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Abstract. In this paper and its follow-up [32], we study the deformation theory
of morphisms of properads and props thereby extending Quillen’s deformation theory for
commutative rings to a non-linear framework. The associated chain complex is endowed
with an L. -algebra structure. Its Maurer-Cartan elements correspond to deformed struc-
tures, which allows us to give a geometric interpretation of these results.

To do so, we endow the category of prop(erad)s with a model category structure. We
provide a complete study of models for prop(erad)s. A new effective method to make min-
imal models explicit, that extends the Koszul duality theory, is introduced and the associ-
ated notion is called homotopy Koszul.

As a corollary, we obtain the (co)homology theories of (al)gebras over a prop(erad)
and of homotopy (al)gebras as well. Their underlying chain complex is endowed with an
L .-algebra structure in general and a Lie algebra structure only in the Koszul case. In par-
ticular, we make the deformation complex of morphisms from the properad of associative
bialgebras explicit. For any minimal model of this properad, the boundary map of this
chain complex is shown to be the one defined by Gerstenhaber and Schack. As a corollary,
this paper provides a complete proof of the existence of an L., -algebra structure on the
Gerstenhaber-Schack bicomplex associated to the deformations of associative bialgebras.

Introduction

The theory of props and properads, which generalizes the theory of operads, provides
us with a universal language to describe many algebraic, topological and differential geo-
metric structures. Our main purpose in this paper is to establish a new and surprisingly
strong link between the theory of prop(erad)s and the theory of L, -algebras.

We introduce several families of L, -algebras canonically associated with prop(erad)s,
moreover, we develop new methods which explicitly compute the associated L. -brackets
in terms of prop(erad)ic compositions and differentials. Many important dg Lie algebras
in algebra and geometry (such as Hochschild, Poisson, Schouten, Frolicher-Nijenhuis and
many others) are proven to be of this prop(erad)ic origin.
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The L, -algebras we construct in our paper out of dg prop(erad)s encode many im-
portant properties of the latter. The most important one controls the deformation theory
of morphisms of prop(erad)s and, in particular, the deformation theory of (al)gebras over
prop(erad)s. Applications of our results to the deformation theory of many algebraic and
geometric structures becomes therefore another major theme of our paper.

On the technical side, the story develops (roughly speaking) as follows: first we asso-
ciate canonically to a pair, (#(V'),0) and (2,d), consisting of a differential graded (dg, for
short) quasi-free prop(erad) # (V) on an S-bimodule V" and an arbitrary dg prop(erad) 2,
a structure of L -algebra on the (shifted) graded vector space, s~' HomZ (¥, 2), of mor-
phisms of S-bimodules; then we prove the Maurer-Cartan elements of this L, -algebra are
in one-to-one correspondence with the set of all dg morphisms,

{(Z#(V),0) — (2,d)},

of dg prop(erad)s. This canonical L. -algebra is used then to define, for any particular
morphism y : (#(V),0) — (2,d), another twisted L,-algebra which controls deformation
theory of the morphism y. In the special case when (2, d) is the endomorphism prop(erad),
(Endy, dy), of some dg vector space X, our theory gives L, -algebras which control defor-
mation theory of many classical algebraic and geometric structures on X, for example,
associative algebra structure, Lie algebra structure, commutative algebra structure, Lie
bialgebra structure, associative bialgebra structure, formal Poisson structure, Nijenhuis
structure etc. As the case of associative bialgebras has never been rigorously treated in the
literature before, we discuss this example in full details; we prove, in particular, that the
first term of the canonical L. -structure controlling deformation theory of bialgebras is
precisely the Gerstenhaber-Schack differential.

We derive and study the deformation complex and its L., -structure from several dif-
ferent perspectives. One of them can be viewed as a nontrivial generalization to the case of
prop(erad)s of Van der Laan’s approach [43] to the deformation theory of algebras over
operads, while others are completely new and provide us with, perhaps, a conceptual expla-
nation of the observed (long ago) phenomenon that deformation theories are controlled by
dg Lie and, more generally, L, structures.

First, we define the deformation complex of a morphism of prop(erad)s # — 2 gen-
eralizing Quillen’s definition of the deformation complex of a morphism of commutative
rings. When (97 (), 6) is a quasi-free resolution of 2, we prove that this chain complex is
isomorphic, up to a shift of degree, to the space of morphisms of S-bimodule Hom? (%, 2),
where @(~s'V) is a homotopy coprop(erad), that is the dual notion of prop(erad)
with relations up to homotopy. Since 2 is a (strict) prop(erad), we prove that the space
Hom_(%,2) has a rich algebraic structure, namely it is a homotopy non-symmetric
prop(erad), that is a prop(erad) without the action of the symmetric groups and with
relations up to homotopy. From this structure, we extract a canonical L -structure on
Hom(%,2) ~ s ' HomJ (V,2). We also obtain higher operations with m +n inputs
acting on Hom? (%, 2) which are important in applications. In the case of, for example,
the non-symmetric operad, .oZss, of associative algebras the deformation complex is the
Hochschild cochain complex of an associative algebra, and the higher homotopy opera-
tions are shown to be non-symmetric braces operations which play a fundamental role in
the proof of Deligne’s conjecture (see [37], [45], [20], [33], [4], [19]).
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Recall that M. Markl proved in [27] a first interesting partial result, that is for a
given minimal model (#(%),0) a prop(erad) 2 concentrated in degree 0, there exists a
L-structure on the space of derivations from # (%) to Endy, where X is a #-(al)gebra.
By using a different conceptual method based on the notions of homotopy (co)prop(erad)s
and convolution prop(erad)s, we prove here that for any representation 2 of any prop(erad)
2, there exists a homotopy prop(erad) structure on the space of derivations from any
quasi-free resolution of £ to 2. Moreover this construction is shown to be functorial,
that is does not depend on the model chosen. From this we derive functorially the general
L -structure.

Another approach of deriving the deformation complex and its L, -structure is based
on a canonical enlargement of the category of dg prop(erad)s via an extension of the notion
of morphism; the set of morphisms, Morz (%, %,), in this enlarged category is identified
with a certain dg affine scheme naturally associated with both £, and %,; moreover, when
the dg prop(erad) 2, is quasi-free, the dg affine scheme Mor(#;,%,) is proven to be a
smooth dg manifold for any £, and hence gives canonically rise to an L. -structure.

The third major theme of our work is the theory of models and minimal models. To
make explicit the deformation complex, we need models, that is quasi-free resolutions of
prop(erad)s. We extend the bar and cobar construction to prop(erad)s and show that the
bar-cobar construction provides a canonical cofibrant resolution of a prop(erad). Since
this construction is not very convenient to work with because it is too big, we would rather
use minimal models. We give a complete account to the theory of minimal models for
prop(erad)s. We prove that minimal models for prop(erad)s are not in general determined
by resolutions of their genus 0 parts, namely dioperads, giving thereby a negative answer
to a question raised by M. Markl and A. A. Voronov [29], that is we prove that the free
functor from dioperads to prop(erad)s is not exact. We provide an explicit example of
a Koszul dioperad which does not induce the prop(erad)ic resolution of the associated
prop(erad).

A properad is Koszul if and only if it admits a quadratic model. In this case, Koszul
duality theory of properad [42] provides an effective method to compute this special mini-
mal model. Unfortunately, not all properads are Koszul. For instance, the properad
coding associative bialgebras is not. We include this example in a new notion, called
homotopy Koszul. A homotopy Koszul properad is shown to have a minimal model that
can be explicitly computed. Its space of generators is equal to the Koszul dual of a qua-
dratic properad associated to it. And the differential is made explicit by use of the (dual)
formulae of J. Granaker [16] of transfer of homotopy coproperad structure, that is by
perturbing the differential. We apply this notion to show that morphisms of homotopy
P-algebras are in one-to-one correspondence with Maurer-Cartan elements of a convolu-
tion L. -algebra.

In the appendix of [32], we endow the category of dg prop(erad)s with a model cate-
gory structure which is used throughout the text.

The paper is organized as follows. In §1 we remind key facts about properads and
props and we define the notion of non-symmetric prop(erad). In §2 we introduce and study
the convolution prop(erad) canonically associated with a pair, (%, 2), consisting of an ar-
bitrary coprop(erad) % and an arbitrary prop(erad) £; our main result is the construction
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of a Lie algebra structure on this convolution properad, as well as higher operations. In §3
we discuss bar and cobar constructions for (co)prop(erad)s. We introduce the notion of
twisting morphism (cochain) for prop(erads) and prove Theorem 19 on bar-cobar resolu-
tions extending thereby earlier results of [41] from weight-graded dg properads to arbitrary
dg properads. In §4 we recall to the notion and properties of homotopy properads which
were first introduced in [16] and we define the notions of homotopy (co)prop(erad). We
apply these notions to convolution prop(erad)s. In §5, we give a complete study of minimal
models for properads. In §6 we define the relaxed notion of homotopy #-gebra and interpret

Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1

it in terms of Maurer-Cartan elements.
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In this paper, we will always work over a field KK of characteristic 0.

1. (Co)properads and (co)props

In this section, we recall briefly the definitions of (co)properad and (co)prop. For
the reader who does not know what a properad or what a prop is, we strongly advise to
read the first sections of [41] before reading the current article since we will make use of
the notions everywhere in the sequel. Generalizing the notion of non-symmetric operads
to prop(erad), we introduce the notions of non-symmetric properad and non-symmetric

prop.

1.1. S-bimodules, graphs, composition products. A (dy) S-bimodule is a collection
P ={P(m,n)},, ,cn of dg modules over the symmetric groups S, on the right and S,,, on
the left. These two actions are supposed to commute. In the sequel, we will mainly con-
sider reduced S-bimodules, that is S-bimodules £ such that #(m,n) =0 when n =0 or
m = 0. We use the homological convention, that is the degree of differentials is —1. An
S-bimodule 2 is augmented when it naturally splits as 2 = 2 ® I where I = {I(m,n)}
is an S-bimodule with all components (m,n) vanishing except for 7(1,1) which equals
<. We denote the module of morphisms of S-bimodules by Hom(#, 2) and the module
of equivariant morphisms, with respect to the action of the symmetric groups, by
Hom® (2, 2).

A graph is given by two sets, the set ' of vertices and the set E of edges, and relations
among which say when an edge is attached to one or two vertices (see [15], (2.5)). The egdes
of the graph considered in the sequel will always be directed by a global flow (directed
graphs). The edges can be divided into two parts: the ones with one vertex at each end,
called internal edges, and the ones with just one vertex on one end, called external edges.
The genus of a graph is the first Betti number of the underlying topological space of a
graph. A 2-levelled directed graphs is a directed graph such that the vertices are divided
into two parts, the ones belonging to a bottom level and the ones belonging to a top level.
In the category of S-bimodule, we define two composition products, [x] based on the com-
position of operations indexing the vertices of a 2-levelled directed graph, and [x]. based on
the composition of operations indexing the vertices of a 2-levelled directed connected graph
(see Figure 1 for an example). Let 4 be such a graph with N internal edges between vertices
of the two levels. This set of edges between vertices of the first level and vertices of the
second level induces a permutation of Sy.
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)

Figure 1. Example of a 2-level graph.

Let 2 and 2 be two S-bimodules, their composition product is given by the explicit
formula

NeN*

P Q(I’I’Z,I’l) = @ <_® K[Sm] ®§i y(i, ];) ®§/€ K[SN} ®§]— Q(ja i) ®§i K[gn]>§op < )
i v

kg

where the second direct sum runs over the b-tuples [, k and the a-tuples 7, 7 such that
|ll =m, |k| =1j| = N, |i| =n and where the coinvariants correspond to the following
action of S, x S;:

0P ® - VPRIV RV - Vg @w
~ 0 @ Py @ ® P ® TGOV ® ) ® - ® Gy ® V' @,

for 0eS,, weS,, 0 €Sy and for 7€ S, with 7; the corresponding block permutation,
ve S, and v; the corresponding block permutation. This product is associative but has no
unit. To fix this issue, we restrict to connected graphs.

The permutations of Sy associated to connected graphs are called connected (for
more details see [41], Section 1.3). We denote the set of connected permutations by S€.
We define the connected composition product by the following formula

. 2mn) = @ (@ KIS, @5, 21K @5, KIS; | @5, 260 95, KIS)])
' ’ S,;" xS,

NeN* 1k,3i
The unit 7 for this monoidal product is given by

I(1,1) := K, and
I(m,n) :=0 otherwise.

We denote by (S-biMod, X, ) this monoidal category.

We define the concatenation product of two bimodules 2 and 2 by

A Q(m,n) = @ K[§n1’+171”] ®§mr><§m” '@(m/’n/) Y Q(Wl”,n”) ®S,,/><§,,u K[Sn’—&-n”]'

m'+m"=m
n'+n"=n
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This product corresponds to taking the (horizontal) tensor product of the elements of 2
and 2 (see [41], Figure 3, for an example). It is symmetric, associative and unital. On
the contrary to the two previous products, it is linear on the left and on the right. We
denote by g (2) the free symmetric monoid generated by an S-bimodule # for the con-
catenation product (and “g(2) its augmentation ideal). There is a natural embedding
P X2 P [X 2. And we obtain the composition product from the connected compo-
sition product by concatenation, that is g (% Xl 2) & 2 X 2. (From this relation, we can
see that I [X] Z = Y () and not 2.)

1.2. Properad. A properad is a monoid in the monoidal category (S-biMod, X, ).
We denote the set of morphisms of properads by Mor(2, 2). A properad 2 is augmented
if there exists a morphism of properads ¢ : 2 — I. We denote by 2 the kernel of the aug-
mentation ¢ and call it the augmentation ideal. When (2, u, 5, €) is an augmented properad,
# is canonically isomorphic to I @ 2. We denote by (I @ \@ VX (I ® \15;/ ) the sub-

S-bimodule of 2 [X]. # generated by compositions of s non-trivial elements of 2 on the first
level with r non-trivial elements of 2 on the second level. The corresponding restriction of
the composition product x on this sub-S-bimodule is denoted f, ;. The bilinear part of
P X2 is the S-bimodule (I ® 2 )X.([I ® 2 ). It corresponds to the compositions
1 1
of only 2 non-trivial operations of . We denote it by # [X|(;,1) #. The composition of two
elements p; and p; of 2 is written pi [X](;,1) p2 to lighten the notations. The restriction
#q,1y of the composition product u of a properad 2 on 2 X 1) # is called the partial
product.

A properad is called reduced when the underlying S-bimodule is reduced, that is when
P(m,n) =0forn=0orm=0.

1.3. Connected coproperad. Dually, we defined the notion of coproperad, which is
a comonoid in (S-biMod, [x]¢). Recall that the partial coproduct A ;) of a coproperad
% is the projection of the coproduct A on € [XI(,1)% := (I ® \({/) X. (I ® \(6;) More
generally, one can define the (r, s)-part of the coproduct by the pr(l)jection of the ilmage of A
on(I(JB\(q_/)C(I(—B\(é).
r N

Since the dual of the notion of coproduct is the notion of product, we have to be care-
ful with coproperad. For instance, the target space of a morphism of coproperads is a direct
sum of modules and not a product. (The same problem appears at the level of algebras
and coalgebras.) We generalize here the notion of connected coalgebra, which is the dual
notion of Artin rings, introduced by D. Quillen in [35], Appendix B, Section 3 (see also
J.-L. Loday and M. Ronco [24], Section 1).

Let (%, A, e u) be an coaugmented (dg) coproperad. Denote by % := Ker(% 50 its
augmentation. We have € =% @ I and A(I) = I Xl I. For X € %, denote by A the non-
primitive part of the coproduct, that is A(X) =1Xl. X + X Xl I + A(X). The coradical

filtration of € is defined inductively as follows:
F() = Kl,
F,={Xe¥|AX)eF_1X.F_1}.
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An augmented coproperad is connected if the coradical filtration is exhaustive ¢ = J F;.
r=0

This condition implies that % is conilpotent which means that for every X e €, there is an

integer n such that A”(X) = 0. This assumption is always required to construct morphisms

or coderivations between coproperads (see next paragraph and Lemma 15 for instance).

For the same reason, we will sometimes work with the invariant version of the com-
position product denoted #2 X7 2 when working with coproperads. It is defined by the
same formula as for [x]. but where we consider the invariant elements under the actions
of the symmetric groups instead of the coinvariants (see Lemma 2 for instance). When we
want to emphasize the difference between invariants and coinvariants, we use the notations
X° and X]s. Otherwise, we use only [X] since the two are isomorphic in characteristic 0.

