is a direct
sum of modules and not a product. (The same problem appears at the level of algebras
and coalgebras.) We generalize here the notion of connected coalgebra, which is the dual
notion of Artin rings, introduced by D. Quillen in [35], Appendix B, Section 3 (see also
J.-L. Loday and M. Ronco [24], Section 1).

Let ðC;D; e; uÞ be an coaugmented (dg) coproperad. Denote by C :¼ KerðC!e IÞ its
augmentation. We have C ¼ Cl I and DðIÞ ¼ I nc I . For X A C, denote by D the non-
primitive part of the coproduct, that is DðXÞ ¼ I ncX þ X nc I þ DðXÞ. The coradical

filtration of C is defined inductively as follows:

F0 :¼ KI ;

Fr :¼ fX A C jDðX Þ A Fr�1nc Fr�1g:
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An augmented coproperad is connected if the coradical filtration is exhaustive C ¼
S
rf0

Fr.

This condition implies that C is conilpotent which means that for every X A C, there is an
integer n such that DnðXÞ ¼ 0. This assumption is always required to construct morphisms
or coderivations between coproperads (see next paragraph and Lemma 15 for instance).

For the same reason, we will sometimes work with the invariant version of the com-
position product denoted PnS

c Q when working with coproperads. It is defined by the
same formula as for nc but where we consider the invariant elements under the actions
of the symmetric groups instead of the coinvariants (see Lemma 2 for instance). When we
want to emphasize the di¤erence between invariants and coinvariants, we use the notations
nS and nS. Otherwise, we use only n since the two are isomorphic in characteristic 0.

1.4. Free properad and cofree connected coproperad. Recall from [38] the construc-
tion of the free properad. Let V be an S-bimodule. Denote by Vþ :¼ V l I its augmen-
tation and by Vn :¼ ðVþÞncn the n-fold ‘‘tensor’’ power of Vþ. This last module can be
thought of as n-levelled graphs with vertices indexed by V and I . We define on Vn an equiv-
alence relation@ by identifying two graphs when one is obtained from the other by moving
an operation from a level to an upper or lower level. (Note that this permutation of the
place of the operations induces signs). We consider the quotient ~VVn :¼ Vn=@ by this rela-
tion. Finally, the free properad FðVÞ is given by a particular colimit of the ~VVn. The dg S-
bimodule FðVÞ is generated by graphs without levels with vertices indexed by elements of
V . We denote such graphs by Gðv1; . . . ; vnÞ, with v1; . . . ; vn A V . Since Gðv1; . . . ; vnÞ repre-
sents an equivalence class of levelled graphs, we can chose, up to signs, an order for the
vertices. (Any graph G with n vertices is the quotient by the relation@ of a graph with n

levels and only one non-trivial vertex on each level.) The composition product of FðVÞ is
given by the grafting. It is naturally graded by the number of vertices. This grading is called
the weight. The part of weight n is denoted by FðVÞðnÞ.

Since we are working over a field of characteristic 0, the cofree connected copro-
perad on a dg S-bimodule V has the same underlying space as the free properad, that
is FcðVÞ ¼FðVÞ. The coproduct is given by pruning the graphs into two parts. This
coproperad verifies the universal property only among connected coproperads (see [41],
Proposition 2.7).

1.5. Props. We would like to define the notion of prop as a monoid in the category
of S-bimodules with the composition productn. Since this last one has no unit and is not a
monoidal product, strictly speaking, we have to make this definition explicit.

Definition (prop). A prop P is an S-bimodule endowed with two maps PnP!m P
and I !h P such that the first is associative and the second one verifies

I nc P >���! I nP >���!hnP
PnP  ���<Pnh

Pn I  ���< Pnc I???ym

P:

 ����������
�������

 ����������
�������@ @

This definition is equivalent to the original definition of Adams and MacLane [1], [25]. The
original definition consists of two coherent bilinear products, the vertical and horizontal
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compositions of operations. The definition of the composition product given here includes
these two previous compositions at the same time. The partial product Pnð1;1ÞP �!mð1; 1Þ P
composes two operations. If they are connected by at least one edge, this composition is
the vertical composition, otherwise this composition can be seen as the horizontal compo-
sition of operations. This presentation will allow us later to define the bar construction,
resolutions and minimal models for props.

It is straightforward to extend the results of the preceding subsections to props. There
exists notions of augmented props, free prop, coprop and connected cofree coprop. We
refer the reader to [41], Section 2 for a complete treatment.

1.6. (Co)triple interpretation. The free prop(erad) functor induces a triple
F : S� biMod! S� biMod such that an algebra over it is a prop(erad) (see D. Borisov
and Y. I. Manin [6]). When ðP; mÞ is a prop(erad), we will denote by ~mmP : FðPÞðf2Þ ! P
the associated map. Dually, the notion of coprop(erad) is equivalent to the notion of co-
algebra over the cotriple Fc : S� biMod! S� biMod. When ðC;DÞ is a coprop(erad),
we will denote by ~DDC : C!FcðCÞðf2Þ the associated map.

1.7. Non-symmetric prop(erad). In the sequel, we will have to work with algebraic
structures endowed with operations having no symmetries. One can model them with prop-
erads but the action of the symmetric group gives no real information. Therefore, we intro-
duction the notion of non-symmetric properad which will be enough. Since this structure is
the direct generalization of the notion of non-symmetric operad, we call it non-symmetric

properad. All the definitions and propositions of this section can be generalized directly to
props. For simplicity, we only make them explicit in the case of properads.

Definition. A (dg) N-bimodule is a collection fPðm; nÞgm;n AN� of dg modules.

Definition (Non-symmetric connected composition product). Let P and Q be two
N-bimodules, we define their non-symmetric connected composition product by the formula

Pnc Qðm; nÞ :¼
L

N AN�

� L
l;k; |; {

Pðl; kÞnK½Sc
k; |
�nQð|; {Þ

�
S

op
b
�Sa

;

where the second direct sum runs over the b-tuples l, k and the a-tuples |, { such that
jlj ¼ m, jkj ¼ j|j ¼ N, j{j ¼ n and where the coinvariants correspond to the following
action of Sop

b � Sa:

p1 n � � �n pb n sn q1 n � � �n qa @ pt�1ð1Þn � � �n pt�1ðbÞn t
k
sn|n qnð1Þn � � �n qnðaÞ;

for s A Sc
k; |

and for t A Sb with t
k
the corresponding block permutation, n A Sa and n|

the corresponding block permutation. Since the context is obvious, we still denote it by
nc.

The definition of the monoidal product for S-bimodule is based on 2-levelled graphs
with leaves, inputs and outputs labelled by integers. This definition is based on non-labelled
2-levelled graphs. We define the non-symmetric composition productn by the same formula
with the set of all permutations of SN instead of connected permutations.
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Proposition 1. The category ðN-biMod;nc; IÞ of N-bimodules with the product nc

and the unit I is a monoidal category.

Proof. The proof is similar to the one for S-bimodules (see [41], Proposition
1.6). r

Definition (Non-symmetric properad). A non-symmetric properad ðP; m; hÞ is a
monoid in the monoidal category ðN-biMod;nc; IÞ.

Example. A non-symmetric properad P concentrated in arity ð1; nÞ, with nf 1, is
the same as a non-symmetric operad.

1.8. Representations of prop(erad)s, gebras. Let P and Q be two prop(erad)s. A

morphism P!F Q of S-bimodules is a morphism of prop(erad)s if it commutes with the
products and the units of P and Q. In this case, we say that Q is a representation of P.

We will be mainly interested in representations of the following form. Let X be a dg
vector space. We consider the S-bimodule EndX defined by

EndX ðm; nÞ :¼ HomKðXnn;XnmÞ:

The natural composition of maps provides this S-bimodule with a structure of prop and
properad. It is called the endomorphism prop(erad) of the space X .

Props and properads are meant to model the operations acting on types of algebras
or bialgebras in a generalized sense. When P is a prop(erad), we call P-gebra a dg vector
space X with a morphism of prop(erad)s P! EndX , that is a representation of P of the
form EndX . When P is an operad, a P-gebra is an algebra over P. To encode operations
with multiple inputs and multiple outputs acting on an algebraic structure, we cannot use
operads anymore and we need to use prop(erad)s. The categories of (involutive) Lie bialge-
bras and (involutive) Frobenius bialgebras are categories of gebras over a properad (see
Section 5). The categories of (classical) associative bialgebras and infinitesimal Hopf alge-
bras (see [2]) are governed by non-symmetric properads. In these cases, the associated prop
is freely obtained from a properad. Therefore, the prop does not model more relations than
the properad and the two categories of gebras over the prop and the properad are equal.
For more details, see the beginning of Section 5.5.

2. Convolution prop(erad)

When A is an associative algebra and C a coassociative coalgebra, the space of
morphisms HomKðC;AÞ from C to A is naturally an associative algebra with the convolu-
tion product. We generalize this property to prop(erad)s, that is the space of morphisms
HomðC;PÞ from a coprop(erad) C and a prop(erad) P is a prop(erad). From this rich
structure, we get general operations, the main one being the intrinsic Lie bracket used to
study the deformation theory of algebraic structures later in [32], Sections 2 and 3.

2.1. Convolution prop(erad). For two S-bimodules

M ¼ fMðm; nÞgm;n and N ¼ fNðm; nÞgm;n;
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we denote by HomðM;NÞ the collection
�
HomK

�
Mðm; nÞ;Nðm; nÞ

��
m;n

of morphisms of
K-modules. It is an S-bimodule with the action by conjugation, that is

ðs: f :tÞðxÞ :¼ s:
�
f ðs�1:x:t�1Þ

�
:t;

for s A Sm, t A Sn and f A HomðM;NÞðm; nÞ. An invariant element under this action is an
equivariant map from M to N, that is HomðM;NÞS ¼ HomSðM;NÞ.

When C is a coassociative coalgebra and P is an associative algebra, HomðC;PÞ is
an associative algebra known as the convolution algebra. When C is a cooperad and P
is an operad, HomðC;PÞ is an operad called the convolution operad by C. Berger and I.
Moerdijk in [5], Section 1. We extend this construction to properads and props.

Lemma 2. Let C be a coprop(erad) and P be a prop(erad). The space of morphisms

HomðC;PÞ ¼ PC is a prop(erad).

Proof. We use the notations of Section 1.1 (see also [41], Section 1.2). We define
an associative and unital map mPC : PC nSPC ! PC as follows. Let

G2ð f1; . . . ; fr; g1; . . . ; gsÞ A PC nPCðm; nÞ

be a 2-levelled graph whose vertices of the first level are labelled by f1; . . . ; fr and whose
vertices of the second level are labelled by g1; . . . ; gs. The image of G2ð f1; . . . ; fr; g1; . . . ; gsÞ
under mPC is the composite

C!DC
CnS C q CnC ����������!~GG2ð f1;...; fr;g1;...;gsÞ

PnP!! PnSP!mP P;

where ~GG2ð f1; . . . ; fr; g1; . . . ; gsÞ applies fi on the element of C indexing the i th vertex of the
first level and gj on the element of C indexing the j th vertex of the second level of an ele-
ment of CnC. Since the action of the symmetric groups on PC is defined by conjugation
and since the image of the coproduct lives in the space of invariants, this map factors
through the coinvariants, that is PCnS PC ! PC.

The unit is given by the map C!e I !h P. The associativity of mPC comes directly
from the coassociativity of DC and the associativity of mP. r

Definition. The properad HomðC;PÞ is called the convolution prop(erad ) and is
denoted by PC.

Assume now that ðC; dCÞ is a dg coprop(erad) and ðP; dPÞ is a dg prop(erad). The
derivative of a graded linear map f from C to P is defined as follows:

Dð f Þ :¼ dP � f � ð�1Þj f jf � dC:

A 0-cycle for this di¤erential is a morphism of chain complexes, that is it commutes with
the di¤erentials. In [32], Section 1, we give a geometric interpretation of this derivative. The
derivative is a derivation for the product of the prop(erad) HomðC;PÞ that verifies D2 ¼ 0.
We sum up these relations in the following proposition. The same result holds in the non-
symmetric case.
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Proposition 3. When ðC; dCÞ is a dg coprop(erad) and ðP; dPÞ is a dg prop(erad),�
HomðC;PÞ;D

�
is a dg prop(erad).

When ðC; dCÞ is a dg non-symmetric coprop(erad) and ðP; dPÞ is a dg non-symmetric

prop(erad),
�
HomðC;PÞ;D

�
is a dg non-symmetric prop(erad).

2.2. Lie-admissible products and Lie brackets associated to a properad. In [18],
the authors proved that the total space

L
n

PðnÞ, as well as the space of coinvariantsL
n

PðnÞSn
, of an operad is endowed with a natural Lie bracket. This Lie bracket is the

anti-symmetrization of the preLie product p � q ¼
P
i

p �i q defined by the sum on all

possible ways of composing two operations p and q. Notice that this result was implicitly
stated by Gerstenhaber in [13]. We generalize this results to properads.

For any pair of elements, m and n, in a (non-symmetric) properad P, we denote by
m � n the sum of all the possible compositions of m by n along any 2-levelled graph with
two vertices in P. For another element h in P, the composition ðm � nÞ � h is spanned by
graphs of the form

Let us denote by m � ðn; hÞ the summand spanned by graphs of the first type.

In the same way, m � ðn � hÞ is spanned by graphs of the form

and we denote by ðm; nÞ � h the summand of m � ðn � hÞ spanned by graphs of the first (from
the left) type. With these notations, we have in P the formula

ðm � nÞ � h� m � ðn � hÞ ¼ m � ðn; hÞ � ðm; nÞ � h:

When P ¼ A is concentrated in arity ð1; 1Þ, it is an associative algebra. In this case, the
product � is the associative product of A. When P is an operad, the operation ðm; nÞ � h
vanishes and the product m � n is right symmetric, that is

ðm � nÞ � h� m � ðn � hÞ ¼ ðm � hÞ � n� m � ðh � nÞ:

Such a product is called preLie. In the general case of properads, this product verifies a
weaker relation called Lie-admissible because its anti-symmetrized bracket verifies the
Jacobi identity. Denote by Asðm; n; hÞ :¼ ðm � nÞ � h� m � ðn � hÞ the associator of m, n and h.
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Definition (Lie-admissible algebra). A graded vector space A with a binary product
� is called a (graded) Lie-admissible algebra if one has

P
s AS3

sgnðsÞAsð�;�;�Þs ¼ 0, where,

for instance, Asð�;�;�Þð23Þ applied to m, n and h is equal to

ð�1Þjnj jhj
�
ðm � hÞ � n� m � ðh � nÞ

�
:

A di¤erential graded Lie-admissible algebra (or dg Lie-admissible algebra for short) is a dg
module ðA; dAÞ endowed with a Lie-admissible product � such that the dA is a derivation.

Proposition 4. Let P be a dg properad or a non-symmetric dg properad, the spaceL
m;n

Pðm; nÞ, endowed with the product �, is a dg Lie-admissible algebra.

Proof. Let H ¼ fid; ð23Þg and K ¼ fid; ð12Þg be two subgroups of S3. We haveP
s AS3

sgnðsÞAsð�;�;�Þs ¼
P

s AS3

sgnðsÞ
��
� � ð� � �Þ

�s � �
ð� � �Þ � �

�s�
¼

P
tH AS3nH

sgnðtÞ
��
� � ð�;�Þ

�t � �
� � ð�;�Þ

�tð23Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

�
P

oK AS3nK
sgnðoÞ

��
ð�;�Þ � �

�o � �
ð�;�Þ � �

�oð12Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ 0: r

Actually on the direct sum
L
m;n

Pðm; nÞ of the components of a properad, there are

higher operations with rþ s inputs which turns it into a ‘‘non-di¤erential By-algebra’’. We
refer to the next section for more details.

For a prop P, we still define the product p � q on
L
m;n

Pðm; nÞ by all the possible ways

of composing the operations p and q, that is all vertical composites and the horizontal one.

Proposition 5.1) Let P be a dg prop or a non-symmetric dg prop, the spaceL
m;n

Pðm; nÞ, endowed with the product �, is a dg associative algebra.

