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Abstract. In this article we give a conceptual definition of Manin products in any
category endowed with two coherent monoidal products. This construction can be applied
to associative algebras, non-symmetric operads, operads, colored operads, and properads
presented by generators and relations. These two products, called black and white, are
dual to each other under Koszul duality functor. We study their properties and compute
several examples of black and white products for operads. These products allow us to de-
fine natural operations on the chain complex defining cohomology theories. With these op-
erations, we are able to prove that Deligne’s conjecture holds for a general class of operads
and is not specific to the case of associative algebras. Finally, we prove generalized versions
of a few conjectures raised by M. Aguiar and J.-L. Loday related to the Koszul property of
operads defined by black products. These operads provide infinitely many examples for this
generalized Deligne’s conjecture.
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Introduction

In his works on quantum groups and non-commutative geometry, Yu. I. Manin
defined two products in the category of quadratic algebras. An associative algebra A is
called quadratic if it is isomorphic to a quotient algebra of the form A ¼ TðVÞ=ðRÞ, where
TðVÞ is the free algebra on V and where ðRÞ is the ideal generated by RHVn2. Let
A ¼ TðVÞ=ðRÞ and B ¼ TðWÞ=ðSÞ be two quadratic algebras. Any quadratic algebra gen-
erated by the tensor product V nW is determined by a subspace of ðV nW Þn2. Since
RHVn2 and SHWn2, one has to introduce the isomorphism

2 Vallette, Manin products

(AutoPDF V7 20/12/07 16:11) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1–60 1878_5698 (p. 2)



ð23Þ : V nV nW nW ! V nW nV nW

defined by the permutation of the second and third terms. The black and white products
were defined by Manin as follows:

A � B :¼ TðV nWÞ=
�
ð23ÞðRnSÞ

�
;

A � B :¼ TðV nWÞ=
�
ð23ÞðRnWn2 þ Vn2nSÞ

�
:

Since (23) is an isomorphism, many properties of the algebras A and B remain true for their
black and white products. For instance, the white product of two quadratic algebras is
equal to their degreewise tensor product AnB :¼

L
nf0

AnnBn. Therefore, one can apply

the method of J. Backelin [4] to prove that the white product of two Koszul algebras is
again a Koszul algebra.

Koszul duality theory is a homological algebra theory developed by S. Priddy [64] in
1970 for quadratic algebras. To a quadratic algebra A ¼ TðVÞ=ðRÞ generated by a finite
dimensional vector space V , one can associate the Koszul dual algebra A! :¼ TðV �Þ=ðR?Þ.
Under this finite dimensional hypothesis, we have ðA � BÞ! ¼ A! � B!, that is black and
white constructions are dual to each other under Koszul duality functor. The main result
of Manin is the following adjunction in the category of finitely generated quadratic
algebras

HomQ: AlgðA � B!;CÞGHomQ: AlgðA;B � CÞ:

Using the general properties of internal cohomomorphisms, Manin proved that A � A! is a
Hopf algebra and was able to realize well known quantum groups as black products of an
algebra with its Koszul dual. For more properties of Manin’s products for quadratic alge-
bras, we refer the reader to the book of A. Polishchuk and L. Positselski [63].

Koszul duality theory was later generalized to binary quadratic operads by V. Ginz-
burg and M. Kapranov [31] in 1994. This generalization comes from the fact that an op-
erad, like an associative algebra, is a monoid in a monoidal category. A quadratic operad
P ¼FðVÞ=ðRÞ is a quotient of a free operad by an ideal generated by a sub-S-module
R of Fð2ÞðVÞ, the part of weight 2 of FðVÞ. Let P ¼FðVÞ=ðRÞ and Q ¼FðW Þ=ðSÞ
be two quadratic operads. A quadratic operad generated by the tensor product V nW

is determined by a subspace of Fð2ÞðV nW Þ. Since RHFð2ÞðVÞ and SHFð2ÞðW Þ,
we need a map from Fð2ÞðVÞnFð2ÞðWÞ to Fð2ÞðV nWÞ. In the binary case, Ginzburg
and Kapranov mentioned in [32] two maps C : Fð2ÞðVÞnFð2ÞðWÞ !Fð2ÞðV nWÞ and
F : Fð2ÞðV nWÞ !Fð2ÞðVÞnFð2ÞðWÞ and defined the black and white products for bi-
nary quadratic operads as follows:

P � Q :¼FðV nWÞ=
�
CðRnSÞ

�
;

P � Q :¼FðV nWÞ=
�
F�1ðRnWn2 þ Vn2 nSÞ

�
:

When the operad P ¼FðVÞ=ðRÞ is a binary quadratic operad generated by a finite dimen-
sional S-module V , they defined a Koszul dual operad by the formula P! :¼FðV4Þ=ðR?Þ,
where V4ð2Þ :¼ V �ð2Þn sgnS2

is the dual representation twisted by the signature represen-
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tation. As in the case of algebras, they proved that ðP � QÞ! ¼ P! � Q! and they showed the
adjunction

HomBin:Q: Op:ðP � Q!;RÞGHomBin:Q: Op:ðP;Q �RÞ;

in the category of finitely generated binary quadratic operads.

From the properties of black and white products for associative algebras and binary
quadratic operads, a few natural questions arise. Where do the functors C and F concep-
tually come from? Is the black or white product of two binary Koszul operads still a Koszul
operad? Can one do non-commutative geometry with an operad of the form P �P!? One
can also add: is it possible to recover classical operads as black or white products of more
simple operads? Can black and white products help to describe the natural operations act-
ing on cohomological spaces? The aim of this paper is to answer these questions.

Let us recall that Koszul duality theory of associative algebras and binary quadratic
operads was extended to various other monoidal categories in the last few years. The fol-
lowing diagram shows these monoidal categories were Koszul duality holds. They are rep-
resented by the name of their monoids.

associative algebras a���! non-symmetric operads???yS

operads a�����! colored operads
a���!

dioperads
a���!

properads

 ���
�����

�����
����a

Koszul duality for dioperads was proved by W. L. Gan in [25], it was proved by P. Van der
Laan in [72] for colored operads and by the author for properads in [69]. A properad is an
object slightly smaller than a prop which encodes faithfully a large variety of algebraic
structures like bialgebras or Lie bialgebras, for instance (see Appendix A for more details).
We would like to emphasize that the Koszul dual that appears naturally, without finite di-
mensional assumptions, is a comonoid (coalgebra, cooperad, coproperad, etc . . .). See Sec-
tion 2 for more details.

To answer the first question about the conceptual definition of the functors C and F,
we introduce a new notion of category endowed with 2 coherent monoidal products. We
call it 2-monoidal category in Section 1. This definition generalizes previous notions given
by A. Joyal and R. Street in [36] in the framework of braided tensor categories and by C.
Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt in [7] in the framework of iterated
monoidal category and iterated loop spaces. All the examples given above are monoids
in a 2-monoidal category. In a 2-monoidal category, we define the functors C and F by
universal properties. This allows us to define white products for monoids presented by gen-
erators and relations in Section 3. Since the Koszul dual is a comonoid, we define a black
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product for comonoids presented by generators and relations. (This notion is introduced
and detailed in Appendix B.)

The white product defined here coincides with the one of Yu. I. Manin for quadratic
algebras A � B, with the one of Ginzburg-Kapranov for binary quadratic operadsP � Q and
with the one of R. Berger, M. Dubois-Violette and M. Wambst [13] for N-homogeneous
algebras. Note that the white product is defined without homogeneous assumption. There-
fore, one could apply them to non-homogeneous cases. In this sense, it would be interesting
to study the properties of the white products of Artin-Schelter algebras [3], [48].

Under finite dimensional assumptions, the twisted linear dual of the Koszul dual
cooperad gives the Koszul dual operad defined by [31]. Using this relation, we define a
black product for operads in Section 4. We do several computations of black and white
products and show that some classical operads can be realized as products of simpler oper-
ads. All these examples are products of Koszul operads and the result is again a Koszul
operad. This fact is not true in general and we provide a counterexample in Section 4.5.
Whereas this property holds for associative algebras, it is not true here because the functors
F and C are not isomorphisms.

We extend the adjunction of Manin and Ginzburg-Kapranov and prove that P �P!

is a Hopf operad. Since operads are non-linear generalizations of associative algebras, the
notion of Hopf operad can be seen as a non-linear generalization of bialgebras. Hopf oper-
ads of the form P �P! can provide new examples of ‘‘quantum groups’’, in the philosophy
of [53]. This adjunction also allows us to understand the algebraic structures on tensor
products or spaces of morphisms of algebras. For instance, it gives a description of the
structure of cohomology spaces.

Non-symmetric operads are operads without the action of the symmetric group. One
can symmetrize a non-symmetric operad to get an operad. (It corresponds to the functor S
in the diagram above.) The image of a non-symmetric operad under functor is called a reg-

ular operad. We define black n and white j square products for regular operads as the im-
age of black and white products of non-symmetric operads in Section 5. In the case of bi-
nary quadratic regular operads, the black square product given here corresponds to the one
introduced by K. Ebrahimi-Fard and L. Guo in [22] (see also J.-L. Loday [45]). We prove
the same kind of results for regular operads and square products as the ones for operads
and Manin’s products.

The adjunction for black and white square products allows us to construct natural
operations on the chain complex defining the cohomology of an algebra over a non-
symmetric (regular) operad. The example of associative algebras is very classical. Since
the introduction of this (co)chain complex by Hochschild in 1945, it has been extensively
studied. M. Gerstenhaber proved in the sixties that the cohomology of any associative al-
gebra is endowed with two coherent products: the commutative cup product and a Lie
bracket. This structure is now called a Gerstenhaber algebra. (Gerstenhaber also used this
Lie bracket to study deformations of associative algebras. This led to the work of Kontse-
vich on deformation-quantization of Poisson manifold thirty years later). In homotopy
theory, there is a topological operad, formed by configurations of disks in the plane and
called the little disks operad, whose action permits to recognize two-fold loop spaces. In
1976, F. Cohen proved that the operad defined by the homology of the little disks operad
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is equal to the operad coding Gerstenhaber algebras. Therefore the Hochschild cohomol-
ogy space is an algebra over the homology of the little disks operad. This surprising link
between algebra, topology and geometry led Deligne to formulate the conjecture that this
relation can be lifted on (co)chain complexes, that is the singular chain complex of the little
disks operad acts on the Hochschild (co)chain complex of an associative algebra. This con-
jecture was proved by several researchers using di¤erent methods. In the present paper, we
take a transversal approach. We prove that Deligne’s conjecture holds for a general class of
operads and is not specific to the case of associative algebras. Using Manin’s products, we
construct operations on the chain complex of any algebra over an operad of this class. (To
be more precise, finitely generated binary non-symmetric Koszul operads form this class.)
Since these operations verify the same relations as the ones on the Hochschild (co)chain
complex, Deligne’s conjecture is then proved with the same methods.

Since the white square product is the Koszul dual of the black square product, we can
compute the Koszul duals of operads defined by black square product. The first example is
the operad Quad ¼ Dend nDend defined by M. Aguiar and J.-L. Loday in [1]. Using the
explicit description of its Koszul dual and the method of partition posets of [70], we prove
that it is Koszul over Z, which answers a conjecture of Aguiar-Loday. Actually, with the
same method, we show that the families Dend n n, Diasj n and TriDend n n, Triasj n are
Koszul over Z. These families provide infinitely many examples for which Deligne’s conjec-
ture holds over Z.

Appendix A is a survey on the notions of operads and properads. Appendix B yields a
categorical approach of algebra with monoids and comonoids ((co)ideal, (co)modules).

Unless stated otherwise, we work over a field k of characteristic 0.

1. 2-monoidal categories

In this section, we define the general framework of 2-monoidal category verified by the
examples studied throughout the text. The notion of 2-monoidal category given here is a
lax and more general version of the one given by A. Joyal and R. Street in [36] and the
one given by C. Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt in [7].

1.1. Monoidal category. We recall briefly the definitions of monoidal category, lax
monoidal functor and monoid in order to settle the notations for the next section. We refer
to the book of S. MacLane [49], Chapter VII and to the article of J. Bénabou [10] for full
references on the subject.

Definition (Monoidal category). A monoidal category ðA;n; I ; a; r; lÞ is a category
A equipped with a bifunctor n : A�A!A and a family of isomorphisms

aA;B;C : ðAnBÞnC !@ An ðBnCÞ;

for every A, B and C in A. These isomorphisms are supposed to verify the pentagon
axiom. For every object A in A, there exists two isomorphisms la : I nA! A and
ra : An I ! A compatible with a.
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Example. Let ðA;n; I ; a; r; lÞ be a monoidal category. The cartesian product
A�A is a monoidal category where the monoidal product n2 is defined by
ðA;BÞn2 ðA 0;B 0Þ :¼ ðAnB;A 0nB 0Þ. The unit is ðI ; IÞ. The associative isomorphisms
are given by

�
ðA;BÞn2 ðA 0;B 0Þ

�
n2 ðA 00;B 00Þ ¼

�
ðAnA 0ÞnA 00; ðBnB 0ÞnB 00

�
???yðaA;A 0 ;A 00 ;aB;B 0 ;B 00 Þ

ðA;BÞn2
�
ðA 0;B 0Þn2 ðA 00;B 00Þ

�
¼

�
An ðA 0nA 00Þ;Bn ðB 0nB 00Þ

�
:

The other isomorphisms are lðA;BÞ :¼ ðlA; lBÞ and rðA;BÞ :¼ ðrA; rBÞ.

Definition (Monoid). Let ðA;n; IÞ be a monoidal category. A monoid ðM; m; uÞ is
an object M of A endowed with two morphisms: an associative product m : MnM !M

and a unit u : I !M.