1.4. Free properad and cofree connected coproperad. Recall from [38] the construc-
tion of the free properad. Let ¥ be an S-bimodule. Denote by V' := V' @ I its augmen-
tation and by ¥, := (V*+)¥" the n-fold “tensor” power of ¥'*. This last module can be
thought of as n-levelled graphs with vertices indexed by V and I. We define on V), an equiv-
alence relation ~ by identifying two graphs when one is obtained from the other by moving
an operation from a level to an upper or lower level. (Note that this permutation of the
place of the operations induces signs). We consider the quotient ¥, := V,,/~ by this rela-
tion. Finally, the free properad % (V) is given by a particular colimit of the V. The dg S-
bimodule # (V) is generated by graphs without levels with vertices indexed by elements of
V. We denote such graphs by 4(vy,...,v,), with vy,...,v, € V. Since 4(vy,...,v,) repre-
sents an equivalence class of levelled graphs, we can chose, up to signs, an order for the
vertices. (Any graph % with n vertices is the quotient by the relation ~ of a graph with n
levels and only one non-trivial vertex on each level.) The composition product of 7 (V) is
given by the grafting. It is naturally graded by the number of vertices. This grading is called
the weight. The part of weight n is denoted by 7 (V).

Since we are working over a field of characteristic 0, the cofree connected copro-
perad on a dg S-bimodule V' has the same underlying space as the free properad, that
is #¢(V) =% (V). The coproduct is given by pruning the graphs into two parts. This
coproperad verifies the universal property only among connected coproperads (see [41],
Proposition 2.7).

1.5. Props. We would like to define the notion of prop as a monoid in the category
of S-bimodules with the composition product [x]. Since this last one has no unit and is not a
monoidal product, strictly speaking, we have to make this definition explicit.

Definition (prop). A prop # is an S-bimodule endowed with two maps 2 [x] 2 Lo
and T > 2 such that the first is associative and the second one verifies

K P —— IRP PR P PRI — PR

\ J/.u /

2.

This definition is equivalent to the original definition of Adams and MacLane [1], [25]. The
original definition consists of two coherent bilinear products, the vertical and horizontal
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compositions of operations. The definition of the composition product given here includes
these two previous compositions at the same time. The partial product 2 [x](; 1) 2 o
composes two operations. If they are connected by at least one edge, this composition is
the vertical composition, otherwise this composition can be seen as the horizontal compo-
sition of operations. This presentation will allow us later to define the bar construction,
resolutions and minimal models for props.

It is straightforward to extend the results of the preceding subsections to props. There
exists notions of augmented props, free prop, coprop and connected cofree coprop. We
refer the reader to [41], Section 2 for a complete treatment.

1.6. (Co)triple interpretation. The free prop(erad) functor induces a triple
Z S —biMod — S — biMod such that an algebra over it is a prop(erad) (see D. Borisov
and Y. I. Manin [6]). When (2, u) is a prop(erad), we will denote by /i, : 9’(9)(;2) — P
the associated map. Dually, the notion of coprop(erad) is equivalent to the notion of co-
algebra over the cotriple #°: S —biMod — S — biMod. When (%, A) is a coprop(erad),
we will denote by Ay : 4 — F C(%)@2) the associated map.

1.7. Non-symmetric prop(erad). In the sequel, we will have to work with algebraic
structures endowed with operations having no symmetries. One can model them with prop-
erads but the action of the symmetric group gives no real information. Therefore, we intro-
duction the notion of non-symmetric properad which will be enough. Since this structure is
the direct generalization of the notion of non-symmetric operad, we call it non-symmetric
properad. All the definitions and propositions of this section can be generalized directly to
props. For simplicity, we only make them explicit in the case of properads.

Definition. A (dg) N-bimodule is a collection {P(m,n)},, ,.n- of dg modules.

Definition (Non-symmetric connected composition product). Let P and Q be two
N-bimodules, we define their non-symmetric connected composition product by the formula

P Xl Q(I’I’l,l’l) = @ ( @ P(l_’ E) ® K[SI%J_] ® Q(j’ i>>§“p S ’

NeN"\I k71

where the second direct sum runs over the bH-tuples I, k and the a-tuples j, 7 such that
|l =m, |k| =1j| = N, |i| =n and where the coinvariants correspond to the following
action of S;¥ x S;:

PR @RI X - ®Ga ~Pr1(1) @ @ Pri(p) ® TjoV; Q gy(1) @ -+ @ G(a)

for g e Sl%]_ and for € S, with 7; the corresponding block permutation, ve S, and v;
the corresponding block permutation. Since the context is obvious, we still denote it by
Xe.

The definition of the monoidal product for S-bimodule is based on 2-levelled graphs
with leaves, inputs and outputs labelled by integers. This definition is based on non-labelled
2-levelled graphs. We define the non-symmetric composition product [x] by the same formula
with the set of all permutations of Sy instead of connected permutations.

(AutoPDF V7 3/3/09 11:65) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1-56 2086_6001 (p.9)




10 Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1

Proposition 1. The category (N-biMod, X, I) of N-bimodules with the product [X].
and the unit I is a monoidal category.

Proof. The proof is similar to the one for S-bimodules (see [41], Proposition

1.6). [

Definition (Non-symmetric properad). A non-symmetric properad (P,u,n) is a
monoid in the monoidal category (N-biMod, X, 7).

Example. A non-symmetric properad P concentrated in arity (1,n), with n > 1, is
the same as a non-symmetric operad.

1.8. Repg)esentations of prop(erad)s, gebras. Let 2 and 2 be two prop(erad)s. A
morphism 2 — 2 of S-bimodules is a morphism of prop(erad)s if it commutes with the
products and the units of # and 2. In this case, we say that 2 is a representation of 2.

We will be mainly interested in representations of the following form. Let X be a dg
vector space. We consider the S-bimodule Endy defined by

Endy (m, n) := Homy (X ®", X®™).

The natural composition of maps provides this S-bimodule with a structure of prop and
properad. It is called the endomorphism prop(erad) of the space X.

Props and properads are meant to model the operations acting on types of algebras
or bialgebras in a generalized sense. When # is a prop(erad), we call 2-gebra a dg vector
space X with a morphism of prop(erad)s 2 — Endy, that is a representation of # of the
form Endy. When 2 is an operad, a #-gebra is an algebra over . To encode operations
with multiple inputs and multiple outputs acting on an algebraic structure, we cannot use
operads anymore and we need to use prop(erad)s. The categories of (involutive) Lie bialge-
bras and (involutive) Frobenius bialgebras are categories of gebras over a properad (see
Section 5). The categories of (classical) associative bialgebras and infinitesimal Hopf alge-
bras (see [2]) are governed by non-symmetric properads. In these cases, the associated prop
is freely obtained from a properad. Therefore, the prop does not model more relations than
the properad and the two categories of gebras over the prop and the properad are equal.
For more details, see the beginning of Section 5.5.

2. Convolution prop(erad)

When A4 is an associative algebra and C a coassociative coalgebra, the space of
morphisms Homy (C, 4) from C to A4 is naturally an associative algebra with the convolu-
tion product. We generalize this property to prop(erad)s, that is the space of morphisms
Hom(%,#) from a coprop(erad) ¢ and a prop(erad) Z is a prop(erad). From this rich
structure, we get general operations, the main one being the intrinsic Lie bracket used to
study the deformation theory of algebraic structures later in [32], Sections 2 and 3.

2.1. Convolution prop(erad). For two S-bimodules

M = {M(m,n)}m’n and N = {N(mvn)}m,w
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we denote by Hom(M, N) the collection {Homy (M (m,n),N(m,n))}  of morphisms of
IK-modules. It is an S-bimodule with the action by conjugation, that is

(0.f7)(x) :==a.(f(c” xo! )T,

foroeS,, €S, and f € Hom(M, N)(m,n). An invariant element under this action is an
equivariant map from M to N, that is Hom(M,N)® = Hom®(M, N).

When @ is a coassociative coalgebra and 2 is an associative algebra, Hom(%, 2) is
an associative algebra known as the convolution algebra. When % is a cooperad and 2
is an operad, Hom(%, 2) is an operad called the convolution operad by C. Berger and I.
Moerdijk in [5], Section 1. We extend this construction to properads and props.

Lemma 2. Let € be a coprop(erad) and 2 be a prop(erad). The space of morphisms
Hom(%,2) = 2% is a prop(erad).

Proof.  We use the notations of Section 1.1 (see also [41], Section 1.2). We define
an associative and unital map p,« : 2% Kls 2% — 2% as follows. Let

G(fise s S 9151 95) € P B2 (m,n)

be a 2-levelled graph whose vertices of the first level are labelled by fi,..., f, and whose
vertices of the second level are labelled by ¢, ... ,g,. The image of 9>(fi,..., /1 91,---,ds)
under ¢ 1s the composite

N )
@ ﬂ @ g G GG G2 (S15Sr3 91501 Gs) PRP — PR P Ky 2,

where 92(fi,..., fi;91,-..,9s) applies f; on the element of % indexing the i™ vertex of the
first level and g; on the element of % indexing the j vertex of the second level of an ele-
ment of % [x] 6. Since the action of the symmetric groups on 2% is defined by conjugation
and since the image of the coproduct lives in the space of invariants, this map factors
through the coinvariants, that is 2% g 2% — 2%,

The unit is given by the map % — I Y, ». The associativity of u,« comes directly
from the coassociativity of A and the associativity of i,. []

Definition. The properad Hom(%,2) is called the convolution prop(erad) and is
denoted by 2.

Assume now that (%,dy) is a dg coprop(erad) and (#,d») is a dg prop(erad). The
derivative of a graded linear map f from % to 2 is defined as follows:

D(f):=dpo f—(~1)VIf ody.

A 0-cycle for this differential is a morphism of chain complexes, that is it commutes with
the differentials. In [32], Section 1, we give a geometric interpretation of this derivative. The
derivative is a derivation for the product of the prop(erad) Hom(%, 2) that verifies D> = 0.
We sum up these relations in the following proposition. The same result holds in the non-
symmetric case.
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12 Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1

Proposition 3. When (¢,dy) is a dg coprop(erad) and (2,d») is a dg prop(erad),
(Hom((g, 2), D) is a dg prop(erad).

When (€, dg) is a dg non-symmetric coprop(erad) and (2, d») is a dg non-symmetric
prop(erad), (Hom(%,2), D) is a dg non-symmetric prop(erad).

2.2. Lie-admissible products and Lie brackets associated to a properad. In [18],
the authors proved that the total space € #(n), as well as the space of coinvariants
n
@ #(n)s,, of an operad is endowed with a natural Lie bracket. This Lie bracket is the
anti-symmetrization of the preLie product pog=>_ po;q defined by the sum on all
i

possible ways of composing two operations p and g. Notice that this result was implicitly
stated by Gerstenhaber in [13]. We generalize this results to properads.

For any pair of elements, 1 and v, in a (non-symmetric) properad 2, we denote by
(ov the sum of all the possible compositions of x4 by v along any 2-levelled graph with
two vertices in #. For another element # in 2, the composition (u o v) oz is spanned by
graphs of the form

i o
%7 @\_J(: o M\

Let us denote by x o (v,7) the summand spanned by graphs of the first type.

In the same way, u o (v o) is spanned by graphs of the form

R

and we denote by (u, v) o5 the summand of u o (v o 7) spanned by graphs of the first (from
the left) type. With these notations, we have in £ the formula

(nov)on—po(von) =po(v,y) = (u,v)on.

When 2 = A is concentrated in arity (1,1), it is an associative algebra. In this case, the
product o is the associative product of 4. When 2 is an operad, the operation (u,v) on
vanishes and the product y o v is right symmetric, that is

(mov)on—po (von)=(son)ov—po(yov).

Such a product is called preLie. In the general case of properads, this product verifies a
weaker relation called Lie-admissible because its anti-symmetrized bracket verifies the
Jacobi identity. Denote by As(u,v,7) := (1o v) on — o (von) the associator of y, v and 7.
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Definition (Lie-admissible algebra). A graded vector space A with a binary product

o is called a (graded) Lie-admissible algebra if one has > sgn(g) As(—, —, —)7 = 0, where,
age §3
for instance, As(—, —, —)<23> applied to u, v and 7 is equal to

(=DM ((omyov—po (o).

A differential graded Lie-admissible algebra (or dg Lie-admissible algebra for short) is a dg
module (4, d,) endowed with a Lie-admissible product o such that the d is a derivation.

Proposition 4. Let & be a dg properad or a non-symmetric dg properad, the space
@ 2 (m,n), endowed with the product o, is a dg Lie-admissible algebra.

m,n

Proof. Let H = {id, (23)} and K = {id, (12)} be two subgroups of S;. We have

> sgn(o) As(—, =, —)7 = 3 sgn(0)((—o (=0 )" = ((=o =)o =)")

g€eSs o€eS;s
= st\ sgn(z) (= o (=) = (o (=, =)™
3\H ~
— > sgn(w) (((_’_) o _)w _ ((_’ o _)(0(12))
wKeS3;\K ~
=0. O

Actually on the direct sum @ 2(m,n) of the components of a properad, there are

m,n
higher operations with r + s inputs which turns it into a “non-differential B, -algebra”. We
refer to the next section for more details.

For a prop 2, we still define the product p o ¢ on @ 2(m,n) by all the possible ways

m,n

of composing the operations p and ¢, that is all vertical composites and the horizontal one.

Proposition 5. Let 2 be a dg prop or a non-symmetric dg prop, the space
P 2 (m,n), endowed with the product o, is a dg associative algebra.

m,n

Proof. We denote by p o, g the sum of all vertical (connected) composites of p and
¢ and by p oj ¢ the horizontal composite. We continue to use the notation p o, (¢,r) to
represent the composite of an operation p connected to two operations ¢ and r above. We
have (in degree 0)

(pog)or=(posqg+ponq)or
=poyqo,r+poy(q,r)+(poyq)onr+ (poyr)ong
+pop(gosr)+(p,g)osr+porqopr,

1 This result was mentioned to the second author by M. M. Kapranov (long time ago).
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14 Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1

and
po(gor)=po(qosr+qo,r)
=povqosr+(p.q)ovr+pon(qosr)+(povg)onr
+qon(povr)+poy(g,r)+ponqonr.

Since the horizontal product is commutative, (p o, r) o;, ¢ is equal to ¢ o, (p o, r), which
finally implies (pog)or=po(qor). [

These structures pass to coinvariants P #s = P 2 (m,n)go, s, as follows.

m,n

Proposition 6. Let 2 be a dg properad (respectively dg prop), the dg Lie-admissible
(associative) product o on @ 2 induces a dg Lie-admissible (associative) product on the space
of coinvariants @ Ps.

Proof. 1t is enough to prove that the space
C:={p—tpvipePmn),teS,,veS,}

is a two-sided ideal for the Lie-admissible product o. Let us denote p o ¢ by > u(p,a,q),

where yu is the composition map of the properad 2 and where ¢ runs thought connected
permutations. For any 7 € S,,,, we have

(p - Tp) °q= Z(,u(p,o*, Q) —,U(T.p,O', Q)) = Z(,u(p,o*, Q) - TU.,U([),O', (’I)) € Ca

ag ag

where 7, is a permutation which depends on ¢. For any v € S,,, we have
(p—pyv)ogq=723 u(p,o.q) = > u(p,v.o.q) => uw(p,0,9) — 2 up,a’.q)-vg
=>(u(p,0.9) — u(p,0,9).v,1) € C,

since the connected permutations ¢’ obtained runs thought the same set of connected per-
mutations as ¢. Therefore, C is a right ideal. The same arguments prove that C is a left
ideal. [

In the sequel, we will have to work with the space of invariants

D 2% = P 2(m,n) >,
and not coinvariants, of a properad. Since we work over a field of characteristic zero, both
are canonically isomorphic. Let V" be a vector space with an action of a finite group G. The
subspace of invariants is defined by V¢ := {v e V' |v.g = v, Vg € G} and the quotient space
of coinvariants is defined by V¢ := V/<{v — v.9,Y(v,g) € V x G». The map from V' ¢ to V;
is the composite of the inclusion V¢ »— V followed by the projection ¥ —» V. The inverse

map Vg — V9 is given by [v] > v.g, where [v] denotes the class of v in V.