Proof. We denote by p �v q the sum of all vertical (connected) composites of p and
q and by p �h q the horizontal composite. We continue to use the notation p �v ðq; rÞ to
represent the composite of an operation p connected to two operations q and r above. We
have (in degree 0)

ðp � qÞ � r ¼ ðp �v qþ p �h qÞ � r

¼ p �v q �v rþ p �v ðq; rÞ þ ðp �v qÞ �h rþ ðp �v rÞ �h q

þ p �h ðq �v rÞ þ ðp; qÞ �v rþ p �h q �h r;

1) This result was mentioned to the second author by M. M. Kapranov (long time ago).
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and

p � ðq � rÞ ¼ p � ðq �v rþ q �h rÞ

¼ p �v q �v rþ ðp; qÞ �v rþ p �h ðq �v rÞ þ ðp �v qÞ �h r

þ q �h ðp �v rÞ þ p �v ðq; rÞ þ p �h q �h r:

Since the horizontal product is commutative, ðp �v rÞ �h q is equal to q �h ðp �v rÞ, which
finally implies ðp � qÞ � r ¼ p � ðq � rÞ. r

These structures pass to coinvariants
L

PS :¼
L
m;n

Pðm; nÞSop
m �Sn

as follows.

Proposition 6. Let P be a dg properad (respectively dg prop), the dg Lie-admissible

(associative) product � on
L

P induces a dg Lie-admissible (associative) product on the space

of coinvariants
L

PS.

Proof. It is enough to prove that the space

C :¼ fp� t:p:n; p A Pðm; nÞ; t A Sm; n A Sng

is a two-sided ideal for the Lie-admissible product �. Let us denote p � q by
P
s

mðp; s; qÞ,

where m is the composition map of the properad P and where s runs thought connected
permutations. For any t A Sm, we have

ðp� t:pÞ � q ¼
P
s

�
mðp; s; qÞ � mðt:p; s; qÞ

�
¼

P
s

�
mðp; s; qÞ � ts:mðp; s; qÞ

�
A C;

where ts is a permutation which depends on s. For any n A Sn, we have

ðp� p:nÞ � q ¼
P
s

mðp; s; qÞ �
P
s

mðp; n:s; qÞ ¼
P
s

mðp; s; qÞ �
P
s

mðp; s 0; qÞ:ns

¼
P
s

�
mðp; s; qÞ � mðp; s; qÞ:ns 00

�
A C;

since the connected permutations s 0 obtained runs thought the same set of connected per-
mutations as s. Therefore, C is a right ideal. The same arguments prove that C is a left
ideal. r

In the sequel, we will have to work with the space of invariantsL
PS :¼

L
m;n

Pðm; nÞS
op
m �Sn ;

and not coinvariants, of a properad. Since we work over a field of characteristic zero, both
are canonically isomorphic. Let V be a vector space with an action of a finite group G. The
subspace of invariants is defined by VG :¼ fv A V j v:g ¼ v; Eg A Gg and the quotient space
of coinvariants is defined by VG :¼ V=hv� v:g; Eðv; gÞ A V � Gi. The map from VG to VG

is the composite of the inclusion VG
q V followed by the projection V !! VG. The inverse

map VG ! VG is given by ½v� 7! 1

jGj
P
g AG

v:g, where ½v� denotes the class of v in VG.

14 Merkulov and Vallette, Deformation theory of representations of prop(erad)s I

(AutoPDF V7 3/3/09 11:55) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1–56 2086_6001 (p. 14)



Corollary 7. Let P be a dg properad (respectively dg prop), its total space of invariant
elements

L
PS is a dg Lie-admissible algebra (dg associative algebra).

The Lie-admissible relation of a product � is equivalent to the Jacobi identity

½½�;��;�� þ ½½�;��;��ð123Þ þ ½½�;��;��ð132Þ ¼ 0 for its induced bracket

½m; n� :¼ m � n� ð�1Þjmj jnjn � m:

Theorem 8. Let P be a dg properad (respectively dg prop), its total space
L

P, the
total space of coinvariant elements

L
PS and the total space of invariant elements

L
PS are

dg Lie algebras.

The first of this statement is also true for non-symmetric dg prop(erad)s.

2.3. LR-algebra associated to a properad. On the total space of a properad, we have
constructed a binary product � in the previous section. We now define more general oper-
ations with multiple inputs.

Definition (LR-operations). Let ðP; mÞ be a properad and p1; . . . ; pr and q1; . . . ; qs
be elements of P. Their LR-operation fp1; . . . ; prgfq1; . . . ; qsg is defined byP

s

mðp1; . . . ; pr; s; q1; . . . ; qsÞ;

where s runs through connected permutations.

In order words, the LR-product is the sum over all possible ways to compose the ele-
ments of P.

These operations are obviously graded symmetric with respect to Koszul-Quillen sign
convention, that is

fp1; . . . ; prgfq1; . . . ; qsg ¼ eðs; p1; . . . ; prÞ:eðt; q1; . . . ; qsÞfpsð1Þ; . . . ; psðrÞgfqtð1Þ; . . . ; qtðsÞg;

for s A Sr and t A Ss. The element eðs; p1; . . . ; prÞ A fþ1;�1g stands for the Koszul-
Quillen signs induced by the permutations of the graded elements p1; . . . ; pr under s.
Notice that the Lie-admissible product is equal to p � q :¼ fpgfqg. By convention, we set
f gf g ¼ 0, f gfqg ¼ q, fpgf g ¼ p and f gfq1; . . . ; qsg ¼ 0 for s > 1, fp1; . . . ; prgf g ¼ 0
for r > 1. The name LR-operations stands for Left-Right operations as well as for Loday-
Ronco operations since such operations are used in [24] to extend the Cartier-Milnor-
Moore Theorem to non-cocommutative Hopf algebras.

Proposition 9. The LR-operations satisfy the relations of a ‘‘non-di¤erential By-

algebra’’, that is, for all o1; . . . ; or, p1; . . . ; ps, q1; . . . ; qt in P.P
Y

effo1; . . . ; oi1gfp1; . . . ; pj1g; . . . ; foi1þ���þia�1þ1; . . . ; orgfpj1þ���þja�1þ1; . . . ; prggfq1; . . . ; qtg

¼
P
Y 0

e 0fo1; . . . ; osgffp1; . . . ; pk1gfq1; . . . ; ql1g; . . . ; fpk1þ���þkb�1þ1; . . . psg

� fql1þ���þlb�1þ1; . . . ; qtgg;
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where Y runs over 1e aeMaxðr; sÞ, i1; . . . ; iaf 0 such that i1 þ � � � þ ia ¼ r, j1; . . . ; ja f 0
such that j1 þ � � � þ ja ¼ s and where Y 0 runs over 1e beMaxðs; tÞ, k1; . . . ; kbf 0 such

that k1 þ � � � þ kb ¼ s, l1; . . . ; lbf 0 such that l1 þ � � � þ lb ¼ t. The sign e comes from the

permutations of the o and the p and the sign e 0 comes from the permutations of the p and

the q.

Proof. It is a direct translation to LR-operations of the associativity of the operad
P. See also, [24], Example 1.7 (d), and Lemma 2. r

Therefore, the total space
L

P of a properad P, with the LR-operations, forms a
‘‘non-di¤erential By’’, structure that we call an LR-algebra. The same result also holds
for non-symmetric prop(erad)s.

Proposition 10. The P be a dg prop(erad), its total space
L

P, the total space

of coinvariants elements
L

PS and the total space of invariants elements
L

PS form an

LR-algebra.

Proof. The structure of LR-algebra of
L

P factors through the coinvariant elementsL
PS by the same arguments as in Proposition 6. Since the space of coinvariant and invari-

ant elements are isomorphic, we can transfer this structure to invariant elements. r

2.4. Lie-admissible bracket and LR-algebra of a convolution properad. Since
HomðC;PÞ is an properad, it has a Lie-admissible bracket and more generally it enjoys a
structure of LR-algebra by the preceding sections. We make these structures explicit here.
We will use them later on in our study of deformation theory (see [32], Sections 2 and 3).

Definition (convolution product). Let f and g be two elements of HomðC;PÞ. Their
convolution product f ? g is defined by the following composite

C ����!Dð1; 1Þ
Cnð1;1ÞC ����!fnð1; 1Þg

Pnð1;1ÞP ����!m P:

Since the partial coproduct of a coproperad (or a cooperad) is not coassociative in
general, the convolution product is not associative.

Proposition 11. Let P be a dg prop(erad) and C be a dg coprop(erad). The convolu-

tion product ? on
L

HomðC;PÞ is equal to the product � associated to the convolution

dg prop(erad). In the case of dg (co)properads, it is dg Lie-admissible and for dg (co)props,
it is dg associative.

This convolution product is stable on the space of invariant elements
L

HomSðC;PÞ
with respect to the action of the symmetric groups.

Proof. The image of the map Dð1;1Þ is a sum over all possible 2-levelled graphs with
two vertices indexed by some elements of C. Therefore, the map ? is equal to the sum of
all possible compositions of f and g.

Saying that f and g are invariant elements in HomðC;PÞ means that they are equiv-
ariant maps. Since the composition map m of P and the partial coproduct Dð1;1Þ are also
equivariant maps, we have
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ðs: f ? g:tÞðcÞ ¼ s:
�
f ? gðs�1:c:t�1Þ

�
:t ¼ s:

�
m � ð f n gÞ � Dð1;1Þðs�1:c:t�1Þ

�
:t

¼ s:s�1:ð f ? gÞðcÞ:t�1:t ¼ f ? gðcÞ: r

Using the projections Dðr; sÞ of the coproduct of C, we make explicit the LR-operations
with r and s inputs of HomðC;PÞ as follows.

Proposition 12. Let f1; . . . ; fr and g1; . . . ; gs be elements of HomðC;PÞ. Their

LR-opera t ion f f1; . . . ; frgfg1; . . . ; gsg is equal to

C �!Dðr; sÞ ðI l C|{z}
r

ÞnS ðI l C|{z}
s

Þ

f! Cn � � �nC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
r

n Cn � � �nC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s

����������!f f1;...; frgnfg1;...;grg
PnP �!! PnS P �!m P;

where f f1; . . . ; frg ¼
P
s ASr

eðs; f1; . . . ; frÞ fsð1Þn � � �n fsðrÞ. The element

eðs; f1; . . . ; frÞ A fþ1;�1g

stands for the Koszul-Quillen signs induced by the permutations of the graded elements

f1; . . . ; fr under s. This means that we apply f f1; . . . ; frg and fg1; . . . ; gsg everywhere we

can.

Proof. The proof is similar to the previous one. r

Theorem 13. Let C be a dg coprop(erad) and P be a dg prop(erad), the spaceL
HomðC;PÞ is a dg LR-algebra and thus a dg Lie algebra, structures that are stable on

the space of equivariant maps
L

HomSðC;PÞ.

Proof. Since the Dðr; sÞ and m are equivariant maps, the LR-operations are stable on
the space of equivariant maps HomSðC;PÞ by their explicit form given in the previous
proposition. r

Remark. In the case of the convolution properad, we do not have to transfer the
structure of LR-algebra or Lie algebra from HomðC;PÞ to HomSðC;PÞ through the
coinvariant-invariant isomorphism. These structures on directly stable on the space of
invariant elements.

When C ¼ C is a coassociative coalgebra and P ¼ A an associative algebra, the
product n is equal to n and is bilinear. In this case, the partial coproduct of C is equal
to the coproduct of C and is coassociative. (All the Dðr; sÞ are null for r > 1 or s > 1.)
In this case, the product ? is the classical convolution product on HomðC;AÞ, which is
associative.

When C is a cooperad andP is an operad we have Dðr; sÞ ¼ 0 for r > 1 as the operations
f f1; . . . ; frgfg1; . . . ; gsg are null unless r ¼ 1. The remaining operations f f gfg1; . . . ; gsg
are graded symmetric brace operations coming from the brace-type relations verified by
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the operadic product (see [17], [21]). Remark that when C is a non-symmetric cooperad
and P a non-symmetric operad, we can define non-symmetric braces on HomðC;PÞ
without the sum over all permutations. In this case, we find the classical non-symmetric
braces of [13], see also [14], [40]. The convolution product verifies the relation
ð f ? gÞ ? h� f ? ðg ? hÞ ¼ f f gfg; hg. Therefore, in the operadic case, the (graded) symme-
try of the brace products implies that the associator ð f ? gÞ ? h� f ? ðg ? hÞ is symmetric
in g and h. Hence the convolution product ? on HomðC;PÞ is a graded preLie product.
For an interpretation of the LR-operations (or braces operations) on cohomology theories,
we refer the reader to [32], Section 2.

3. Bar and cobar constructions

In this section, we recall the definitions of the bar and cobar constructions for
(co)properads and extend it to (co)props. We prove adjunction between these two construc-
tions using the notion of twisting morphism, that is Maurer-Cartan elements in the con-
volution prop(erad). Finally, we show that the bar-cobar construction provides us with a
canonical cofibrant resolution.

3.1. Infinitesimal bimodule over a prop(erad). The notion of bimodule M over a
prop(erad) P, defined in a categorical way, is given by two compatible actions, left
PnM !M and right MnP!M. For our purposes, we need a linearized or infinitesi-

mal version of bimodules. Such a phenomenon cannot be seen on the level of associative
algebras since the monoidal productn defining them is bilinear.

The S-bimodule ðMlNÞnO is the sum over 2-levelled graphs with vertices on the
top level labelled by elements of O and with vertices on the bottom level labelled by ele-
ments of M or N. We denote by ð M|{z}

r

lNÞnO the sub-S-module of ðMlNÞnO

with exactly r elements of M on the bottom level.

Definition (infinitesimal bimodule). Let ðP; mÞ be a prop(erad). An infinitesimal

P-bimodule is an S-bimodule M endowed with two action maps of degree 0

l : Pn ðPl M|{z}
1

Þ !M and r : ðPl M|{z}
1

ÞnP!M;

such that the following diagrams commute.

� Compatibility between the left action l and the composition product m of P:

PnPn ðPl M|{z}
1

Þ ����!PnðlþmÞ
Pn ðPl M|{z}

1

Þ???ymnðPlMÞ

???yl

Pn ðPl M|{z}
1

Þ ����!l
M:
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� Compatibility between the right action r and the composition product m of P:

ðPl M|{z}
1

ÞnPnP ����!ðrþmÞnP ðPl M|{z}
1

ÞnP???yðPlMÞnm

???yr

ðPl M|{z}
1

ÞnP ����!r
M:

� Compatibility between the left and the right action:

Pn ðPl M|{z}
1

ÞnP ����!ðlþmÞnP ðPl M|{z}
1

ÞnP???yPnðrþmÞ

???yr

Pn ðPl M|{z}
1

Þ ����!l
M:

The notation PnPn ðPl M|{z}
1

Þ stands for the sub-S-bimodule of PnPn ðPlMÞ

with only one M on the upper level. It is represented by linear combinations of 3-
levelled graphs whose vertices are indexed by elements of P and just one of M on the
first level. The other S-bimodules with just one element coming from M are denoted
in the same way, Pn ðPl M|{z}

1

ÞnP has one element of M on the second level and

ðPl M|{z}
1

ÞnPnP has one element of M on the third level.

One purpose of this notion is to define the notion of abelian or infinitesimal extension
of a prop(erad) P. It is defined by a prop(erad) structure on PlM, when M is an infin-
itesimal bimodule over P (see [32], Section 2.4). Another important property is that, for
any sub-S-bimodule J of P, the ideal generated by J in P is equal to the free infinitesimal
P-bimodule on J.

Since the prop(erad) P has a unit, it is equivalent to have two actions
l : Pnð1;1ÞM !M and r : Mnð1;1ÞP!M that are compatible with the composition
product of prop(erad) P. Notice that the category of infinitesimal bimodules over a
prop(erad) forms an abelian category.

Example. Any morphism of prop(erad)s f : P! Q defines an infinitesimal P-
bimodule structure on Q:

Pnð1;1Þ Q ��!fnQ
Qnð1;1Þ Q ��!mQ Q and Qnð1;1ÞP ��!Qn f

Qnð1;1Þ Q ��!mQ Q:

3.2. (Co)derivations. Let ðP; mÞ be a dg prop(erad) and ðM; l; rÞ be an infinitesimal
P-bimodule.