Definition (Lax monoidal functor). A lax monoidal functor is a functor F between
two monoidal categories ðA;nA; IAÞ ! ðB;nB; IBÞ such that there exists a map
i : IB ! FðIAÞ and a natural transformation

jA;A 0 : FðAÞnB FðA 0Þ ! FðAnAA 0Þ;

for every A, A 0 in A. This natural transformation is supposed to be compatible with the
associativity and the units of the monoidal categories:

� Associativity condition. For every A, A 0 and A 00 in A, the following diagram is
commutative

�
FðAÞnB FðA 0Þ

�
nB FðA 00Þ ��������!aB

FðAÞ; F ðA 0 Þ; FðA 00Þ
FðAÞnB

�
FðA 0ÞnB FðA 00Þ

�???yjA;A 0nB id

???yidnBjA 0 ;A 00

FðAnA A 0ÞnB FðA 00Þ FðAÞnB FðA 0nA A 00Þ???yjAnAA 0 ;A 00

???yjA;A 0nAA 00

F
�
ðAnA A 0ÞnAA 00

� ��������!FðaA
A;A 0 ;A 00 Þ

F
�
AnA ðA 0nA A 00Þ

�
:

� Unit condition. For every A in A, the following diagram is commutative

IBnB FðAÞ �����!inBFðAÞ
FðIAÞnB FðAÞ �����!jIA ;A

FðIAnAAÞ???yFðlA
A
Þ

FðAÞ: ��������������
��������������

lB
FðAÞ

The same statement holds on the right-hand side.
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The purpose of the definition of lax monoidal functors is to preserve monoids.

Proposition 1 ([10]). Let F : ðA; nA; IAÞ ! ðB; nB; IBÞ be a lax monoidal functor

and let ðM; m; uÞ be a monoid in A. The image of M under F is a monoid in B. The product ~mm
is defined by

~mm : FðMÞnB FðMÞ ��!jM;M
FðMnAMÞ ��!FðmÞ FðMÞ:

And the unit ~uu is defined by

~uu : IB ��!i FðIAÞ ��!FðuÞ FðMÞ:
1.2. Definition of lax 2-monoidal category. Motivated by the examples treated in the

sequel, we define a general notion of category with two compatible monoidal products.

Definition (Lax 2-monoidal category). A lax 2-monoidal category is a category
ðA;n; I ;n;KÞ, such that both ðA;n; IÞ and ðA;n;KÞ are monoidal categories and
such that the bifunctor n : A�A!A is a lax monoidal functor with respect to the
monoidal products n2 and n.

The last assumption of the definition describes the compatibility between the two
monoidal structures. The next proposition makes it more explicit.

Proposition 2. A lax 2-mono ida l ca t egory is a category ðA;n; I ;n;KÞ, such
that both ðA;n; IÞ and ðA;n;KÞ are monoidal categories. These two monoidal structures

are related by a natural transformation called the in terchange law

ðAnA 0Þn ðBnB 0Þ �����!jA;A 0 ;B;B 0 ðAnBÞn ðA 0nB 0Þ;

where A, A 0, B and B 0 are in A. This interchange law is supposed to be compatible with the

associativity of the first monoidal product n, that is

�
ðAnA 0Þn ðBnB 0Þ

�
n ðCnC 0Þ ���������!an

AnA 0 ;BnB 0 ;CnC 0 ðAnA 0Þn
�
ðBnB 0Þn ðCnC 0Þ

�???yjA;A 0 ;B;B 0nid

???yidnjB;B 0 ;C;C 0�
ðAnBÞn ðA 0nB 0Þ

�
n ðCnC 0Þ ðAnA 0Þn

�
ðBnCÞn ðB 0nC 0Þ

�???yjAnB;A 0nB 0 ;C;C 0

???yjA;A 0 ;BnC;B 0nC 0�
ðAnBÞnC

�
n

�
ðA 0nB 0ÞnC 0

� ���������!an
A;B;C

nan
A 0 ;B 0 ;C 0 �

An ðBnCÞ
�
n

�
A 0n ðB 0nC 0Þ

�
;

where anA;B;C is the associativity morphism for the monoidal product

n : ðAnBÞnC !@ An ðBnCÞ.

There exists a map i : I ! I n I such that for every A and A 0 in A, the following dia-

gram is commutative

8 Vallette, Manin products
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I n ðAnA 0Þ ����!inid ðI n IÞn ðAnA 0Þ ����!jI ; I ;A;A 0 ðI nAÞn ðI nA 0Þ???yln
A
nln

A 0

FðAÞ: ���������������
���������������

�

lnðAnA 0Þ

The same statement holds on the right-hand side.

Proof. The proof is a straightforward application of the definition. r

Proposition 3. Let ðA;n; I ;n;KÞ be a lax 2-monoidal category. Consider two

n-monoids M and N in A. Their n-product MnN is a n-monoid.

Proof. It is a direct corollary of Definition 2 and Proposition 1. r

Motivated by the example of braided monoidal categories, A. Joyal and R. Street
gave the first notion of a category endowed with two compatible monoidal products in
[36]. In their definition, the monoidal categories are non-necessarily strict but the inter-
change law is supposed to be a natural isomorphism. This last condition forces the two
monoidal products to be isomorphic.

In order to model n-fold loop spaces, C. Balteanu, Z. Fiedorowicz, R. Schwänzl and
R. Vogt introduced in [7] the notions of n-fold monoidal category. Their notion of 2-fold
monoidal category is, in some sense, a lax version of the one given by Joyal and Street since
they do not assume the interchange law to be an isomorphism. But they require the mono-
idal structures to be strict and the two units are equal.

In the definition of a lax 2-monoidal category, we do not ask the monoidal structures
to be strict. The two units need not be isomorphic. And the interchange law is not an iso-
morphism. Therefore, the notion given here is a lax version of the one of Joyal-Street and
the one of Balteanu-Fiedorowicz-Schwänzl-Vogt. The definition of lax 2-monoidal cate-
gory was suggested by our natural examples, that we make explicit in Section 1.4.

1.3. Definition of 2-monoidal category. Working in the opposite category, we get the
dual notion of colax 2-monoidal category. Finally, we call a 2-monoidal category a category
which is both lax and colax 2-monoidal.

Definition (Comonoid). A comonoid C is a monoid in the opposite category. It is
endowed with two morphisms: a coassociative coproduct C ! CnC and a counit C ! I .

Definition (Colax monoidal functor). A colax monoidal functor is a functor F be-
tween two monoidal categories ðA;nA; IAÞ ! ðB;nB; IBÞ such that there exists a map
IB  FðIAÞ and a natural transformation

cA;A 0 : FðAÞnB FðA 0Þ  FðAnA A 0Þ:

This natural transformation is supposed to be compatible with the associativity and the
units of the monoidal categories. Explicitly, these compatibilities are given by the reversed
diagrams defining a lax monoidal functor.
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The purpose of the definition of colax monoidal functors is to preserve comonoids.

Proposition 4 (Bénabou [10]). Let F : ðA;nA; IAÞ ! ðB;nB; IBÞ be a colax mono-

idal functor and let C be a comonoid in A. The image of C under F is a comonoid in B.

Definition (Colax 2-monoidal category). A colax 2-monoidal category is a category
ðA;n; I ;n;KÞ, such that both ðA;n; IÞ and ðA;n;KÞ are monoidal categories and
such that the bifunctor n : A�A!A is a colax monoidal functor.

A category ðA;n; I ;n;KÞ is a colax 2-monoidal category if it is endowed with nat-
ural transformations, called the interchange laws,

ðAnA 0Þn ðBnB 0Þ  �����cA;A 0 ;B;B 0 ðAnBÞn ðA 0nB 0Þ;

verifying the same commutative diagram as the one defining a lax 2-monoidal category,
with the maps j replaced by the maps c.

Proposition 5. Let ðA;n; I ;n;KÞ be a colax 2-monoidal category. Consider two

n-comonoids M and N in A. Their n-product MnN is a n-comonoid.

Proof. It is a direct corollary of Definition 1.3 and Proposition 4. r

Definition (2-monoidal category). A 2-monoidal category is a category
ðA;n; I ;n;KÞ, such that both ðA;n; IÞ and ðA;n;KÞ are two monoidal categories
and such that the bifunctor n : A�A!A is a lax and colax monoidal functor.

Definition (Strong 2-monoidal category). A strong 2-monoidal category is a 2-
monoidal category where the bifunctor n : A�A!A is a strong monoidal functor,
that is the interchange laws are isomorphisms.

1.4. Examples of 2-monoidal categories. In the this section, we study the relation be-
tween the composition product n and the Hadamard product nH in the category of S-
bimodules and in the subcategories of S-modules and k-modules. These notions are re-
called in Appendix A.

Proposition 6. The categories ðk-Mod;nk; kÞ, ðS-Mod; �; IÞ and ðS-biMod;n; IÞ
endowed with the Hadamard tensor products are 2-monoidal categories. The first one is a

strong 2-monoidal category and it is a full sub-2-monoidal category of the second one, which
is a full sub-2-monoidal category of the last one.

Proof.

� In the first category, the two monoidal products are equal, that is
n ¼n ¼nk. The interchange laws are given by the twisting isomorphism
ð23Þ : V1 nV2 nV3 nV4 !@ V1 nV3nV2 nV4.

� In the category of S-modules with n ¼ �, n ¼nH the first interchange law
jV ;V 0;W ;W 0 map comes from the well defined natural map
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ðV nV 0Þ � ðW nW 0ÞðnÞ :¼� L
i1þ���þil¼n

ðV nV 0ÞðlÞnk

�
ðW nW 0Þði1Þnk � � �nkðW nW 0ÞðilÞ

�
nSi1

�����Sil
k½Sn�

�
Sl

#� L
i1þ���þil¼n

VðlÞnk

�
Wði1Þnk � � �nk WðilÞ

�
nSi1

�����Sil
k½Sn�

�
Sl

n

� L
i1þ���þil¼n

V 0ðlÞnk

�
W 0ði1Þnk � � �nk W

0ðilÞ
�
nSi1

�����Sil
k½Sn�

�
Sl

¼ ðV �WÞn ðV 0 �W 0ÞðnÞ:

The other map corresponds to the transpose of this one. It is well defined on invariants in-
stead of coinvariants. Since we work over a field k of characteristic 0, we use the classical
isomorphism between invariants and coinvariants to fix this.

� In the last case, which includes the two first, the interchange law map is the direct
generalization of the one written above. Its explicit description is

ðV nV 0Þn ðW nW 0Þðm; nÞ :¼

L
N AN�

� L
l;k; |; {

k½Sm�nS
l
ðV nV 0Þðl; kÞnS

k
k½Sc

k; |
�nS|

ðW nW 0Þð |; {ÞnS{
k½Sn�

�
S

op
b
�Sa

#L
N AN�

� L
l;k; |; {

�
k½Sm�nS

l
Vðl; kÞnS

k
k½Sc

k; |
�nS|

Wð |; {ÞnS{
k½Sn�

�
n

�
k½Sm�nS

l
V 0ðl; kÞnS

k
k½Sc

k; |
�nS|

W 0ð |; {ÞnS{
k½Sn�

��
S

op
b
�Sa

#L
N AN�

� L
l;k; |; {

k½Sm�nS
l
Vðl; kÞnS

k
k½Sc

k; |
�nS|

Wð |; {ÞnS{
k½Sn�

�
S

op
b
�Sa

n
L

N AN�

� L
l;k; |; {

k½Sm�nS
l
V 0ðl; kÞnS

k
k½Sc

k; |
�nS|

W 0ð |; {ÞnS{
k½Sn�

�
S

op
b
�Sa

¼ ðV nWÞn ðV 0nW 0Þðm; nÞ:

Note that the first map preserves the shape of the underlying graph of the composition,
whereas the second one does not. Therefore, this interchange law map is injective but not
an isomorphism. The reverse natural transformation

ðV nWÞn ðV 0nW 0Þðm; nÞ !! ðV nV 0Þn ðW nW 0Þðm; nÞ

is given by the projection on pairs of composition of ðV nWÞn ðV 0nW 0Þ based on the
same 2-levelled graph (see A.3). To such pairs, it is straightforward to associate an element
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of ðV nV 0Þn ðW nW 0Þ. This map is the transpose of the first one. It is the composite of
an epimorphism with an isomorphism, therefore it is an epimorphism. r

Remark. In the same way, we can also show that the underlying category of non-

symmetric operads,
1

2
-props [59], dioperads [25], colored operads are 2-monoidal catego-

ries. We refer to [71], Section 5 and to [57], Section 9 for surveys of these notions.

1.5. Bimonoids. In this section, we define the notion of bimonoid that generalizes the
notion of bialgebra in any lax 2-monoidal category.

Let ðA;n; I ;n;KÞ be a lax 2-monoidal category. Proposition 1 shows that the cat-
egory of n-monoids, denoted by MonnA, is a monoidal category for the monoidal product
n.

Definition (Bimonoid). A bimonoid is a comonoid in the monoidal category
ðMonnA;n;KÞ.

Examples. The examples of the categories ðk-Mod;nk; kÞ, ðS-Mod; �; IÞ and
ðS-biMod;n; IÞ endowed with the Hadamard tensor products, give the following notions.

� In the case of k-modules, we find the classical notion of bialgebras.

� In the case of S-modules, we find the notion of Hopf operads. We refer the reader
to the recent preprint of M. Aguiar and S. Mahajan [2] for a study of Hopf monoids in the
category of species which is a very close notion.

� In the case of S-bimodules, this generalizes the notion of Hopf operads to proper-
ads. We call them Hopf properads.

When P is a Hopf operad, the category of P-algebras is stable under the tensor prod-
uct (see A).

Proposition 7. Let P be a Hopf properad. The tensor product AnB of two P-gebra

is again a P-gebra.