1
|G| ge@G
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Corollary 7. Let 2 be a dg properad (respectively dg prop), its total space of invariant
elements @ 2° is a dg Lie-admissible algebra (dg associative algebra).

The Lie-admissible relation of a product o is equivalent to the Jacobi identity
= =], =]+ =, =], =" + [[=, =], =] = 0 for its induced bracket

7] = pov— (=) Myopu.

Theorem 8. Let 2 be a dg properad (respectively dg prop), its total space @ 2, the
total space of coinvariant elements @ Ps and the total space of invariant elements @ P° are
dg Lie algebras.

The first of this statement is also true for non-symmetric dg prop(erad)s.

2.3. LR-algebra associated to a properad. On the total space of a properad, we have
constructed a binary product o in the previous section. We now define more general oper-
ations with multiple inputs.

Definition (LR-operations). Let (#,u) be a properad and py,...,p, and ¢y, ..., q;s
be elements of 2. Their LR-operation {py,..., p:}{q1,-..,qs} is defined by

S U(PLs s PO ),
g
where ¢ runs through connected permutations.

In order words, the LR-product is the sum over all possible ways to compose the ele-
ments of 2.

These operations are obviously graded symmetric with respect to Koszul-Quillen sign
convention, that is

{pt- oo ar, - asy =elo, pry o pr)e(T,q1, - s qs)ADo(1ys - - -5 Po(r) JAGe(1)s -+ a(s) )

for €S, and t€S;. The element ¢(o, p1,...,p,) € {+1,—1} stands for the Koszul-
Quillen signs induced by the permutations of the graded elements pi,..., p, under o.
Notice that the Lie-admissible product is equal to p o g := {p}{g}. By convention, we set
{H =0, {Hat = {pH{ }=pand { Har,....q} =0 for s> 1, {pr,..., p}H{ } =0
for r > 1. The name LR-operations stands for Left-Right operations as well as for Loday-
Ronco operations since such operations are used in [24] to extend the Cartier-Milnor-
Moore Theorem to non-cocommutative Hopf algebras.

Proposition 9. The LR-operations satisfy the relations of a “non-differential B.,-
algebra”, that is, for all 01,...,0., Pty Ps, q1s---,q: iIn P.

%s{{ol, /I S 0 D /3 SRS 17T TUR SR DU/ & /AU S NN /4 o /| S Y

= 281{013" . 505}{{4017' . '7pk1}{q17' . 'aqll}a' . '7{pk1+-"+k),71+17' : ps}
®/

X {q1|+-'~+/b—1+la cee 7qt}}7
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16 Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1

where @ runs over 1 < a < Max(r,s), i1,...,iqp = 0such thati, +---+i,=r ji,...,ja =0
such that jy + -+ j, = s and where ®' runs over 1 < b < Max(s, 1), ki,...,ky =0 such
that ki +---+kp =3, L,..., 0, =20 such that I, +---+ I, = t. The sign ¢ comes from the
permutations of the o and the p and the sign &' comes from the permutations of the p and
the q.

Proof. It is a direct translation to LR-operations of the associativity of the operad
2. See also, [24], Example 1.7 (d), and Lemma 2. []

Therefore, the total space @ 2 of a properad 2, with the LR-operations, forms a
“non-differential B,,”, structure that we call an LR-algebra. The same result also holds
for non-symmetric prop(erad)s.

Proposition 10. The 2 be a dg prop(erad), its total space @ 2, the total space
of coinvariants elements @ Ps and the total space of invariants elements @ 2° form an
LR-algebra.

Proof. The structure of LR-algebra of @ 2 factors through the coinvariant elements
P Zs by the same arguments as in Proposition 6. Since the space of coinvariant and invari-
ant elements are isomorphic, we can transfer this structure to invariant elements. []

2.4. Lie-admissible bracket and LR-algebra of a convolution properad. Since
Hom(%, ) is an properad, it has a Lie-admissible bracket and more generally it enjoys a
structure of LR-algebra by the preceding sections. We make these structures explicit here.
We will use them later on in our study of deformation theory (see [32], Sections 2 and 3).

Definition (convolution product). Let f and g be two elements of Hom(%, ). Their
convolution product f * g is defined by the following composite

A [
LI I LU P I )

Since the partial coproduct of a coproperad (or a cooperad) is not coassociative in
general, the convolution product is not associative.

Proposition 11.  Let 2 be a dg prop(erad) and € be a dg coprop(erad). The convolu-
tion product x on @ Hom(%,2) is equal to the product o associated to the convolution
dg prop(erad). In the case of dg (co)properads, it is dg Lie-admissible and for dg (co)props,
it is dg associative.

This convolution product is stable on the space of invariant elements @ Hom® (%, 2)
with respect to the action of the symmetric groups.

Proof. The image of the map A(; ) is a sum over all possible 2-levelled graphs with
two vertices indexed by some elements of . Therefore, the map « is equal to the sum of
all possible compositions of f and g.

Saying that f and g are invariant elements in Hom(%, 2) means that they are equiv-
ariant maps. Since the composition map u of 2 and the partial coproduct Ay ) are also
equivariant maps, we have

(AutoPDF V7 3/3/09 11:65) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1-66 2086_6001 (p. 16)




Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1 17

(0.f *g.7)(c) = a.(f*g((fl.c.fl)).f =o.(uo(f®g)o A(lvl)(of].c.fl))ﬁ
=00 L. (fxg)(c)tha=fxrg(c) O

Using the projections A, ;) of the coproduct of %, we make explicit the LR-operations
with r and s inputs of Hom(%, 2) as follows.

Proposition 12. Let fi,...,f. and gi,...,g9s be elements of Hom(%,%). Their
LR-operation {fi,..., f:}{g1,--.,9s} is equal to

Atr,s) s
R0 )R 16 )

¥ N

G Y® RIRE® - RC g"}ﬂg’ﬁg’gg’ihﬁ

r A

where {f1,..., i} = > &(o, fi,-.., Ji)Jo() @ -+ ® fo(r). The element

g€eS,
ela, fiy.., fr) e{+1,—1}

stands for the Koszul-Quillen signs induced by the permutations of the graded elements
fis---, fr under a. This means that we apply {fi,...,f,} and {g1,...,95} everywhere we
can.

Proof. The proof is similar to the previous one. []

Theorem 13. Let € be a dg coprop(erad) and 2 be a dg prop(erad), the space
@D Hom(¥,2) is a dg LR-algebra and thus a dg Lie algebra, structures that are stable on
the space of equivariant maps @ Hom® (%, 2).

Proof. Since the A, ;) and u are equivariant maps, the LR-operations are stable on
the space of equivariant maps Hom®(%, %) by their explicit form given in the previous
proposition. []

Remark. In the case of the convolution properad, we do not have to transfer the
structure of LR-algebra or Lie algebra from Hom(%,#) to Hom®(%,#) through the
coinvariant-invariant isomorphism. These structures on directly stable on the space of
invariant elements.

When @ = C is a coassociative coalgebra and 2 = 4 an associative algebra, the
product [x] is equal to ® and is bilinear. In this case, the partial coproduct of C is equal
to the coproduct of C and is coassociative. (All the A, are null for » > 1 or s> 1.)
In this case, the product « is the classical convolution product on Hom(C, 4), which is
associative.

When % is a cooperad and # is an operad we have A(, ;) = 0 for r > 1 as the operations
{fis-- s fi{g1,-..,9s} are null unless r = 1. The remaining operations {f}{gi,...,ds}
are graded symmetric brace operations coming from the brace-type relations verified by
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18 Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1

the operadic product (see [17], [21]). Remark that when % is a non-symmetric cooperad
and Z a non-symmetric operad, we can define non-symmetric braces on Hom(%,2)
without the sum over all permutations. In this case, we find the classical non-symmetric
braces of [13], see also [14], [40]. The convolution product verifies the relation
(fxg)*h— f*(g~xh)={f}{g,h}. Therefore, in the operadic case, the (graded) symme-
try of the brace products implies that the associator (f xg) xh — f * (g * h) is symmetric
in g and h. Hence the convolution product * on Hom(%, 2) is a graded preLie product.
For an interpretation of the LR-operations (or braces operations) on cohomology theories,
we refer the reader to [32], Section 2.

3. Bar and cobar constructions

In this section, we recall the definitions of the bar and cobar constructions for
(co)properads and extend it to (co)props. We prove adjunction between these two construc-
tions using the notion of twisting morphism, that is Maurer-Cartan elements in the con-
volution prop(erad). Finally, we show that the bar-cobar construction provides us with a
canonical cofibrant resolution.

3.1. Infinitesimal bimodule over a prop(erad). The notion of bimodule M over a
prop(erad) 2, defined in a categorical way, is given by two compatible actions, left
P XM — M and right M [x] 2 — M. For our purposes, we need a linearized or infinitesi-
mal version of bimodules. Such a phenomenon cannot be seen on the level of associative
algebras since the monoidal product ® defining them is bilinear.

The S-bimodule (M @ N) [x] O is the sum over 2-levelled graphs with vertices on the
top level labelled by elements of O and with vertices on the bottom level labelled by ele-
ments of M or N. We denote by (M @ N) X O the sub-S-module of (M ® N) X O

r
with exactly r elements of M on the bottom level.

Definition (infinitesimal bimodule). Let (#,u) be a prop(erad). An infinitesimal
P-bimodule is an S-bimodule M endowed with two action maps of degree 0

L PX(PD® M)—M and p: (2@ M )XP — M,
1 1

such that the following diagrams commute.

e Compatibility between the left action A and the composition product u of Z:

PRPH(PD M) PR(PD M)
1 1
UR(PDM) P
PRP® M) — M.

1
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e Compatibility between the right action p and the composition product u of #:

o M)RzrR2? " (20 M)R2

l 1

l(»’%@M)u lp

2o M)mz —2 M.
1
e Compatibility between the left and the right action:

(A=

P?RZO M)H? (@@\A{_’)@
1 1
JJ’/’(/JW) J/)
28(2?® M) _*, M.

1

The notation 2 [x] 2 [x] (? @ M ) stands for the sub-S-bimodule of Z [x] Z [x] (#? ® M)

1
with only one M on the upper level. It is represented by linear combinations of 3-

levelled graphs whose vertices are indexed by elements of & and just one of M on the
first level. The other S-bimodules with just one element coming from M are denoted
in the same way, Z[x] (?@® M )[x] 2 has one element of M on the second level and
1
(?® M )X 2 [X 2 has one element of M on the third level.
1

One purpose of this notion is to define the notion of abelian or infinitesimal extension
of a prop(erad) £. It is defined by a prop(erad) structure on 2 @ M, when M is an infin-
itesimal bimodule over 2 (see [32], Section 2.4). Another important property is that, for
any sub-S-bimodule J of £, the ideal generated by J in £ is equal to the free infinitesimal
#-bimodule on J.

Since the prop(erad) 2 has a unit, it is equivalent to have two actions
A PRy M — M and p: M Xl )2 — M that are compatible with the composition
product of prop(erad) 2. Notice that the category of infinitesimal bimodules over a
prop(erad) forms an abelian category.

Example. Any morphism of prop(erad)s f : 2 — 2 defines an infinitesimal 2-
bimodule structure on 2:

?(171),@ ,@(1!1)1.52&) 2 and ,@(1’1),@ 2(111)’@&) 2.

3.2. (Co)derivations. Let (2, 1) be a dg prop(erad) and (M, A, p) be an infinitesimal
Z-bimodule.

Definition (Derivation). A homogeneous morphism 0 : 2 — M is a homogeneous
derivation if

douy (= —)= p(0(=), =) + A(—=,0(-)).
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This formula, applied to elements p; Xl 1) p2 of 2 Xl(1,1)#, where p; and p, are homo-
geneous elements of 2, gives

dou(pr B p2) = p(@(p) By p2) + (D72 (py R 1) 8(p2)).

A derivation is a sum of homogeneous derivations. The set of homogenous deriva-
tions of degree n is denoted by Der”(#, M) and the set of derivations is denoted
Der* (2, M)

Example. The differential of a dg prop(erad) £ is a derivation of degree —1, that is
an element of Der™ (2, 2).

In this section, we only consider derivations Der(Z#, 2), where the infinitesimal -
bimodule structure on 2 is given by a morphism of prop(erad)s # — 2. In the rest of
the text, we need the following lemma which makes exphc1t the derivations on a free
prop(erad). For a prop(erad) (2,u,), any graph % of /(,@) represents a class 4 of
levelled graphs of 2%". We recall that there is a morphism fi, : #(2) — 2, the counit

of adjunction, equal to i,(¥%) = u _2(” 1)( %). The morphism /i, is the only morphism of

prop(erad)s extending the map 2 L)

Lemma 14. Let p: Z (V) — 2 be a morphism of prop(erad)s of degree 0. Every
derivation from the free dg prop(erad) F (V') to 2 is characterized by its restriction on V,
that is there is a canonical one-to-one correspondence Der), (7(V),2) = Hom? (V, 2).

For every morphism of dg S-bimodules 0 :V — 2, we denote the unique derivation
which extends 0 by 8y. The image of an element (v, . .., v,) of F (V)" under 0, is

00(S(v1, . v0)) = S (=)D (G (o)), pl(oi1), 0(w), p(0is),s - p(60))).

i=1

Proof. Let us denote by 0 the restriction of the derivation 0 on V, that is
0=0y:V — 2. From 60, we can construct the whole derivation ¢ by induction on the
weight n of the free prop(erad) # (V) as follows.

For n=1, we have 0} = 0: V — 2. Suppose now that 0} : 7 (V)" — 2 is con-
structed and it is given by the formula of the lemma. Any simple element of 7 (V) (n+1)
represented by a graph with n 4 1 vertices indexed by elements of V' is the concatenation
of a graph with n vertices with an extra vertex from the top or the bottom. In the last case,

6”“ is given the commutative diagram
7 (1) %"
F (V) — 2
T.“,’/‘(V) ]“J

X0y +0, X
V(1,1>37(V)(n> 2R 112

The other case is dual. It is easy to check that the formula is still true for elements
of Z (V)" that is for graphs with n+ 1 vertices. Finally, since p is a morphism of
prop(erad)s, Jy is well defined and is a derivation. []
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Example. A differential 0 on a free prop(erad) Z (V) is a derivation of
Dery (Z(V), Z(V)) such that > = 0.

Definition (quasi-free prop(erad)). A dg prop(erad) (#(V),d) such that the under-
lying prop(erad) is free is called a quasi-free prop(erad).

Notice that in a quasi-free prop(erad), the differential is not freely generated and is a
derivation of the form given above.

Dually, let (%,A%) and (2,A?) be two coaugmented dg coprop(erad)s and let
p: % — 2 be a morphism of coaugmented dg coprop(erad)s of degree 0. One can define
the dual notion of infinitesimal comodule over a coprop(erad) and general coderivations.
Since we only need coderivations between two coprop(erad)s, we do not go into such de-
tails here.

Definition (coderivation). A homogeneous morphism d : ¥ — & is a homogeneous
coderivation of p if the following diagram is commutative:

d

¢ —L . g

[ [t
dXp+pXid

¢me 2 gma.

A coderivation is a sum of homogenous coderivations. The space of coderivations is
denoted by Coder, (%, Z).

Example. The differential of a dg coprop(erad) % is a coderivation of degree —1.

Remark. For a cooperad &, we can define a more general notion of coderivation
form a Z-cobimodule to Z by a similar formula. The definition given here is a particular
case. Since p : ¥ — 2 is a morphism of coprop(erad)s, it provides ¢ with a natural struc-
ture of Z-cobimodule.

As explained in the first section, the dual statement of Lemma 14 holds only for con-
nected coprop(erad)s.

Lemma 15. Let € be a connected coprop(erad) and let p: € — F (W) be a
morphism of augmented coprop(erad)s. Every coderivation from € to the cofree connected
coprop(erad) F (W) is characterized by its projection on W, that is there is a canonical
one-to-one correspondence Coder), (¢, 7(W)) = Hom?> (%, W).