Definition (Derivation). A homogeneous morphism q : P!M is a homogeneous

derivation if

q � mð1;1Þð�;�Þ ¼ r
�
qð�Þ;�

�
þ l

�
�; qð�Þ

�
:
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This formula, applied to elements p1 nð1;1Þ p2 of Pnð1;1ÞP, where p1 and p2 are homo-
geneous elements of P, gives

q � mðp1nð1;1Þ p2Þ ¼ r
�
qðp1Þnð1;1Þ p2

�
þ ð�1Þjqj jp1jl

�
p1nð1;1Þ qðp2Þ

�
:

A derivation is a sum of homogeneous derivations. The set of homogenous deriva-
tions of degree n is denoted by DernðP;MÞ and the set of derivations is denoted
Der�ðP;MÞ

Example. The di¤erential of a dg prop(erad) P is a derivation of degree �1, that is
an element of Der�1ðP;PÞ.

In this section, we only consider derivations DerðP;QÞ, where the infinitesimal P-
bimodule structure on Q is given by a morphism of prop(erad)s P! Q. In the rest of
the text, we need the following lemma which makes explicit the derivations on a free
prop(erad). For a prop(erad) ðQ; mQÞ, any graph G of FðQÞðnÞ represents a class G of
levelled graphs of Qnn. We recall that there is a morphism ~mmQ : FðQÞ ! Q, the counit
of adjunction, equal to ~mmQðGÞ :¼ m

�ðn�1Þ
Q ðGÞ. The morphism ~mmQ is the only morphism of

prop(erad)s extending the map Q!Id Q.

Lemma 14. Let r : FðVÞ ! Q be a morphism of prop(erad)s of degree 0. Every
derivation from the free dg prop(erad) FðVÞ to Q is characterized by its restriction on V ,
that is there is a canonical one-to-one correspondence Dernr

�
FðVÞ;Q

�
GHomS

n ðV ;QÞ.

For every morphism of dg S-bimodules y : V ! Q, we denote the unique derivation

which extends y by qy. The image of an element Gðv1; . . . ; vnÞ of FðVÞðnÞ under qy is

qy
�
Gðv1; . . . ; vnÞ

�
¼

Pn
i¼1
ð�1Þjyj:ðjv1jþ���þjvi�1jÞ ~mmQ

�
G
�
rðv1Þ; . . . ; rðvi�1Þ; yðviÞ; rðviþ1Þ; . . . ; rðvnÞ

��
:

Proof. Let us denote by y the restriction of the derivation q on V , that is
y ¼ qV : V ! �QQ. From y, we can construct the whole derivation q by induction on the
weight n of the free prop(erad) FðVÞ as follows.

For n ¼ 1, we have q1y ¼ y : V ! Q. Suppose now that qn
y : FðVÞðnÞ ! Q is con-

structed and it is given by the formula of the lemma. Any simple element of FðVÞðnþ1Þ
represented by a graph with nþ 1 vertices indexed by elements of V is the concatenation
of a graph with n vertices with an extra vertex from the top or the bottom. In the last case,
qnþ1
y is given the commutative diagram

FðVÞðnþ1Þ ������!qnþ1
y

Qx???mFðVÞ

x???mQ

V nð1;1ÞFðVÞðnÞ ������!rnqn
yþq

n
ynr

Qnð1;1Þ Q:

The other case is dual. It is easy to check that the formula is still true for elements
of FðVÞðnþ1Þ, that is for graphs with nþ 1 vertices. Finally, since r is a morphism of
prop(erad)s, qy is well defined and is a derivation. r
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Example. A di¤erential q on a free prop(erad) FðVÞ is a derivation of
Der�1Id

�
FðVÞ;FðVÞ

�
such that q2 ¼ 0.

Definition (quasi-free prop(erad)). A dg prop(erad)
�
FðVÞ; q

�
such that the under-

lying prop(erad) is free is called a quasi-free prop(erad).

Notice that in a quasi-free prop(erad), the di¤erential is not freely generated and is a
derivation of the form given above.

Dually, let ðC;DCÞ and ðD;DDÞ be two coaugmented dg coprop(erad)s and let
r : C! D be a morphism of coaugmented dg coprop(erad)s of degree 0. One can define
the dual notion of infinitesimal comodule over a coprop(erad) and general coderivations.
Since we only need coderivations between two coprop(erad)s, we do not go into such de-
tails here.

Definition (coderivation). A homogeneous morphism d : C! D is a homogeneous

coderivation of r if the following diagram is commutative:

C �����!d
D???yDC

ð1; 1Þ

???yDD
ð1; 1Þ

CnC �����!dnrþrnd
DnD:

A coderivation is a sum of homogenous coderivations. The space of coderivations is
denoted by Coder�r ðC;DÞ.

Example. The di¤erential of a dg coprop(erad) C is a coderivation of degree �1.

Remark. For a cooperad D, we can define a more general notion of coderivation
form a D-cobimodule to D by a similar formula. The definition given here is a particular
case. Since r : C! D is a morphism of coprop(erad)s, it provides C with a natural struc-
ture of D-cobimodule.

As explained in the first section, the dual statement of Lemma 14 holds only for con-
nected coprop(erad)s.

Lemma 15. Let C be a connected coprop(erad) and let r : C!FcðW Þ be a

morphism of augmented coprop(erad)s. Every coderivation from C to the cofree connected

coprop(erad) FcðWÞ is characterized by its projection on W , that is there is a canonical

one-to-one correspondence Codernr
�
C;FcðWÞ

�
GHomS

n ðC;W Þ.

Proof. The proof is similar to the one of Lemma 14 and goes by induction on r,
where Fr stands for the coradical filtration of C. The assumption that the coprop(erad) C
is connected ensures that the image of an element X of Fr under d lives in

L
ner

FcðWÞðnÞ.
Therefore, dðXÞ is finite and d is well defined. r

We denote by dn the unique coderivation which extends a map n : C!W .
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Example. A di¤erential d on a cofree coprop(erad) FcðW Þ is a coderivation of
Der�1Id

�
FcðWÞ;FcðWÞ

�
such that d 2 ¼ 0. By the preceding lemma, it is characterized

by the composite FcðW Þ !d FcðWÞ !!W . Its explicit formula can be found in Lemma
22.

Definition (quasi-cofree coprop(erad)). A dg coprop(erad)
�
FcðWÞ; d

�
such that the

underlying coprop(erad) is connected cofree is called a quasi-cofree coprop(erad).

3.3. (De)suspension. The homological suspension of a dg S-bimodule M is denoted
by sM :¼ KsnM with jsj ¼ 1, that is ðsMÞi GMi�1. Dually, the homological desuspen-
sion of M is denoted by s�1M :¼ Ks�1nM with js�1j ¼ �1, that is ðs�1MÞi GMiþ1.

Let ðP; dÞ be an augmented dg S-bimodule, that is P ¼ Pl I . A map of aug-
mented S-bimodules m : FcðPÞ ! P consists of a family of morphisms of dg S-bimodules
mn : F

cðPÞðnÞ ! P for each integer nf 1. (For n ¼ 0, the map m is the identity
I ! I .) There is a one-to-one correspondence between maps fFcðPÞ ! Pg and maps
fFcðsPÞ ! sPg. To each map m : FcðPÞ ! P, we associate the map sm : FcðsPÞ ! sP
defined as follows for nf 1,

ðsmÞn : FcðsPÞðnÞ ��!tn snFcðPÞðnÞ ��!s�ðn�1Þ
sFcðPÞðnÞ ��!snmn

sP;

where the map tn moves the place of the suspension elements from the vertices outside the
graph. Since it involves permutations between suspensions s and elements of P, the map
tn yields signs by Koszul-Quillen rule. Using the fact that an element of FcðPÞ is an
equivalent class of graphs with levels (see 1.4), one can make these signs explicit. The exact
formula relating ðsmÞ to m is

m
�
Gðp1; . . . ; pnÞ

�
¼ ð�1Þeðp1;...;pnÞs�1ðsmÞ

�
Gðsp1; . . . ; spnÞ

�
;

where eðp1; . . . ; pnÞ ¼ ðn� 1Þjp1j þ ðn� 2Þjp2j þ � � � þ jpn�1j.

The degrees of m and sm are related by the formula jðsmÞnj ¼ jmnj � ðn� 1Þ. Therefore,
the degree of mn is n� 2 if and only if the degree of ðsmÞn is �1.

Dually, for any map of augmented S-bimodules d : C!FðCÞ, we denote by dn the

composite C!d FðCÞ !!FðCÞðnÞ. There is a one-to-one correspondence between maps
fC!FðCÞg and maps fs�1C!Fðs�1CÞg. To each map d : C!FðCÞ, we associate
the map s�1d : s�1C!Fcðs�1CÞ defined as follows, for nf 1,

ðs�1dÞn : s�1C �����!s�ðn�1Þndn
s�nFðCÞðnÞ �����!sn

Fðsð�1ÞCÞðnÞ:

We have jðs�1dÞnj ¼ jdnj � ðn� 1Þ. The degree of dn is n� 2 if and only if the degree of
ðs�1dÞn is �1.

3.4. Twisting morphism. We generalize the notion of twisting morphism (or twisting
cochains) of associative algebras (see E. Brown [7] and J. C. [34]) to prop(erad)s.

Let C be a dg coprop(erad) and P be a dg prop(erad). We proved in Theorem 13 that
HomSðC;PÞ is a dg Lie-admissible algebra with the convolution product.
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Definition. A morphism C!a P, of degree �1, is called a twisting morphism if it is a
solution of the Maurer-Cartan equation

DðaÞ þ a ? a ¼ 0:

Denote by TwðC;PÞ the set of twisting morphisms in HomSðC;PÞ, that is Maurer-
Cartan elements in the convolution prop(erad). Since twisting morphisms have degree �1,
it is equivalent for them to be solution of the classical Maurer-Cartan equation in the

associated dg Lie algebra, that is DðaÞ þ 1

2
½a; a� ¼ 0.

When P is augmented and C coaugmented, we will consider either a twisting mor-
phism between C and P, which sends I to 0, or the associated morphism which sends I

to I and C to P.

The following constructions show that the bifunctor Twð�;�Þ can be represented on
the left and on the right.

3.5. Bar construction. We recall from [41], Section 4, the definition of the bar con-

struction for properads and extend it to props. It is a functor

B : faug: dg propðeradÞsg ! fcoaug: dg copropðeradÞsg:

Let ðP; m; h; �Þ be an augmented prop(erad). Denote by P its augmentation ideal
KerðP!� IÞ. The prop(erad) P is naturally isomorphic to P ¼ I lP. The bar construc-
tion BðPÞ of P is a dg coprop(erad) whose underlying space is the cofree coprop(erad)
FcðsPÞ on the suspension of P.

The partial product of P induces a map of augmented S-bimodules defined by the
composite

m2 : F
cðPÞ �!!FcðPÞð2ÞGPnð1;1ÞP �!mð1; 1Þ P:

We have seen in the previous section that m2 induces a map sm2. Consider the map

KsnKs!Ps
Ks of degree �1 defined by Psðsn sÞ :¼ s. The map sm2 is equal to the com-

posite

sm2 : F
cðsPÞ ����!!FcðsPÞð2ÞG ðKsnPÞnð1;1Þ ðKsnPÞ

����!IdntnId ðKsnKsÞn ðPnð1;1ÞPÞ ����!Psnmð1; 1Þ
KsnP:

Since FcðsPÞ is a cofree connected coprop(erad), by Lemma 15 there exists a unique
coderivation d2 :¼ dsm2 : F

cðsPÞ !FcðsPÞ which extends sm2. When ðP; dPÞ is an aug-
mented dg prop(erad), the di¤erential dP on P induces an internal di¤erential d1 on
FcðsPÞ. The total complex of this bicomplex is the bar construction

BðP; dPÞ :¼
�
FcðsPÞ; d ¼ d1 þ d2

�
of the augmented dg prop(erad) ðP; dPÞ.
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Notice that the relation d 2 ¼ 0 can be understood conceptually from the Lie-
admissible relations verified by the partial product of the prop(erad) P.

3.6. Cobar construction. Dually, the cobar construction ([41], Section 4) for copro-
p(eard)s is a functor

W : fcoaug: dg copropðeradÞsg ! faug: dg propðeradÞsg:

Let ðC;D; e; uÞ be a coaugmented coprop(erad). Denote by C its augmentation KerðC!e IÞ.
In this case, C splits naturally as C ¼ I lC. The cobar construction WðCÞ of C is a dg
prop(erad) whose underlying space is the free prop(erad) Fðs�1CÞ on the desuspension
of C.

The partial coproduct of C induces a natural map of augmented S-bimodules defined
by

D2 : C ��!Dð1; 1Þ Cnð1;1ÞCGFðCÞð2Þ f!FðCÞ:

This map gives a map s�1D2 : s
�1C!Fðs�1CÞ. Consider Ks�1 equipped with the diagonal

map Ks�1 !Ds
Ks�1nKs�1 of degree �1 defined by the formula Dsðs�1Þ :¼ s�1 n s�1. The

map s�1D2 is equal to

s�1D2 : Ks�1 nC ����!DsnDð1; 1Þ
Ks�1 nKs�1 nCnð1;1ÞC

����!IdntnId ðKs�1 nCÞnð1;1Þ ðKs�1 nCÞGFðs�1CÞð2Þ q Fðs�1CÞ:

Since Fðs�1CÞ is a free prop(erad), by Lemma 14 there exists a unique derivation
q2 :¼ qs�1D2

: Fðs�1CÞ !Fðs�1CÞ which extends s�1D2. When ðC; dCÞ is an augmented dg
coprop(erad), the di¤erential dC on C induces an internal di¤erential q1 on Fðs�1CÞ. The
total complex of this bicomplex is the cobar construction

WðC; dCÞ :¼
�
Fðs�1CÞ; q ¼ q1 þ q2

�
of the augmented dg coprop(erad) ðC; dCÞ.

3.7. Bar-cobar adjunction. As for derivations, a morphism of prop(erad)s is charac-
terized by the image of the indecomposable elements. We recall this fact and the dual state-
ment in the following lemma.

Lemma 16. Let V be an S-bimodule and let Q be a prop(erad), there is a canonical

one-to-one correspondence MorpropðeradÞs
�
FðVÞ;Q

�
GHomSðV ;QÞ.

Dually, let W be an S-bimodule and let C be a coprop(erad), there is a canonical one-

to-one correspondence MorcopropðeradÞs
�
C;FcðWÞ

�
GHomSðC;WÞ.

Let ðC; dCÞ be a dg coprop(erad) and ðP; dPÞ be a dg prop(erad). We will apply this
result to the bar and the cobar construction of P and C respectively, that is we want
to describe the space of morphisms of dg-prop(erad)s Mordg propðeradÞs

�
WðCÞ;P

�
for in-

stance. By the preceding lemma, this space is isomorphic to the space of morphisms of
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S-bimodules HomS
0 ðs�1C;PÞ of degree 0 whose unique extension commutes with the

di¤erentials. Therefore, this space of morphisms is the subspace of HomS
�1ðC;PÞ whose

elements satisfy a certain relation, which is exactly the Maurer-Cartan equation.

Proposition 17. For every augmented dg prop(erad) P and every coaugmented dg
coprop(erad) C, there are canonical one-to-one correspondences

Mordg propðeradÞs
�
WðCÞ;P

�
GTwðC;PÞGMordg copropðeradÞs

�
C;BðPÞ

�
:

Proof. Since WðCÞ ¼F
�
s�1ðCÞ

�
, by Lemma 16 every morphism j of S-bimodules

in HomS
0 ðs�1C;PÞ extends to a unique morphism of prop(erad)s between WðCÞ and P. The

latter one commutes with the di¤erentials if and only if the following diagram commutes:

s�1C P???yq

Fðs�1CÞðe2Þ ���!FðjÞ
FðPÞ ���!~mmP

P:

��������!