Proof. The proof is straightforward. r

2. Koszul duality pattern

We work in the abelian monoidal category ðdg-S-biMod;n; IÞ of dg-S-bimodules
(see Appendix A). A monoid in this category is called a (dg-)properad. Since the abelian
monoidal categories of di¤erential graded vector spaces and dg-S-modules are abelian
monoidal subcategories of dg-S-bimodules, the sequel includes the cases of (dg-)associative
algebras and (dg-)operads. In the following of the text, we will implicitly work in the di¤er-
ential graded context without writing ‘‘dg’’, for the sake of simplicity. We use a very
general language since most of what follows can be generalized to other examples (colored
operads, non-symmetric operads, for instance). Denote by FðVÞ the free properad
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(monoid) on V and by FcðVÞ the cofree connected coproperad (comonoid) on V (see Ap-
pendix A for more details).

The Koszul dual coproperad is usually defined by the top homology groups of the bar
construction. The purpose of this section is to prove that the construction of the Koszul
dual can be described with a pure categorical or algebraic point of view. This section is a
generalization of Section 2.4 of E. Getzler and J. D. S. Jones preprint [30].

2.1. Quadratic (co)properads. Let ðV ;RÞ be a quadratic data, that is RHFð2ÞðVÞ.
Since the underlying S-bimodule of the free properad FðVÞ and the cofree connected cop-
roperad FcðVÞ are isomorphic2), we consider the following sequence in S-biMod

RqFð2ÞðVÞqFðVÞGFcðVÞ !!Fc
ð2ÞðVÞ !!Fc

ð2ÞðVÞ=R ¼: R:

A quadratic data will be written ðV ;RÞ or equivalently ðV ;RÞ. To such a sequence, we can
naturally define a quotient properad of FðVÞ and a subcoproperad of FcðVÞ (see Appen-
dix B.4).

Definition (Quadratic properad generated by V and R). The quadratic properad gen-

erated by V and R is the quotient properad of FðVÞ by the ideal generated by RqFðVÞ.
We denote it by PðV ;RÞ ¼FðVÞ=ðRÞ.

Definition (Quadratic coproperad generated by V and R). The quadratic coproperad
generated by V and R is the subcoproperad of FcðVÞ generated by FcðVÞ !! R. We de-
note it by CðV ;RÞ.

For example, the quadratic coalgebra generated by ðV ;RÞ is equal to

CðV ;RÞ ¼ klV l
L
nf2

Tn�2
i¼0

Vni nRnVnn�2�i:

Remark. We proved in [69], Corollary 7.5 that when a properad is Koszul, it is nec-
essarily quadratic. Therefore, there is no restriction to study only the quadratic case.

2.2. Definition of the Koszul dual revisited. Koszul duality theory comes from ho-
mological algebra, when one tries to find small resolutions (minimal models) of algebraic
structures (associative algebras, operads, properads, colored operads, for instance).

The Koszul dual cooperad of an operad P is defined by the top homology of the bar
construction BðPÞ (see [24], Section 5 and [30], Section 2.4). In [69], Section 7, we used the
same idea to define the Koszul dual coproperad of a properad. The purpose of this section
is to prove that the Koszul dual coproperad is a quadratic coproperad and to prove the
dual statement.

Let P ¼ PðV ;RÞ be a quadratic properad. Recall from [69], Section 4 that the bar

construction BðPÞ of P is the chain complex defined on FcðsPÞ by the unique coderivation

2) This should also come from the fact that the colored operad coding properad is Koszul-autodual.
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d which extends the partial composition of P. Dually, the cobar construction of a copro-
perad is the chain complex Fðs�1CÞ, where the di¤erential d is the unique derivation which
extends the partial composition coproduct of C.

When P ¼ PðV ;RÞ is a quadratic properad, it is weight graded. Denote this grading
by ðoÞ. In this case, the bar construction of P decomposes with respect to this grading. The
part of weight ðoÞ of B�ðPÞ begins with

B�ðPÞðoÞ : 0!Fc
ðoÞðsPð1ÞÞ !

d � � � :

Let P

!

ðoÞ be its top homology group Ho

�
B�ðPÞðoÞ

�
and P

!

:¼
L
ðoÞ

P

!

ðoÞ. Using

Ho

�
B�ðPÞðoÞ

�
¼ ker d, we proved in [69], Proposition 7.2, that P

!

is a subcoproperad of
FcðsPð1ÞÞGFcðVÞ.

Dually, let C ¼ CðV ;RÞ be a quadratic coproperad. It is a connected coproperad,
that is weight graded and such that Cð0Þ ¼ k. Once again, its cobar construction is the direct
sum of subcomplexes indexed by the weight

W�ðCÞðoÞ : � � � !
d
FðoÞðs�1Cð1ÞÞ ! 0:

Define C

!

to be the top homology groups of the cobar construction of C, that is
C

!

:¼
L
ðoÞ

H�o
�
W�ðCÞðoÞ

�
. Since H�o

�
W�ðCÞðoÞ

�
¼ coker d, C

!

is a quotient properad of

Fðs�1Cð1ÞÞGFðVÞ.

Theorem 8. Let ðV ;RÞ be a quadratic data. Denote by s2R the image of R in Fð2ÞðsVÞ
and by s�2R the quotient of Fc

ð2Þðs�1VÞ by s�2R.

The Koszul dual coproperad of PðV ;RÞ is equal to PðV ;RÞ

!

¼ CðsV ; s2RÞ. Dually,
the Koszul dual properad of CðV ;RÞ is equal to C

!

:¼ Pðs�1V ; s�2RÞ. Therefore, we have

P

!!

¼ P and C

!!

¼ C.

Proof. The cobar construction of C has the following form

W�ðCÞðoÞ : � � � !FðoÞðs�1Cð1Þ þ s�1Cð2Þ|fflfflffl{zfflfflffl}
1

Þ !d FðoÞðs�1Cð1ÞÞ ! 0;

where FðoÞðs�1Cð1Þ þ s�1Cð2Þ|fflfflffl{zfflfflffl}
1

Þ stands for the sub-S-bimodule of FðoÞðs�1Cð1Þ þ s�1Cð2ÞÞ

composed by graphs with o� 1 vertices indexed by elements of s�1Cð1Þ and just one
vertex indexed by an element of s�1Cð2Þ. The image of d is the kernel of the cokernel
FðoÞðs�1VÞ !! C

!

ðoÞ of d. Since C

!

is a quotient properad of Fðs�1VÞ, Im dqFðs�1VÞ is
an ideal monomorphism. From the shape of W�ðCÞ, we see that the image of d is made of
graphs indexed by s�1V with at least one subgraph in s�2R. Therefore, the image of d is
equal to the image of m2 : Fðs�1VÞn

�
Fðs�1VÞ þ s�2R

�
nFðs�1VÞ, that is the ideal gen-

erated by s�2R by Proposition 57 of Appendix A.

We dualize the arguments (in the opposite category) to get the dual statement. The
last assertion is easily verified. r
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A properad is called a Koszul properad when the homology of its bar construction is
concentrated in top dimension, that is when H�

�
BðPÞ

�
¼ P

!

.

2.3. Relation with the Koszul dual properad. To an S-bimodule M, we associate
its linear dual M � :¼ fMðm; nÞ�gm;n. The linear dual � of a coproperad ðC;DÞ is always a
properad: define the composition product by the formula C�nC� ! ðCnCÞ� !D

t

C�.
But we need a finite dimensional assumption on the underlying S-bimodule to have the
dual result. The main explanation for such a phenomenon is that there exists a map
V �nW � ! ðV nWÞ�, which is an isomorphism when V and W are finite dimensional
vector spaces.

Definition (Locally finite S-bimodule). An S-bimodule M is locally finite if for every
m and n in N, the dimension of the module Mðm; nÞ is finite over k.

Proposition 9. When V is a locally finite S-bimodule, the linear dual of the quadratic
coproperad CðV ;RÞ generated by V and R is the quadratic properad FðV �Þ=ðR?Þ, where
R?HFð2ÞðVÞ�GFð2ÞðV �Þ.

Proof. The image under � of the terminal object (see Appendix B.4)

Fc
ð2ÞðVÞ=R

���!! 0

FcðVÞ=CðV ;RÞ   ��� FcðVÞ a���!

CðV ;RÞ

������
���!!

gives the initial object of

�
Fc
ð2ÞðVÞ=R

��
a���!�

FcðVÞ=CðV ;RÞ
��

a���! FcðVÞ� ���!! CðV ;RÞ�:

 �����
���a

0

Since V is locally finite, we can identify
�
FcðVÞ

��
with the free properad on

V � : FðV �Þ. (The (co)free (co)properad on V is given by a direct sum of particular tensor
powers of V .) Therefore,

�
Fc
ð2ÞðVÞ=R

��
is isomorphic to the orthogonal of R, that is

R? :¼ f f A Fð2ÞðVÞ�GFð2ÞðV �Þ j fR ¼ 0g. We conclude by the uniqueness property of the
initial object. r

When PðV ;RÞ is a quadratic properad generated by a locally finite S-bimodule, we
consider the linear dual of the Koszul dual coproperad P

!�. By Proposition 9, we have
PðV ;RÞ! � ¼ Pðs�1V �; s�2R?Þ. In the case of finitely generated associative algebra, it is
the definition given by S. Priddy [64]. In the case of binary quadratic operads, V. Ginzburg
and M. Kapranov ([31], Section 2) defined a twisted Koszul dual operad by the formula
P! :¼ PðV4;R?Þ, where M4ðnÞ :¼M �ðnÞn sgnSn

. The reason for this lies in Quillen
functors which are the bar and cobar constructions between P-algebras and P

!

-coalgebras
(see [65] and [30], Section 2). The bar construction of a P-algebra A is the cofree P

!

-
coalgebra on the suspension of A, that is P

!

ðsAÞ. In general, we have
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P

!

ðsAÞ ¼
L
nf1

P

!

ðnÞnSn
ðsAÞnn ¼

L
nf1

snP

!

ðnÞn sgnSn
nSn

Ann:

We define the suspension operad by SðnÞ :¼ sn�1:kn sgnSn
, with the signature action of the

symmetric group. Actually, S is equal to the operad of endomorphisms of s�1k, that is
S ¼ Endðs�1kÞ. We have P

!

ðsAÞ ¼ sðSnP

!

ÞðAÞ. Up to suspensions, P

!

ðsAÞ is the cofree
‘‘P!-coalgebra’’ on A. The operad P is Koszul if and only if P

!

is Koszul, which is also
equivalent to P! is Koszul.

3. Manin products

The aim of this section is to provide a general and intrinsic framework for the defini-
tions of Manin’s black and white products. We first give the conceptual definition of Man-
in’s white product of monoids in any lax 2-monoidal category. Then, we dualize the argu-
ments to get the notion of black product of comonoids in any colax 2-monoidal category.

We make explicit all the constructions in the category of S-bimodules. But they re-
main valid in general 2-monoidal categories with mild assumptions (existence of the free
monoid, cofree comonoid, for instance). These constructions also hold for non-symmetric
operads (see Section 5) and colored operads, for instance. We denote the vertical connected
composition product of S-bimodules and the Hadamard horizontal tensor nH by n, to
lighten the notations.

3.1. A canonical map between free monoids. V. Ginzburg and M. M. Kapranov
mentioned in [32] a morphism of operads F : FðV nWÞ !FðVÞnFðWÞ ‘‘which re-
flects the fact that the tensor product of an FðVÞ-algebra and an FðWÞ-algebra is an
FðV nW Þ-algebra’’. We describe and extend this map F to a more general setting.

Proposition 10. Let ðA;n; I ;n;KÞ be a lax 2-monoidal category such that

ðA;n; IÞ admits free monoids. There exists a natural morphism of monoids

F : FðV nW Þ !FðVÞnFðW Þ.

Proof. Let V and W be two objects in A. There is a natural map
uFðVÞn uFðWÞ : V nW !FðVÞnFðW Þ. Using Proposition 3, we know that
FðVÞnFðWÞ is a monoid for n. By the universal property of the free monoid on
V nW , there exists a unique morphism of monoids F which factors the previous map

V nW ���!uVnW

FðV nWÞ

uvnuW
b!F

FðVÞnFðWÞ: r

@

 �����
��

Examples.

� When A is the category of k-modules, the map F is the direct sum of the isomor-
phisms ðV nW Þnn GVnn nWnn induced by the twisting map.

� In the category of S-modules, the map F corresponds to the injective morphism of
operads FðV nWÞqFðVÞnFðWÞ mentioned in [32].
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� For S-bimodules, the previous construction gives a morphism of properads be-
tween the free properad FðV nWÞ and the Hadamard product FðVÞnFðWÞ. Once
again, this map is always injective but not an isomorphism in general.

One remark before to conclude this section. The purpose of this paragraph was to
show that the definition of the map F is canonical and does not depend on the bases of
the modules involved here. Now, if we choose a basis for the free operad, for instance, we
can make the map F more explicit. In this case, the image of a tree T with vertices indexed
by elements of V nW under F is the tensor product of the same tree T with vertices in-
dexed by the corresponding elements of V with the tree T whose vertices are indexed by the
corresponding elements of W .

3.2. Definition of the white product. In this section we define the white product for
every pair of properads defined by generators and relations. When the two properads are
quadratic, the resulting white product is again quadratic. Since an associative algebra is an
operad and an operad is a properad, this construction summarizes what can be found in the
literature. In the case of quadratic associative algebras, it corresponds to the original no-
tions introduced by Yu. I. Manin [53] and in the case of binary quadratic operads, it corre-
sponds to the definitions of V. Ginzburg and M. Kapranov [31], [32].

The properties of the morphism F lead directly to the definition of the white product.
Let P and Q be two properads defined by generators and relations, P ¼FðVÞ=ðRÞ and
Q ¼FðWÞ=ðSÞ. And denote the projections pP : FðVÞ !! P and pQ : FðWÞ !! Q.