Proof. The proof is similar to the one of Lemma 14 and goes by induction on r,
where F, stands for the coradical filtration of ¥. The assumption that the coprop(erad) ¥
is connected ensures that the image of an element X of F, under d lives in @ 7 ( W™,
Therefore, d(X) is finite and d is well defined. [ n=r

We denote by d, the unique coderivation which extends a map v: % — W,
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Example. A differential d on a cofree coprop(erad) & (W) is a coderivation of
Dery! (7¢(W),7Z¢(W)) such that d*> = 0. By the preceding lemma, it is characterized
by the composite F (W) — F (W) — W. Its explicit formula can be found in Lemma
22.

Definition (quasi-cofree coprop(erad)). A dg coprop(erad) (7 (W), d) such that the
underlying coprop(erad) is connected cofree is called a quasi-cofree coprop(erad).

3.3. (De)suspension. The homological suspension of a dg S-bimodule M is denoted
by sM = Ks ® M with |s| =1, that is (sM); = M;_;. Dually, the homological desuspen-
sion of M is denoted by s 7'M = IKs™! @ M with |s7!| = —1, thatis (s7' M), = M,,,.

Let (2,d) be an augmented dg S-bimodule, that is Z? = 2@ I. A map of aug-
mented S-bimodules y : F ¢(2) — 2 consists of a family of morphisms of dg S-bimodules
s TP — 2 for each integer n=1. (For n=0, the map u is the identity
I — 1) There is a one-to-one correspondence between maps {7 ¢(#) — 2} and maps
{F°(sP) — s2}. To each map u: F °(P) — P, we associate the map su : F ¢(s?) — s
defined as follows for n = 1,

(s),, : FE(sP) W s () L s ()™ 12

SP,

where the map 7, moves the place of the suspension elements from the vertices outside the
graph. Since it involves permutations between suspensions s and elements of 2, the map
7, yields signs by Koszul-Quillen rule. Using the fact that an element of Z ¢(2) is an
equivalent class of graphs with levels (see 1.4), one can make these signs explicit. The exact

formula relating (su) to u is

/u(g(plv e 7pi’l)) = (_1)8(}717-“’}7”)‘5‘71(&“) (g(sply oo 7Spn))7
where &(p1,..., pn) = (n = 1)|p1[ + (n = 2)|p2| + - -+ + | pn-l.

The degrees of u and su are related by the formula |(su),| = |u,| — (n — 1). Therefore,
the degree of y, is n — 2 if and only if the degree of (su), is —1.

Dually, for any map of augmented S-bimodules J : € — # (%), we denote by J, the
composite € — F(6) —» F (@)(’O. There is a one-to-one correspondence between maps
{6 — F (%)} and maps {s~'4 — F (s7'%)}. To each map J: ¢ — F (%), we associate
the map 5710 : 5714 — F°(s7'%) defined as follows, for n > 1,

(519) s 'g L8 g (@)W T (o)),

n

We have |(s716),| = [0,] — (n — 1). The degree of 6, is n — 2 if and only if the degree of
(s710), is —1.

3.4. Twisting morphism. We generalize the notion of twisting morphism (or twisting
cochains) of associative algebras (see E. Brown [7] and J. C. [34]) to prop(erad)s.

Let % be a dg coprop(erad) and 2 be a dg prop(erad). We proved in Theorem 13 that
Homg((g ,?) is a dg Lie-admissible algebra with the convolution product.
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Definition. A morphism % — 2, of degree —1, is called a twisting morphism if it is a
solution of the Maurer-Cartan equation

D(a) +oxo=0.

Denote by Tw(%, 2) the set of twisting morphisms in Hom® (%, ), that is Maurer-
Cartan elements in the convolution prop(erad). Since twisting morphisms have degree —1,
it is equivalent for them to be solution of the classical Maurer-Cartan equation in the

. . . 1
associated dg Lie algebra, that is D(a) + 3 [, 0] = 0.

When 2 is augmented and 4 coaugmented, we will consider either a twisting mor-
phism between % and 2, which sends [ to 0, or the associated morphism which sends 7
to I and ¥ to 2.

The following constructions show that the bifunctor Tw(—, —) can be represented on
the left and on the right.

3.5. Bar construction. We recall from [41], Section 4, the definition of the bar con-
struction for properads and extend it to props. It is a functor

B : {aug. dg prop(erad)s} — {coaug. dg coprop(erad)s}.

Let (2,u,n,¢) be an augmented prop(erad). Denote by 2 its augmentation ideal
Ker(2 = I). The prop(erad) 2 is naturally isomorphic to 2 = I @ 2. The bar construc-
tion B(Z) of 2 is a dg coprop(erad) whose underlying space is the cofree coprop(erad)
F ¢(s2) on the suspension of 2.

The partial product of 2 induces a map of augmented S-bimodules defined by the
composite

ty: FP) — TP 2 PR P P

We have seen in the previous section that u, induces a map su,. Consider the map
IKs ® Ks — [Ks of degree —1 defined by II;(s ® s) := 5. The map su, is equal to the com-
posite

sty 2 F(sP) — F(sP)? = (Ks @ ) K11 (Ks ® P)

T = — IL®u, _
MO (s @ IK5) ® (P R(1.1) P) ——2 Ks ® 2.

Since 7 °(s?) is a cofree connected coprop(erad), by Lemma 15 there exists a unique
coderivation d; := d,, : F°(s?) — F °(s#) which extends su,. When (2,dy) is an aug-
mented dg prop(erad), the differential d» on £ induces an internal differential d; on
F ¢(s2). The total complex of this bicomplex is the bar construction

B(2,dy) = (F°(s7),d = dy + dy)

of the augmented dg prop(erad) (2,d»).
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Notice that the relation d> =0 can be understood conceptually from the Lie-
admissible relations verified by the partial product of the prop(erad) 2.

3.6. Cobar construction. Dually, the cobar construction ([41], Section 4) for copro-
p(eard)s is a functor

Q : {coaug. dg coprop(erad)s} — {aug. dg prop(erad)s}.

Let (%4, A, ¢ u) be a coaugmented coprop(erad). Denote by % its augmentation Ker(% =S
In this case, % splits naturally as ¥ =1 @ %. The cobar construction Q(%) of ¢ is a dg
prop(erad) whose underlying space is the free prop(erad) # (s~'%) on the desuspension
of 6.

The partial coproduct of € induces a natural map of augmented S-bimodules defined
by

—_ A _ _ _ —
AL ER1E = F(6) — F(F).

This map giAves amap s~ Ay : 5714 — F (s7'€). Consider [Ks~! equipped with the diagonal
map Ks~! = Ks™! ® IKs™! of degree —1 defined by the formula A,(s™!) := 57! ® s7'. The
map s~'A, is equal to

1 1 — A®Aq ) _1 1 _ _
N AzZKS ®(g—>KS ®KS ®(€(111)(6

ld®t®Id (KS_I ® (6) (171) (KS_I ® (g) ~ g;(s—lcg)(Z) s f(s_lcg)'

Since Z(s~'€) is a free prop(erad), by Lemma 14 there exists a unique derivation
0y 1= 0s1p, + F (s71€) — F (s7'%) which extends s 'A;. When (%, dy) is an augmented dg
coprop(erad), the differential dy on % induces an internal differential 6, on Z (s~1%). The
total complex of this bicomplex is the cobar construction

Q(6.dg) = (F(s'6),0 =01+ 0)
of the augmented dg coprop(erad) (%, dy).

3.7. Bar-cobar adjunction. As for derivations, a morphism of prop(erad)s is charac-
terized by the image of the indecomposable elements. We recall this fact and the dual state-
ment in the following lemma.

Lemma 16. Let V be an S-bimodule and let 2 be a prop(erad), there is a canonical
one-to-one correspondence Morpmp(erad)s(g; V), :Q) ~ Homg( V,2).

Dually, let W be an S-bimodule and let € be a coprop(erad), there is a canonical one-
to-one correspondence Morcopmp(emd)s((g ,F C(W)) ~ Hom® (%, W).

Let (%,dy) be a dg coprop(erad) and (2, d») be a dg prop(erad). We will apply this
result to the bar and the cobar construction of £ and % respectively, that is we want
to describe the space of morphisms of dg-prop(erad)s Morg, prop@rad)S(Q(%),@) for in-
stance. By the preceding lemma, this space is isomorphic to the space of morphisms of

(AutoPDF V7 3/3/09 11:65) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1-66 2086_6001 (p. 24)




Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1 25

S-bimodules Hom(?(s‘l%, #) of degree 0 whose unique extension commutes with the
differentials. Therefore, this space of morphisms is the subspace of Homi((é, 2) whose
elements satisfy a certain relation, which is exactly the Maurer-Cartan equation.

Proposition 17. For every augmented dg prop(erad) 2 and every coaugmented dg
coprop(erad) €, there are canonical one-to-one correspondences

Mordg prop(erad)s (Q((g), y) = TW((g, J?) = Mordg coprop(erad)s ((6, @(@))
Proof. Since Q(%) = # (s7'(€)), by Lemma 16 every morphism ¢ of S-bimodules

in Hom(? (s'€,2) extends to a unique morphism of prop(erad)s between Q(%) and 2. The
latter one commutes with the differentials if and only if the following diagram commutes:

D —

0

7518 29 g g,

For an element ¢ € %, we use Sweedler’s notation to denote the image of ¢ under A,, that is
Ay(c) =3 ¢ Xq,1)c”. The diagram above corresponds to the relation

dyog(s™c) = podi(s' ) +u” o (p W1y p) 05~ Aalsc).

Denote by « the desuspension of ¢, that is a(c) = —¢(s~'c). Since 91(s7!c) = —s~104(c),
the relation becomes

—dypoa(c) =00 dg(c) +u” o (a1 %) o As(c),
which is the Maurer-Cartan equation. []
Therefore, the bar and cobar constructions form a pair of adjoint functors
Q : {coaug. dg coprop(erad)s} = {aug. dg prop(erad)s} : B.
If we apply the isomorphisms of Proposition 17 to ¢ = B(#), the morphism associated to
the identity on B(2) is the counit of the adjunction € : Q(B(#)) — 2. In this case, we get a

universal twisting morphism B(Z?) — 2.

The morphism associated to the identity of Q(%) when 2 = Q(%) is the counit of the
adjunction 4 — B(Q(%)). In this case, we get a universal twisting morphism 4 — Q(%).

Proposition 18. Any twisting morphism o : € — 2 factors through B(?) — 2 and
@ — Q(%).

N S

B(2)
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Proof. Itisa corollary of Proposition 17. [

3.8. Props vs properads. The main difference for (co)bar construction between props
and properads lies on the type of graphs and compositions. The underlying module of the
bar construction of a prop £ is spanned by not necessarily connected graphs whose vertices
are labelled with elements of 2. The boundary map is the unique coderivation which ex-
tends the partial product. It is given explicitly by the sum of the compositions of pairs of
vertices that are either adjacent (see Section 4.2) or belong to two different connected
graphs. Whereas for a properad, the underlying module is spanned by connected labelled
graphs and the boundary map just composes adjacent pairs of operations.

3.9. Bar-cobar resolution. In [41], Theorem 5.8, we proved that the unit of adjunc-
tion € is a canonical resolution in the weight graded case. We extend this result to any dg
properad here.

Theorem 19. For every augmented dg properad 2, the bar-cobar construction is a
resolution of 2:

c: Q(B2)) = 2.

Proof. The bar-cobar construction of £ is the chain complex defined on the
underlying S-bimodule # (s~'7¢(s#)). The differential d is the sum of three terms
d = 0y + dy + dyp, where dy is induced by the differential on 2, d, is induced by the dif-
ferential of the bar construction B(#) and 0, is the unique derivation which extends the
partial coproduct of .7 ¢(s2).

Define the filtration Fy := @ .7 (s~' 7 ¢(s#)),, where r denotes the total number of

r<s

elements of 2. Let E;, be the associated spectral sequence.

This filtration is bounded below and exhaustive. Therefore, we can apply the classical
convergence theorem for spectral sequences (see [46]) and prove that E® converges to the
homology of the bar-cobar construction.

We have that Ej = 7 (s~ 7 °(s?)),, where s+ ¢ is the total homological degree.
From d(F,) = Fy_1, d»(F,) = Fy and 0,(F;) = F;, we get that d° = 0, + d». The problem
is now reduced to the computation of the homology of the cobar construction of the dg
cofree connected coproperad .7 ¢(s2) on the dg S-bimodule sZ. This complex is equal to
the bar-cobar construction of the weight graded properad (2, u’), where 20 = I and
2 = 2, such that the composition z’ is null. We conclude using [41], Theorem 5.8. []

Proposition 20. The bar-cobar resolution provides a canonical cofibrant resolution to
any non-negatively graded dg properad.

We refer the reader to [32], Appendix A, for the model category structure on dg
prop(erads).

Proof. The bar-cobar resolution is quasi-free. We conclude by [32], Corollary
40. O
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4. Homotopy (co)prop(erad)s

An associative algebra is a vector space endowed with a binary product that verifies
the strict associative relation. J. Stasheftf defined in [36] a lax version of this notion. It is the
notion of an associative algebra up to homotopy or (strong) homotopy algebra. Such an
algebra is a vector space equipped with a binary product that is associative only up to an
infinite sequence of homotopies. In this section, we recall the generalization of this notion,
that is the notion of (strong) homotopy properad due to J. Grandker [16]. We extend it to
props and we also define in details the dual notion of (strong) homotopy coprop(erad),
which will be essential to deal with minimal models in the next section. The notions of
homotopy non-symmetric (co)properad and homotopy non-symmetric (co)prop are obtained
in the same way.

4.1. Definitions. Following the same ideas as for algebras (associative or Lie, for in-
stance), we define the notion of homotopy (co)prop(erad) via (co)derivations and (co)free
(co)prop(erad)s.

Definition (homotopy prop(erad)). A structure of homotopy prop(erad) on an aug-
mented dg S-bimodule (2,d») is a coderivation d of degree —1 on Z °(s#) such that
d*>=0.

A structure of homotopy prop(erad) is equivalent to a structure of quasi-cofree
coprop(erad) on s2. We call the latter the (generalized) bar construction of 2 and we still
denote it by B(#). Since Z (s?) is a cofree connected coprop(erad), by Lemma 15 the
coderivation d is characterized by the composite

su: FE(sP) LA F(sP) —» 5P,
that is d = dy,. The map su of degree —1 is equivalent to a unique map u: 7 “(P) — 2,
such that g, : 7 °(#)" — 2 has degree n — 2. The condition d? = 0 written with the {x,}
is made explicit in Proposition 23.

n

Example. A dg prop(erad) is a homotopy prop(erad) such that every map , = 0 for
n 2 3. In this case, (# °(s2),d) is the bar construction of 2.

We define the notion of homotopy coprop(erad) by a direct dualization of the previous
arguments.

Definition (homotopy coprop(erad)). A structure of homotopy coprop(erad) on an
augmented dg S-bimodule (%, dy) is a derivation 0 of degree —1 on . (s~'%) such that
0> =0.

A structure of homotopy coprop(erad) is equivalent to a structure of quasi-free
prop(erad) on s~!%. We call the latter the (generalized) cobar construction of € and we still
denote it by Q(%). By Lemma 14, the derivation 0 is characterized by its restriction on

-1z
s E:

sTIA 5716 F (s716) A F(s719),
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that is 0 = 0,-1,. The map s~'A of degree —1 is equivalent to a map A: ¢ — F (%), such
that the component A, : 4 — F# ((6)(") has degree n — 2. The condition 8 = 0 is equivalent
to relations for the {A,}, that we make explicit in Proposition 24.

Example. A dg coprop(erad) is a homotopy coprop(erad) such that every map
A, = 0 for n = 3. In this case, (F (s~'%), 0) is the cobar construction of %.

When £ is concentrated in arity (1, 1), the definition of a homotopy properad on Z is
exactly the same as the definition of a strong homotopy algebra given by J. Stasheff in [36].
Dually, when % is concentrated in arity (1,1), we get the notion of strong homotopy
coassociative algebra.

When 2 is concentrated in arity (1,n) for n = 1, we have the notion of strong homo-
topy operad (see [43]). The dual notion gives the definition of a strong homotopy cooperad.

Remark. By abstract nonsense, the notion of homotopy prop(erad) should also
come from Koszul duality for colored operads (see [44]). There exists a colored operad
whose “algebras” are (partial) prop(erad)s. Such a colored operad is quadratic (the associa-
tivity relation of the partial product of a prop(erad) is an equation between compositions of
two elements). It should be a Koszul colored operad. An “algebra’ over the Koszul reso-
lution of this colored operad is exactly a homotopy prop(erad).