 ����
����j

dP

For an element c A C, we use Sweedler’s notation to denote the image of c under D2, that is
D2ðcÞ ¼

P
c0nð1;1Þ c

0 0. The diagram above corresponds to the relation

dP � jðs�1cÞ ¼ j � q1ðs�1cÞ þ mP � ðjnð1;1Þ jÞ � s�1D2ðs�1cÞ:

Denote by a the desuspension of j, that is aðcÞ ¼ �jðs�1cÞ. Since q1ðs�1cÞ ¼ �s�1qCðcÞ,
the relation becomes

�dP � aðcÞ ¼ a � qCðcÞ þ mP � ðanð1;1Þ aÞ � D2ðcÞ;

which is the Maurer-Cartan equation. r

Therefore, the bar and cobar constructions form a pair of adjoint functors

W : fcoaug: dg copropðeradÞsg Ð faug: dg propðeradÞsg : B:

If we apply the isomorphisms of Proposition 17 to C ¼ BðPÞ, the morphism associated to
the identity on BðPÞ is the counit of the adjunction � : W

�
BðPÞ

�
! P. In this case, we get a

universal twisting morphism BðPÞ ! P.

The morphism associated to the identity of WðCÞ when P ¼ WðCÞ is the counit of the
adjunction C! B

�
WðCÞ

�
. In this case, we get a universal twisting morphism C! WðCÞ.

Proposition 18. Any twisting morphism a : C! P factors through BðPÞ ! P and

C! WðCÞ.

WðCÞ

C P
����!  ����

 ���� ����!
BðPÞ

��������!a
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Proof. It is a corollary of Proposition 17. r

3.8. Props vs properads. The main di¤erence for (co)bar construction between props
and properads lies on the type of graphs and compositions. The underlying module of the
bar construction of a prop P is spanned by not necessarily connected graphs whose vertices
are labelled with elements of P. The boundary map is the unique coderivation which ex-
tends the partial product. It is given explicitly by the sum of the compositions of pairs of
vertices that are either adjacent (see Section 4.2) or belong to two di¤erent connected
graphs. Whereas for a properad, the underlying module is spanned by connected labelled
graphs and the boundary map just composes adjacent pairs of operations.

3.9. Bar-cobar resolution. In [41], Theorem 5:8, we proved that the unit of adjunc-
tion � is a canonical resolution in the weight graded case. We extend this result to any dg
properad here.

Theorem 19. For every augmented dg properad P, the bar-cobar construction is a

resolution of P:

� : W
�
BðPÞ

�
!F P:

Proof. The bar-cobar construction of P is the chain complex defined on the
underlying S-bimodule F

�
s�1FcðsPÞ

�
. The di¤erential d is the sum of three terms

d ¼ q2 þ d2 þ dP, where dP is induced by the di¤erential on P, d2 is induced by the dif-
ferential of the bar construction BðPÞ and q2 is the unique derivation which extends the
partial coproduct of FcðsPÞ.

Define the filtration Fs :¼
L
res

F
�
s�1FcðsPÞ

�
r
, where r denotes the total number of

elements of P. Let E �st be the associated spectral sequence.

This filtration is bounded below and exhaustive. Therefore, we can apply the classical
convergence theorem for spectral sequences (see [46]) and prove that E � converges to the
homology of the bar-cobar construction.

We have that E0
st ¼Fsþt

�
s�1FcðsPÞ

�
s
, where sþ t is the total homological degree.

From d2ðFsÞHFs�1, dPðFsÞHFs and q2ðFsÞHFs, we get that d 0 ¼ q2 þ dP. The problem
is now reduced to the computation of the homology of the cobar construction of the dg
cofree connected coproperad FcðsPÞ on the dg S-bimodule sP. This complex is equal to
the bar-cobar construction of the weight graded properad ðP; m 0Þ, where Pð0Þ ¼ I and
Pð1Þ ¼ P, such that the composition m 0 is null. We conclude using [41], Theorem 5.8. r

Proposition 20. The bar-cobar resolution provides a canonical cofibrant resolution to

any non-negatively graded dg properad.

We refer the reader to [32], Appendix A, for the model category structure on dg
prop(erads).

Proof. The bar-cobar resolution is quasi-free. We conclude by [32], Corollary
40. r
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4. Homotopy (co)prop(erad)s

An associative algebra is a vector space endowed with a binary product that verifies
the strict associative relation. J. Stashe¤ defined in [36] a lax version of this notion. It is the
notion of an associative algebra up to homotopy or (strong) homotopy algebra. Such an
algebra is a vector space equipped with a binary product that is associative only up to an
infinite sequence of homotopies. In this section, we recall the generalization of this notion,
that is the notion of (strong) homotopy properad due to J. Granåker [16]. We extend it to
props and we also define in details the dual notion of (strong) homotopy coprop(erad ),
which will be essential to deal with minimal models in the next section. The notions of
homotopy non-symmetric (co)properad and homotopy non-symmetric (co)prop are obtained
in the same way.

4.1. Definitions. Following the same ideas as for algebras (associative or Lie, for in-
stance), we define the notion of homotopy (co)prop(erad ) via (co)derivations and (co)free
(co)prop(erad)s.

Definition (homotopy prop(erad)). A structure of homotopy prop(erad ) on an aug-
mented dg S-bimodule ðP; dPÞ is a coderivation d of degree �1 on FcðsPÞ such that
d 2 ¼ 0.

A structure of homotopy prop(erad) is equivalent to a structure of quasi-cofree
coprop(erad) on sP. We call the latter the (generalized) bar construction of P and we still
denote it by BðPÞ. Since FcðsPÞ is a cofree connected coprop(erad), by Lemma 15 the
coderivation d is characterized by the composite

sm : FcðsPÞ !d FcðsPÞ !! sP;

that is d ¼ dsm. The map sm of degree �1 is equivalent to a unique map m : FcðPÞ ! P,
such that mn : F

cðPÞðnÞ ! P has degree n� 2. The condition d 2 ¼ 0 written with the fmngn
is made explicit in Proposition 23.

Example. A dg prop(erad) is a homotopy prop(erad) such that every map mn ¼ 0 for
nf 3. In this case,

�
FcðsPÞ; d

�
is the bar construction of P.

We define the notion of homotopy coprop(erad ) by a direct dualization of the previous
arguments.

Definition (homotopy coprop(erad)). A structure of homotopy coprop(erad ) on an
augmented dg S-bimodule ðC; dCÞ is a derivation q of degree �1 on Fðs�1CÞ such that
q2 ¼ 0.

A structure of homotopy coprop(erad) is equivalent to a structure of quasi-free
prop(erad) on s�1C. We call the latter the (generalized) cobar construction of C and we still
denote it by WðCÞ. By Lemma 14, the derivation q is characterized by its restriction on
s�1C:

s�1D : s�1C q Fðs�1CÞ !q Fðs�1CÞ;
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that is q ¼ qs�1D. The map s�1D of degree �1 is equivalent to a map D : C!FðCÞ, such
that the component Dn : C!FðCÞðnÞ has degree n� 2. The condition q2 ¼ 0 is equivalent
to relations for the fDngn that we make explicit in Proposition 24.

Example. A dg coprop(erad) is a homotopy coprop(erad) such that every map
Dn ¼ 0 for nf 3. In this case,

�
Fðs�1CÞ; q

�
is the cobar construction of C.

When P is concentrated in arity ð1; 1Þ, the definition of a homotopy properad on P is
exactly the same as the definition of a strong homotopy algebra given by J. Stashe¤ in [36].
Dually, when C is concentrated in arity ð1; 1Þ, we get the notion of strong homotopy
coassociative algebra.

When P is concentrated in arity ð1; nÞ for nf 1, we have the notion of strong homo-

topy operad (see [43]). The dual notion gives the definition of a strong homotopy cooperad.

Remark. By abstract nonsense, the notion of homotopy prop(erad) should also
come from Koszul duality for colored operads (see [44]). There exists a colored operad
whose ‘‘algebras’’ are (partial) prop(erad)s. Such a colored operad is quadratic (the associa-
tivity relation of the partial product of a prop(erad) is an equation between compositions of
two elements). It should be a Koszul colored operad. An ‘‘algebra’’ over the Koszul reso-
lution of this colored operad is exactly a homotopy prop(erad).

4.2. Admissible subgraph. Let G be a connected graph directed by a flow and denote
by V its set of vertices. We define a partial order on V by the following covering relation:
i � j if i is below j according to the flow and if there is no vertex between them. In this
case, we say that i and j are adjacent (see also [41], p. 34). Examples of adjacent and non-
adjacent vertices can be found in Figure 2.

Denote this poset by PG and consider its Hasse diagram HðGÞ, that is the diagram
composed by the elements of the poset with one edge between two of them, when they are
related by a covering relation. See Figure 3 for an example.

Figure 2. The vertices 1, 2 and 2, 3 are adjacent. The vertices 1 and 3 are not adjacent.

Figure 3. The Hasse diagramm associated to the graph of Figure 2.
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Actually, HðGÞ is obtained from G be removing the external edges and by replacing
several edges between two vertices by only one edge. Since G is connected and directed by
a flow, the Hasse diagram HðGÞ has the same properties. A convex subset V 0 of V is a
set of vertices of G such that for every pair ie j in V 0 the interval ½i; j� of PG is included
in V 0. If G is a connected graph of genus 0, the set of vertices of any connected subgraph
of G is convex. This property does not hold any more for connected graphs of higher
genus.

Lemma 21. Let G be a connected directed graph without oriented loops and let G 0 be a
connected subgraph of G. The set of vertices of G 0 is convex if and only if the contraction of

G 0 inside of G gives a graph without oriented loops.

A connected subgraph G 0 with this property is called admissible in [16]. We denote by
G=G 0 the graph obtained by the contraction of G 0 inside G. See Figure 4 for an example of
a admissible subgraph and an example of a non-admissible subgraph of G. By extension,
an admissible subgraph of a non-necessarily connected graph is a union of admissible sub-
graphs (eventually empty) of each connected component.

4.3. Interpretation in terms of graphs. Let m : FcðPÞ ! P be a morphism of
augmented dg S-bimodules. We denote by m

�
Gðp1; . . . ; pnÞ

�
the image of an element

Gðp1; . . . ; pnÞ of FcðPÞðnÞ under m. Let G 0 be an admissible subgraph of G with k ver-
tices. Denote by G=mG 0ðp1; . . . ; pnÞ the element of FcðPÞðn�kþ1Þ obtained by composing
G 0ðpi1 ; . . . ; pikÞ in Gðp1; . . . ; pnÞ under m. When the pi and m are not of degree zero, this
composition induces natural signs that we make explicit in the sequel. Let us start with
a representative element of a class of graphs Gðp1; . . . ; pnÞ whose vertices are indexed by
elements pi, that is to say we have chosen an order between the pi (see Section 1.4). The
vertices of G 0 are indexed by elements pi1 ; . . . ; pik . We denote by J ¼ ði1; . . . ; ikÞ the associ-
ated ordered subset of ½n� ¼ f1; . . . ; ng and pJ ¼ pi1 ; . . . ; pik . Since G

0 is an admissible sub-
graph, its set of vertices forms a convex subset of the set of vertices of G (or a disjoint union
of convex subsets if G is not connected). Therefore, it is possible to change the order of the
vertices of G such that the vertices of G 0 are next to each others. That is there exist two
ordered subsets I1 and I2 of ½n� such that the underlying subsets I1, I2 and J without order
form a partition of ½n� and such that Gðp1; . . . ; pnÞ ¼ ð�1Þe1GðPI1 ;PJ ;PI2Þ. The sign ð�1Þ

e1

is given by the Koszul-Quillen sign rule from the permutation of the pi. Now we can apply
m to get

G=mG 0ðp1; . . . ; pnÞ ¼ ð�1Þe1þe2G=G 0
�
PI1 ; m

�
G 0ðPJÞ

�
;PI2

�
;

Figure 4. Example of an admissible subgraph G 0 of G and an example of a non-admissible subgraph of G.
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where e2 ¼ jPI1 j:jmj. It is an easy exercise to prove that this definition of the signs does not
depend on the di¤erent choices.

Lemma 22. Let n be a map FcðW Þ !W of degree �1. The unique coderivation

dn A CoDer�1Id

�
FcðWÞ;FcðWÞ

�
which extends n is given by

dn
�
Gðw1; . . . ;wnÞ

�
¼

P
G 0HG

G=nG 0ðw1; . . . ;wnÞ;

where the sum runs over admissible subgraphs G 0 of G.

Proof. This formula defines a coderivation. Since the composite of dn with the
projection on W is equal to n, we conclude by the uniqueness property of coderivations of
Lemma 15. r

Proposition 23. A map m : FcðPÞ ! P defines a structure of homotopy prop(erad)
on the augmented dg S-bimodule P if and only if, for every Gðp1; . . . ; pnÞ in FcðPÞ, we haveP

G 0HG

ð�1ÞeðG
0;p1;...;pnÞm

�
G=mG 0ðp1; . . . ; pnÞ

�
¼ 0;

where the sum runs over admissible subgraphs G 0 of G.

Proof. By definition, m induces a structure of homotopy prop(erad) if and only if
d 2
sm ¼ 0. This last condition holds if and only if the composite projsP � d 2

sm ¼ ðsmÞ � dsm is
zero, where projsP is the projection on sP. From Lemma 22, this is equivalent toP

G 0HG

ðsmÞ
�
G=ðsmÞG 0ðsp1; . . . ; spnÞ

�
¼ 0;

where the sum runs over admissible subgraphs G 0 of G. Recall from Section 3.3 that the
signs between ðsmÞ and m are

m
�
Gðp1; . . . ; pnÞ

�
¼ ð�1Þeðp1;...;pnÞs�1ðsmÞ

�
Gðsp1; . . . ; spnÞ

�
;

where eðp1; . . . ; pnÞ ¼ ðn� 1Þjp1j þ ðn� 2Þjp2j þ � � � þ jpn�1j. Therefore, m induces a struc-
ture of homotopy prop(erad) if and only ifP

G 0HG

ð�1ÞeðG
0;p1;...;pnÞm

�
G=mG 0ðp1; . . . ; pnÞ

�
¼ 0;

where ð�1ÞeðG
0;p1;...;pnÞ is product of the sign coming from the composition with sm and the

sign coming from the formula between m and sm. r

Remark. In the case of associative algebras, the graphs involved are ladders
(branches, directed graphs just one incoming edge and one outgoing edge for each vertex)
and we recover exactly the original definition of J. Stashe¤ [36].

Dually, we have the following characterization of homotopy coprop(erad)s. Let G be
a graph whose i th vertex has n inputs and m outputs. For every graph G 0 with n inputs
and m outputs, denote by G �i G 0 the graph obtained by inserting G 0 in G at the place of
the i th vertex.
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Proposition 24. A map D : C!FðCÞ defines a structure of homotopy coprop(erad)
on the augmented dg S-bimodule C if and only if, for every c A C, we have

P
ð�1ÞrðG

2
i ; c1;...; clÞG1 �i G2

i ðc1; . . . ; ci�1; c 01; . . . ; c 0k; ciþ1; . . . ; clÞ ¼ 0;

where the sum runs over elements G1ðc1; . . . ; clÞ and G2
i ðc 01; . . . ; c 0kÞ such that

DðcÞ ¼
P

G1ðc1; . . . ; clÞ and DðciÞ ¼
P

G2
i ðc 01; . . . ; c 0kÞ.

Proof. By definition, D induces a structure of homotopy coprop(erad) if and only if
q2s�1D ¼ 0. Since qs�1D is a derivation, q2s�1D ¼ 0 is equivalent to qs�1D � ðs�1DÞðs�1cÞ ¼ 0, for
every c A C. Denote

ðs�1DÞðs�1cÞ ¼
P

G1ðs�1c1; . . . ; s�1clÞ and ðs�1DÞðs�1ciÞ ¼
P

G2
i ðs�1c 01; . . . ; s�1c 0kÞ:

By the explicit formula for qs�1D given in Lemma 14 applied to r ¼ IdFðs�1CÞ, we have

qs�1D � ðs�1DÞðs�1cÞ ¼ qs�1D
�P

G1ðs�1c1; . . . ; s�1clÞ
�

¼
P

G1 �i G2
i ðs�1c1; . . . ; s�1ci�1; s�1c 01; . . . ; s�1c 0k; s�1ciþ1; . . . ; s�1clÞ

¼ 0:

We get back to the map D with the formula

DðcÞ ¼ ð�1Þeðc1;...; clÞ
P

G1ðc1; . . . ; clÞ;

where eðc1; . . . ; clÞ ¼ ðl � 1Þjc1j þ ðl � 2Þjc2j þ � � � þ jcl�1j. We conclude as in proof of
Proposition 23. r

4.4. Homotopy non-symmetric (co)prop(erad). It is straightforward to generalize the
two previous subsections to non-symmetric (co)prop(erad)s. One has just to consider non-
labelled graphs instead of graphs with leaves, inputs and outputs labelled by integers.
Therefore, there is a bar and a cobar construction between non-symmetric dg prop(erad)s
and non-symmetric dg coprop(erad)s. The notion that will be used in the sequel is the
notion of homotopy non-symmetric prop(erad ). It is defined by a coderivation on the non-
symmetric cofree (connected) coprop(erad). Equivalently, we can describe it in terms of
non-labelled graphs like in Proposition 23. The chain complex defining the cohomology
of a gebra over a non-symmetric prop(erad) has always such a structure (see [32], Sec-
tion 2).