Consider the following composite of morphisms of properads

pPn pQ �F : FðV nWÞqFðVÞnFðWÞ !! PnQ:

Since it is a morphism of properads, its kernel is an ideal of FðV nW Þ. It is the ideal gen-
erated by F�1

�
RnFðW Þ þFðVÞnS

�
in FðV nWÞ.

Definition (White product). Let P ¼FðVÞ=ðRÞ and Q ¼FðWÞ=ðSÞ be two prop-
erads defined by generators and relations. The quotient properad

P � Q :¼FðV nWÞ=
�
F�1

�
RnFðWÞ þFðVÞnS

��
is called the white product of P and Q.

The definition of the white product of two properads shows that the morphism F fac-
tors through a natural morphism of properads F : P � Q! PnQ. In the abelian category
S-bimodules, F is the image of pPn pQ �F. Hence, it is a monomorphism.

FðV nWÞ a���!F FðVÞnFðWÞ ���!!pPnpQ
PnQ

a���! F
P � Q

  ������������
�����������

Let A be a P-gebra and B a Q-gebra, since the tensor AnB is a PnQ-gebra, we get the
following result.
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Proposition 11. The tensor product AnB is a gebra over the white product P � Q.

Example. Let P and Q be two operads. The tensor product of a P-algebra with a Q-
algebra is a PnQ-algebra. We can partially dualize this statement. Let C be a Q-coalgebra
and A be a P-algebra, the space of morphisms HomkðC;AÞ is a PnQ-algebra (see [11],
Proposition 1.1). It is also a P � Q-algebra by Proposition 11. As explained by G. Barnich,
R. Fulp, T. Lada, and J. Stashe¤ in [8], when C is a cocommutative coalgebra, HomkðC;AÞ
is always a P-algebra. This comes from the fact that Com is the unit object for n and �.
Motivated by structures appearing in Lagrangian field theories in physics, these authors
studied the algebraic structures of HomkðC;AÞ when C is a coassociative coalgebra and A

a Lie algebra or a Poisson algebra. Since HomkðC;AÞ is a P � Q-algebra, Manin’s white
product for operads gives a way to describe such structures.

The white product is a construction that preserves the grading of the properads.

Proposition 12. If SH
LN
o¼0

FðoÞðVÞ and RH
LM
o¼0

FðoÞðWÞ, the white product of P

and Q is a properad generated by V nW with relations in
LmaxðN;MÞ

o¼0
FðoÞðV nWÞ.

If S and R are homogeneous of weight N, that is S;RHFðNÞðVÞ, then P � Q is once

again a properad defined by homogeneous relations of weight N.

Proof. It comes from the definition of the morphism F which preserves the
grading. r

Examples.

� Let A and B be two quadratic associative algebras. The white product A � B
is equal to TðV nWÞ=

�
ð23ÞðRnWn2 þ Vn2 nSÞ

�
, which is the definition given by

Manin in [53], [52]. It is isomorphic via F to the Hadamard (or Segre) product
AnH B :¼

L
n

AðnÞnk BðnÞ. This crucial property allowed J. Backelin to prove in his thesis

[4] that the white product of two Koszul algebras is a Koszul algebra.

� An associative algebra A ¼ TðVÞ=ðRÞ is N-homogeneous if RHVnN . R. Berger,
M. Dubois-Violette and M. Wambst generalized Manin’s black and white products to N-
homogeneous algebras in [13]. Berger and Marconnet proved that the black product of two
N-homogeneous Koszul algebra is still Koszul under some extra assumptions (distributiv-
ity) in [14], Proposition 2.8. For two N-homogeneous algebras, the definition given above
coincide with their definition. Note that the definition given here can be applied to non-
homogeneous algebras. The class of Artin-Schelter algebras [3] provide interesting exam-
ples of non-homogeneous algebras. It would be interesting to study the properties of the
white product of such algebras, for instance the ones of global dimension 4 of [48].

� When P and Q are binary quadratic operads, the modules Fð2ÞðVÞ and Fð2ÞðWÞ
are equal to FðVÞð3Þ and FðWÞð3Þ. In that case, we get RnFðW Þ ¼ RnFðWÞð3Þ
and FðVÞnS ¼FðVÞð3ÞnS. This construction is the original one described by Ginz-
burg and Kapranov in [31], [32]. Note that in this case, the white product is not, in general,
equal to the Hadamard product. (The morphism F is not an isomorphism in general.) A
direct consequence of this fact is that the white product of two Koszul operads is not nec-
essarily a Koszul operad again. See Section 4.5 for a counterexample.
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3.3. The black product. We dualize the arguments and work in the opposite cate-
gory. This gives the definition black product of coproperads.

Proposition 13. Let ðA;n; I ;n;KÞ be a colax 2-monoidal category such that

ðA;n; IÞ admits cofree comonoids. There exists a natural morphism of comonoids

C : FcðV nWÞ  FcðVÞnFcðW Þ.

Definition (Black product). The black product of two coproperads CðV ;RÞ and
CðW ;SÞ is the image of the morphism of comonoids C � ðin iÞ

FcðV nWÞ   ���C
FcðVÞnFcðWÞ a���!ini

CðV ;RÞnCðW ;SÞ���!! C
CðV ;RÞ � CðW ;SÞ:

a�������������
�����������!

It is equal to CðV ;RÞ � CðW ;SÞ ¼ C
�
V nW ;CðRnSÞ

�
.

Black and white constructions are dual to each other under linear duality.

Theorem 14. Let ðV ;RÞ and ðW ;SÞ be two quadratic data, with V and W locally fi-

nite. We have the following isomorphism of properads�
CðV ;RÞ � CðW ;SÞ

��
GCðV ;RÞ� � CðW ;SÞ�:

Proof. Since c is the transpose of j, we have C ¼ tFV �;W � , up to isomorphism like�
FðV �ÞnFðW �Þ

��
GFðVÞnFðWÞ. Therefore, we get

CðRnSÞ? ¼ F�1V �;W �
�
R?nFðW �Þ þFðV �ÞnS?

�
:

By Proposition 9, we have�
CðV ;RÞ � CðW ;SÞ

��
GP

�
V �nW �;CðRnSÞ?

�
GP

�
V �nW �;F�1V �;W �

�
R?nFðW �Þ þFðV �ÞnS?

��
GPðV �;R?Þ �PðW �;S?Þ

GCðV ;RÞ� � CðW ;SÞ�: r

One of the main interest of the classical notions of black and white products is that
one gives the other via the Koszul dual functor. In the next sections, we define a black
product for monoids (operad and non-symmetric operads). The translation of Theorem 14
in this framework will give the relation with Koszul dual functor.

4. Manin products for operads

In this section, we study Manin products for (symmetric) operads. We first give a suf-
ficient condition for the white product to be equal to the Hadamard product. Then, we re-
call the bases used to describe binary quadratic operads and their Koszul dual operad. We
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refer the reader to [31], [44] and [58] for complete references. We make our constructions
explicit for binary quadratic operads in order to do computations. The linear dual version
of the black product for cooperads defines a product for operads which corresponds to the
definition of Ginzburg and Kapranov, where we make the signs precise. We give an exam-
ple of a pair of Koszul operads such that their product is not Koszul. This shows that black
and white products for operads do not behave like black and white products for associative
algebras. Following Yu. I. Manin, we prove that P �P! is always a Hopf operad. Finally,
we describe the relation between unitary operators and black products.

4.1. Relation between the Hadamard product and the white product. We saw in
the previous section that the composite ðpPn pQÞ �F factors through its image
F : P � QqPnQ. Therefore, F is an isomorphism if and only if the composite
ðpP n pQÞ �F is an epimorphism. We shall give a su‰cient condition for this.

Consider the case of binary quadratic operads, that is quadratic operads generated by
binary operations (VðnÞ ¼ 0 for n3 2). In this case, the free operad on V is given by (non-
planar) binary trees with vertices labelled by operations of V . Denote by T such a tree with
n� 1 vertices and the induced label morphism by LV

T : Vnðn�1Þ !FðVÞðnÞ.

Proposition 15. Let P be a binary quadratic operad such that for every nf 3 and ev-

ery binary tree T with n� 1 vertices, the composite pP �LV
T : Vnðn�1Þ !FðVÞðnÞ !! PðnÞ

is surjective.

For every binary quadratic operad Q, the white product P � Q is equal to the Hadamard

product PnQ.

Proof. It is enough to prove that ðpP n pQÞ �F is an epimorphism. Let pn q be
an elementary tensor of PðnÞnQðnÞ, where Q ¼FðWÞ=ðSÞ. The element q of QðnÞ

can be written q ¼
Pk
i¼1

pQ �LW
Ti
ðwi

1; . . . ;w
i
n�1Þ, with fTig a finite set of trees and fwi

jg

elements of Wð2Þ. By the assumption, there exists vi1; . . . ; v
i
n�1 in Vð2Þ such that

p ¼ pP �LV
Ti
ðvi1; . . . ; vin�1Þ, for every Ti. Therefore, we have

p ¼ 1

k

Pk
i¼1

pP �LV
Ti
ðvi1; . . . ; vin�1Þ:

Finally, it shows that

pn q ¼ ðpPn pQÞ �F
�
1

k

Pk
i¼1

LVnW
Ti

ðvi1 nwi
1; . . . ; v

i
n�1 nwi

n�1Þ
�
: r

The condition of this proposition means that every operation of P can be written by
any type of composition of generating operations. In the next corollary, we show that the
operads Com, Perm and ComTrias are examples of such operads. Recall briefly that Com
is the operad for commutative algebras. The operad Perm was introduced by F. Chapoton
in [16] and ComTrias was defined in [70], Appendix A.

Corollary 16. For every binary quadratic operad Q, we have:
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� Com � Q ¼ ComnQ ¼ Q. The operad Com is neutral for the white product in the

category of binary quadratic operads.

� Perm � Q ¼ PermnQ and ComTrias � Q ¼ ComTriasnQ.

Proof. The operad Com is generated by Vð2Þ ¼ k with trivial action of S2 and
the associativity relation. Hence, we have only one commutative operation with arity n,
that is ComðnÞ ¼ k. Therefore, for every tree T, the morphism LT is a surjection on k

and Com � Q ¼ ComnQ ¼ Q.

The operad Perm corresponds to commutative operations with one input emphasized
(see [70], 4.2 and [18], 1.3.2). In arity n, we have n operations PermðnÞ ¼ k:en1 l � � �l k:enn
where eni corresponds to the corolla with n inputs such that the ith input (or branch) is em-
phasized. The composition of corollas gives a corolla where the leaf emphasized is the one
with a path to the root via emphasized branches.

Let T be a binary tree with n� 1 vertices. To get eni , it is enough to look at the unique path
from the ith leaf to the root and index the vertices on this path with the relevant operations.

The operations of ComTriasðnÞ are corollas with at least one leaf emphasized and the proof
is the same. r

This corollary shows that the Hadamard product of one operad Com, Perm or
ComTrias with any other binary quadratic operad is again a binary quadratic operad.
For Com, the result is obvious. In the particular case of Perm this result was proved di-
rectly by F. Chapoton in [16]. For every binary quadratic operad Q, he constructed by
hand a quadratic operad isomorphic to PermnQ. This construction is actually the white
product Perm � Q.

Proposition 17. We have Perm �As ¼ Dias.

Proof. Using the complete description of Perm, As and Dias, Chapoton proved in
[16] that PermnAs ¼ Dias. Apply the previous corollary to conclude. r
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4.2. Binary quadratic operad and Koszul dual operad. The preceding section gives a
method for computing the white product for a particular class of operads. When we cannot
apply this method, we need the explicit form of the products to compute them. In this sec-
tion, we describe a basis for binary quadratic operads and their Koszul dual operads.

Recall that the free operad FðVÞ on V is given by trees with the vertices indexed
by elements of V , with respect to the action of the symmetric groups. When V is an S2-
module, that is a module over the symmetric group S2, we have Fð2ÞðVÞ ¼FðVÞð3Þ, the
part with 3 inputs of the free operad on V which is isomorphic to

FðVÞð3Þ ¼
�
V nS2

ðV n kl knVÞ
�
nS2

k½S3�;

where the summand V n ðV n kÞ corresponds to the compositions on the left and the
summand V n ðknVÞ corresponds to the compositions on the right . Since the action
of S2 maps one to the other, we choose the one on the left and FðVÞð3Þ is isomorphic to
the induced representation IndS3

S2�S1

�
V n ðV n kÞ

�
. Therefore, FðVÞð3Þ can be identified

with 3 copies of V nV represented by the following types of tree:

Denote them by m �I n, m �II n and m �III n.

The action of the permutation (12) is given by
�
m �I n

�ð12Þ ¼ m �I nð12Þ,�
m �II n

�ð12Þ ¼ m �III nð12Þ,
�
m �III n

�ð12Þ ¼ m �II nð12Þ and the action of (132) is given by�
m �a n

�ð123Þ ¼ m �ðaþIÞ n.

Remark. This basis is di¤erent from the one in [31], p. 228. The one given here has
nice symmetric properties with respect to the action of S3 that we will use in 4.4 to simplify
the computations.

The dual representation V � of an Sn-module V is the vector space V � ¼ HomðV ; kÞ
endowed with the following right action of the symmetric group. For f : V ! k and
s A Sn, we have ð f sÞðxÞ :¼ f ðxs�1Þ. We will need to twist the dual representation by the
signature, that is V4 :¼ V �n sgnSn

.

Let V be an S-module concentrated in arity 2, that is an S2-module. When V is a
finite dimensional k-vector space, denote by m; n; h; z; . . . one of its basis, stable by the
action of S2, and by m�; n�; h�; z�; . . . the dual basis. Therefore

m4¼ m�; n4¼ n�; h4¼ h�; z4¼ z�; . . .

forms a basis of V4 such that ðm4Þð12Þ ¼ �ðmð12ÞÞ4. We define the following non-degenerate
bilinear form
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FðVÞð3ÞnFðV4Þð3Þ !h;i k;

hm �a n; h4�b z4i :¼ 1 if a ¼ b; m ¼ h and n ¼ z;

0 otherwise.