4.2. Admissible subgraph. Let % be a connected graph directed by a flow and denote
by 7 its set of vertices. We define a partial order on ¥~ by the following covering relation:
i < jifiis below j according to the flow and if there is no vertex between them. In this
case, we say that 7 and j are adjacent (see also [41], p. 34). Examples of adjacent and non-
adjacent vertices can be found in Figure 2.

Al

K
I
&}

=
Figure 2. The vertices 1, 2 and 2, 3 are adjacent. The vertices 1 and 3 are not adjacent.

Denote this poset by ITy and consider its Hasse diagram #(%), that is the diagram
composed by the elements of the poset with one edge between two of them, when they are
related by a covering relation. See Figure 3 for an example.

1

H(G) = >

3

Figure 3. The Hasse diagramm associated to the graph of Figure 2.
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Actually, #(%) is obtained from % be removing the external edges and by replacing
several edges between two vertices by only one edge. Since ¢ is connected and directed by
a flow, the Hasse diagram #(%) has the same properties. A convex subset ¥"' of 4" is a
set of vertices of % such that for every pair i < j in ¥’ the interval [, j] of Iy is included
in ¥"/. If 4 is a connected graph of genus 0, the set of vertices of any connected subgraph
of % is convex. This property does not hold any more for connected graphs of higher
genus.

Lemma 21. Let 4 be a connected directed graph without oriented loops and let %' be a
connected subgraph of 4. The set of vertices of 4’ is convex if and only if the contraction of
4’ inside of 4 gives a graph without oriented loops.

A connected subgraph ¢’ with this property is called admissible in [16]. We denote by
% /%' the graph obtained by the contraction of %' inside ¥. See Figure 4 for an example of
a admissible subgraph and an example of a non-admissible subgraph of %. By extension,
an admissible subgraph of a non-necessarily connected graph is a union of admissible sub-
graphs (eventually empty) of each connected component.

\%\
I

Figure 4. Example of an admissible subgraph 4’ of % and an example of a non-admissible subgraph of 4.

4.3. Interpretation in terms of graphs. Let x:.% (%) — 2 be a morphism of
augmented dg S-bimodules. We denote by ,u(g(P],..., pn)) the image of an element
Y(p1,...,pn) of %C(@)M) under u. Let 4’ be an admissible subgraph of % with k ver-
tices. Denote by 4/u%’(py,. .., pa) the element of Z¢(#)" ¥V obtained by composing
4" (piyy---,pi) in %(p1,...,py) under u. When the p; and u are not of degree zero, this
composition induces natural signs that we make explicit in the sequel. Let us start with
a representative element of a class of graphs ¥%(py,..., p,) whose vertices are indexed by
elements p;, that is to say we have chosen an order between the p; (see Section 1.4). The
vertices of %' are indexed by elements p;,, ..., p;. We denote by J = (ii,. .., i) the associ-
ated ordered subset of [n] = {1,...,n} and p; = p;, ..., p;. Since %' is an admissible sub-
graph, its set of vertices forms a convex subset of the set of vertices of 4 (or a disjoint union
of convex subsets if % is not connected). Therefore, it is possible to change the order of the
vertices of ¢ such that the vertices of %’ are next to each others. That is there exist two
ordered subsets /; and I, of [n] such that the underlying subsets /;, I, and J without order
form a partition of [n] and such that %(pi,..., p,) = (=1)"%(Py,, Py, Pp,). The sign (—1)*
is given by the Koszul-Quillen sign rule from the permutation of the p;. Now we can apply
uto get

g/ﬂg/(ph s 7pn) = (_1)81+82g/g/<1)]17ﬂ(g/(PJ))7P12)7
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where &, = |Py,|.|¢|. It is an easy exercise to prove that this definition of the signs does not
depend on the different choices.

Lemma 22. Let v be a map F (W) — W of degree —1. The unique coderivation
d, € CoDery (Z (W), F(W)) which extends v is given by

d(G(wr,....own)) = X G/vG (wi, ..., wp),

G'cy

where the sum runs over admissible subgraphs 4’ of %.

Proof. This formula defines a coderivation. Since the composite of d, with the
projection on W is equal to v, we conclude by the uniqueness property of coderivations of
Lemma 15. []

Proposition 23. A4 map p: F(P) — P defines a structure of homotopy _prop(erad)
on the augmented dg S-bimodule 2 if and only if, for every G(pi, ..., pn) in F (P), we have

S (—1) ) (G 0 (pr,y - pa)) = 0,
G'cg

where the sum runs over admissible subgraphs 4’ of 4.

Proof. By definition, u induces a structure of homotopy prop(erad) if and only if
df,ﬂ = 0. This last condition holds if and only if the composite proj,, o dfﬂ = (su) ody, is
zero, where proj,, is the projection on s%. From Lemma 22, this is equivalent to

> (s1)(9/(s1)%' (spr, - ., spa)) =0,
G'<y
where the sum runs over admissible subgraphs %’ of 4. Recall from Section 3.3 that the
signs between (su) and p are

wW(G(pr,-..,pn)) = (=) PP (s0) (G spu, .., 5p)),

where &(p1,...,pa) = (n—1)|p1| + (n = 2)|p2] + - - - + | pp_1]. Therefore, x induces a struc-
ture of homotopy prop(erad) if and only if

S (D)% 1 (s pa)) = O,

G'cy

where (—1)*“"71+P1) is product of the sign coming from the composition with sy and the
sign coming from the formula between ¢ and su. [

Remark. In the case of associative algebras, the graphs involved are ladders
(branches, directed graphs just one incoming edge and one outgoing edge for each vertex)
and we recover exactly the original definition of J. Stasheff [36].

Dually, we have the following characterization of homotopy coprop(erad)s. Let 4 be
a graph whose i vertex has » inputs and m outputs. For every graph %’ with n inputs
and m outputs, denote by 4 o; 4’ the graph obtained by inserting 4’ in % at the place of
the i™h vertex.
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Proposition 24. A map A : € — F (%) defines a structure of homotopy coprop(erad)
on the augmented dg S-bimodule € if and only if, for every ¢ € €, we have

p(GE et gl 2 / / _
Z(—l)( b€l gg 0; Gi(c1y. .y Cin1,Cly vy Chs Citly - 1) =0,

where the sum runs over elements %'(ci,...,c;) and G*(c|,....c;) such that
Ale) =% (cr,...,c1) and A(c;) = S92 (c, ... ch).

Proof. By definition, A induces a structure of homotopy coprop(erad) if and only if
02\ = 0. Since 0,14 is a derivation, 02,4 = 0 is equivalent to d; 15 o (s 'A)(s~'¢) = 0, for
every ¢ € ¥. Denote

(sTA e =% (s ey, 57 ) and (sT'A)(sTle) = NG (s e, s ).
By the explicit formula for J, 1, given in Lemma 14 applied to p = Idj,(s,@), we have

Op1a0 (sTA)(s7he) = A (G (s ery s )
=39 0, G2 (s ety o5 e, s ey, s el s T e, s )

=0.

We get back to the map A with the formula
A(e) = (=1) =D Gl ey, ),

where &(ci,...,¢;) = —Dler]+ (I =2)|ea] + -+ |¢;-1]. We conclude as in proof of
Proposition 23. ]

4.4. Homotopy non-symmetric (co)prop(erad). It is straightforward to generalize the
two previous subsections to non-symmetric (co)prop(erad)s. One has just to consider non-
labelled graphs instead of graphs with leaves, inputs and outputs labelled by integers.
Therefore, there is a bar and a cobar construction between non-symmetric dg prop(erad)s
and non-symmetric dg coprop(erad)s. The notion that will be used in the sequel is the
notion of homotopy non-symmetric prop(erad). It is defined by a coderivation on the non-
symmetric cofree (connected) coprop(erad). Equivalently, we can describe it in terms of
non-labelled graphs like in Proposition 23. The chain complex defining the cohomology
of a gebra over a non-symmetric prop(erad) has always such a structure (see [32], Sec-
tion 2).

4.5. Homotopy properads and associated homotopy Lie algebras. It was proven in

[18] that for any operad, 2 = {Z(n)}, the vector space P #(n) has a natural structure of

Lie algebra which descends to the space of coinvariants P #(n)s , which is isomorphic to

the space of invariants @ 2(n)>". In [43] this result was generalized to homotopy operads
n

and the associated L-algebras. In this section, we further extend the results of [18], [43]
from homotopy operads to arbitrary homotopy prop(erad)s: # = {2 (m,n)}.
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Recall that a structure of L, -algebra on g is given by a square-zero coderivation
on ¥ ¢(sg), where ¥ °(sg) stands for the cofree cocommutative coalgebra on the suspension
of g. Hence, such a structure is completely characterized by the image of the coderivation
on sg, ¥ “(sg) — sg. Equivalently, an L. -algebra is an algebra over the minimal (Koszul)
resolution of the operad Zie. We refer the reader to [32], Section 1, for more details on
L -algebras.

Let 2 be an S-bimodule. We denote by @ 2 the direct sum of all the compo-
nents of 2, that is @@ #(m,n). We consider the map @ : (P Z) — F °(2) defined by

Op O Opy):= Z 4(p1,...,Pn), where the sum runs over the classes of graphs under
the action of the automorphism group of the graph. This sum is finite and since a graph is a
quotient of a levelled graph (see Section 1.4), the signs are well defined.

Theorem 25. Let 2 be a homotopy properad, the direct sum @ 2 of its components
has an induced L. -structure.

Proof. We define the partial cotriple coproduct of a cofree coprop(erad) by the
composite:

A/ : yC(V) Agc(ycu/)) s %C(V’yc(y))’
1

where # °(V,97 C(V)) represents graphs indexed by elements of V7 and one element of
——

F(V). Similarlyl, we define the partial cotriple coproduct of the cofree cocommutative
coalgebra by

8L V) D e (FW)) = (Y, I(V)).
N’
1
Let sy : 7 ¢(sP) — s2 be a map of degree —1 defining a homotopy properad structure on
2, that is the composite
cr = A ol = /= T (sP,sp) cr = S| —
FN(sP) ——— F(sP, F(sP)) ——= F(sP) ——— 5P
——
1

is zero. A map / : ¥°(sg) — sg induces a square-zero coderivation on & °(sg) means that
the following composite is equal to zero:

F(sg) —2— F(s9, 7(s0)) T2 ¢(sq) — sq.
——
1

We define the induced L., structure by
17 (s(DP)) > 7(sP) 5 s2.

The relation of the L, structure for / lifts to the relation of the homotopy prop(erad) by the
following commutative diagram:
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(5/

S ((BP) —— P ((DP), S (D))
| |
o

_ _ — F (5P, s, —
F(sP) F(sP, 7 (s7)) Rl
——
1

S(sP,1
—

L (@D P) —— (D)

which concludes the proof. []

When 2 is a (strict) prop(erad), the induced structure is the (strict) Lie algebra com-
ing from the anti-symmetrization of the Lie-admissible algebra of Proposition 4. Theorem
25 generalizes the well-known fact that a homotopy (associative) algebra is a homotopy

Lie algebra by anti-symmetrization of the structure maps.

The same statement holds for the space of coinvariants elements and the space of
invariant elements.

Theorem 26. Let P be a homotopy properad, the total space of coinvariant elements
@ Ps and the total space of invariant elements @ 2° have an induced L.,-structure.

Proof. 'We apply the same arguments as in the proof of Proposition 6. []

We prove below that the maps 2 — @ 2 and 2 — @ 2° are functors for the cate-
gory of the homotopy prop(erad)s to one of homotopy Lie algebras (see Proposition 34).
The same result holds for non-symmetric homotopy properads as well.

4.6. Homotopy convolution prop(erad). In this section, we extend the definition of
the convolution prop(erad) to the homotopy case.

Theorem 27. When (€,A) is a (non-symmetric) homotopy coprop(erad) and (2, u) is
a (non-symmetric) prop(erad), the convolution prop(erad) ?% = Hom(%, ) is a homotopy

(non-symmetric) prop(erad).

The same result holds when € is a (non-symmetric) coprop(erad) and 2 a homotopy
(non-symmetric) prop(erad).

Proof. To an element %(fi,. .., f,) of 7¢(#%)", we consider the map
G s i) : (@) = 74P

defined by %'(cy,...,¢y) — (—1)fg(f1(cl),...,fn(cn)) if ¥' ~ % and 0 otherwise, where
E=SIfil(ler] + -+ + |eim1]). We define maps u, : Z¢(2%)") — 2% by the formula
i=2

un(g(ﬁ,...7ﬁ,)) =fiy09(fi,.... [,) 0 A

The degree of A, is n —2 and the degree of i, is zero. Therefore, the degree of y, is
n—2.
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The map u verifies the relation of Proposition 23:

D iﬂ(g/u@’(ﬁ,.-~,ﬁv)>

Y'cy
= Z iﬂ,ﬂj’Og//\gjl(flv"'uuk(gl(ﬁlv'”u i/())a-"vfn) OA/

:Z ila.@Og7é,(ﬁv'"aﬂ;?o/g?;(ffn"wfik)O(Ska-'wfn) oAy,

where the sum runs over admissible subgraphs 4’ of 4. We denote by k the number of ver-
tices of ¥’ and / = n — k + 1. We use the generic notation / for the new vertex of /%' ob-
tained after contracting %'. For every element ¢ € %, we denote by A(c) = . %' (c1,...,c)
and A(¢;) = S %7(c!,...,c}). The associativity of the product of 2 gives

S (1) ) (G (S, ) (€)

G'cy
= :[17/’ © ‘(é(ﬁv R 7,fn) © (Z(_1)/7({(’/,'27L’1,-~--,L’I) gl O; giz(ch ceey C{, RN cllcv cee 761))'
Since (%, A) is a homotopy coprop(erad), the last term vanishes by Proposition 24.

The same statement in the non-symmetric case is proven in the same way and the
dual statement also. []

Remark. In the particular case when % is a homotopy coalgebra and # an associa-
tive algebra, Hom(%, 2) is a homotopy algebra. In the same way, when % is a homotopy
operad and 2 an operad, Hom(%, #) is an homotopy operad (see [43], Lemma 5.10).

Theorem 28. When (%,A) is a homotopy coprop(erad) and (2,u) is a prop(erad)
(or when (%,A) is a coprop(erad) and (2, u) is a homotopy prop(erad)), the total space of
the convolution prop(erad) 2% = Hom(%,?) is a homotopy Lie algebra.

The total subspace Hom® (%, 2) of invariant elements is a sub-L..-algebra.

Proof. The first part is a direct corollary of Theorem 27 and Theorem 25. Since the
structure maps of this L. -algebra are composite of equivariant maps (A,, /i), they induce
an L -algebra structure on the total space of Hom® (%, 2). (This is similar to the one used
in the proof of Proposition 11.) []

In the latter case, the L. -‘operations’ or homotopies are explicitly given by the
following formula. The image of fi,..., f, € Hom®(%, %) under /,, for n > 1, is given
by

ln(fh cee 7fn) = E (_I)Sgﬂ<0-ﬁ-, .... ﬁl):a? ° (ftf(l) ® e ®ft7(l1)) o Ana

cgeS,

where (—1)%€"@/1-+/) is the Koszul-Quillen sign appearing after permutating the /; with o.

The first ‘operation’ /; is the differential, that is /;(f) := D(f) = dyo f — (=1)V'If o d.
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In this homotopy Lie algebra, the generalized Maurer-Cartan equation is well

1
defined since the formal infinite sum Q(a) := ) ﬁln(oc,...,oc) is in fact equal to the

nx1
composite D + fi, o Z () o A in Hom(%,2), when % is a homotopy coprop(erad) and to
D + uo F(a) o Ay when 2 is a homotopy prop(erad). (See [32], Section 1.3, for the general
definition of filtered L., -algebras.)

Definition. Let (4,A) be a homotopy coprop(erad) and (2, u) be a prop(erad) (or
(¢,A) a coprop(erad) and (2, u) a homotopy properad). A morphism % 2 2, of degree
—1, is called a twisting morphism if it is a solution of the (generalized) Maurer-Cartan
equation

Oa) := > % Iy(aty ... 00) =0,

nx=1"7%-

in the homotopy Lie algebra Hom®(%,2). We denote this set by Tw(%, 2).