4.5. Homotopy properads and associated homotopy Lie algebras. It was proven in
[18] that for any operad, P ¼ fPðnÞg, the vector space

L
n

PðnÞ has a natural structure of

Lie algebra which descends to the space of coinvariants
L
n

PðnÞSn
, which is isomorphic to

the space of invariants
L
n

PðnÞSn . In [43] this result was generalized to homotopy operads

and the associated Ly-algebras. In this section, we further extend the results of [18], [43]
from homotopy operads to arbitrary homotopy prop(erad)s: P ¼ fPðm; nÞg.
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Recall that a structure of Ly-algebra on g is given by a square-zero coderivation
on ScðsgÞ, where ScðsgÞ stands for the cofree cocommutative coalgebra on the suspension
of g. Hence, such a structure is completely characterized by the image of the coderivation
on sg, ScðsgÞ ! sg. Equivalently, an Ly-algebra is an algebra over the minimal (Koszul)
resolution of the operad Lie. We refer the reader to [32], Section 1, for more details on
Ly-algebras.

Let P be an S-bimodule. We denote by
L

P the direct sum of all the compo-
nents of P, that is

L
m;n

Pðm; nÞ. We consider the map Y : Scð
L

PÞ !FcðPÞ defined by

Yðp1 p � � �p pnÞ :¼
P

Gðp1; . . . ; pnÞ, where the sum runs over the classes of graphs under
the action of the automorphism group of the graph. This sum is finite and since a graph is a
quotient of a levelled graph (see Section 1.4), the signs are well defined.

Theorem 25. Let P be a homotopy properad, the direct sum
L

P of its components

has an induced Ly-structure.

Proof. We define the partial cotriple coproduct of a cofree coprop(erad) by the
composite:

D 0 : FcðVÞ !
~DD
Fc

�
FcðVÞ

�
!!Fc

�
V ;FcðVÞ|fflfflffl{zfflfflffl}

1

�
;

where Fc
�
V ;FcðVÞ|fflfflffl{zfflfflffl}

1

�
represents graphs indexed by elements of V and one element of

FcðVÞ. Similarly, we define the partial cotriple coproduct of the cofree cocommutative
coalgebra by

d 0 : ScðVÞ !
~dd
Sc

�
ScðVÞ

�
!!Sc

�
V ;ScðVÞ|fflfflffl{zfflfflffl}

1

�
:

Let sm : FcðsPÞ ! sP be a map of degree �1 defining a homotopy properad structure on
P, that is the composite

FcðsPÞ �����!D 0

Fc
�
sP;FcðsPÞ|fflfflfflffl{zfflfflfflffl}

1

� �����!F cðsP; smÞ
FcðsPÞ �����!sm

sP

is zero. A map l : ScðsgÞ ! sg induces a square-zero coderivation on ScðsgÞ means that
the following composite is equal to zero:

ScðsgÞ ����!d 0 Sc
�
sg;ScðsgÞ|fflfflffl{zfflfflffl}

1

� ����!S cðsg; lÞ
ScðsgÞ ����!l sg:

We define the induced Ly structure by

l : Sc
�
sð
L

PÞ
�
!Y FcðsPÞ !sm sP:

The relation of the Ly structure for l lifts to the relation of the homotopy prop(erad) by the
following commutative diagram:
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Sc
�
sð
L

PÞ
� �����!d 0

Sc
�
sð
L

PÞ;Sc
�
sð
L

PÞ
�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

� �����!S cðsP; lÞ
Sc

�
sð
L

PÞ
� �����!l

sð
L

PÞ???yY

FcðsPÞ �����!D 0

Fc
�
sP;FcðsPÞ|fflfflfflffl{zfflfflfflffl}

1

� �����!F cðsP; smÞ
FcðsPÞ;

������
����!sm

which concludes the proof. r

When P is a (strict) prop(erad), the induced structure is the (strict) Lie algebra com-
ing from the anti-symmetrization of the Lie-admissible algebra of Proposition 4. Theorem
25 generalizes the well-known fact that a homotopy (associative) algebra is a homotopy
Lie algebra by anti-symmetrization of the structure maps.

The same statement holds for the space of coinvariants elements and the space of
invariant elements.

Theorem 26. Let P be a homotopy properad, the total space of coinvariant elementsL
PS and the total space of invariant elements

L
PS have an induced Ly-structure.

Proof. We apply the same arguments as in the proof of Proposition 6. r

We prove below that the maps P!
L

P and P!
L

PS are functors for the cate-
gory of the homotopy prop(erad)s to one of homotopy Lie algebras (see Proposition 34).
The same result holds for non-symmetric homotopy properads as well.

4.6. Homotopy convolution prop(erad). In this section, we extend the definition of
the convolution prop(erad) to the homotopy case.

Theorem 27. When ðC;DÞ is a (non-symmetric) homotopy coprop(erad) and ðP; mÞ is
a (non-symmetric) prop(erad), the convolution prop(erad) PC ¼ HomðC;PÞ is a homotopy

(non-symmetric) prop(erad ).

The same result holds when C is a (non-symmetric) coprop(erad) and P a homotopy

(non-symmetric) prop(erad).

Proof. To an element Gð f1; . . . ; fnÞ of FcðPCÞðnÞ, we consider the map

~GGð f1; . . . ; fnÞ : FðCÞðnÞ !FcðPÞðnÞ

defined by G 0ðc1; . . . ; cnÞ 7! ð�1ÞxG
�
f1ðc1Þ; . . . ; fnðcnÞ

�
if G 0GG and 0 otherwise, where

x ¼
Pn
i¼2
j fijðjc1j þ � � � þ jci�1jÞ. We define maps mn : F

cðPCÞðnÞ ! PC by the formula

mn
�
Gð f1; . . . ; fnÞ

�
:¼ ~mmP � ~GGð f1; . . . ; fnÞ � Dn:

The degree of Dn is n� 2 and the degree of ~mmP is zero. Therefore, the degree of mn is
n� 2.
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The map m verifies the relation of Proposition 23:

P
G 0HG

Gm
�
G=mG 0ð f1; . . . ; fnÞ

�
¼

P
G~mmP � gG=G 0G=G 0

�
f1; . . . ; mk

�
G 0ð fi1 ; . . . ; fikÞ

�
; . . . ; fn

�
� Dl

¼
P

G~mmP � gG=G 0G=G 0
�
f1; . . . ; ~mmP �fG 0G 0ð fi1 ; . . . ; fikÞ � dk; . . . ; fn� � Dl ;

where the sum runs over admissible subgraphs G 0 of G. We denote by k the number of ver-
tices of G 0 and l ¼ n� k þ 1. We use the generic notation i for the new vertex of G=G 0 ob-
tained after contracting G 0. For every element c A C, we denote by DðcÞ ¼

P
G1ðc1; . . . ; clÞ

and DðciÞ ¼
P

G2
i ðc 01; . . . ; c 0kÞ. The associativity of the product of P gives

P
G 0HG

ð�1ÞeðG
0; f1;...; fnÞ m

�
G=mG 0ð f1; . . . ; fnÞ

�
ðcÞ

¼ ~mmP � ~GGð f1; . . . ; fnÞ �
�P
ð�1ÞrðG

2
i ; c1;...; clÞG1 �i G2

i ðc1; . . . ; c 01; . . . ; c 0k; . . . ; clÞ
�
:

Since ðC;DÞ is a homotopy coprop(erad), the last term vanishes by Proposition 24.

The same statement in the non-symmetric case is proven in the same way and the
dual statement also. r

Remark. In the particular case when C is a homotopy coalgebra and P an associa-
tive algebra, HomðC;PÞ is a homotopy algebra. In the same way, when C is a homotopy
operad and P an operad, HomðC;PÞ is an homotopy operad (see [43], Lemma 5.10).

Theorem 28. When ðC;DÞ is a homotopy coprop(erad) and ðP; mÞ is a prop(erad)
(or when ðC;DÞ is a coprop(erad) and ðP; mÞ is a homotopy prop(erad)), the total space of

the convolution prop(erad) PC ¼ HomðC;PÞ is a homotopy Lie algebra.

The total subspace HomSðC;PÞ of invariant elements is a sub-Ly-algebra.

Proof. The first part is a direct corollary of Theorem 27 and Theorem 25. Since the
structure maps of this Ly-algebra are composite of equivariant maps (Dn, ~mmP), they induce
an Ly-algebra structure on the total space of HomSðC;PÞ. (This is similar to the one used
in the proof of Proposition 11.) r

In the latter case, the Ly-‘operations’ or homotopies are explicitly given by the
following formula. The image of f1; . . . ; fn A HomSðC;PÞ under ln, for n > 1, is given
by

lnð f1; . . . ; fnÞ ¼
P

s ASn

ð�1Þsgnðs; f1;...; fnÞ ~mmP � ð fsð1Þn � � �n fsðnÞÞ � Dn;

where ð�1Þsgnðs; f1;...; fnÞ is the Koszul-Quillen sign appearing after permutating the fi with s.
The first ‘operation’ l1 is the di¤erential, that is l1ð f Þ :¼ Dð f Þ ¼ dP � f � ð�1Þj f jf � dC.
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In this homotopy Lie algebra, the generalized Maurer-Cartan equation is well

defined since the formal infinite sum QðaÞ :¼
P
nf1

1

n!
lnða; . . . ; aÞ is in fact equal to the

composite Dþ ~mmP �FðaÞ � D in HomðC;PÞ, when C is a homotopy coprop(erad) and to

Dþ m �FðaÞ � ~DDC when P is a homotopy prop(erad). (See [32], Section 1.3, for the general
definition of filtered Ly-algebras.)

Definition. Let ðC;DÞ be a homotopy coprop(erad) and ðP; mÞ be a prop(erad) (or

ðC;DÞ a coprop(erad) and ðP; mÞ a homotopy properad). A morphism C!a P, of degree
�1, is called a twisting morphism if it is a solution of the (generalized) Maurer-Cartan
equation

QðaÞ :¼
P
nf1

1

n!
lnða; . . . ; aÞ ¼ 0;

in the homotopy Lie algebra HomSðC;PÞ. We denote this set by TwðC;PÞ.

We can represent the bifunctor Twð�;�Þ in the same as in the strict case (see Propo-
sition 17).

Proposition 29. Let ðC;DÞ be a homotopy coprop(erad) and ðP; mÞ be a prop(erad).
There is a natural bijection

Mordg propðeradÞs
�
WðCÞ;P

�
GTwðC;PÞ:

Let ðC;DÞ be a coprop(erad) and ðP; mÞ be a homotopy prop(erad). There is a natural

bijection

TwðC;PÞGMordg copropðeradÞs
�
C;BðPÞ

�
:

Proof. The proof is a direct generalization of the proof of Proposition 17. r

4.7. Morphisms of homotopy (co)prop(erad)s. In this section, we recall the notion
of morphism between two homotopy properads due to [16]. We extend it to homotopy
(co)props and make them explicit in terms of Maurer-Cartan elements in some convolution
Ly-algebra.

Since a homotopy properad is equivalent to its associated (generalized) bar con-
struction, the notion of morphism of homotopy properads (or weak morphism) is defined as
follows.

Definition ([16]). Let P1 and P2 be two homotopy prop(erad)s. A morphism be-
tween P1 and P2 is a morphism of dg coprop(erad)s between their bar constructions:
BðP1Þ ! BðP2Þ.

A morphism of dg coprop(erad)s F : BðP1Þ ¼FcðsP1Þ ! BðP2Þ ¼FcðsP2Þ is char-
acterized by its image on sP2. We denote by s�1j : BðP1Þ ! P2 the composite of F with
the projection on sP2 followed by the desuspension. Notice that the degree of s�1j is �1.
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By Proposition 29, F is a morphism of dg coprop(erad)s if and only if s�1j is a Maurer-
Cartan element in HomS

�
BðP1Þ;P2

�
, that is

Qðs�1jÞ ¼
P
nf1

1

n!
lnðs�1j; . . . ; s�1jÞ ¼ Dðs�1jÞ þ mP2

�Fcðs�1jÞ � ~DD ¼ 0;

where ~DD is the coproduct map BðP1Þ ¼FcðsP1Þ !Fc
�
FcðsP1Þ

�
.

Proposition 30. A morphism of S-bimodules j : BðP1Þ ! sP2 induces a morphism of

homotopy properads between P1 and P2 if and only if s�1j is a Maurer-Cartan element in the

Ly-algebra HomS
�
BðP1Þ;P2

�
, that is Qðs�1jÞ ¼ 0.

Like in Section 4.3, we make explicit the above definition in terms of graphs.

Proposition 31. A map s�1j : BðP1Þ ! P2 is a morphism of homotopy prop(erad)s if
and only if, for every class of graphs G under the action of the automorphism group, the fol-
lowing relation holds:P

smP2

k ðG=jG1 t � � � t jGkÞ ¼
P

j
�
G=ðsmP1ÞG 0

�
;

where the first sum runs over all partition of the graph G into admissible subgraphs

G1 t � � � t Gk and where the second sum runs over all admissible subgraphs G 0 of G. Once

again, the signs are induced by Koszul-Quillen rule, when applied to elements sp1; . . . ; spn,
such that n is the number of vertices of G.

Proof. The map s�1j : BðP1Þ ! P2 induces a unique morphism of coprop(erad)s
F : BðP1Þ ! BðP2Þ which commutes with the di¤erentials if and only if the above relation
is verified. (The left-hand term is the projection on P2 of the composite dBðP2Þ �F and the
right-hand term is the projection on the same space of the composite F � dBðP1Þ, that is
j � dBðP1Þ.) r

When applied to Ay-algebras, the underlying graphs are ladders and this proposition
gives the classical notion of weak morphisms, that is morphisms between Ay-algebras.

Dually, we define the notion of morphisms between homotopy coprop(erad)s.

Definition. Let C1 and C2 be two homotopy prop(erad)s. A morphism between C1

and C2 is a morphism of dg prop(erad)s between their cobar constructions: WðC1Þ ! WðC2Þ.

A morphism of dg prop(erad)s C : WðC1Þ ¼Fðs�1C1Þ ! WðC2Þ ¼Fðs�1C2Þ is char-
acterized by the image of s�1C1. We denote by s�1c : C1 ! WðC2Þ the desuspension of the
restriction of C on s�1C1. By Proposition 29, C is a morphism of dg prop(erad)s if and only
if s�1c is a twisting morphism in HomS

�
C1;WðC2Þ

�
, that is

Qðs�1cÞ ¼
P
nf1

1

n!
lnðs�1c; . . . ; s�1cÞ ¼ Dðs�1cÞ þ ~mm �Fðs�1cÞ � DC1 ¼ 0;

where ~mm is the composition map F
�
WðC2Þ

�
¼F

�
Fðs�1C2Þ

�
!Fðs�1C2Þ ¼ WðC2Þ.
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Proposition 32. A morphism of S-bimodules c : s�1C1 ! WðC2Þ induces a morphism

of homotopy coproperads between C1 and C2 if and only if s�1c is a Maurer-Cartan element

in the Ly-algebra HomS
�
C1;WðC2Þ

�
, that is Qðs�1cÞ ¼ 0.

We now prove that the convolution prop(erad) is a construction functorial with re-
spect to the first argument.

Theorem 33. Let C be a morphism of homotopy coprop(erad)s between C1 and C2.

Let P be a prop(erad). There exists a natural morphism of homotopy prop(erad)s between
HomðC2;PÞ and HomðC1;PÞ induced by C.