�

For a sub-S3-module R of FðVÞð3Þ, we consider its orthogonal

R? :¼ fW A FðV4Þð3Þ j ho;Wi ¼ 0; Eo A Rg

for this bilinear form.

Since the action of S3 on the bilinear form h ; i is given by the signature
hos;Wsi ¼ sgnðsÞ:ho;Wi we have that R? is a sub-S3-module of FðV4Þð3Þ. Note
that the non-degenerate bilinear form h ; i defines an isomorphism of S3-modules from
FðVÞð3Þ4 to FðV4Þð3Þ.

Recall from 2.3 that under finite dimensional assumptions, the Koszul dual operad of
FðVÞ=ðRÞ is P! ¼FðV4Þ=ðR?Þ. This bilinear form provides a method for computing it.
The canonical isomorphism ðV4Þ4GV induces ðR?Þ?GR and

�
P!

�! ¼ P.

Examples. The operad Com for commutative (associative) algebras ðA; �Þ is gener-
ated by the one dimensional S2-module V :¼ k:� with trivial action. Denote by t1 ¼ � �I �,
t2 ¼ � �II � and t3 ¼ � �III � the elements of the basis of FðVÞð3Þ. The associativity relation
is the quadratic relation t1 ¼ t2 ¼ t3. Therefore, the operad Com has the following presen-
tation Com ¼Fðk:�Þ=ðt1 � t2; t2 � t3Þ.

The operad Lie for Lie algebras ðL; ½ ; �Þ is generated by the one dimensional S2-
module V 0 :¼ k:½ ; � where the action is given by the signature. If we denote by t 01, t

0
2 and

t 03 the elements of the basis of FðV 0Þð3Þ, the Jacobi relation corresponds to t 01 þ t 02 þ t 03 ¼ 0
and the operad Lie is given by Lie ¼Fðk:½ ; �Þ=ðt 01 þ t 02 þ t 03Þ.

Under the identification V 0GV4, we have�
ðt1 � t2Þ:kl ðt2 � t3Þ:k

�? ¼ ðt 01 þ t 02 þ t 03Þ:k:

Therefore we get Com! ¼Lie (and Lie! ¼ Com).

4.3. Definition of the black product for operads. Using the notions of the previous
section, we define a black product for binary quadratic operads.

The definition of the white product is based on the morphism F (see 3.1). For binary
quadratic operads, this morphism F : FðV nWÞð3Þ !FðVÞð3ÞnFðWÞð3Þ is the com-
ponentwise projection. For instance, for compositions of type I, we have

We describe a general method that will be applied later in other cases.
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When V is finite dimensional, the Koszul dual of binary quadratic operad
FðVÞ=ðRÞ can be defined by means of a particular non-degenerate bilinear form on
FðVÞð3ÞnFðV4Þð3Þ (see 4.2) denoted by h ; iV . For the moment, we do not need its ex-
plicit description. Since this bilinear form is non-degenerate, it induces an isomorphism
yV : FðVÞð3Þ !F FðV4Þð3Þ4. Let V and W be two finite dimensional k-modules. Define
the morphism C by the following commutative diagram

FðVÞð3ÞnFðWÞð3Þn k:sgnS3

C
FðV nW n k:sgnS2

Þð3Þ???yyVnyWnsgn

x???y�1VnWnsgn

FðV4Þð3Þ4nFðW4Þð3Þ4n k:sgnS3
F
�
ðV nW n k:sgnS2

Þ4
�
ð3Þ4???yF

x???F

�
FðV4Þð3ÞnFðW4Þð3Þ

�4 tFV4;W4

FðV4nW4Þð3Þ4;

��������!

������������!
whereF stands for the natural isomorphism for the linear dual of a tensor product, since
the modules are finite dimensional. The morphism C defined here is a twisted version of the
one defined in 3.3.

Recall that FV4;W4 is the morphism FðV4nW4Þ !FðV4ÞnFðW4Þ.

Lemma 18. Let P ¼FðVÞ=ðRÞ and Q ¼FðWÞ=ðSÞ be two binary quadratic oper-

ads such that V and W are finite dimensional. The orthogonal of CðRnSÞ for h ; iVnWnsgn

is F�1V4;W4

�
R?nFðW4Þ þFðV4ÞnS?

�
.

Proof. By definition of the transpose of FV4;W4, we have

hCðrn sÞ;XiVnWnsgn ¼ hrn s;FV4;W4ðX ÞiðFðVÞnFðV4ÞÞ�ðFðWÞnFðW4ÞÞ

¼ ðhr;�iV :hs;�iW Þ �FV4;W4ðX Þ;

for every ðr; sÞ A R� S and every X A F
�
ðV nW n k:sgnS2

Þ4
�
. Therefore, we have

CðRnSÞ?

¼
�
X A F

�
ðV nW n k:sgnS2

Þ4
�
ð3Þ j Eðr; sÞ A R� ShCðrn sÞ;XiVnWnk:sgnS2

¼ 0
	

¼ fX A FðV4nW4Þð3Þ j Eðr; sÞ A R� Sðhr;�iV 0 :hs;�iW 0 Þ �FV4;W4ðXÞ ¼ 0g

¼ fX A FðV4nW4Þð3Þ jFV4;W4ðXÞ A R?nFðW4Þ þFðV4ÞnS?g

¼ F�1V4;W4

�
R?nFðW4Þ þFðV4ÞnS?

�
: r

Definition (Black product for operads). Let P ¼FðVÞ=ðRÞ and Q ¼FðWÞ=ðSÞ be
two binary quadratic operads with finite dimensional generating spaces. Define their black
product by the formula

P � Q ¼FðV nW n k:sgnS2
Þ=
�
CðRnSÞ

�
:

Proposition 19. For binary quadratic operads generated by finite dimensional S2-

modules, this definition of black product verifies ðP � QÞ! ¼ P! � Q! and corresponds to the

one of Ginzburg and Kapranov [32].
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Proof. It is a direct corollary of Lemma 18. r

Since Com is the neutral element for �, we have that Lie is the neutral element for �.

4.4. Examples. We make explicit some computations of black and white products.
For the definitions of the various operads encountered in this section, we refer the reader to
[46].

In order to compute black and white products for operads where the space of gener-
ators V is equal to k½S2� ¼ m:kl m 0:k, with m:ð12Þ ¼ m 0, we will adopt the following con-
vention. Denote by v1; . . . ; v12 the 12 elements of FðVÞð3Þ.

1 m �I m$ ðxyÞz 5 m �III m$ ðzxÞy 9 m �II m$ ðyzÞx

2 m 0 �II m$ xðyzÞ 6 m 0 �I m$ zðxyÞ 10 m 0 �III m$ yðzxÞ

3 m 0 �II m 0 $ xðzyÞ 7 m 0 �I m 0 $ zðyxÞ 11 m 0 �III m 0 $ yðxzÞ

4 m �III m 0 $ ðxzÞy 8 m �II m 0 $ ðzyÞx 12 m �I m 0 $ ðyxÞz

This labelling corresponds to the labelling of the permutoassociahedron [38]. Figure 1 rep-
resents it with the action of the symmetric group S3.

Figure 1. The permutoassociahedron.
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An associative algebra is a vector space with a binary associative operation, that
is m

�
mða; bÞ; c

�
¼ m

�
a; mðb; cÞ

�
. With these notations, the relations of associativity of

the operad As become vi � viþ1, for i ¼ 1; 3; 5; 7; 9; 11. A (right) preLie algebra is a
vector space with a binary operation such that its associator is right symmetric, that
is m

�
mða; bÞ; c

�
� m

�
a; mðb; cÞ

�
¼ m

�
mða; cÞ; b

�
� m

�
a; mðc; bÞ

�
. This relation corresponds to

vi � viþ1 þ viþ2 � viþ3 for i ¼ 1; 5; 9 with our conventions. The operation of a Perm-algebra

verifies m
�
mða; bÞ; c

�
¼ m

�
a; mðb; cÞ

�
¼ m

�
a; mðc; bÞ

�
which gives here vi ¼ viþ1 ¼ viþ2 ¼ viþ3

for i ¼ 1; 5; 9. Note that PreLie is the Koszul dual of Perm and vice versa (cf. [17]).

We now give an example of computation.

Theorem 20. We have PreLie � Com ¼Zinb, PreLie �As ¼ Dend and

Perm �Lie ¼Leib.

Proof. Denote by n the commutative generating operation of Com and by w1, w5, w9

the related elements of Fðn:kÞð3Þ. We write the associativity relation of n : w1 � w5 ¼ 0 and
w5 � w9 ¼ 0. We have

C
�
ðv1 � v2 þ v3 � v4Þn ðw1 � w5Þ

�
¼ Cðv1 nw1 þ v4 nw5Þ;ð1Þ

C
�
ðv1 � v2 þ v3 � v4Þn ðw5 � w9Þ

�
¼ C

�
ðv2 � v3Þnw9 � v4 nw5

�
;ð2Þ

C
�
ðv5 � v6 þ v7 � v8Þn ðw1 � w5Þ

�
¼ C

�
ðv7 � v6Þnw1 � v5 nw5

�
;ð3Þ

C
�
ðv5 � v6 þ v7 � v8Þn ðw5 � w9Þ

�
¼ Cðv5 nw5 þ v8 nw9Þ;ð4Þ

C
�
ðv9 � v10 þ v11 � v12Þn ðw1 � w5Þ

�
¼ C

�
�v12nw1 þ ðv10 � v11Þnw5

�
;ð5Þ

C
�
ðv9 � v10 þ v11 � v12Þn ðw5 � w9Þ

�
¼ C

�
ðv11 � v10Þnw5 � v9 nw9

�
:ð6Þ

The action of (132) sends (1) to (4), (3) to (6) and (5) to (2). The image of (1) under
(13) is (3). Therefore, we only need to make (1) and (2) explicit. If we identify
ðm:kl m 0:kÞn n:kn k:sgnS2

with g:kl g 0:k via the isomorphism of S2-modules

mn nn 1 7! g;

m 0n nn 1 7! �g 0;

the morphism C becomes

C
�
ðm �I mÞn ðn �I nÞ

�
¼ Cðv1nw1Þ ¼ g �I g ¼ z1

and

C
�
ðm 0 �II mÞn ðn �II nÞ

�
¼ Cðv2 nw1Þ ¼ �g 0 �I g ¼ �z2:

The image of the other elements are obtained from these two by the action of S3. For in-
stance, we have Cðv3 nw1Þ ¼ �z3, Cðv4 nw1Þ ¼ z4 and Cðv5 nw5Þ ¼ z5.
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We get

Cðv1 nw1 þ v4 nw5Þ ¼ g �I g� g �III g 0;

C
�
ðv2 � v3Þnw9 � v4nw5

�
¼ �g 0 �II g� g 0 �II g 0 þ g �III g 0:

Finally, if we represent the operation gðx; yÞ by x ? y, we have

ðx ? yÞ ? z ¼ ðx ? zÞ ? y;

ðx ? zÞ ? y ¼ x ? ðz ? yÞ þ x ? ðy ? zÞ;

where we recognize the axioms of a Zinbiel algebra (cf. [46]).

The two other identities are obtained by Koszul duality using Proposition 19. From
Proposition 17 Perm �As ¼ Dias, we get PreLie �As ¼ ðPerm �AsÞ! ¼ ðDiasÞ! ¼ Dend.
The last equality Perm �Lie ¼Leib is the Koszul dual of the first one
PreLie � Com ¼Zinb. r

Jean-Louis Loday defined the operad Dend by two operations such that their sum is
an associative product (see [46]). In the same way, he defined the operad Zinb with one
product such that its symmetrized version is an associative (and commutative) product.
This process is often called a splitting of associativity. Proposition 20 shows that we can in-
terpret the operation PreLie � � as a natural way of splitting the associativity.

A commutative algebra is an associative algebra. Therefore, we have a morphism of
operads As! Com. Since a commutative algebra is a Perm-algebra and a Perm-algebra is
an associative algebra, the previous morphism factors through As! Perm! Com. Simi-
larly, a Zinbiel algebra is a dendriform algebra Dend !Zinb. We can factor this mor-
phism by a new operad PreLie �Perm using the functor PreLie � �

As Perm Com

Dend ���! PreLie �Perm ���! Zinb:
PreLie��

��������! �������!

We describe this new type of algebra.

Theorem 21. An algebra over the operad PreLie �Perm is a dendriform algebra such

that the two operations � and 	 verify the two extra relations

x � ðy � zÞ þ x � ðy 	 zÞ ¼ x � ðz � yÞ þ x � ðz 	 yÞ;

x 	 ðy � zÞ ¼ x 	 ðz 	 yÞ:

Using the notation x � y :¼ x � yþ x 	 y, we sum up the 5 relations of a PreLie �Perm-

algebra by
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ðx � yÞ � z ¼ x � ðy � zÞ;
ðx 	 yÞ � z ¼ x 	 ðy � zÞ;
ðx � yÞ 	 z ¼ x 	 ðy 	 zÞ;
x � ðy � zÞ ¼ x � ðz � yÞ;
x 	 ðy � zÞ ¼ x 	 ðz 	 yÞ:

8>>>>>><
>>>>>>:

A Perm-algebra is an associative algrebra which is symmetric on the right. A
PreLie �Perm-algebra is a dendriform algebra with right-symmetric relations.