We can represent the bifunctor Tw(—, —) in the same as in the strict case (see Propo-
sition 17).

Proposition 29. Let (¢,A) be a homotopy coprop(erad) and (2, 1) be a prop(erad).
There is a natural bijection

Mor g prop(erad)s ( (€), J) Tw(¥%,2).

Let (¢,A) be a coprop(erad) and (2,u) be a homotopy prop(erad). There is a natural
bijection

TW(%, ﬂ) Mordg coprop(erad)s ((ga ﬁ(,@))
Proof. The proof is a direct generalization of the proof of Proposition 17. []

4.7. Morphisms of homotopy (co)prop(erad)s. In this section, we recall the notion
of morphism between two homotopy properads due to [16]. We extend it to homotopy
(co)props and make them explicit in terms of Maurer-Cartan elements in some convolution
L -algebra.

Since a homotopy properad is equivalent to its associated (generalized) bar con-
struction, the notion of morphism of homotopy properads (or weak morphism) is defined as
follows.

Definition ([16]). Let 2, and 2, be two homotopy prop(erad)s. A morphism be-
tween #; and %, is a morphism of dg coprop(erad)s between their bar constructions:

A morphism of dg coprop(erad)s @ : B(%) = F(sP)) — B(P,) = F°(sP,) is char-
acterized by its image on s%,. We denote by s~'¢ : B(#) — 2, the composite of @ with
the projection on s, followed by the desuspension. Notice that the degree of s~ 'p is —1.
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By Proposition 29, @ is a morphism of dg coprop(erad)s if and only if s~!¢ is a Maurer-
Cartan element in Hom® (B(2,), 2,), that is

_ 1 _ - o/ <
O(s7'9) = X —o(s g o5710) = D™ p) + sy, 0 F5(s7 ') 0 A =0,

n=1":
where A is the coproduct map B(#) = Z(sP1) — F(F(sP)).

Proposition 30. 4 morphism of S-bimodules ¢ : B(?\) — s2 induces a morphism of
homotopy properads between P, and P, if and only if s\ ¢ is a Maurer-Cartan element in the
L.-algebra Hom® (B(21),2), that is Q(s~'¢) = 0.

Like in Section 4.3, we make explicit the above definition in terms of graphs.

Proposition 31. 4 map s~ ¢ : B(?) — 2, is a morphism of homotopy prop(erad)s if
and only if, for every class of graphs G under the action of the automorphism group, the fol-
lowing relation holds:

Sl (G /g% U Up%) = (9 (su”)9'),

where the first sum runs over all partition of the graph % into admissible subgraphs
G U---U%G, and where the second sum runs over all admissible subgraphs %' of 4. Once
again, the signs are induced by Koszul-Quillen rule, when applied to elements spy, ..., Spu,
such that n is the number of vertices of 4.

Proof. The map s~ '¢: B(#)) — 2, induces a unique morphism of coprop(erad)s
® : B(#) — B(#,) which commutes with the differentials if and only if the above relation
is verified. (The left-hand term is the projection on 2, of the composite dp(»,) o @ and the
right-hand term is the projection on the same space of the composite ® o dp ), that is

podpp.) O

When applied to A .,-algebras, the underlying graphs are ladders and this proposition
gives the classical notion of weak morphisms, that is morphisms between A,-algebras.

Dually, we define the notion of morphisms between homotopy coprop(erad)s.

Definition. Let %; and %, be two homotopy prop(erad)s. A morphism between %)
and %, is a morphism of dg prop(erad)s between their cobar constructions: Q(%)) — Q(%).

A morphism of dg prop(erad)s ¥ : Q(%)) = Z (s7'%)) — Q(%,) = F (s"'%,) is char-
acterized by the image of s~!%,. We denote by s~y : 6| — Q(%,) the desuspension of the
restriction of W on s~!%). By Proposition 29, ¥ is a morphism of dg prop(erad)s if and only
if s~ is a twisting morphism in Hom® (%1,Q(%)), that is

O™¥) = 5 (™, 57) = D) + o F s ) 0 A =0,

nx=1""-

where 4 is the composition map 7 (Q(%)) = 7 (F (s '6)) — Z (s7'%) = Q(%).
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Proposition 32. A morphism of S-bimodules  : s~'6, — Q(%>) induces a morphism
of homotopy coproperads between €, and %, if and only if s~ is a Maurer-Cartan element
in the L.,-algebra Hom® (61,Q(%)), that is Q(s™"y) = 0.

We now prove that the convolution prop(erad) is a construction functorial with re-
spect to the first argument.

Theorem 33. Let Y be a morphism of homotopy coprop(erad)s between 6, and .
Let 2 be a prop(erad). There exists a natural morphism of homotopy prop(erad)s between
Hom(%,, #) and Hom(%\, ?) induced by Y.

The same statement holds in the non-symmetric case.

Proof. Let ¥ denote the morphism of dg prop(erads) Q(%;) — Q(%;) and
s~y the induced twisting morphism % — Q(%), that is Q(s~'y/) = 0. We define the
morphism of coprop(erad)s @ : B(Hom(%>,2)) — B(Hom(%),#)) by its image ¢ on
sHom(%;,%2) = Hom(s~'%;,#) as follows. Let

Y(fi,.... /) € B(Hom(%,, 2)) = 7 (sHom(%,2)) = 7 (Hom(s '@\, ?)).

The image of %(f1,..., f,) under ¢ is equal to the composite

<

o(G(fis i) 1 5C ——— F(s'G) —>

It remains to prove that s~'¢ is a twisting element in Hom(B(Hom(%,, 2)), Hom(%), 2)),
that is Q(s~'p) = 0. By the definition of Q in this homotopy prop(erad) and by the ‘asso-
ciativity’ of i, O(s '9)(%(fi,. .., f»)) is equal to the composite

— Ay — F (s} — il — .y — i,
G 7@ N F(F (%) L 7 (s ) ()

2,

where i is the ‘triple’ map associated to the free prop(erad) Z(s~'%,). Therefore

O(s'0)(%(fis-. s fn)) = fipo%(fi,...., [n) o O(s~'yy) which vanishes since Q(s~'y)) = 0.
O

The dual statement is also true and can be proved in the same way. It will appear in a
future work of the second author in relation with the transfer of algebraic structures up to
homotopy through a deformation-retract (homological perturbation lemma).

Proposition 34. The constructions given in Theorem 25 and Theorem 26 provide us
with three functors,

Category of homotopy properads — Category of homotopy Lie algebras.

Proof. Let ®: B(?)) — B(%,) be a morphism of coprop(erad)s defining a mor-
phism of homotopy prop(erad)s between 2, and #,. The associated projection ¢ verifies
QO(s7'p) = 0, that is

_ _ Fo(s] _ y
F(sP) —2 7 (7(sP)) T Fo () 2 2,
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equals 0. We define the map
[ S ((DP)) 2 T (sP) S (D Ps).

The map f is a morphism of L, -algebras. Its desuspension s~'f verifies the Maurer-Cartan
equation in the L. -algebra Hom(%°(s( 21)), @ 2) (see [8]). The Maurer-Cartan equa-
tion for s~'f lifts to the Maurer-Cartan equation for s~'¢ via ®, that is the following dia-
gram is commutative:

5 ge(s7If
—

F(DF)) —2s (T (D P))) L @A) 2 @

e P

_ _ F°© —1( _
F(sP) A FFsP) LU FPy),

which concludes the proof. []

Corollary 35. Let ¥ be a morphism of homotopy coprop(erad)s between 6| and ©».
Let 2 be a prop(erad). There exists a natural morphism of L..-algebras between Hom(%,, 2)
and Hom(%,, 2) induced by . Its restriction to Hom® (%, 2) gives a natural morphism of
L.-algebras between Hom® (%5, #) and Hom® (%, 2).

Proof. The first part is a direct corollary of Theorem 33 and Proposition 34. Since
these constructions are composite of equivariant maps, they are stable on the space of in-
variant elements Homg(%, #) and Homg(% ,2). O

5. Models

In this section, we recall the definitions of minimal and quadratic model for properads
and we formally extend them to props. Recall that a model is a quasi-free resolution. Our
viewpoint here is to classify properads according to the form of their minimal model, when
it exists. For instance, a properad is Koszul if and only if it admits a quadratic model. To
clarify the genus of some resolutions, we introduce the notion of contractible prop(erad)s.
Such properads have genus 0 quadratic models.

5.1. Minimal models. Recall that a quasi-free prop(erad) is a (dg) prop(erad) whose
underlying S-bimodule, that is forgetting the differential map, is a free prop(erad) # (M).
It is not necessarily a free dg prop(erad) since the differential 0 may not be freely generated
by the differential of M.

Definition (model). Let 2 be a prop(erad). A model of # is a quasi-free prop(erad)
(7 (M), 0) equipped with a quasi-isomorphism # (M) = 2.

Theorem 19 proves that every augmented prop(erad) has a canonical model given by
the bar-cobar construction. Some prop(erad)s admit more simple models. The differential 0
of a quasi-free prop(erad) # (M) is by definition a derivation. Lemma 14 shows that it is
characterized by its restriction 0y : M — % (M) on M.
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Definition (decomposable differential). The differential ¢ of a quasi-free prop(erad)
is called decomposable if the image of its restriction to M, 0y : M — F (M), is composed
by decomposable elements, that is Im(dy) = @ F (M) ),

n=2

Definition (minimal model). A model (# (M), d) is called minimal if its differential
0 is decomposable.

5.2. Form of minimal models. From Theorem 19, we know that every augmented
(dg) properad admits a resolution of the form Q(B(P)). A natural way to get a minimal
model from this would be to consider the homology of the bar construction, try to endow
it with a structure of homotopy coproperad and then take the generalized cobar construc-
tion of it. In this section, we prove that when minimal models exist, they are of this form.

Proposition 36. Let (97 (M), 6) be a quasi-free properad with a decomposable differ-
ential generated by a non-negatively graded S-module M. Then the homology of the bar con-
struction B(F(M)) of (F (M), 0) is equal to the suspension of M.

Proof. The bar construction of the dg-properad Z := % (M) is defined by the
underlying S-bimodule B(?) := 7 °(s?) = # (s # (M)). The differential d is the sum of
two terms dy + 0. The component ¢ comes from 0 and dj is the unique coderivation which
extends the partial product of 7 (M).

Consider the filtration F; := @ #°(s7 (M ))w where r is the sum of the degrees of the

r<s
elements of M. Let’s denote by E¢, the associated spectral sequence.

Since the chain complex M is bounded below, this filtration is bounded below
F_ 1 =0. It is obviously exhaustive, therefore the classical theorem of convergence of
spectral sequences shows that £* converges to the homology of B(Jg7 (M ))

We have (5(FS) < F,_; and dy(F;) < F;. Hence, the first term of the spectral sequence
is Ey = 75,(s7 (M)) , where s + ¢ is the total homological degree, and d° = dy. We have
reduced the problem to computing the homology of the bar construction of the free
properad on M, which is equal to XM by [41], Corollary 5.10 (where we choose to put
each element of M in weight 1). []

The next proposition shows that, when a minimal model of a properad 2 exists, it is
necessarily given by a quasi-free properad on the homology of the bar construction of #.

Theorem 37. Let &P be an augmented dg properad and let (97 (M), 8) be a minimal
model of 2. The S-bimodule sM is isomorphic to the homology of the bar construction of 2.

Proof. In [41], we proved in Proposition 4.9 that the bar construction preserves
quasi-isomorphisms. Therefore, the bar construction of % (M) is quasi-isomorphic to the
bar construction of 2. We conclude by Proposition 36. []

We denote by P = H, (B(@)) the homology of the bar construction of 2. When
(7 (s7'2"),8) is a minimal model of 2, the derivation @ is equivalent to a structure of
homotopy coproperad on #' such that 6, = 0. That is (#(s~'2'),0) is the generalized
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cobar construction Q(@‘) of the homotopy coproperad 2'. As a conclusion, we have the
following corollary which gives the form of minimal models.

Corollary 38. A4 minimal model of an augmented dg properad 2 is always the cobar
construction Q(2") on the homology of B(?) endowed with a structure of homotopy copro-
perad.

In the sequel, we will only consider props freely generated by a properad, in the sense
of the horizontal (concatenation) product. The minimal model of such props is given by the
generalized cobar construction of the associated homotopy coproperad, viewed as a homo-
topy coprop. And the result of the preceding lemma still holds.

5.3. Quadratic models and Koszul duality theory. In general, it is a difficult problem
to find the minimal model of a prop(erad). One can first compute the homology of the
bar construction and then provide a structure of homotopy coproperad on it, that is with
higher homotopy cooperations. For some weight graded properads, there exist simple
minimal models which are given by the Koszul duality theory. These properads are called
Koszul.

Definition (quadratic differential). The differential 0 of a quasi-free prop(erad) is

called quadratic if the image of 0y, : M — F (M) is in 7 (M),

Definition (quadratic model). A model (# (M), ) is called quadratic if its differen-
tial 0 is quadratic.

When £ is a weight graded properad, its bar construction splits as a direct sum of
finite chain complexes indexed by the weight (cf. [41], Section 7.1.1). In this case, we can
talk about top dimensional homology groups.

Theorem 39. Let 2 be a weight graded properad concentrated in homological degree
0. The following assertions are equivalent.

(1) The homology of B(2) is concentrated in top dimension.
(2) The S-bimodule ?' is a strict coproperad.

(3) The properad P admits a quadratic model: Q(2') = 2.
Proof. (1) = (2) is given by [41], Proposition 7.2.

(2) = (3) is given by [41], Theorem 5.9. When 2' has a structure of strict copro-
perad, its cobar construction is a resolution of # and the differential of it is quadratic.

(3) = (1) Since 2 is isomorphic to # (M,)/(0(M:)), whith ¢ quadratic, this presen-
tation is quadratic. Define an extra weight on M by the formula w(M,,) := n + 1. With this
weight, the quasi-isomorphism % (M) L pisa morphism of weight graded dg properads.
The induced morphism B(p) on the bar construction preserves this grading. Therefore we
have H,(B(?)") = H,(B(# (M ))(n)) = (sM), and the homology of the bar construction
of Z is concentrated in top dimension. []
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In this case, the properad 2 is called a Koszul properad. The coproperad 2' is its
Koszul dual and 2 has a quadratic model which is the cobar construction on 2'. In other
words, a properad is Koszul when its bar construction is formal, that is when B(2) is quasi-
isomorphic to its homology 2' as a dg coproperad. This case is simple and particularly ef-
ficient. When 2 = F(V')/(R) has a quadratic presentation with a finite dimensional space
of generators V, then the linear dual (twisted by the signature representation) of the cop-
roperad #' is a properad equal, up to suspension, to 2 = F(V)/(#*) where V" is the
linear dual of V' twisted by the signature representation. This relation provides a concrete
method to compute the minimal model of Koszul properads. The next step is to be able to
prove that it is Koszul. Koszul duality theory provides a smaller chain complex 2' [x] 2
which is acyclic if and only if the properad £ is Koszul. Therefore, there are simple methods
to show that a properad is Koszul. When a properad is defined by two Koszul properads
with a distributive law, [41], Proposition 8.4 shows that it is Koszul. In the operadic case,
there are basically two other efficient methods. First if the homology of the free #-algebra
is acyclic then the operad 2 is Koszul (see [10], Proposition 5.3.5). Finally, when the op-
erad is set theoretic, we can use the associated poset to prove that it is Koszul (see [39]).

5.4. Homotopy Koszul properads. If a properad is Koszul, then we have clearly cut
means to construct its minimal model. However, the ordinary notion of Koszulness does
not cover many important examples. For example, the properad of associative bialgebras
is not Koszul since it is not quadratic and any Koszul properad has a quadratic presenta-
tion by [41], Corollary 7.5. So we are left in such cases with no concrete methods of proving
that a particular properad 2 admits a minimal model, and, if so, constructing it explicitly.
It is already a highly non-trivial problem in general to find the set of generators for a min-
imal model, not speaking about the differential. In this section we extend the notion of
Koszulness in such a way that some of the above problems become effectively solvable.

Definition. Let # =7 (V)/(#) be a properad generated by an S-bimodule
V = {V(m,n)} concentrated in degree zero, and with an ideal generated by 2 = 7 (V)=

Letn: 7 (V) — F (V)(k) be the natural projection, and let us set,
Ry = nk(%), fOI’k:2,3,... .