The same statement holds in the non-symmetric case.

Proof. Let C denote the morphism of dg prop(erads) WðC1Þ ! WðC1Þ and
s�1c the induced twisting morphism C1 ! WðC2Þ, that is Qðs�1cÞ ¼ 0. We define the
morphism of coprop(erad)s F : B

�
HomðC2;PÞ

�
! B

�
HomðC1;PÞ

�
by its image j on

sHomðC1;PÞ ¼ Homðs�1C1;PÞ as follows. Let

Gð f1; . . . ; fnÞ A B
�
HomðC2;PÞ

�
¼Fc

�
sHomðC1;PÞ

�
¼Fc

�
Homðs�1C1;PÞ

�
:

The image of Gð f1; . . . ; fnÞ under j is equal to the composite

j
�
Gð f1; . . . ; fnÞ

�
: s�1C1 �����!c

Fðs�1C2Þ �����!~GGð f1;...; fnÞ
FðPÞ �����!~mmP

P:

It remains to prove that s�1j is a twisting element in Hom
�
B
�
HomðC2;PÞ

�
;HomðC1;PÞ

�
,

that is Qðs�1jÞ ¼ 0. By the definition of Q in this homotopy prop(erad) and by the ‘asso-
ciativity’ of ~mmP, Qðs�1jÞ

�
Gð f1; . . . ; fnÞ

�
is equal to the composite

C1 �����!DC1
FðC1Þ �����!Fðs�1cÞ

F
�
Fðs�1C2Þ

� �����!~mm
Fðs�1C2Þ �����!~GGð f1;...; fnÞ

FðPÞ �����!~mmP
P;

where ~mm is the ‘triple’ map associated to the free prop(erad) Fðs�1C2Þ. Therefore
Qðs�1jÞ

�
Gð f1; . . . ; fnÞ

�
¼ ~mmP � ~GGð f1; . . . ; fnÞ �Qðs�1cÞ which vanishes since Qðs�1cÞ ¼ 0.

r

The dual statement is also true and can be proved in the same way. It will appear in a
future work of the second author in relation with the transfer of algebraic structures up to
homotopy through a deformation-retract (homological perturbation lemma).

Proposition 34. The constructions given in Theorem 25 and Theorem 26 provide us

with three functors,

Category of homotopy properads! Category of homotopy Lie algebras:

Proof. Let F : BðP1Þ ! BðP2Þ be a morphism of coprop(erad)s defining a mor-
phism of homotopy prop(erad)s between P1 and P2. The associated projection j verifies
Qðs�1jÞ ¼ 0, that is

FcðsP1Þ ����!~DD Fc
�
FcðsP1Þ

� ����!F cðs�1jÞ
FcðP2Þ ����!mP2

P2
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equals 0. We define the map

f : Sc
�
sð
L

P1Þ
�
!Y FcðsP1Þ !

j
sð
L

P2Þ:

The map f is a morphism of Ly-algebras. Its desuspension s�1f verifies the Maurer-Cartan
equation in the Ly-algebra Hom

�
Sc

�
sð
L

P1Þ
�
; lP2

�
(see [8]). The Maurer-Cartan equa-

tion for s�1f lifts to the Maurer-Cartan equation for s�1j via Y, that is the following dia-
gram is commutative:

Sc
�
sð
L

P1Þ
� ����!~dd Sc

�
Sc

�
sð
L

P1Þ
�� ����!S cðs�1f Þ

Scð
L

P2Þ ����!llP2 L
P2???yY

FcðsP1Þ ����!~DD
Fc

�
FcðsP1Þ

� ����!F cðs�1jÞ
FcðP2Þ;

�������
�!mP2

which concludes the proof. r

Corollary 35. Let C be a morphism of homotopy coprop(erad)s between C1 and C2.

Let P be a prop(erad). There exists a natural morphism of Ly-algebras between HomðC2;PÞ
and HomðC1;PÞ induced by C. Its restriction to HomSðC2;PÞ gives a natural morphism of

Ly-algebras between HomSðC2;PÞ and HomSðC1;PÞ.

Proof. The first part is a direct corollary of Theorem 33 and Proposition 34. Since
these constructions are composite of equivariant maps, they are stable on the space of in-
variant elements HomSðC2;PÞ and HomSðC1;PÞ. r

5. Models

In this section, we recall the definitions of minimal and quadratic model for properads
and we formally extend them to props. Recall that a model is a quasi-free resolution. Our
viewpoint here is to classify properads according to the form of their minimal model, when
it exists. For instance, a properad is Koszul if and only if it admits a quadratic model. To
clarify the genus of some resolutions, we introduce the notion of contractible prop(erad)s.
Such properads have genus 0 quadratic models.

5.1. Minimal models. Recall that a quasi-free prop(erad) is a (dg) prop(erad) whose
underlying S-bimodule, that is forgetting the di¤erential map, is a free prop(erad) FðMÞ.
It is not necessarily a free dg prop(erad) since the di¤erential q may not be freely generated
by the di¤erential of M.

Definition (model). Let P be a prop(erad). A model of P is a quasi-free prop(erad)�
FðMÞ; q

�
equipped with a quasi-isomorphism FðMÞ !@ P.

Theorem 19 proves that every augmented prop(erad) has a canonical model given by
the bar-cobar construction. Some prop(erad)s admit more simple models. The di¤erential q
of a quasi-free prop(erad) FðMÞ is by definition a derivation. Lemma 14 shows that it is
characterized by its restriction qM : M !FðMÞ on M.
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Definition (decomposable di¤erential). The di¤erential q of a quasi-free prop(erad)
is called decomposable if the image of its restriction to M, qM : M !FðMÞ, is composed
by decomposable elements, that is ImðqMÞH

L
nf2

FðMÞðnÞ:

Definition (minimal model). A model
�
FðMÞ; q

�
is called minimal if its di¤erential

q is decomposable.

5.2. Form of minimal models. From Theorem 19, we know that every augmented
(dg) properad admits a resolution of the form W

�
BðPÞ

�
. A natural way to get a minimal

model from this would be to consider the homology of the bar construction, try to endow
it with a structure of homotopy coproperad and then take the generalized cobar construc-
tion of it. In this section, we prove that when minimal models exist, they are of this form.

Proposition 36. Let
�
FðMÞ; q

�
be a quasi-free properad with a decomposable di¤er-

ential generated by a non-negatively graded S-module M. Then the homology of the bar con-

struction B
�
FðMÞ

�
of

�
FðMÞ; q

�
is equal to the suspension of M.

Proof. The bar construction of the dg-properad P :¼FðMÞ is defined by the
underlying S-bimodule BðPÞ :¼FcðsPÞ ¼Fc

�
sFðMÞ

�
. The di¤erential d is the sum of

two terms d0 þ ~qq. The component ~qq comes from q and d0 is the unique coderivation which
extends the partial product of FðMÞ.

Consider the filtration Fs :¼
L
res

Fc
�
sFðMÞ

�
r
, where r is the sum of the degrees of the

elements of M. Let’s denote by E �st the associated spectral sequence.

Since the chain complex M is bounded below, this filtration is bounded below
F�1 ¼ 0. It is obviously exhaustive, therefore the classical theorem of convergence of
spectral sequences shows that E � converges to the homology of B

�
FðMÞ

�
.

We have ~qqðFsÞHFs�1 and d0ðFsÞHFs. Hence, the first term of the spectral sequence
is E0

st ¼Fc
sþt

�
sFðMÞ

�
s
, where sþ t is the total homological degree, and d 0 ¼ d0. We have

reduced the problem to computing the homology of the bar construction of the free
properad on M, which is equal to SM by [41], Corollary 5.10 (where we choose to put
each element of M in weight 1). r

The next proposition shows that, when a minimal model of a properad P exists, it is
necessarily given by a quasi-free properad on the homology of the bar construction of P.

Theorem 37. Let P be an augmented dg properad and let
�
FðMÞ; q

�
be a minimal

model of P. The S-bimodule sM is isomorphic to the homology of the bar construction of P.

Proof. In [41], we proved in Proposition 4.9 that the bar construction preserves
quasi-isomorphisms. Therefore, the bar construction of FðMÞ is quasi-isomorphic to the
bar construction of P. We conclude by Proposition 36. r

We denote by P

!

:¼ H�
�
BðPÞ

�
the homology of the bar construction of P. When�

Fðs�1P

!

Þ; q
�
is a minimal model of P, the derivation q is equivalent to a structure of

homotopy coproperad on P

!

such that d1 ¼ 0. That is
�
Fðs�1P

!

Þ; q
�
is the generalized
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cobar construction WðP

!

Þ of the homotopy coproperad P

!

. As a conclusion, we have the
following corollary which gives the form of minimal models.

Corollary 38. A minimal model of an augmented dg properad P is always the cobar

construction WðP

!

Þ on the homology of BðPÞ endowed with a structure of homotopy copro-

perad.

In the sequel, we will only consider props freely generated by a properad, in the sense
of the horizontal (concatenation) product. The minimal model of such props is given by the
generalized cobar construction of the associated homotopy coproperad, viewed as a homo-
topy coprop. And the result of the preceding lemma still holds.

5.3. Quadratic models and Koszul duality theory. In general, it is a di‰cult problem
to find the minimal model of a prop(erad). One can first compute the homology of the
bar construction and then provide a structure of homotopy coproperad on it, that is with
higher homotopy cooperations. For some weight graded properads, there exist simple
minimal models which are given by the Koszul duality theory. These properads are called
Koszul.

Definition (quadratic di¤erential). The di¤erential q of a quasi-free prop(erad) is
called quadratic if the image of qM : M !FðMÞ is in FðMÞð2Þ:

Definition (quadratic model). A model
�
FðMÞ; q

�
is called quadratic if its di¤eren-

tial q is quadratic.

When P is a weight graded properad, its bar construction splits as a direct sum of
finite chain complexes indexed by the weight (cf. [41], Section 7.1.1). In this case, we can
talk about top dimensional homology groups.

Theorem 39. Let P be a weight graded properad concentrated in homological degree

0. The following assertions are equivalent.

(1) The homology of BðPÞ is concentrated in top dimension.

(2) The S-bimodule P

!

is a strict coproperad.

(3) The properad P admits a quadratic model: WðP

!

Þ !@ P.

Proof. ð1Þ ) ð2Þ is given by [41], Proposition 7.2.

ð2Þ ) ð3Þ is given by [41], Theorem 5.9. When P

!

has a structure of strict copro-
perad, its cobar construction is a resolution of P and the di¤erential of it is quadratic.

ð3Þ ) ð1Þ Since P is isomorphic to FðM0Þ=
�
qðM1Þ

�
, whith q quadratic, this presen-

tation is quadratic. Define an extra weight on M by the formula oðMnÞ :¼ nþ 1. With this
weight, the quasi-isomorphism FðMÞ !r P is a morphism of weight graded dg properads.
The induced morphism BðrÞ on the bar construction preserves this grading. Therefore we
have Hn

�
BðPÞðnÞ

�
¼ Hn

�
B
�
FðMÞ

�ðnÞ� ¼ ðsMÞn and the homology of the bar construction
of P is concentrated in top dimension. r
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In this case, the properad P is called a Koszul properad. The coproperad P

!

is its
Koszul dual and P has a quadratic model which is the cobar construction on P

!

. In other
words, a properad is Koszul when its bar construction is formal, that is when BðPÞ is quasi-
isomorphic to its homology P

!

as a dg coproperad. This case is simple and particularly ef-
ficient. When P ¼ FðVÞ=ðRÞ has a quadratic presentation with a finite dimensional space
of generators V , then the linear dual (twisted by the signature representation) of the cop-
roperad P

!

is a properad equal, up to suspension, to P! ¼ FðV4Þ=ðR?Þ where V4 is the
linear dual of V twisted by the signature representation. This relation provides a concrete
method to compute the minimal model of Koszul properads. The next step is to be able to
prove that it is Koszul. Koszul duality theory provides a smaller chain complex P

!

nP
which is acyclic if and only if the properadP is Koszul. Therefore, there are simple methods
to show that a properad is Koszul. When a properad is defined by two Koszul properads
with a distributive law, [41], Proposition 8.4 shows that it is Koszul. In the operadic case,
there are basically two other e‰cient methods. First if the homology of the free P-algebra
is acyclic then the operad P is Koszul (see [10], Proposition 5.3.5). Finally, when the op-
erad is set theoretic, we can use the associated poset to prove that it is Koszul (see [39]).

5.4. Homotopy Koszul properads. If a properad is Koszul, then we have clearly cut
means to construct its minimal model. However, the ordinary notion of Koszulness does
not cover many important examples. For example, the properad of associative bialgebras
is not Koszul since it is not quadratic and any Koszul properad has a quadratic presenta-
tion by [41], Corollary 7.5. So we are left in such cases with no concrete methods of proving
that a particular properad P admits a minimal model, and, if so, constructing it explicitly.
It is already a highly non-trivial problem in general to find the set of generators for a min-
imal model, not speaking about the di¤erential. In this section we extend the notion of
Koszulness in such a way that some of the above problems become e¤ectively solvable.

Definition. Let P ¼FðVÞ=ðRÞ be a properad generated by an S-bimodule
V ¼ fVðm; nÞg concentrated in degree zero, and with an ideal generated by RHFðVÞðf2Þ.
Let pk : FðVÞ !FðVÞðkÞ be the natural projection, and let us set,

Rk :¼ pkðRÞ; for k ¼ 2; 3; . . . :

Let us also denote by PðfkÞ the image of FðVÞðfkÞ under the natural epimorphism
FðVÞ !! P.

The properad P is called homotopy Koszul if

(i) the quadratic properad P2 :¼FðVÞ=ðR2Þ is Koszul,

(ii) P and P2 are isomorphic as S-bimodules,

(iii) there is an extra grading on the properad P ¼
L
l

PðlÞ, with PðlÞ being a collec-
tion of finite-dimensional S-bimodules.

In practice the conditions (i)–(iii) above are often not hard to check (see examples be-
low). As an extra grading one can use, for example, the path grading of a free properad
introduced by Kontsevich and studied in [29]. The main motivation behind the definition
is the following.
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Theorem 40. If a properad P is homotopy Koszul, then it admits a minimal model of

the form
�
FðsP

!

2Þ; d
�
, where P

!

2 is the coproperad Koszul dual to P2.

Proof. Consider the bounded above increasing filtration F�pP :¼ PðfpÞ of the prop-
erad P. As F�pPXPðlÞ are finite-dimensional vector spaces, the spectral sequences
associated with this filtration (see below) have good convergence properties. Since P is
isomorphic to P2 as an S-bimodule, the associated graded properad

L
pf0

PðfpÞ

Pðfpþ1Þ

is isomorphic to P2 as a properad. Then we have

Claim 1. The homologies of the bar constructions, BðPÞ and BðP2Þ, are isomorphic as

S-bimodules, i.e. H�
�
BðPÞ

�
FP

!

2 as S-bimodules.

Indeed, the filtration F�pP :¼ PðfpÞ induces an associated filtration of the complex
BðPÞ (as di¤erential in BðPÞ is built from compositions in P which respect the filtration
F�pP). By the above observation, the 0th term, E0, of the associated spectral sequence,

fEr; d rg, is exactly the complex BðP2Þ, E0
pq ¼ BðP2Þð�pÞpþq and d 0 ¼ dBðP2Þ. As P2 is Koszul,

E1 ¼ H�
�
BðP2Þ

�
is exactly the Koszul dual coproperad P

!

2, that is E1
pq ¼ 0 for q3�2p

and E1
pq ¼ H�p

�
BðP2Þð�pÞ

�
¼ ðP

!

2Þ
ð�pÞ when q ¼ �2p. The induced di¤erentials, d r for

rf 1, are zero because of the homological degree 0 assumption on P. Thus the spectral
sequence fEr; d rg degenerates at the first term. The extra grading on the properad P
induces an extra grading l on BðPÞ which makes F�p

�
BðPÞ

�
XBðPÞðlÞ into a bounded

filtration of BðPÞðlÞ. Hence it converges to H�
�
BðPÞ

�
ðlÞ by the Classical Convergence

Theorem 5.5.1 of [46], thereby proving Claim 1.