Proof. Denote by o the generating operation of the operad Perm and by
w1; . . . ;w12 the related elements of Fðo:klo 0:kÞð3Þ. The space of relations CðRnSÞ is
generated by the elements C

�
ðvi � viþ1 þ viþ2 � viþ3Þn ðwj � wjþ1Þ

�
, for i A f1; 5; 9g and

j A f1; 2; 3; 5; 6; 7; 9; 10; 11g. Reduce the computations using the action of S3 (the symme-
tries can be seen on the permutoassociahedron), it remains 5 relations among which 3 cor-
respond to the following ones:

C
�
ðv1 � v2 þ v3 � v4Þn ðw1 � w2Þ

�
¼ C

�
v1 nw1 þ ðv2 � v3Þnw2

�
;ð7Þ

C
�
ðv1 � v2 þ v3 � v4Þn ðw5 � w6Þ

�
¼ Cð�v4 nw5 � v1 nw6Þ;ð8Þ

C
�
ðv1 � v2 þ v3 � v4Þn ðw7 � w8Þ

�
¼ C

�
v1 nw7 þ ðv2 � v3Þnw8

�
:ð9Þ

Identify the representation ðm:kl m 0:kÞn ðo:klo 0:kÞn k:sgnS2
with the two copies of

k½S2� : a:k½S2�l b:k½S2� ¼ a:kl a 0:kl b:kl b 0:k via the isomorphism of S2-modules

mnon 1 7! a and m 0non 1 7! �b;

m 0no 0n 1 7! �a 0 and mno 0n 1 7! b 0:

The morphism C becomes

C
�
ðm �I mÞn ðo �I oÞ

�
¼ Cðv1nw1Þ ¼ a �I a;

C
�
ðm 0 �II mÞn ðo 0 �II oÞ

�
¼ Cðv2nw2Þ ¼ �a 0 �II a

and

C
�
ðm 0 �II m 0Þn ðo 0 �II oÞ

�
¼ Cðv3 nw2Þ ¼ �a 0 �II b;

for instance. Hence, the relations (7), (8) and (9) are

a �I a� a 0 �II a� a 0 �II b;

a �III b � b 0 �I a;

b 0 �I b 0 � b �II b 0 � b �II a 0:

If we represent the operation aðx; yÞ by x � y and bðx; yÞ by x 	 y, these 3 relations
become
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ðx � yÞ � z ¼ x � ðy � zÞ þ x � ðy 	 zÞ;

ðz 	 xÞ � y ¼ z 	 ðx � yÞ;

z 	 ðy 	 xÞ ¼ ðz 	 yÞ 	 xþ ðz � yÞ 	 x;

which are the axioms defining dendriform algebras [46].

The two other relations are

C
�
ðv1 � v2 þ v3 � v4Þn ðw2 � w3Þ

�
¼ �a 0 �II aþ a 0 �II b 0 � a 0 �II b þ a 0 �II a 0;ð10Þ

C
�
ðv1 � v2 þ v3 � v4Þn ðw6 � w7Þ

�
¼ b 0 �I a� b 0 �I b 0:ð11Þ

And they give after identification

x � ðy � zÞ þ x � ðy 	 zÞ ¼ x � ðz � yÞ þ x � ðz 	 yÞ

x 	 ðy � zÞ ¼ x 	 ðz 	 yÞ: r

A PreLie �Perm-algebra is a Perm-algebra with splitting of the associativity
relation.

Proposition 22. Let ðA;�;	Þ be a PreLie �Perm-algebra. With the operation

� :¼ �þ	, the vector space ðA; �Þ becomes a Perm-algebra.

Proof. Consider the sum of the relations. r

Since a PreLie-algebra gives a Lie-algebra by anti-symmetrization of the product,

we have a morphism of operads Lie!l PreLie. Taking the black product of this mor-
phism with an operad P, we get a morphism of the form P ¼Lie �P ��!l�P PreLie �P. A
PreLie �P-algebra has twice more generating operations than P and this morphism corre-
sponds to take the sum of them. Denote it by l �P ¼ þ. In the previous cases, we had

As ���! Perm ���! Com???yþ
???yþ

???yþ
Dend ���! PreLie �Perm ���! Zinb:

Therefore, the black product with PreLie is a general splitting of the relations.

One interesting property of the black and white products is to recover classical oper-
ads and morphisms between them by means of products from simpler operads. We have the
dual diagram of operads

As  ��� PreLie  ��� Liex???
x???

x???
Dias  ��� PreLie �Perm  ��� Leib:
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The operad PreLie allows to factor the map As Lie. The notion of PreLie-algebra is
important and has application in deformation theory and di¤erential geometry for instance
(see [17]). The second row Dias Leib was introduced by J.-L. Loday with a view toward
applications in algebraic K-theory (see the introduction of [46]). The operad Dias appears
naturally when one tries to build a bicomplex in algebraic K-theory with the same
form then the one in cyclic homology (the additive counterpart of algebraic K-theory).
Since the operad PreLie �Perm factors the map Leib! Dias, we expect the operad
PreLie �Perm to appear in these fields in the future.

Recall from [17], that a basis for PreLieðnÞ is given by the set of rooted trees with n

vertices labelled by f1; . . . ; ng. From Corollary 16, we have

PreLie �Perm ¼ PreLienPerm:

Therefore, a basis for PreLie �PermðnÞ is provided by the set of rooted trees with n

vertices labelled by f1; . . . ; ng with one vertex emphasized. We leave to the reader to
describe the composition map of this operad. (Use the composition of PreLie based on
rooted trees given in [17] with the fact that only the insertion of a tree in an emphasized
vertex keeps a vertex emphasized.)

4.5. A counterexample. In this section, we show that the category of Koszul operads
is not stable by white and black products. We exhibit a pair of Koszul operads whose black
product is not Koszul.

Consider the nilpotent operad N defined by a generating skew-symmetric binary op-
eration such that every composition of it vanishes.

Lemma 23. The operad PreLie �N is equal to the quadratic operad generated by a

binary operation 
 with the following relations: ðx 
 yÞ 
 z ¼ 0 and x 
 ðy 
 zÞ ¼ x 
 ðz 
 yÞ,
for every x, y, z.

Proof. We use the same notations vi for the space R of relations of the operad
PreLie. The space S of relations of the nilpotent operad is generated by w1, w5 and w9.
By symmetry of the relations, we only have to compute the three terms

C
�
ðv1 � v2 þ v3 � v4Þnw1

�
¼ Cðv1 nw1Þ ¼ 
 �I 
;ð12Þ

C
�
ðv1 � v2 þ v3 � v4Þnw5

�
¼ C

�
ð�v2 þ v3Þnw5

�
¼ �
0 �II 
 þ 
0 �II 
0;ð13Þ

C
�
ðv1 � v2 þ v3 � v4Þnw9

�
¼ Cð�v4 nw9Þ ¼ 
 �III 
:ð14Þ

They correspond to

ðx 
 yÞ 
 z ¼ 0; x 
 ðy 
 zÞ ¼ x 
 ðz 
 yÞ and ðx 
 zÞ 
 y ¼ 0: r

Theorem 24. The operad PreLie �N is not Koszul.

Proof. Because of its relations, the operad PreLie �N has no operations in arity
n for n greater than 4, that is ðPreLie �NÞðnÞ ¼ 0 for nf 4. Recall that the Poincaré
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series of an operad P is defined by fPðxÞ :¼
P
nf1

dim
�
PðnÞ

�
n!

xn (see [31], Section 3 or [46],

Appendix B.5.c.). When an operad P is Koszul, its Poincaré series and the Poincaré series
of its dual verify the equation fP!

�
�fPð�xÞ

�
¼ x ([31], Formula (3.3.2)). The Poincaré

series �fPreLie�Nð�xÞ is x� x2 þ 1

2
x3. Its inverse for the composition is

xþ x2 þ 3

2
x3 þ 5

2
x4 þ 17

4
x5 þ 7x6 þ 21

2
x7 þ 99

8
x8 þ 55

16
x9� 715

16
x10 þ � � � :

Since the 10th coe‰cient is negative, this series does not correspond to the Poincaré series
of an operad. Therefore the operad PreLie �N is not Koszul. r

The operad PreLie is Koszul (see [17] for a proof in characteristic 0 and [18] for a
more general one). Any nilpotent operad is Koszul (the Koszul dual is a free operad, which
is Koszul). So the operad PreLie �N is the black product of two Koszul operads which is
not a Koszul operad. This result comes from the fact the morphism C (and the morphism
F) is not an isomorphism in general. The morphism C is a projection and kills part of the
relations. Therefore, the coherence between the relations, expressed by the Koszul property,
does not hold anymore.

4.6. Adjunction. In this section, we generalize the main result of [52] about the ad-
junction between the black and the white products to k-ary quadratic operads.

Let k be an integer greater than 2. Consider the category of k-ary quadratic operads,
that is quadratic operads generated by a finite dimensional S-module concentrated in arity
k. A morphism between two k-ary quadratic operads FðVÞ=ðRÞ and FðWÞ=ðSÞ is a mor-
phism induced by a map of Sk-modules VðkÞ !WðkÞ. Denote this category by k.q-Op.

One can generalize the basis and the non-degenerate bilinear form of 4.2 for the bi-
nary case to the k-ary case. Then Lemma 18 and Proposition 19 also hold in k.q-Op, which
defines black products in this category. Recall from V. Gnedbaye [33] the notion of k-Lie
algebra, that is a module endowed with a k-ary antisymmetric bracket satisfying a general-
ized Jacobi relation. We denote the associated operad by Liehki. Gnedbaye proved that
Liehki is the Koszul dual operad of Comhki (denoted stAshki in [33]), where a Comhki-
algebra is module equipped with a k-ary commutative and totally associative operation.

Proposition 25. The black and white products endow the category of k-ary quadratic

operads with a structure of symmetric monoidal category, where the operad Liehki is the unit

object for � and the operad Comhki is the unit object for �.

Proof. The same arguments as in 4.1 show that for a k-ary quadratic operad P, we
have Comhki �P ¼ Comhki nP ¼ P. If n A ðk � 1Þ:Nþ 1, ComhkiðnÞ ¼ k, otherwise
ComhkiðnÞ ¼ PðnÞ ¼ 0. The rest of the proof is straightforward. r

Theorem 26. There is a natural isomorphism

Homk:q:OpðP � Q;RÞGHomk:q:OpðP;Q! �RÞ:
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Hence, the tensor category of k-ary quadratic operads with the black product � is

endowed with an internal Hom object denoted hom�ðQ;RÞ :¼ Q! �R. Dually,
cohomðP;QÞ :¼ P � Q! defines an internal coHom object in ðk:q:Op; �;CkÞ.

Proof. Let P ¼FðVÞ=ðRÞ, Q ¼FðWÞ=ðSÞ and R ¼FðX Þ=ðTÞ be three k-ary
quadratic operads. There is a one-to-one bijection between maps f : V nW n sgn! X

and maps g : V !W4nX . It remains to show that Fð f Þ
�
CðRnSÞ

�
HT is equivalent

to FðgÞðRÞHF�1
�
S?nFðXÞ þFðW4ÞnT

�
. By Lemma 18, we have



FðgÞðRÞ;F�1

�
S?nFðX Þ þFðW4ÞnT

�?�
W4nX

¼ hFðgÞðRÞ;CðSnT?ÞiW4nX

¼


Fð f Þ

�
CðRnSÞ

�
;T?

�
X
;

which concludes the proof. r

For another point of view on this type of adjunction and coHom objects in another
operadic setting, we refer the reader to D. Borisov and Yu. I. Manin [15].

Corollary 27. Let P be a k-ary quadratic operad. The operad endðPÞ :¼ P �P! is a

comonoid in ðk:q:Op; �;CkÞ.

Proof. The proof comes from general methods of coHom objects. r

Composing D with F : endðPÞ � endðPÞ ! endðPÞn endðPÞ, we get that P! �P is a
comonoid for the tensor product, that is a Hopf operad (see 1.5).

Theorem 28. For every k-ary quadratic operad P, the operad endðPÞ ¼ P! �P is a

Hopf operad.

The first example is Com ¼ Com �Lie. Other examples are PreLie �Perm,
Zinb �Leib.

In [53], Yu. I. Manin proved the equivalent theorem for quadratic algebras. This al-
lowed him to realize quantum groups as black products of an algebra with its Koszul dual
algebra. In this spirit, the previous theorem gives a method to get new ‘‘quantum groups’’,
that is Hopf operads.

The tensor product of a Lie algebra with a commutative algebra is again a Lie alge-
bra (Courant algebras for instance). This result can be widely generalized. Let P be a k-ary
quadratic operad. For any P!-algebra A and any P-algebra B, their tensor product AnB

is a Liehki algebra (see [46], Appendix B.5.a., for a proof in the binary case and see [34],
Theorem 2.3, for a proof in the ternary case). In the language of operads, it means that
there exists a morphism of operads Liehki !l P! nP. In the particular case of P ¼Leib

and P! ¼Zinb, J.-L. Loday and I. Dokas refined this result and proved in [21] that the
previous map factors through PreLie. We now give a conceptual proof of the existence of
the map from Liehki to P! nP and show that it always comes from a composite with the
white product.
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Proposition 29. For every k-ary quadratic operad P, there is a canonical morphism of

operads Liehki !i P! �P, defined by the commutative diagram

Liehki ���!l P! nP

i

P! �P:

 ��� ���!F
Proof. Apply Theorem 40 to the triple of operads Liehki, P and P. We get a

natural isomorphism Homk:q:OpðLiehki �P;PÞGHomk:q:OpðLiehki;P! �PÞ. Since Liehki

is the unit object for �, we have Homk:q:OpðP;PÞGHomk:q:OpðLiehki;P! �PÞ. Define
Liehki !i P! �P to be the image of the identity of P under this isomorphism. r

4.7. Cohomology operations. In this section, we recall the definition of the intrinsic
Lie bracket on the chain complex defining the cohomology theories for algebras over a
Koszul operad. We use the previous section to define another Lie bracket on the same
space. Because of the symmetries, this operation vanishes on cohomology.

Let ðP; mPÞ and ðQ; mQÞ be two augmented dg-operads and let r : P! Q be a mor-
phism of augmented dg-operads. This morphism makes Q a module over P. Denote by
mP
ð1;1Þ the partial composition of P, that is the composition of two non-trivial operations

of P.