Let us also denote by 2% the image of # (V)(Zk) under the natural epimorphism
F (V) — 2.

The properad 2 is called homotopy Koszul if
(i) the quadratic properad 2, := Z (V) /(%,) is Koszul,
(ii) 2 and 2, are isomorphic as S-bimodules,

(iii) there is an extra grading on the properad 2 = @ 2 (1), with 2(1) being a collec-
tion of finite-dimensional S-bimodules. ;

In practice the conditions (i)—(iii) above are often not hard to check (see examples be-
low). As an extra grading one can use, for example, the path grading of a free properad
introduced by Kontsevich and studied in [29]. The main motivation behind the definition
is the following.
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Theorem 40.  If a properad # is homotopy Koszul, then it admits a minimal model of
the form (97 (s@z‘),é), where P is the coproperad Koszul dual to 2.

Proof. Consider the bounded above increasing filtration F_,2 := P=P) of the prop-
erad #. As F_,2 n P(A) are finite-dimensional vector spaces, the spectral sequences
associated with this filtration (see below) have good convergence properties. Since 2 is
isomorphic to %, as an S-bimodule, the associated graded properad

pG;Bo pEpt])

is isomorphic to &, as a properad. Then we have

Claim 1.  The homologies of the bar constructions, B(?) and B(#), are isomorphic as
S-bimodules, i.e. H,(B(2?)) ~ 25 as S-bimodules.

Indeed, the filtration F_,2 := 22P) induces an associated filtration of the complex
B(2) (as differential in B(#) is built from compositions in & which respect the filtration
F_,2). By the above observation, the Oth term, E°, of the associated spectral sequence,
{E",d"}, is exactly the complex B(#,), E;)q = B(@z)[(;’;) and d° = dp(y,). As 2, is Koszul,
E' = H,(B(#)) is exactly the Koszul dual coproperad 25, that is E, =0 for g+ —2p
and E}, = H ,(B(2,)™) = (#})”) when q = —2p. The induced differentials, d" for
r = 1, are zero because of the homological degree 0 assumption on £. Thus the spectral
sequence {E",d"} degenerates at the first term. The extra grading on the properad 2
induces an extra grading A on B(#) which makes F_,(B(2)) n B(#)(4) into a bounded
filtration of B(#)(4). Hence it converges to H,(B(2))(A) by the Classical Convergence
Theorem 5.5.1 of [46], thereby proving Claim 1.

Choosing a homological splitting of the complex B(2),
H.(B(2)) < B#)On
P

one can use dual transfer formulae of [16] for homotopy coproperads to induce on the
S-bimodule H, (B(,@)) ~ 2, the associated strongly homotopy coproperad structure, that
is a differential, J, in the free properad® # (s7'H,(B(2))) = Q(H.(B(?))) generated by

2 1In fact the Grandker formulae provide us in general with a differential § in a completed (with respect to
the number of vertices) free properad: there is no guarantee that such J applied to a generator is a finite sum of
terms but we can only be sure that J is continuous with respect to the topology induced by the number of vertices
filtration. However, our assumption on existence of an extra gradation in 2 implies that J is well-defined in the
ordinary category of properads: it is finite on every generator so that (97 (s’lH. (B(?)))&) makes sense without
completion.

It is important to notice that had we chosen to work with topological properads (with topology induced by
the number of vertices or genus filtrations), the condition (iii) in the definition of homotopy Koszulness can be
safely omitted—Theorem 40 stays true in the category of (completed) topological properads because all the spec-
tral sequences we used in the proof stay convergent by classical Complete Convergence Theorem 5.5.10 (see [46],
p. 139). As an example of the deformation quantization prop [30] shows, working with topological prop(erad)s is
unavoidable in application of the theory of prop(erad)s to geometry and mathematical physics.
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H, (B(@)) In general, this differential is not quadratic, i.e. the induced homotopy copro-
perad structure on H, (B(@)) is not equal to the coproperad structure on @2‘ Moreover,
the chosen homological splitting provides us canonically with a morphism of homotopy
coproperads which extends i,

H.(B(?)) — B(2),
i.e. with a morphism of dg properads,
¢: (F (s 'H(B(2))),6) — Q(B(2)).

As Q(B(2)) = 2 is a resolution of 2 by Theorem 19, the required Theorem 40 follows
immediately from the following

Claim 2. Under the assumption on the properad 2 the morphism ¢ is a quasi-
isomorphism.

Indeed, the introduced above filtration of the bar construction, B(Z), induces a
filtration F_,H, (B(Q’)) of its homology with the associated graded coproperad being
exactly #5. This filtration of H,(B(#)) induces in turn a filtration of the complex
(7 (s'H.(B(2))),0). The Oth term of the associated spectral sequence is precisely the
minimal model, (# (s™'2),0), of the properad 2. As the latter is Koszul by assumption,
its homology is equal to #,. By homological degree assumption on £, the induced differ-
ential on the next term of the spectral sequence vanishes so that it degenerates. The extra
grading assumption on £ implies that this spectral sequence converges to the homology
(F] (s‘lH. (B(@))),é) which is equal, therefore, as an S-bimodule to %, ~ #. This fact
completes the proof of Claim 2 and hence of the theorem. []

The operad 2, is Koszul means that the differential of the minimal model (Q(2}),5,)
is quadratic, that is 6, : s~'2} — 7 (s7'21)?. Since the transfer of homotopy coproperad
structures does not change the map A, defining the homotopy coproperad structure on
H,(B(2)) but just add extra terms A,, for n > 3, the final differential & defining a minimal
model of 2 is equal to J; plus extra terms 6, for n = 3 such that J, : s7'2} — # (5*1@2‘)("),
that is to say, ¢ is a perturbation of ¢,.

The coproperad 921 is computable by Koszul duality theory. Therefore the above
theorem gives an immediate estimate of the set of generators for a minimal model of a
homotopy Koszul properad. Moreover, the differential in this quasi-free model can in prin-
ciple be computed via ordinary homotopy transfer formulae.

The class of properads which are homotopy Koszul but not Koszul is non-empty and
contains an important example of the properad, .«ZssZi, of (co)associative bialgebras which
can be defined as a quotient,

AssBi .= F (V) /(R)

of the free properad, # (V'), generated by the S-bimodule V' = {V (m,n)},
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12 2 1 .
K[S] ® K[S)] = span<\( : Y> iftm=2n=1,
1 1

I 1
K[Si] ® K[S,] Espan<)\ , /l\> iftm=1n=2,
P2 7

0 otherwise,

V(m,n) =

representing a binary product and a binary coproduct without symmetries, modulo the
ideal generated by relations

12
1.2 2 3 12
3001
" T AT A ) |
31 12
o2 2 03 b2

These relations stand respectively for the associativity of the product, the coassociativity
of the coproduct and the relation between them, that is the coproduct is a morphism of
algebras or equivalently the product is a morphism of coalgebras. As the ideal contains
4-vertex graphs, the properad .o/ss#i is not quadratic. Hence .&/ss#i can not be Koszul in
the ordinary sense. However, we have the following

Proposition 41.  The properad </ss%i is homotopy Koszul.

Proof. (i) The properad .«Zss%i, is Koszul as it is generated by the bimodule V" with
the relations,

12 2 3 12
e
’ - 1/5\ 1 A
2 203 b2
which verify the Distributive Law (see [41], Section 5.6 and Proposition 8.5).

(ii) The S-bimodule isomorphism .oZss%i ~ .o/ss%i, was established in [9].

(iii) The ideal generated by # preserves the path grading (see [29] for its definition
and main properties) of the free properad .# (V) and hence induces an associated filtration
on oZss#i which satisfies the last condition in the definition of a homotopy Koszulness
properad. []

Corollary 42 (cf. [28]). The properad </ss®i admits a minimal resolution, F (%), gen-
erated by the S-bimodule € = {€(m,n)},, 51 minz3> With

1.2 . ..m-1m
%(m,n) = s""3K[S,,| ® K[S,] = span<

12 " n-ln

(AutoPDF V7 3/3/09 11:65) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1-56 2086_6001 (p. 44)




Merkulov and Vallette, Deformation theory of representations of prop(erad)s 1 45

Proof. The Koszul dual properad of .oZss%i, is the properad generated by a binary
product and a binary coproduct which are associative and coassociative. All the composites
with the product and the coproduct vanish except ] . The only non-vanishing element of
of this properad are obtained by composing first some products and then coproducts. We
conclude that .Zssil(m,n) = s"2K[S,] ® s"2K[S,] for m,n =1, m+n =3 and zero
otherwise. Then Theorem 40 implies the claim. []

We refer the reader to Section 6.2 for another application of the notion of homotopy
Koszulness.

5.5. Models for associative algebras, non-symmetric operads, operads, properads,
props. There are several different notions of algebraic objects in the literature that are
used to model the operations acting on some algebraic category. We briefly recall them in
the following table.

N
: AN N N
operations + I + /l /l\
no symmetry
NN N4 N NS NS LN\
.. * \ /. \ /. o l ® l l
composition + + + <.><.> <. .> .>
planar non-planar [P AN I /I
monoidal (S-biMod, | (S-biMod,
ooy | (Ve ®) | (eVeeto) | (S-Mod.o) | TN =)
monoid associative | non-symmetric operads roperads rops
algebras operads p prop prop
non-symmetric . .
modules modules algebras algebras | (bial)gebras | (bial)gebras
ladders
free connected
. (tensor planar trees trees graphs
monoid graphs
module)

To each pair of such objects, there is a forgetful functor and a left adjoint:
associative algebras 2 non-symmetric operads 2 operads 2 properads 2 props.

Let us make them explicit.

. ® To any prop 2, the associated properad %g:gg:rad? (9) is given by the same underly-
ing S-bimodule where we only consider vertical compositions of operations based on con-
nected graphs. That is we forget the horizontal composition. Its left adjoint #; 7%  (#)
is given by the free symmetric tensor on Z for the horizontal tensor product. (This functor
was introduced in [41], Section 1, where it is denoted by .#.) In other words, we freely gen-
erate horizontal compositions from a properad to get a prop.
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e The operad obtained from a properad £ is the S-module

roperad
U gperads(P) (1) := 2(1,n)
equipped with the restriction to one rooted trees composition. Its left adjoint functor is
FIOPS () (10 1) == P(n) for m = 1 and 0 for m > 1.

operads

. . d
e For any operad 2, we consider the non-symmetric operad %, " (2) = 2

where we forget the action of the symmetric group. The left adjoint is given by

g;operads (g) (n) = @(I’Z) ® K[Sn]

non-symm. operads
(see M. Aguiar and M. Livernet [3]).

¢ The pair of adjoint functors between associative algebras and non-symmetric oper-
ads is defined in the same pair of functors between operads and properads. In one way, we
just consider the unital operation (arity (1)) of a non-symmetric operad. In this other way,
for an associative algebra we define a non-symmetric operad concentrated in arity (1).

Proposition 43.  All these functors are exact, that is the image of a quasi-isomorphism
is a quasi-isomorphism.
Foperads d
) ) operads an
because the underlying dg-module does not change. Since the functor

Proof. 1t is trivial for the forgetful functors and for the functors

7 hon-symm. operads
ass. algebras

ngne.r:;islm. operads 1 given by tensoring S,-modules with the flat i< module K[S,] (the charac-

teristic of [K is 0), it is exact. Over a field of characteristic 0, the functor F° . is also

properads
exact. []

This proposition justifies the following philosophy. To study the deformation theory
of elements of an algebraic category, that is a class of gebras (modules, algebras, bialge-
bras), one should first model this category using the simplest possible object of the previous
table. For instance, associative, diassociative, dendriform algebras [22] are encoded each
time by a non-symmetric operad. Commutative, Lie, preLie, Gerstenhaber, Poisson alge-
bras are modelled by operads. Lie bialgebras, infinitesimal Hopf algebras [2], (associative)
bialgebras (see [32], Section 3.3) are representations of properads. Non-unital infinitesimal
Hopf algebras, semi Hopf algebras, Lie bialgebras [23] can only be represented by a prop.

Then to study the deformation theory of this algebraic category, that is to define the
stable notion up to homotopy (see 6.1) or the deformation complex (see [32], Section 2),
one has to find a cofibrant resolution (bar-cobar, minimal model for instance) of the related
operad, properad or prop £. This resolution contains all the necessary data since a resolu-
tion for the induced prop is “freely” obtained by the free exact functor.

5.6. Models generated by genus 0 differentials. Let .o/ be a category of gebras de-
fined by some products and some coproducts with relations that can be written as linear
combinations of connected graphs of genus 0, for example Lie bialgebras, Frobenius
bialgebras, infinitesimal bialgebras (see [11], [41]). In this case, the class of gebras can be
faithfully modelled with a smaller algebraic object called a dioperad [11].
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A dioperad is a properad with only compositions of operations based on genus 0
connected graphs. Hence, there is a natural forgetful functor from properads to dioperads.
To any properad 2, the associated dioperad %gfg;’:rfis(,@) has the same underlying S-
bimodule and we only consider vertical compositions of operations based on connected
graphs of genus 0. Let us denote by [] the restriction of [X] to genus 0 graphs. With this
notation, a dioperad is a monoid (2, u,) in the monoidal category (S-biMod, []). From
now on, let us denote the genus in exponent. For instance, #° will denote the free dioperad

o= dioperads T xrl : o= properads
functor Z¢ ;\oq and # will simply denote the free properad functor F¢ .y s -

Proposition 44. The left adjoint of the forgetful functor

properads
u dioperads

(#) : Properads — Dioperads
is given by
F(D)/1,

where I is the (properadic) ideal generated by the image under u, — 1d of 0(@)(2), that is
the connected graphs of genus 0 with two vertices.

In other words, this construction is the quotient of the free properad on 9, considered as
an S-bimodule, by the (dioperadic) composition of any pair of adjacent vertices with only one
edge in between.

Notice that this construction is the same as the universal enveloping algebra of a Lie
algebra. Therefore, we will often call it the universal enveloping properad of a dioperad and
Zggggggs the universal enveloping functor.

Proof. The proof is the same as the proof of the universal property of the universal
enveloping algebra of a Lie algebra. Hence it is left to the reader. []

A direct corollary gives that the universal enveloping properad of a dioperad defined
by generators and relations is a properad given the same generators and relations.

Corollary 45. Let 2 be a dioperad defined by generators and relations:
9 = F°(V)/(R), where (R) is the (dioperadic) ideal generated by R. The universal envelop-
ing properad is equal to

FrS( @) = F(V)/(R),

where (R) is the (properadic) ideal generated by R.

Even if an algebraic category .o/ can be modelled by a dioperad, the induced cofibrant
resolution of this dioperad does not contain all the data necessary for the study of deforma-
tion theory of .7 because the universal enveloping functor fd‘f{;’:ﬁ? is not exact as the fol-

lowing counter-example shows.

Let ¢%i be the properad which models infinitesimal bialgebras (see [41], Section
2.9). We consider its Koszul dual properad without the relation <> = 0. Let us denote it
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by N €-Frob because it models some kind of non-commutative Frobenius bialgebras.
An N€-Frob-bialgebra is a vector space X equipped with a binary associative product
H:X®X — X and a binary coassociative coproduct A: X — X ® X such that A is a
morphism of bimodules. This means

Aou=(Id®u) o (A®Id) = (x¢®Id) o (Id® A).

The graphical picture of all the relations is the following:

v YaeA,
N Y D C VA

SRPRUNSR

Since the relations are linear combinations of connected graphs of genus 0, this cate-
gory is faithfully modelled by the dioperad A4 %-Zrob® = Z°(V)/(R). The exponent 0
stands for the restriction to graphs of genus 0. It was proved in [11] that A" €-Zrob° is a
Koszul dioperad, since its Koszul dual dioperad £%i° is Koszul by means of distributive
laws. That is the dioperad A '€-Frob® admits a quadratic dioperadic (genus 0) model
(7°(€),0"°) = N %-Frob°, where  is the codioperad s~'ei"". (Notice that there is no
direct proof of this fact.) The differential 0° splits each element of % into two vertices with
only one edge in between.

Consider now the properad A ¢-Frob = 7 (V)/(R), which is the image under the
universal enveloping functor Zggepf;gfs of Zrob® by Corollary 45. The image of the chain
complex (7°(%),0°) under the functor %lfégepggfs is the quasi-free properad on % with the
differential 0°, that is the cobar construction of %, where this later is considered as a
coproperad. The homology of this chain complex is not concentrated in degree 0.