Choosing a homological splitting of the complex BðPÞ,

H�
�
BðPÞ

�
T
i

p
BðPÞm h ;

one can use dual transfer formulae of [16] for homotopy coproperads to induce on the
S-bimodule H�

�
BðPÞ

�
FP

!

2 the associated strongly homotopy coproperad structure, that
is a di¤erential, d, in the free properad2) F

�
s�1H�

�
BðPÞ

��
¼ W

�
H�

�
BðPÞ

��
generated by

2) In fact the Granåker formulae provide us in general with a di¤erential d in a completed (with respect to

the number of vertices) free properad: there is no guarantee that such d applied to a generator is a finite sum of

terms but we can only be sure that d is continuous with respect to the topology induced by the number of vertices

filtration. However, our assumption on existence of an extra gradation in P implies that d is well-defined in the

ordinary category of properads: it is finite on every generator so that
�
F

�
s�1H�

�
BðPÞ

��
; d
�
makes sense without

completion.

It is important to notice that had we chosen to work with topological properads (with topology induced by

the number of vertices or genus filtrations), the condition (iii) in the definition of homotopy Koszulness can be

safely omitted—Theorem 40 stays true in the category of (completed) topological properads because all the spec-

tral sequences we used in the proof stay convergent by classical Complete Convergence Theorem 5.5.10 (see [46],

p. 139). As an example of the deformation quantization prop [30] shows, working with topological prop(erad)s is

unavoidable in application of the theory of prop(erad)s to geometry and mathematical physics.
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H�
�
BðPÞ

�
. In general, this di¤erential is not quadratic, i.e. the induced homotopy copro-

perad structure on H�
�
BðPÞ

�
is not equal to the coproperad structure on P

!

2. Moreover,
the chosen homological splitting provides us canonically with a morphism of homotopy
coproperads which extends i,

H�
�
BðPÞ

�
! BðPÞ;

i.e. with a morphism of dg properads,

f :
�
F
�
s�1H�

�
BðPÞ

��
; d
�
! W

�
BðPÞ

�
:

As W
�
BðPÞ

�
!F P is a resolution of P by Theorem 19, the required Theorem 40 follows

immediately from the following

Claim 2. Under the assumption on the properad P the morphism f is a quasi-

isomorphism.

Indeed, the introduced above filtration of the bar construction, BðPÞ, induces a
filtration F�pH�

�
BðPÞ

�
of its homology with the associated graded coproperad being

exactly P

!

2. This filtration of H�
�
BðPÞ

�
induces in turn a filtration of the complex�

F
�
s�1H�

�
BðPÞ

��
; d
�
. The 0th term of the associated spectral sequence is precisely the

minimal model,
�
Fðs�1P

!

2Þ; d
�
, of the properad P2. As the latter is Koszul by assumption,

its homology is equal to P2. By homological degree assumption on P, the induced di¤er-
ential on the next term of the spectral sequence vanishes so that it degenerates. The extra
grading assumption on P implies that this spectral sequence converges to the homology�
F
�
s�1H�

�
BðPÞ

��
; d
�
which is equal, therefore, as an S-bimodule to P2FP. This fact

completes the proof of Claim 2 and hence of the theorem. r

The operad P2 is Koszul means that the di¤erential of the minimal model
�
WðP

!

2Þ; d2
�

is quadratic, that is d2 : s
�1P

!

2 !Fðs�1P

!

2Þ
ð2Þ. Since the transfer of homotopy coproperad

structures does not change the map D2 defining the homotopy coproperad structure on
H�

�
BðPÞ

�
but just add extra terms Dn, for nf 3, the final di¤erential d defining a minimal

model of P is equal to d2 plus extra terms dn for nf 3 such that dn : s
�1P

!

2 !Fðs�1P

!

2Þ
ðnÞ,

that is to say, d is a perturbation of d2.

The coproperad P

!

2 is computable by Koszul duality theory. Therefore the above
theorem gives an immediate estimate of the set of generators for a minimal model of a
homotopy Koszul properad. Moreover, the di¤erential in this quasi-free model can in prin-
ciple be computed via ordinary homotopy transfer formulae.

The class of properads which are homotopy Koszul but not Koszul is non-empty and
contains an important example of the properad, AssBi, of (co)associative bialgebras which
can be defined as a quotient,

AssBi :¼FðVÞ=ðRÞ

of the free properad, FðVÞ, generated by the S-bimodule V ¼ fVðm; nÞg,
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Vðm; nÞ :¼

K½S2�nK½S1�1 span


 �
if m ¼ 2; n ¼ 1;

K½S1�nK½S2�1 span


 �
if m ¼ 1; n ¼ 2;

0 otherwise,

8>>>>>><>>>>>>:
representing a binary product and a binary coproduct without symmetries, modulo the
ideal generated by relations

These relations stand respectively for the associativity of the product, the coassociativity
of the coproduct and the relation between them, that is the coproduct is a morphism of
algebras or equivalently the product is a morphism of coalgebras. As the ideal contains
4-vertex graphs, the properad AssBi is not quadratic. Hence AssBi can not be Koszul in
the ordinary sense. However, we have the following

Proposition 41. The properad AssBi is homotopy Koszul.

Proof. (i) The properad AssBi2 is Koszul as it is generated by the bimodule V with
the relations,

which verify the Distributive Law (see [41], Section 5.6 and Proposition 8.5).

(ii) The S-bimodule isomorphism AssBiFAssBi2 was established in [9].

(iii) The ideal generated by R preserves the path grading (see [29] for its definition
and main properties) of the free properad FðVÞ and hence induces an associated filtration
on AssBi which satisfies the last condition in the definition of a homotopy Koszulness
properad. r

Corollary 42 (cf. [28]). The properad AssBi admits a minimal resolution, FðCÞ, gen-
erated by the S-bimodule C ¼ fCðm; nÞgm;nf1;mþnf3, with

Cðm; nÞ :¼ smþn�3K½Sm�nK½Sn� ¼ span

* +
:
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Proof. The Koszul dual properad of AssBi2 is the properad generated by a binary
product and a binary coproduct which are associative and coassociative. All the composites

with the product and the coproduct vanish except . The only non-vanishing element of

of this properad are obtained by composing first some products and then coproducts. We
conclude that AssBi

!

2ðm; nÞ ¼ sm�2K½Sm�n sn�2K½Sn� for m; nf 1, mþ nf 3 and zero
otherwise. Then Theorem 40 implies the claim. r

We refer the reader to Section 6.2 for another application of the notion of homotopy
Koszulness.

5.5. Models for associative algebras, non-symmetric operads, operads, properads,

props. There are several di¤erent notions of algebraic objects in the literature that are
used to model the operations acting on some algebraic category. We briefly recall them in
the following table.

operations

composition

monoidal
category

ðVect; n Þ ðgVect; �Þ ðS-Mod; �Þ ðS-biMod;
ncÞ

ðS-biMod;
nÞ

monoid
associative
algebras

non-symmetric
operads

operads properads props

modules modules
non-symmetric

algebras
algebras (bial)gebras (bial)gebras

free
monoid

ladders
(tensor
module)

planar trees trees
connected
graphs

graphs

To each pair of such objects, there is a forgetful functor and a left adjoint:

associative algebras T non-symmetric operads T operads T properads T props:

Let us make them explicit.

� To any prop P, the associated properad U
props
properadsðPÞ is given by the same underly-

ing S-bimodule where we only consider vertical compositions of operations based on con-
nected graphs. That is we forget the horizontal composition. Its left adjoint Fprops

properadsðPÞ
is given by the free symmetric tensor on P for the horizontal tensor product. (This functor
was introduced in [41], Section 1, where it is denoted by S.) In other words, we freely gen-
erate horizontal compositions from a properad to get a prop.
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� The operad obtained from a properad P is the S-module

U
properads
operads ðPÞðnÞ :¼ Pð1; nÞ

equipped with the restriction to one rooted trees composition. Its left adjoint functor is
F

properads
operads ðPÞðm; nÞ :¼ PðnÞ for m ¼ 1 and 0 for m > 1.

� For any operad P, we consider the non-symmetric operad U
operads
non-symm: operadsðPÞ ¼ P

where we forget the action of the symmetric group. The left adjoint is given by

F
operads
non-symm: operadsðPÞðnÞ ¼ PðnÞnK½Sn�:

(see M. Aguiar and M. Livernet [3]).

� The pair of adjoint functors between associative algebras and non-symmetric oper-
ads is defined in the same pair of functors between operads and properads. In one way, we
just consider the unital operation (arity (1)) of a non-symmetric operad. In this other way,
for an associative algebra we define a non-symmetric operad concentrated in arity (1).

Proposition 43. All these functors are exact, that is the image of a quasi-isomorphism

is a quasi-isomorphism.

Proof. It is trivial for the forgetful functors and for the functors F
operads
operads and

F
non-symm: operads
ass: algebras because the underlying dg-module does not change. Since the functor

F
operads
non-symm: operads is given by tensoring Sn-modules with the flat K module K½Sn� (the charac-

teristic of K is 0), it is exact. Over a field of characteristic 0, the functor F props
properads is also

exact. r

This proposition justifies the following philosophy. To study the deformation theory
of elements of an algebraic category, that is a class of gebras (modules, algebras, bialge-
bras), one should first model this category using the simplest possible object of the previous
table. For instance, associative, diassociative, dendriform algebras [22] are encoded each
time by a non-symmetric operad. Commutative, Lie, preLie, Gerstenhaber, Poisson alge-
bras are modelled by operads. Lie bialgebras, infinitesimal Hopf algebras [2], (associative)
bialgebras (see [32], Section 3.3) are representations of properads. Non-unital infinitesimal
Hopf algebras, semi Hopf algebras, Lie bialgebras [23] can only be represented by a prop.

Then to study the deformation theory of this algebraic category, that is to define the
stable notion up to homotopy (see 6.1) or the deformation complex (see [32], Section 2),
one has to find a cofibrant resolution (bar-cobar, minimal model for instance) of the related
operad, properad or prop P. This resolution contains all the necessary data since a resolu-
tion for the induced prop is ‘‘freely’’ obtained by the free exact functor.

5.6. Models generated by genus 0 di¤erentials. Let A be a category of gebras de-
fined by some products and some coproducts with relations that can be written as linear
combinations of connected graphs of genus 0, for example Lie bialgebras, Frobenius
bialgebras, infinitesimal bialgebras (see [11], [41]). In this case, the class of gebras can be
faithfully modelled with a smaller algebraic object called a dioperad [11].
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A dioperad is a properad with only compositions of operations based on genus 0
connected graphs. Hence, there is a natural forgetful functor from properads to dioperads.
To any properad P, the associated dioperad U

properads
dioperads ðPÞ has the same underlying S-

bimodule and we only consider vertical compositions of operations based on connected
graphs of genus 0. Let us denote by r the restriction of n to genus 0 graphs. With this
notation, a dioperad is a monoid ðD; mDÞ in the monoidal category ðS-biMod;rÞ. From
now on, let us denote the genus in exponent. For instance, F0 will denote the free dioperad
functor Fdioperads

S-biMod and F will simply denote the free properad functor Fproperads
S-biMod .

Proposition 44. The left adjoint of the forgetful functor

U
properads
dioperads ðPÞ : Properads! Dioperads

is given by

FðDÞ=I ;

where I is the (properadic) ideal generated by the image under mD � Id of F0ðDÞð2Þ, that is
the connected graphs of genus 0 with two vertices.

In other words, this construction is the quotient of the free properad on D, considered as

an S-bimodule, by the (dioperadic) composition of any pair of adjacent vertices with only one

edge in between.

Notice that this construction is the same as the universal enveloping algebra of a Lie
algebra. Therefore, we will often call it the universal enveloping properad of a dioperad and
F

properads
dioperads the universal enveloping functor.

Proof. The proof is the same as the proof of the universal property of the universal
enveloping algebra of a Lie algebra. Hence it is left to the reader. r

A direct corollary gives that the universal enveloping properad of a dioperad defined
by generators and relations is a properad given the same generators and relations.

Corollary 45. Let D be a dioperad defined by generators and relations:
D ¼F0ðVÞ=ðRÞ, where ðRÞ is the (dioperadic) ideal generated by R. The universal envelop-

ing properad is equal to

F
properads
dioperad ðDÞ ¼FðVÞ=ðRÞ;

where ðRÞ is the (properadic) ideal generated by R.

Even if an algebraic categoryA can be modelled by a dioperad, the induced cofibrant
resolution of this dioperad does not contain all the data necessary for the study of deforma-
tion theory of A because the universal enveloping functor Fproperads

dioperads is not exact as the fol-
lowing counter-example shows.

Let eBi be the properad which models infinitesimal bialgebras (see [41], Section
2.9). We consider its Koszul dual properad without the relation ¼ 0. Let us denote it
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by NC-Frob because it models some kind of non-commutative Frobenius bialgebras.
An NC-Frob-bialgebra is a vector space X equipped with a binary associative product
m : X nX ! X and a binary coassociative coproduct D : X ! X nX such that D is a
morphism of bimodules. This means

D � m ¼ ðIdn mÞ � ðDn IdÞ ¼ ðmn IdÞ � ðIdnDÞ:

The graphical picture of all the relations is the following:

Since the relations are linear combinations of connected graphs of genus 0, this cate-
gory is faithfully modelled by the dioperad NC-Frob0 ¼F0ðVÞ=ðRÞ. The exponent 0
stands for the restriction to graphs of genus 0. It was proved in [11] that NC-Frob0 is a
Koszul dioperad, since its Koszul dual dioperad eBi0 is Koszul by means of distributive
laws. That is the dioperad NC-Frob0 admits a quadratic dioperadic (genus 0) model�
F0ðCÞ; q0

�
!@ NC-Frob0, where C is the codioperad s�1eBi0

4
. (Notice that there is no

direct proof of this fact.) The di¤erential q0 splits each element of C into two vertices with
only one edge in between.

Consider now the properad NC-Frob ¼FðVÞ=ðRÞ, which is the image under the
universal enveloping functor Fproperads

dioperads of Frob0 by Corollary 45. The image of the chain
complex

�
F0ðCÞ; q0

�
under the functor Fproperads

dioperads is the quasi-free properad on C with the
di¤erential q0, that is the cobar construction of C, where this later is considered as a
coproperad. The homology of this chain complex is not concentrated in degree 0.

We build a cycle based on graphs of genus 2 from the following picture:

m � D � m � D ��������!�m�Rlm�D
m � ðmn IdÞ � ðIdnDÞ � D???ym�Rrm�D

???ym�ðmnIdÞ�Rc

m � ðIdn mÞ � ðDn IdÞ � D ��������!�Ra�ðDnIdÞ�D
m � ðmn IdÞ � ðDn IdÞ � D;

where Rrm stands for the ‘‘right module’’ relation m � D! ðIdn mÞ � ðDn IdÞ, Rlm for the
‘‘left module’’ relation m � D! ðmn IdÞ � ðIdnDÞ, Ra the associativity relation

m � ðmn IdÞ ! m � ðIdn mÞ

and Rc the coassociativity relation ðDn IdÞ � D! ðIdnDÞ � D.
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The graphical picture is as follows:

Then, the cycle is based upon the following picture:

We denote with the same notation the corresponding homotopies, that is elements of C:

q0ðRrmÞ ¼ m � D� ðIdn mÞ � ðDn IdÞ; q0ðRlmÞ ¼ m � D� ðmn IdÞ � ðIdnDÞ;

q0ðRaÞ ¼ m � ðmn IdÞ � m � ðIdn mÞ; q0ðRcÞ ¼ ðDn IdÞ � D� ðIdnDÞ � D:

The previous picture proves that

x :¼ m � Rrm � D� m � Rlm � D� Ra � ðDn IdÞ � Dþ m � ðmn IdÞ � Rc

is a cycle in
�
FðCÞ; q0

�
, that is q0ðxÞ ¼ 0.

Lemma 46. The cycle x is not a boundary under q0.