Definition (Derivation). A homogenous morphism q : P! Q is a homogenous deri-

vation of r if

q � mP
ð1;1Þ ¼ mQ

ð1;1Þ � ðqn rÞ þ mQ
ð1;1Þ � ðrn qÞ:

This formula, applied to elements p1 n p2 of PnP, where p1 and p2 are homogeneous
elements of P, gives

q � mPðp1 n p2Þ ¼ mQ
�
qðp1Þn rðp2Þ

�
þ ð�1Þjqj jp1jmQ

�
rðp1Þn qðp2Þ

�
:

A derivation is a sum of homogeneous derivations. The set of homogeneous derivations
with respect to r of degree n is denoted DernrðP;QÞ and the set of derivations is denoted
Der�rðP;QÞ or simply DerðP;QÞ when the morphism r is obvious.

We recall the definition of the cohomology of P-algebras, when P is a Koszul

operad. Let A be a P-algebra, that is there is a morphism of operads P!f EndðAÞ. Denote
by WðP

!

Þ ¼
�
Fðs�1P

!

Þ; q
�
the cobar construction of P

!

, where the di¤erential q is the
unique derivation which extends the partial coproduct of the Koszul dual cooperad P

!

.
Since P is a Koszul operad, WðP

!

Þ is a quasi-free resolution of P.

WðP

!

Þ ���!@ P

r

???yf

EndðAÞ:

 ���
���

Lemma 30. Let ðR; qÞ !e P be a resolution of P and let f be an homogeneous deri-

vation of degree n in Dernr
�
R;EndðAÞ

�
. One has f � q A Dern�1r

�
R;EndðAÞ

�
.
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Proof. The degree of f � q is n� 1. It remains to show that f � q is a derivation.
Since ðR; qÞ is a dg-operad, we have

f � q � mR ¼ f � mR � ðqn Idþ Idn qÞ

¼ mEndðAÞ � ð f n rþ rn f Þ � ðqn Idþ Idn qÞ

¼ mEndðAÞ �
�
ð f � qÞn rþ rn ð f � qÞ

�
:

Since R is concentrated in non-negative degree and A is concentrated in degree 0, the com-
posite r � q ¼ f � e � q is null. r

The deformation theory of the map P!f EndðAÞ is studied via the following cochain
complex defined by M. Markl in [54]. The cohomology of a P-algebra A is defined on the
space of derivations of r (see also [66], [55] and [40]).

Definition. The cohomology of a P-algebra A is defined by the (deformation) chain
complex

C�PðAÞ :¼
�
Der�r

�
WðP

!

Þ;EndðAÞ
�
; q
�
;

where the di¤erential q is the pullback by q, that is qð f Þ :¼ f � q.

Since WðP

!

Þ is a free operad, we have

Der�r
�
WðP

!

Þ;EndðAÞ
�
GHom�S

�
Fðs�1P

!

Þ;EndðAÞ
�
GHom��1S

�
P

!

;EndðAÞ
�

GHom��1k

�
P

!

ðAÞ;A
�
;

where HomSðM;NÞ denotes the set of S-equivariant maps between the S-modules M and
N.

As in the paper of M. Kontsevich and Y. Soibelman [40], we can consider the aug-
mented chain complex Hom�S

�
P

!

;EndðAÞ
�
GHom�k

�
P

!

ðAÞ;A
�
. Up to a shift of degree,

the last space corresponds to the Hochschild (co)chain complex for associative algebras,
Harrison cohomology of commutative algebras and Chevalley-Eilenberg for Lie algebras.
Notice that in the literature, this cohomology is called the cohomology of A with coe‰cient
in A. Since this chain complex is defined to control the deformation of the morphism F,
that is the structure of P-algebra on A, we call it the cohomology P with coe‰cient in A

or simply the cohomology of A, once the operad is chosen.

In these three cases, the chain complex is a dg-Lie algebra whose bracket is often
called the intrinsic bracket (see J. Stashe¤ [68]). The space Homk

�
P

!

;EndðAÞ
�
of mor-

phisms from a dg-cooperad to a dg-operad is an S-module with the action by conjugation,
that is ð f :sÞðpÞ :¼

�
f ðp:s�1Þ

�
:s. Moreover, it is a dg-operad, called the convolution operad

in [11], Section 1. On the direct sum of the Sn-modules of an operad, one can define a pre-
Lie product ? whose anti-symmetrization gives a Lie bracket. When the operad is the con-
volution operad Hom�k

�
P

!

;EndðAÞ
�
, the preLie product is a degree 0 operation given by

f ? g :¼ P

! ��!D0 P

!

nP

! ��!fng
EndðAÞnEndðAÞ ��!mA EndðAÞ

34 Vallette, Manin products

(AutoPDF V7 20/12/07 16:12) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1–60 1878_5698 (p. 34)



where D0 is the partial coproduct of the cooperad P

!

. The intrinsic Lie bracket is defined by

½ f ; g� :¼ f ? g� ð�1Þj f j jgjg ? f . The space of S-equivariant morphisms HomS

�
P

!

;EndðAÞ
�

is equal to the space of invariants Homk

�
P

!

;EndðAÞ
�S

with respect to the action by conju-
gation. It is a subspace of the convolution operad Homk

�
P

!

;EndðAÞ
�
stable under the pre-

Lie product ?. (See for instance [72] for a proof of this in the coinvariant context. Since we
work over a field k of characteristic 0, the isomorphism between invariants and coinvar-
iants allows us to conclude.) The induced Lie bracket on C�PðAÞ ¼ HomS

�
P

!

;EndðAÞ
�
de-

fines an intrinsic Lie bracket on cohomology. (We refer the reader to [60] a complete study
of the deformation complex.)

When P ¼As, it is exactly the structure defined by M. Gerstenhaber in [26] and
when P ¼Lie it is the Lie bracket of Nijenhuis and Richardson, which controls the formal
deformations of P-algebra structure (see D. Balavoine [6], Section 4).

Let A be a P-algebra and C be a P

!

-coalgebra, we have by Proposition 29 that
HomkðC;AÞ is naturally endowed with a structure of P! �P-algebra and Liehki-algebra
(see also Section 3.2). Applied to C ¼ P

!

ðAÞ, this result gives that the chain complex
C�PðAÞ is a P �P!-algebra and a Liehki-algebra. In the binary case, it means that
Hom�k

�
P

!

ðAÞ;A
�
is equipped with another Lie bracket f ; g of degree �1. Let a be a mor-

phism of degree �1 defined as follows:

a : P

!

!! P

!

ð1Þ ¼ P

!

ð2Þ ¼ sPð2Þ ! Pð2ÞqP!F EndðAÞ:

It is a twisting cochain, that is a is solution to the Maurer-Cartan equation a ? a ¼ 0, when
P and A are concentrated in degree 0 (see Getzler-Jones [30], Section 2.3). The Lie bracket
f f ; gg is equal to

P
!

!D P
!

�P
!

!! P
!

ð2ÞnS2
P

!n2 ��������������!anð fngþð�1Þj f j jgjgn f Þ
EndðAÞnEndðAÞ !mA EndðAÞ:

Note that in the binary case, the latter Lie bracket f ; g is not equal to the intrinsic Lie
bracket ½ ; �. For instance, there is a shift of degree between the two.

Lemma 31. For every f and g in C�PðAÞ, we have

qð f Þ ¼ ½ f ; a� and f f ; gg ¼ qf ? gþ ð�1Þj f jf ? qg� qð f ? gÞ:

Proof. The proof is straightforward and left to the reader. r

Equipped with the intrinsic Lie bracket ½ ; �, C�PðAÞ becomes a dg-Lie algebra. The
second formula shows that the Lie bracket f ; g vanishes on cohomology. This result and
formula can be explained as follows. The preLie product comes from the partial composi-
tion of the operad. The general composition product of an operad defines symmetric braces.
Since the partial composition of the operad generates the global one, the preLie product
generates the symmetric braces. (See also J.-M. Oudom and D. Guin [62] and [41] for a
proof of this result.) Therefore, we cannot expect to have other products than the intrinsic
Lie bracket in general. In particular examples, it would be interesting to see if the structure
of P �P!-algebra induces a non-trivial structure on cohomology. We will see in 5.3 how to
refine this study when the operad is not symmetric (regular).
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5. Black and white square-products for regular operads

K. Ebrahimi-Fard and L. Guo in [22] and J.-L. Loday in [45] defined and used an
analog of Manin’s black product for regular operads that they called the black square prod-

uct. In this section, we give the conceptual definitions of Manin’s black and white square
products for regular operads. They are not equal to the black and white ‘‘circle’’-products
in the category of operads. Actually, they come from the black and white products in the
category of non-symmetric operads.

5.1. Definitions of non-symmetric and regular operads. Recall that a non-symmetric

operad is an operad without the actions of the symmetric groups. From a non-symmetric
operad fP 0ngn AN� , we can associate an S-module by the collection of the free Sn-modules
on PðnÞ :¼ P 0n nk k½Sn�. The composition product for the operad P is defined from the
non-symmetric one. Such an operad is called a regular operad. Denote S this functor from
non-symmetric operads to operads. Therefore, the category of regular operads is the image
of S and is equivalent to the category of non-symmetric operads. Denote by U the inverse
functor:

non-symmetric operads T
U

S
regular operads:

Let P ¼FðVÞ=ðRÞ be a binary quadratic regular operad. In that case, we have that V and
R are regular modules, that is V ¼ V 0nk k½S2� and R ¼ R 0nk k½S3�. The non-symmetric
operad P 0 ¼ UðPÞ is once again binary and quadratic. It is given by P 0 ¼ FðV 0Þ=ðR 0Þ.

5.2. Definitions of black and white square-products. A non-symmetric operad is a
monoid in the category of non-negative graded modules with a non-symmetric version of
� (see Appendix A). Under the Hadamard product, this category forms a 2-monoidal cate-
gory. Hence, we can apply arguments of Section 3 and consider the morphism F and the
induced white product for non-symmetric operads. From two binary quadratic regular op-
erads P ¼FðVÞ=ðRÞ and Q ¼FðWÞ=ðSÞ, we study the associated white product

UðPÞ �UðQÞ :¼FðV 0nW 0Þ=
�
F�1

�
R 0nFðW 0Þ þFðV 0ÞnS 0

��
:

The idea is now to come back to the category of regular operads using the functor S.

Definition (White square-product). The white square-product of two binary qua-
dratic regular operads P and Q is defined by the formula

PjQ :¼ S
�
UðPÞ �UðQÞ

�
:

More explicitly, the white square-product of P and Q is equal to
PjQ ¼FðV 0nW 0n k½S2�Þ=

��
F�1

�
R 0nFðW 0Þ þFðV 0ÞnS 0

��
n k½S3�

�
.

Note that the definition given above does not correspond to Definition 3:1 of K.
Ebrahimi-Fard and L. Guo in [22] (see Remark below).

Proposition 32. Let A be a P-algebra and B a Q-algebra, their tensor product AnB

is an algebra over the white square-product PjQ.
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Proof. The proof is the same as Proposition 11. r

Let V be an S2-module. The part FðVÞð3Þ with 3 inputs of the free operad on V is
isomorphic to

FðVÞð3Þ ¼
�
V nS2

ðV n kl knVÞ
�
nS2

k½S3�;

where the summand V n ðV n kÞ corresponds to the compositions on the left and the
summand V n ðknVÞ corresponds to the compositions on the right . When V is a sum
of regular representations V ¼ V 0n k½S2�, we have

FðVÞð3Þ ¼
�
V 0n ðV 0n kÞlV 0n ðknV 0Þ

�
n k½S3�:

Therefore, FðVÞð3Þ can be identified with 2 copies of V 0nV 0 represented by the following

types of tree and . These two copies correspond to the part of arity 3 of the free non-
symmetric operad on V 0. We denote the first composition based on the pattern by m �1 n
and the second one based on by m �2 n, where m is below n.

In the appendix B of [46], J.-L. Loday described the non-degenerate bilinear form
h ; i for regular operads. It comes from the following one for non-symmetric operads:

FðV 0Þð3ÞnFðV 0�Þð3Þ !h;i k;

hm �1 n; z �1 xi :¼ þzðmÞ:xðnÞ;

hm �2 n; z �2 xi :¼ �zðmÞ:xðnÞ;

the other products being null.

We define the black product of binary non-symmetric operad like in 4.3 (the non-
degenerate bilinear form is given below). Applying the same ideas, we have the analog of
Lemma 18 and Proposition 19.

Lemma 33. Let

P ¼FðV 0n k½S2�Þ=ðR 0n k½S3�Þ and Q ¼FðW 0n k½S2�Þ=ðS 0n k½S3�Þ

be two regular operads such that the V 0 and W 0 are finite dimensional. The orthogonal of

CðR 0nS 0Þ for h ; i is
�
F�1�

�
R 0?nFðW 0�Þ þFðV 0�ÞnS 0?

��
.

Definition (Black square product). Let P 0 ¼FðV 0Þ=ðR 0Þ and Q 0 ¼FðW 0Þ=ðS 0Þ be
two binary quadratic non-symmetric operads with finite dimensional generating spaces.
Define their black product by the formula

P 0 � Q 0 ¼FðV 0nW 0Þ=
�
CðR 0nS 0Þ

�
:

The black square product of two binary quadratic regular operads is defined by

PnQ :¼ S
�
UðPÞ �UðQÞ

�
:
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Proposition 34. For binary quadratic regular operads generated by finite dimensional

modules, this definition of black product verifies ðPnQÞ! ¼ P! jQ!.

Finally, we can use the particular form of the bilinear product h ; i to make explicit
the morphism C and show that the black square-product defined here corresponds to the
one of [45] and [22].