We build a cycle based on graphs of genus 2 from the following picture:

LB o (1 ®1d) o (Id® A) 0 A
J/,UOerOA J/ﬂo(ﬂ®ld)°Rc

po(ld® o (A®Id)o A BB (L @1d)o (A®1d) o A,

poAouoA

where Ry, stands for the “right module” relation go A — (Id ® ) o (A ® 1d), Ry, for the
“left module™ relation go A — (u ®1Id) o (Id ® A), R, the associativity relation

po(p@®Id) — po (Id® p)

and R, the coassociativity relation (A® Id) o A — (Id ® A) o A.
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The graphical picture is as follows:

DS S
RN R A A

Then, the cycle is based upon the following picture:

o
9-&

We denote with the same notation the corresponding homotopies, that is elements of %

Oo(Rim) = o A— (Id®u) o (A®Id), 0o(Rim) =poA—(u®Id)o (Id® A),
Oo(Ry) =po(u®Id) —po(Id® 1), dp(Re) = (A®Id)oA—(Id®A) o A.

The previous picture proves that
Ei=puoRmoA—poRmoA—R,0o(A®Id) oA+ po(u®Id)o R,
is a cycle in (7(%),0°), that is 8°(¢) = 0.
Lemma 46. The cycle & is not a boundary under 8°.

Proof. The degree of & is 1. Suppose that there exists an element { of degree 2 such
that 8°({) = ¢£. This element belongs to

(eF (6D b )BT (6D 6 ).
~~~ \(lz)-’
(2

Let us denote by { = {; + {, each component. The image under the quadratic differential
3 of any element of # (%) @ % )isan element of #( 6y @ % ). And since the
~  ~~ ~  ~~

(k) ) (k+1) (1)
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genus of the differential d° is 0, ¢, is in Z 2 ), that is the part of genus 2 of

% @ b
~— ~—
(1) (6]
% ® %). The S-bimodule %, is equal to V=" @ L, that is binary. Hence

(
(%) @ % )isconcentrated in genus 0 and 1, which proves {, = 0.
~~ ~~

(1 ()

Since the image of #( 4y @ % ) under % isin 7 (% @ % ), must belong
—~  ~~ ~  ~~

(k) ) (k+2) (1)
to 7 (%)?. More precisely, ¢, is an element of 72(%,)® because the differential 8° pre-
serves the genus. The S-bimodule %) is generated by the four elements R, € €(2,2),
Rim €%(2,2), Ry €%(1,3) and R. € 4(3,1). The only way to get an element of genus 2
is to graft one element from %(1,3) to an element from %(3, 1). Finally { is linear combi-
nation of R. oo o R,, with 6 € S3. And in this case, GO(C) cannot contain elements like
1o Ry oA — po Ry, o A whence the contradiction. [

This counter-example answers a question raised by [29], that is the functor 1% i is
not exact.

Theorem 47. The universal enveloping functor F . X< is not exact.

dioperads

For this reason, we are reluctant to include dioperads in the preceding table. It is not
enough in general to find a resolution of the genus 0 part of a properad to generate a com-
plete resolution of it. Nevertheless, it is sometimes the case. We have emphasized the class
of properads that admits a quadratic model, that is Koszul properad. We do the same thing
with properads for which there exists a model with a genus 0 differential.

Definition (contractible properad). We call contractible properad any properad 2
that admits a model (# (%), 80) = 2 with 8%, : € — Z°(%), that is the part of genus 0
of the free properad on %.

It is equivalent to ask that % is a homotopy coproperad with structure maps
On:€— F 0(95)“’> with image of genus 0. In other words, € is a homotopy codioperad.

Proposition 48. Let 2 = 7 (V)/(R) be a properad defined by genus O relations,
R < F°V). The properad 2 is a contractible properad if and only if the associated dioperad
2 = F°(V)/(R) admits a quasi-fiee (dioperadic) resolution (7°(%),3°) = @, which is a
quasi-isomorphism preserved by the universal enveloping functor Zﬁ;gggggs.

Proof. 1If 2 is contractible, we denote by (97 (%), 60) = 2 its genus 0 differential
model. Since @° preserves the genus, the chain complex (&7 (@), 60) is equal to the direct

sum of sub-complexes € (7 (%), 60). Hence, the genus 0 chain complex is a resolution
920

of 2. And by Corollary 45 the image under the universal enveloping functor %‘fg;ﬁfﬁss of

the quasi-isomorphism (#°(%),8°) = & is the resolution (# (%), ") = 2. The other way

is trivial. [

A Koszul contractible properad £ is a properad with a minimal model
(37 ((6)760) = 2 whose differential 8° is quadratic and genus 0. It is equivalent to say
that % is a codioperad. If a properad 2 = Z (V') /(R) with genus 0 relations is contractible
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Koszul, then the associated dioperad 2 = #°(V)/(R) is Koszul in the sense of [11]. But it
is not true that any Koszul dioperad is a Koszul contractible properad as the example of
NE-Frob shows. Lemma 46 shows that it is not contractible. Moreover we shall see below
that it is not Koszul as a properad either.

Proposition 49. Let 2 = 7 (V) /(R) be a Koszul properad defined by a finite dimen-
sional S-bimodule V and by genus 0 relations, R = Z°(V). If the Koszul dual properad
of ? is equal, as an S-bimodule, to the Koszul dual dioperad of the associated dioperad
9 = F°(V)/(R) then the properad 2 is contractible.

Proof. 1In this case, the Koszul dual coproperad 2' = 2" is equal to the Koszul
dual dioperad Z; = & ", Hence the image of the partial coproduct A 1) : ' — 2' [x] 2
is actually in 2'[]2"' which is the part of genus 0 of ' X1 2'. [

The Koszul dual properad is equal to the Koszul dual dioperad if and only if the part
of genus > 0 of 2' vanished, that is #¢(V")/(R*) = 0 for g > 0. Proposition 49 allows us
to give examples of Koszul contractible properads. One way to prove that a properad is
Koszul is by means of distributive laws (see [41], Proposition 8.4). Let # be a quadratic
properad of the form 2 =Z(V,W)/(R®D® S), where R ZI(V), S <« O (W)
and where

Dele W)E(I® V)o@ V )EUD ).
1 1 1 1
The two pairs of S-bimodules (V,R) and (W,S) generate two properads denoted
of :=F(V)/(R) and B = F (W)/(S).
Definition (distributive law). Let 4 be a morphism of S-bimodules
IO W )R D V)~ S V )HMI S W)
1 1 1 1
such that the S-bimodule D is defined by the image of

(id,=4): I ® \I/I,/_/) X (I ® \If_/)
1 1

—>(1€r>\1ﬂf_)c(1®\?)®(1®\?)c(1®11[/_)-

We call 1 a distributive law and denote D by D, if the two following morphisms are
injective:

K2 c B —
~ ~
1 2
of
~—~
2

]
N
S

X
S

c —

7
1

The last condition must be seen as a coherence axiom, which ensures that the natural mor-
phism o/ [x] # — £ is injective. In this case, [42], Proposition 8.4 states that # is Koszul
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if .o/ and % are Koszul. A properad is called binary if it is generated by binary products and
coproducts.

Proposition 50. Let 2 = 7 °(V)/(R) be a binary Koszul dioperad defined by a dis-
tributive law such that V' is finite dimensional. Then the associated properad 2 == F (V) /(R)
is Koszul and contractible.

Proof. 1f a binary dioperad & defined by a distributive law verifies the hypotheses of
[11], Proposition 5.9, then the associated properad 2 is also defined by distributive law and
verifies the hypotheses of [41], Proposition 8.4. In this case, the Koszul dual coproperad,
given by [41], Proposition 8.2, has a genus 0 coproduct. []

Corollary 51. The properads %iZLie of Lie bialgebras and i of infinitesimal Hopf
algebras are Koszul contractible.

In this case, the Koszul dual (co)dioperad provides the good space of “homotopies”
for the resolution of the properad. Therefore, it gives the proper notion of homotopy
P-gebra (see 6.1). An example of this fact, for %iZie, can be found in [32], Section 3.2,
see also [12], [31].

Remark. Dually, in this case, the products of operations based on strictly positive
genus graphs of the Koszul dual properad always vanish. If g denotes the genus of the
underlying graph, it means that any such product is equivalent to products based on graphs
with g simple loops <>, using the relations of the products and the relations of coproducts.
Therefore, it is zero because of the relation <> = 0 in the Koszul dual properad. This state-
ment is a non-trivial result about the coherence of the relations of a properad.

To any binary properad &, we associate a properad Z, which encodes Z2-gebras
satisfying the extra loop relation <> = 0. Since the properad %iZie is Koszul, its Koszul
dual properad Zrob, is also Koszul by Koszul duality theory. This means that Zrob, has
a quadratic model. Since the properad %i%ie has non trivial higher genus compositions,
this model is not contractible, that is the boundary map creates higher genus graphs. The
example Frob, provides an example of a Koszul non-contractible properad. (We do not
know how to prove this result without the help of Koszul duality for properads.)

Let € denote the Koszul dual coproperad of A %-Frob, that is 4 = s~'e%iy. Recall
that a properad £ is Koszul if and only if the cobar construction of the Koszul dual cop-
roperad Q(2') = (7 (2'),0) is a resolution of 2. This statement is not true for A "%-Zrob.
The cycle ¢ given above induces a non-trivial element in homology.

Lemma 52. The cycle & is not a boundary under 0.

Proof. We use the same notations as in Lemma 46 but applied to 0 instead of d°.
The space %) is generated by the elements Ry, Rim, Ra, Rc and some R; fori=1,...,4.
For the same reason, {; must be an element of & ((51)@). Since the image under ¢ of
any element of %) is a graph with two adjacent vertices indexed by " or L, the ele-
ment z o Ry, o A cannot belong to 0({;). Hence u o Ry, o A must be an element of d({,).
Since 0 is quadratic, there exists an element S in %, such that 0(S) = uo Ry, + -+ or
(S) = Rip © A + - --. Such an S has to be an element of either £2:Y(1,2)® or e:¥(2,1)).
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Consider the first case, the second one being symmetrical. The only element in e%i (1, 2)(3)
whose partial coproduct includes o Ry, is the dual of the composite of

YE((-\)

in e%is(1, 2)(3 ). The associativity relation and the loop relation in ¢%i, show that this com-
posite is equal to zero, which concludes the proof. []

Theorem 53. The properad N €-Frob of non-commutative Frobenius bialgebras and
the properad i, of involutive infinitesimal bialgebras are not Koszul.

We hope that this helps to clarify the general picture of models for prop(erad)s.

6. Homotopy 2-gebra

In this section, we define the notion of #-gebra up to homotopy or homotopy -
gebra. We make explicit structures of homotopy #-gebras in terms of Maurer-Cartan ele-
ments. We also define and make explicit morphisms of homotopy Z-algebras, when 2 is
an operad, in terms of Maurer-Cartan elements in an L, -algebra. This last part uses the
notion of homotopy Koszul (colored) operads defined in the previous section.

6.1. 2-gebra, #,-gebra and homotopy #’-gebra. Let 2 be a dg prop(erad) and
Q(%) be a model of 2.

Definition (homotopy #-gebra). A structure of homotopy #-gebra on a dg module
X is a morphism of dg prop(erad)s: Q(%) — Endy.

Any Z-gebra is a homotopy #-gebra of particular type. In this case, the morphism of
dg-properads factors through 2, that is Q(%) — 2 — Endy. For the Koszul operads .o/ss,
®om, ZLie, this notion coincides with homotopy associative, commutative, Lie algebras.
For the properads #i%ie and .o/ss%i, we get the notions of homotopy Lie bialgebras and
homotopy bialgebras. Since %iZie is contractible, the explicit definition given in [12], [31]
coincides with this one.

[32], Theorem 5 shows that a structure of homotopy #-gebra on X is equivalent to a
morphism of S-bimodules in s~ Hom(?((g , Endy) which is a Maurer-Cartan element in the
L..-convolution algebra Hom® (¢,Endy).

Theorem 54. A P-gebra structure on X is equivalent to a Maurer-Cartan element in
Hom® (%, Endy).

This notion is well defined and independent of the choice of a model. By [32], Theo-
rem 13, if Q(%)) and Q(%,) are two models of 2, then the convolution L. -algebras are
quasi-isomorphic, which induces a bijection between the set of Maurer-Cartan elements.

We can discuss the form of the solutions of the Maurer-Cartan equation. It gives the
following definition.
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Definition (#,)-gebra). A dg module X endowed with a Maurer-Cartan element y
in Hom® (%, Endy) such that y(c) = 0 for every ¢ € %, is called a Pw)-gebra.

This notion is the direct generalization of the notion of A, -algebra of Stasheff
[36] or L,-algebras. A Z,)-gebra is a homotopy #-gebra with strict relations from de-
gree 7.

6.2. Morphisms of homotopy Z22-algebras as Maurer-Cartan elements. Another ap-
plication of the notion of homotopy Koszul can be found in the study of morphisms be-
tween homotopy Z-algebras. A colored properad is an operad such that the inputs and
outputs are labelled by an extra labelling and such that the composition is coherent with
respect to this extra labelling. That is if the ‘colors’ (labelling) do not match, the composi-
tion of operations vanishes. It is proven in [44] how to extend Koszul duality of operads to
colored operads. It is straightforward to generalize Theorem 40 to this case.

Let 2 = Z(V)/(R) be a Koszul operad. One can define the 2-colored operad Z,_..
byZ=FN®V2®f)/(RI ® R, ® R._.), where V] and R, (resp. V> and R;) are copies
of V' and R with inputs and outputs labelled by the color 1 (resp. 2), f is a generator of
arity (1, 1) which goes from 1 to 2 and R, _, is generated by vo f®" — f o v for any element
ve V(n) (see [26] for more details). The purpose of this definition lies in the following
result. A structure of #,_,.-algebra is the data of two Z-algebras with a morphism of
P-algebras between them.

Lemma 55. When & is Koszul generated by a finite dimensional S-module V' such
that V(1) = 0, the 2-colored operad P._.o is homotopy Koszul.

Proof. (i) The operad (Z._.), isequalto (V1 @ Vo ® f)/(Ri ® R, ® R.), where
R, = foVi. Hence, itisequal to (Ze_e); T2 ® P, D P o (I @ [ ). Its Koszul dual is
~~
>1
equal to (Zu_.)s = 2} ® 2L @ s(f 0 2"). Therefore, (7 (s' P} @ s 'PL@ f 0 P'),0,) isa
quadratic model of (Z,_.),, because 6, is equal to 3 copies of the Koszul resolution of 2.

(if) Since Pe e =P @ P, @ Po(I® [ ), itisequal to (Ze_s),.
<~

=1

(iif) Since V' is finite dimensional and V(1) = 0, the filtration with the number of
leaves gives a suitable filtration. [

In this case, the minimal model of 2, _., is given by (F(s7'2{ @ s '2) @ f 0 2'),0)
by Theorem 40.

Proposition 56. An algebra over the model of Po_.. is the data of two homotopy
P-algebras with a homotopy (or weak) morphism between them.

Proof. A morphism of 2-colored operads (9" (s‘lﬁiﬂ.z),é) — Endy y defines a
homotopy Z-algebra structure on X and Y. The component on {Hom(X®" Y)}, -, is
equivalent to a morphism of dg #'-coalgebras 2'(X) — 2'(Y), that is between the bar
constructions of X and Y. []
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Theorem 57. Morphisms of homotopy P-algebras between X and Y are in one-to-one
correspondence with Maurer-Cartan elements in the L.,-algebra

(Homg(?lﬁ,z,

El’ld,\@y),é).

Notice that this result was already proved by hands in [8] in the case of homotopy Lie
algebras.

Finally, a structure of homotopy Z-algebra on X is a Maurer-Cartan element in
the strict Lie algebra Hom® (@i,EndX), whereas a morphism of homotopy Z-algebras
between X and Y is a (generalized) Maurer-Cartan element in the homotopy Lie algebra
Hom®(2', Endy, y). The conceptual explanation of this phenomenon is the following. In
the first case, we have a quadratic model of the Koszul operad # and the second case, we
use a non-quadratic model of the homotopy Koszul 2-colored operad Z,_.,.
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