Proof. The degree of x is 1. Suppose that there exists an element z of degree 2 such
that q0ðzÞ ¼ x. This element belongs to

z A FðC0 l C1|{z}
ð2Þ

ÞlFðC0 l C2|{z}
ð1Þ

Þ:

Let us denote by z ¼ z1 þ z2 each component. The image under the quadratic di¤erential
q0 of any element of Fð C0|{z}

ðkÞ

l C2|{z}
ð1Þ

Þ is an element of Fð C0|{z}
ðkþ1Þ

l C1|{z}
ð1Þ

Þ. And since the
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genus of the di¤erential q0 is 0, z2 is in F2ð C0|{z}
ð1Þ

l C2|{z}
ð1Þ

Þ, that is the part of genus 2 of

FðC0 lC2Þ. The S-bimodule C0 is equal to V ¼ l , that is binary. Hence
Fð C0|{z}

ð1Þ

l C2|{z}
ð1Þ

Þ is concentrated in genus 0 and 1, which proves z2 ¼ 0.

Since the image of Fð C0|{z}
ðkÞ

l C1|{z}
ð2Þ

Þ under q0 is in Fð C0|{z}
ðkþ2Þ

l C1|{z}
ð1Þ

Þ, z1 must belong

to FðC1Þð2Þ. More precisely, z1 is an element of F2ðC1Þð2Þ because the di¤erential q0 pre-
serves the genus. The S-bimodule C1 is generated by the four elements Rrm A Cð2; 2Þ,
Rlm A Cð2; 2Þ, Ra A Cð1; 3Þ and Rc A Cð3; 1Þ. The only way to get an element of genus 2
is to graft one element from Cð1; 3Þ to an element from Cð3; 1Þ. Finally z is linear combi-
nation of Rc � s � Ra, with s A S3. And in this case, q0ðzÞ cannot contain elements like
m � Rrm � D� m � Rlm � D whence the contradiction. r

This counter-example answers a question raised by [29], that is the functor Fprops
dioperads is

not exact.

Theorem 47. The universal enveloping functor F
properads
dioperads is not exact.

For this reason, we are reluctant to include dioperads in the preceding table. It is not
enough in general to find a resolution of the genus 0 part of a properad to generate a com-
plete resolution of it. Nevertheless, it is sometimes the case. We have emphasized the class
of properads that admits a quadratic model, that is Koszul properad. We do the same thing
with properads for which there exists a model with a genus 0 di¤erential.

Definition (contractible properad). We call contractible properad any properad P
that admits a model

�
FðCÞ; q0

�
!@ P with q0jC : C!F0ðCÞ, that is the part of genus 0

of the free properad on C.

It is equivalent to ask that C is a homotopy coproperad with structure maps
dn : C!F0ðCÞðnÞ with image of genus 0. In other words, C is a homotopy codioperad.

Proposition 48. Let P ¼FðVÞ=ðRÞ be a properad defined by genus 0 relations,
RHF0ðVÞ. The properad P is a contractible properad if and only if the associated dioperad

D :¼F0ðVÞ=ðRÞ admits a quasi-free (dioperadic) resolution
�
F0ðCÞ; q0

�
!@ D, which is a

quasi-isomorphism preserved by the universal enveloping functor F
properads
dioperads .

Proof. If P is contractible, we denote by
�
FðCÞ; q0

�
!@ P its genus 0 di¤erential

model. Since q0 preserves the genus, the chain complex
�
FðCÞ; q0

�
is equal to the direct

sum of sub-complexes
L
gf0

�
FgðCÞ; q0

�
. Hence, the genus 0 chain complex is a resolution

of D. And by Corollary 45 the image under the universal enveloping functor Fproperads
dioperads of

the quasi-isomorphism
�
F0ðCÞ; q0

�
!@ D is the resolution

�
FðCÞ; q0

�
!@ P. The other way

is trivial. r

A Koszul contractible properad P is a properad with a minimal model�
FðCÞ; q0

�
!@ P whose di¤erential q0 is quadratic and genus 0. It is equivalent to say

that C is a codioperad. If a properad P ¼FðVÞ=ðRÞ with genus 0 relations is contractible
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Koszul, then the associated dioperad D ¼F0ðVÞ=ðRÞ is Koszul in the sense of [11]. But it
is not true that any Koszul dioperad is a Koszul contractible properad as the example of
NC-Frob shows. Lemma 46 shows that it is not contractible. Moreover we shall see below
that it is not Koszul as a properad either.

Proposition 49. Let P ¼FðVÞ=ðRÞ be a Koszul properad defined by a finite dimen-

sional S-bimodule V and by genus 0 relations, RHF0ðVÞ. If the Koszul dual properad

of P is equal, as an S-bimodule, to the Koszul dual dioperad of the associated dioperad

D :¼F0ðVÞ=ðRÞ then the properad P is contractible.

Proof. In this case, the Koszul dual coproperad P

!

¼ P !4 is equal to the Koszul
dual dioperad D !¼ D !4. Hence the image of the partial coproduct Dð1;1Þ : P

!

! P

!

nP

!

is actually in P

!

rP

!

which is the part of genus 0 of P

!

nP

!

. r

The Koszul dual properad is equal to the Koszul dual dioperad if and only if the part
of genus > 0 of P ! vanished, that is FgðV4Þ=ðR?Þ ¼ 0 for g > 0. Proposition 49 allows us
to give examples of Koszul contractible properads. One way to prove that a properad is
Koszul is by means of distributive laws (see [41], Proposition 8.4). Let P be a quadratic
properad of the form P ¼FðV ;WÞ=ðRlDlSÞ, where RHFð2ÞðVÞ, SHFð2ÞðWÞ
and where

DH ðI l W|{z}
1

Þnc ðI l V|{z}
1

Þl ðI l V|{z}
1

Þnc ðI l W|{z}
1

Þ:

The two pairs of S-bimodules ðV ;RÞ and ðW ;SÞ generate two properads denoted
A :¼FðVÞ=ðRÞ and B :¼FðWÞ=ðSÞ.

Definition (distributive law). Let l be a morphism of S-bimodules

l : ðI l W|{z}
1

Þnc ðI l V|{z}
1

Þ ! ðI l V|{z}
1

Þnc ðI l W|{z}
1

Þ

such that the S-bimodule D is defined by the image of

ðid;�lÞ : ðI l W|{z}
1

Þnc ðI l V|{z}
1

Þ

! ðI l W|{z}
1

Þnc ðI l V|{z}
1

Þl ðI l V|{z}
1

Þnc ðI l W|{z}
1

Þ:

We call l a distributive law and denote D by Dl if the two following morphisms are
injective:

A|{z}
1

nc B|{z}
2

! P;

A|{z}
2

nc B|{z}
1

! P:

8>><>>:
The last condition must be seen as a coherence axiom, which ensures that the natural mor-
phism AnB! P is injective. In this case, [42], Proposition 8.4 states that P is Koszul
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if A and B are Koszul. A properad is called binary if it is generated by binary products and
coproducts.

Proposition 50. Let D ¼F0ðVÞ=ðRÞ be a binary Koszul dioperad defined by a dis-

tributive law such that V is finite dimensional. Then the associated properad P :¼FðVÞ=ðRÞ
is Koszul and contractible.

Proof. If a binary dioperad D defined by a distributive law verifies the hypotheses of
[11], Proposition 5.9, then the associated properad P is also defined by distributive law and
verifies the hypotheses of [41], Proposition 8.4. In this case, the Koszul dual coproperad,
given by [41], Proposition 8.2, has a genus 0 coproduct. r

Corollary 51. The properads BiLie of Lie bialgebras and eBi of infinitesimal Hopf

algebras are Koszul contractible.

In this case, the Koszul dual (co)dioperad provides the good space of ‘‘homotopies’’
for the resolution of the properad. Therefore, it gives the proper notion of homotopy
P-gebra (see 6.1). An example of this fact, for BiLie, can be found in [32], Section 3.2,
see also [12], [31].

Remark. Dually, in this case, the products of operations based on strictly positive
genus graphs of the Koszul dual properad always vanish. If g denotes the genus of the
underlying graph, it means that any such product is equivalent to products based on graphs
with g simple loops , using the relations of the products and the relations of coproducts.
Therefore, it is zero because of the relation ¼ 0 in the Koszul dual properad. This state-
ment is a non-trivial result about the coherence of the relations of a properad.

To any binary properad P, we associate a properad P	 which encodes P-gebras
satisfying the extra loop relation ¼ 0. Since the properad BiLie is Koszul, its Koszul
dual properad Frob	 is also Koszul by Koszul duality theory. This means that Frob	 has
a quadratic model. Since the properad BiLie has non trivial higher genus compositions,
this model is not contractible, that is the boundary map creates higher genus graphs. The
example Frob	 provides an example of a Koszul non-contractible properad. (We do not
know how to prove this result without the help of Koszul duality for properads.)

Let C denote the Koszul dual coproperad of NC-Frob, that is C ¼ s�1eBi4	 . Recall
that a properad P is Koszul if and only if the cobar construction of the Koszul dual cop-
roperad WðP

!

Þ ¼
�
FðP

!

Þ; q
�
is a resolution of P. This statement is not true for NC-Frob.

The cycle x given above induces a non-trivial element in homology.

Lemma 52. The cycle x is not a boundary under q.

Proof. We use the same notations as in Lemma 46 but applied to q instead of q0.
The space C1 is generated by the elements Rlm, Rrm, Ra, Rc and some Ri for i ¼ 1; . . . ; 4.
For the same reason, z1 must be an element of FðC1Þð2Þ. Since the image under q of
any element of C1 is a graph with two adjacent vertices indexed by or , the ele-
ment m � Rlm � D cannot belong to qðz1Þ. Hence m � Rlm � D must be an element of qðz2Þ.
Since q is quadratic, there exists an element S in C2 such that qðSÞ ¼ m � Rlm þ � � � or
qðSÞ ¼ Rlm � Dþ � � � . Such an S has to be an element of either eBi4	 ð1; 2Þ

ð3Þ or eBi4	 ð2; 1Þ
ð3Þ.
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Consider the first case, the second one being symmetrical. The only element in eBi4	 ð1; 2Þ
ð3Þ

whose partial coproduct includes m � Rlm is the dual of the composite of

in eBi	ð1; 2Þð3Þ. The associativity relation and the loop relation in eBi	 show that this com-
posite is equal to zero, which concludes the proof. r

Theorem 53. The properad NC-Frob of non-commutative Frobenius bialgebras and

the properad eBi	 of involutive infinitesimal bialgebras are not Koszul.

We hope that this helps to clarify the general picture of models for prop(erad)s.

6. Homotopy P-gebra

In this section, we define the notion of P-gebra up to homotopy or homotopy P-

gebra. We make explicit structures of homotopy P-gebras in terms of Maurer-Cartan ele-
ments. We also define and make explicit morphisms of homotopy P-algebras, when P is
an operad, in terms of Maurer-Cartan elements in an Ly-algebra. This last part uses the
notion of homotopy Koszul (colored) operads defined in the previous section.

6.1. P-gebra, PðnÞ-gebra and homotopy P-gebra. Let P be a dg prop(erad) and
WðCÞ be a model of P.

Definition (homotopy P-gebra). A structure of homotopy P-gebra on a dg module
X is a morphism of dg prop(erad)s: WðCÞ ! EndX .

Any P-gebra is a homotopy P-gebra of particular type. In this case, the morphism of
dg-properads factors through P, that is WðCÞ !@ P! EndX . For the Koszul operads Ass,
Com, Lie, this notion coincides with homotopy associative, commutative, Lie algebras.
For the properads BiLie and AssBi, we get the notions of homotopy Lie bialgebras and
homotopy bialgebras. Since BiLie is contractible, the explicit definition given in [12], [31]
coincides with this one.

[32], Theorem 5 shows that a structure of homotopy P-gebra on X is equivalent to a
morphism of S-bimodules in s�1 HomS

0 ðC;EndX Þ which is a Maurer-Cartan element in the
Ly-convolution algebra HomSðC;EndX Þ.

Theorem 54. A P-gebra structure on X is equivalent to a Maurer-Cartan element in

HomSðC;EndX Þ.

This notion is well defined and independent of the choice of a model. By [32], Theo-
rem 13, if WðC1Þ and WðC2Þ are two models of P, then the convolution Ly-algebras are
quasi-isomorphic, which induces a bijection between the set of Maurer-Cartan elements.

We can discuss the form of the solutions of the Maurer-Cartan equation. It gives the
following definition.
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Definition (PðnÞ-gebra). A dg module X endowed with a Maurer-Cartan element g
in HomSðC;EndX Þ such that gðcÞ ¼ 0 for every c A Ck>n is called a PðnÞ-gebra.

This notion is the direct generalization of the notion of AðnÞ-algebra of Stashe¤
[36] or LðnÞ-algebras. A PðnÞ-gebra is a homotopy P-gebra with strict relations from de-
gree n.

6.2. Morphisms of homotopy P-algebras as Maurer-Cartan elements. Another ap-
plication of the notion of homotopy Koszul can be found in the study of morphisms be-
tween homotopy P-algebras. A colored properad is an operad such that the inputs and
outputs are labelled by an extra labelling and such that the composition is coherent with
respect to this extra labelling. That is if the ‘colors’ (labelling) do not match, the composi-
tion of operations vanishes. It is proven in [44] how to extend Koszul duality of operads to
colored operads. It is straightforward to generalize Theorem 40 to this case.

Let P ¼FðVÞ=ðRÞ be a Koszul operad. One can define the 2-colored operad P�!�
by P ¼FðV1 lV2 l f Þ=ðR1 lR2lR�!�Þ, where V1 and R1 (resp. V2 and R2) are copies
of V and R with inputs and outputs labelled by the color 1 (resp. 2), f is a generator of
arity ð1; 1Þ which goes from 1 to 2 and R�!� is generated by v � fnn � f � v for any element
v A VðnÞ (see [26] for more details). The purpose of this definition lies in the following
result. A structure of P�!�-algebra is the data of two P-algebras with a morphism of
P-algebras between them.

Lemma 55. When P is Koszul generated by a finite dimensional S-module V such

that Vð1Þ ¼ 0, the 2-colored operad P�!� is homotopy Koszul.

Proof. (i) The operad ðP�!�Þ2 is equal to FðV1 lV2l f Þ=ðR1 lR2 lR�Þ, where
R� ¼ f � V1. Hence, it is equal to ðP�!�Þ2GP1 lP2 lP � ðI l f|{z}

f1

Þ. Its Koszul dual is

equal to ðP�!�Þ

!

2 ¼ P

!

1 lP

!

2l sð f �P

!

Þ. Therefore,
�
Fðs�1P

!

1 l s�1P

!

2 l f �P

!

Þ; d2
�
is a

quadratic model of ðP�!�Þ2, because d2 is equal to 3 copies of the Koszul resolution of P.

(ii) Since P�!�GP1 lP2 lP � ðI l f|{z}
f1

Þ, it is equal to ðP�!�Þ2.

(iii) Since V is finite dimensional and Vð1Þ ¼ 0, the filtration with the number of
leaves gives a suitable filtration. r

In this case, the minimal model of P�!� is given by
�
Fðs�1P

!

1 l s�1P

!

2 l f �P

!

Þ; d
�

by Theorem 40.

Proposition 56. An algebra over the model of P�!� is the data of two homotopy

P-algebras with a homotopy (or weak) morphism between them.

Proof. A morphism of 2-colored operads
�
Fðs�1P

!

�!�2Þ; d
�
! EndX ;Y defines a

homotopy P-algebra structure on X and Y . The component on fHomðXnn;Y Þgnf1 is
equivalent to a morphism of dg P

!

-coalgebras P

!

ðXÞ ! P

!

ðYÞ, that is between the bar
constructions of X and Y . r
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Theorem 57. Morphisms of homotopy P-algebras between X and Y are in one-to-one

correspondence with Maurer-Cartan elements in the Ly-algebra�
HomSðP

!

�!�2;EndX ;Y Þ; d
�
:

Notice that this result was already proved by hands in [8] in the case of homotopy Lie
algebras.

Finally, a structure of homotopy P-algebra on X is a Maurer-Cartan element in
the strict Lie algebra HomSðP

!

;EndX Þ, whereas a morphism of homotopy P-algebras
between X and Y is a (generalized) Maurer-Cartan element in the homotopy Lie algebra
HomSðP

!

;EndX ;Y Þ. The conceptual explanation of this phenomenon is the following. In
the first case, we have a quadratic model of the Koszul operad P and the second case, we
use a non-quadratic model of the homotopy Koszul 2-colored operad P�!�.
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