Proposition 35. Under the same hypotheses, let rn s be an elementary tensor

of R 0nS 0. Denote r ¼ r1 þ r2, where r1 is the part of r corresponding to the composi-

tions of the form and r2 is the part of r corresponding to the compositions of

the form . In the same way, write s ¼ s1 þ s2. The image of rn s under C is

Cðrn sÞ ¼ F�1ðr1 n s1Þ �F�1ðr2 n s2Þ.

Proof. Note that r1 n s1 and r2 n s2 belong to ImF. For X A FðV 0�nW 0�Þð3Þ,
denote the image of X under F� by F�ðXÞ ¼

P
FV 0� ðXÞnFW 0� ðXÞ. More precisely,

we decompose the image of X under F� with the two types of compositions
F�ðXÞ ¼ F�ðX1 þ X2Þ ¼

P
1 FV 0� ðX1ÞnFW 0� ðX1Þ þ

P
2 FV 0� ðX2ÞnFW 0� ðX2Þ. We have

hF�1ðr1 n s1Þ �F�1ðr2 n s2Þ;FðXÞðXÞiV 0nW 0

¼ hF�1ðr1n s1Þ;FðXÞðXÞ1iV 0nW 0 � hF�1ðr2 n s2Þ;FðXÞðX Þ2iV 0nW 0

¼
P

1hr1;FV 0� ðX1ÞiV 0 :hs1;FW 0� ðX1ÞiW 0 þ
P

2hr2;FV 0� ðX2ÞiV 0 :hs2;FW 0� ðX2ÞiW 0

¼
P

1hr;FV 0� ðX1ÞiV 0 :hs;FW 0� ðX1ÞiW 0 þ
P

2hr;FV 0� ðX2ÞiV 0 :hs;FW 0� ðX2ÞiW 0

¼
P

hr;FV 0� ðXÞiV 0 :hs;FW 0� ðXÞiW 0

¼ ð
P

hr;�iV 0 :hs;�iW 0 Þ �F�ðX Þ: r

Corollary 36. The black-square product defined here is equal to the one defined in [22]
and in [45].

Remark. The white square-product is equal to

PjQ :¼FðV 0nW 0n k½S2�Þ=
��
F�1

�
R 0nFðW 0Þ þFðV 0ÞnS 0

��
n k½S3�

�
and the black square-product to PnQ :¼FðV 0nW 0n k½S2�Þ=

��
CðR 0nS 0Þ

�
n k½S3�

�
.

The definition of j proposed by K. Ebrahimi-Fard and L. Guo in [22] corresponds to
C
�
R 0nFðW 0Þ þFðV 0ÞnS 0

�
instead of F�1

�
R 0nFðW 0Þ þFðV 0ÞnS 0

�
. We have

F�1
�
R 0nFðW 0Þ þFðV 0ÞnS 0

�
HC

�
R 0nFðW 0Þ þFðV 0ÞnS 0

�
. But the second

module can be slightly bigger than the first one (see the example of DiasjDias in [22],
page 309). This explains why the white square-product defined in [22] is not the Koszul
dual of the black square-product.

With the explicit form of the black square-product, we get the following property
which is [45], Proposition 2.4.

Proposition 37 ([45]). For two binary quadratic regular operads P and Q, there exists
a canonical epimorphism PnQ!! PjQ.
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Proof. We have to show that F �C ðR 0nS 0ÞHR 0nFðW 0Þð3Þ þFðV 0Þð3ÞnS 0.
Let rn s be an elemental tensor of R 0nS 0. Denote rn s ¼ ðr1 þ r2Þn ðs1 þ s2Þ. From
Proposition 35, we get

F �Cðrn sÞ ¼ r1 n s1 � r2 n s2 ¼ ðr1 þ r2Þn s1 � r2 n ðs1 þ s2Þ

A R 0nFðW 0Þð3Þ þFðV 0Þð3ÞnS 0: r

The proposition means that any PjQ-algebra is a PnQ-algebra. This result to-
gether with Proposition 32, gives the following corollary ([22], Proposition 3.3).

Corollary 38 ([22]). For any P-algebra A and Q-algebra B, their tensor AnB is a

PnQ-algebra.

Remark. The operads wþ and w� discovered by J.-L. Loday in [44] factors this
projection

!

!

Dend nDias ���!! wG ���!! Dend jDias:

Going from the left to the right, there is one more relation each time. (The dimensions of
the spaces of relations are 15, 16 and 17 respectively.)

5.3. Adjunction. We can apply the same methods as in Section 4.6 to prove the
same kind of adjunction for black and white square products for regular operads. Consider
the category of k-ary quadratic regular operads denoted by k.q-Reg. One can extend black
and white square products in this category. Recall from [33] that a totally associative k-ary

algebra is a module equipped with a regular k-ary operation such that all the quadratic
compositions are equal. Denote the corresponding operad by TAshki. Dually, a partially

associative k-ary algebra is a module equipped with a regular k-ary operation such that the
sum of all quadratic compositions is zero. Denote the corresponding operad by PAshki.
Gnedbaye proved that these two operads are Koszul dual to each other.

Proposition 39. The black and white square products endow the category of k-ary

quadratic regular operads with a structure of symmetric monoidal category, where the operad
PAshki is the unit object for n and the operad TAshki is the unit object for j.

Theorem 40. There is a natural isomorphism

Homk:q:RegðPnQ;RÞGHomk:q:RegðP;Q! jRÞ:

Proposition 41. For every k-ary quadratic regular operad P, there is a canonical mor-

phism of operads PAshki !i P! jP, defined by the commutative diagram

PAshki ���!l P! nP

i

P! jP:

 ��� ���!F
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This proposition can be seen as a refinement of Proposition 29. When P is a k-ary
regular quadratic operad, the map Liehki ! P! nP factors through PAshki, where the
morphism Liehki ! PAshki is induced by the anti-symmetrization of the k-ary partially
associative product as in the binary case.

5.4. Non-symmetric cohomology operations. In this section, we refine the arguments
of Section 4.7 for non-symmetric (regular) operads. This gives non-vanishing natural oper-
ations on the deformation chain complex of any algebras over such operads. More pre-
cisely, we prove that, under some assumptions, the (co)chain complex defining the coho-
mology of algebras is a multiplicative operad.

Recall from [28] that an operad with multiplication is a non-symmetric operad P
endowed with a morphism As! P. Let P be a finitely generated binary non-symmetric
Koszul operad. Following Section 4.7, the chain complex defining the cohomology of a
P-algebra A is equal to C�PðAÞ ¼ Hom�k

�
P

!

;EndðAÞ
�
which is a non-symmetric (convo-

lution) operad. By Proposition 41, there is a morphism of operads As! P! nP. Since

P

!

¼ P! �, we have

As! P! nPGHomkðP

!

;PÞ !F� Homk

�
P

!

;EndðAÞ
�
:

These results form the following proposition.

Proposition 42. For every finitely generated binary non-symmetric Koszul operad P
and every P-algebra A, the chain complex defining its cohomology C�PðAÞ is an operad with

multiplication.

The multiplication As! P of an operad P allows us to define a canonical cosimpli-
cial structure on it (see [50], Section 3) and then a di¤erential map d by alternate summa-
tion (see [28], Formula (5)). Denote by m the image of the associative operation. The face
maps d i : PðnÞ ! Pðnþ 1Þ are defined by

d iðpÞ :¼
m �2 p if i ¼ 0;

p �i m if 0 < i < nþ 1;

m �1 p if i ¼ nþ 1:

8<
:

The di¤erential d is equal to dð f Þ :¼ m ? f � ð�1Þj f jf ?m ¼ ½m; f �.

Lemma 43. With the same assumptions, the di¤erential qð f Þ on C�PðAÞ is equal to

ð�1Þj f jdð f Þ. Hence, the chain complex C�PðAÞ is always cosimplicial.

Proof. The image of the associative operation in Homk

�
P

!

;EndðAÞ
�
is the map

a : P

!

ð2Þ ! HomðAn2;AÞ defined in Section 4.7. We prove in Lemma 31 that the di¤eren-
tial on C�PðAÞ is equal to qð f Þ ¼ ½ f ; a� ¼ ð�1Þj f jdð f Þ. r

Therefore, the chain complex C�PðAÞ is endowed with two types of operations: braces
operations induced by the non-symmetric operadic structure and an associative operation
called the cup product coming from the properties of Manin’s products. In [28], M. Gersten-
haber and A. A. Voronov defined the notion of homotopy G-algebra which gives the com-
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patibility between these types of operations. Their purpose was to describe the operations
acting of the chain complex of Hochschild cohomology of an associative algebra. Actually,
the structure of homotopy G-algebra on the deformation chain complex and the structure
of Gerstenhaber algebra on cohomology is universal among finitely generated binary non-
symmetric Koszul operads.

Corollary 44. For every finitely generated binary non-symmetric Koszul operad P and

every P-algebra A, the chain complex C�PðAÞ is a homotopy G-algebra and the cohomology

space H�PðAÞ is a Gerstenhaber algebra.

Proof. Apply [28], Theorem 3, which asserts that any multiplicative operad induces
a homotopy G-algebra on the direct sum of its components. To prove the second part, ap-
ply the computations of the proof of Corollary 5 of [28]. r

5.5. Generalized Deligne’s conjecture. Finally, we extend and prove Deligne’s con-
jecture to any algebra over a finitely generated binary non-symmetric Koszul operad, which
includes the original case of associative algebras.

The little disk operad D2 is a topological operad defined by configurations of disks on
the plane. In 1976, F. Cohen showed that the homology operad H�ðD2Þ is equal to the op-
erad coding Gerstenhaber algebras [19]. This led P. Deligne to make the following wish ‘‘I
would like the complex computing Hochschild cohomology to be an algebra over [the sin-
gular chain operad of the little disks] or a suitable version of it’’ in [20]. By suitable version
of it, he meant another operad homotopically equivalent to D2. This conjecture can be seen
as a lifting on the level of chain complexes of the result of F. Cohen. In 1999, J. E. McClure
and J. H. Smith gave a prove of this conjecture in the following way. First, they construct a
topological operad C whose chain version acts on any multiplicative operad. Then, they
show that this operad is equivalent to the little disks operad. This proof with Proposition
42 shows that Deligne conjecture can be generalized to any finitely generated binary non-
symmetric Koszul operads and is not specific to the case of associative algebras.

Theorem 45. For every finitely generated binary non-symmetric Koszul operad P and

every P-algebra A, the chain complex C�PðAÞ is an algebra over an operad equivalent to the

singular chains of the little disks operad.

Proof. Since C�PðAÞ is an operad with multiplication, the operad C of [50] acts on it.
And this operad is weakly equivalent to the little disks operad by [50], Theorem 3.3. r

Notice that the non-symmetric case is very di¤erent from the symmetric one. The Lie
bracket f ; g described in Section 4.7 vanishes on cohomology. When the algebra is mod-
elled by a non-symmetric operad, this Lie bracket is the symmetrization of an associative
operation, the cup-product, which is not necessarily trivial on cohomology.

In [56], M. Markl defined the notion of natural operations on cohomology and asked
a few questions and conjectures about the operad BP generated by these operations. Here
we have proved that, for binary non-symmetric Koszul operads, the Gerstenhaber operad
imbeds into BP. For more precise statements depending on the operad P, one has to work
with P! �P. In the symmetric case, operations of P! �P could give non-trivial operations
in cohomology.
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Remark. In [73], D. Yau proved this generalized Deligne’s conjecture for a few op-
erads found by J.-L. Loday. His method is based on a notion of pre-operadic system which
ensures that C�PðAÞ ¼ Hom�k

�
P

!

;EndðAÞ
�
is an operad. Actually this notion comes from

the axioms of a basis for the Koszul dual cooperad. The cohomology space of an algebra
over any non-symmetric Koszul operad is always a non-symmetric operad (convolution
operad from the Koszul dual cooperad to the endomorphism operad). Then, the author
shows, case by case, that the cohomology of the operad is multiplicative. In fact, the ad-
junction of Manin’s products for non-symmetric binary operads always provides a mor-
phism As! C�PðAÞ.

5.6. The operad Quad and its Koszul dual. In this section, we study the example of
black square-product Quad ¼ Dend nDend introduced by M. Aguiar and J.-L. Loday in
[1]. We prove that the Koszul dual of Quad is the operad

Quad ! ¼ PermnDias ¼ Perm �Dias:

The operad Dend is a split of one associative product ? into two products � and
	, ? ¼�þ	. The operad Quad was defined by M. Aguiar and J.-L. Loday in [1]
as a split of an associative product ? into four products %, &, . and -, that is
? ¼%þ&þ.þ-. It was proved in [22] that this operad Quad is equal to the black
square-product Dend nDend. Therefore one can interpret the splitting of associativity
with the black square-product with Dend. At the end of their paper, M. Aguiar and J.-L.
Loday raised one question ‘‘what is the Koszul dual of the operad Quad?’’ and two conjec-
tures. The first conjecture deals with the dimensions of the Sn-modules QuadðnÞ and the
second one is that the operad Quad is Koszul. In the rest of this section, we answer these
questions.

The previous section gives a direct answer to the first question.

Proposition 46. The Koszul dual of Quad is equal to Quad ! ¼ DiasjDias.

Proof. Since the Koszul dual of Dend is the operad Dend ! ¼ Dias ([46], Proposition
8.3), we have

Quad ! ¼ ðDend nDendÞ! ¼ Dend ! jDend ! ¼ DiasjDias;

from Proposition 34. r

It remains to use the explicit form of the white square-product to describe
DiasjDias.

Theorem 47. The operad Quad ! ¼ DiasjDias is isomorphic to

PermnDias ¼ PermnPermnAs:

Proof. Denote the basis of Dend 0ð2Þ by �:kl	:k and its dual basis, the basis
of Dias 0ð2Þ, by a:k l‘:k. The induced basis of Quad 0ð2Þ ¼ ðDend nDendÞ0ð2Þ is
f�n�;�n	;	n�;	n	g and the induced basis of Quad !0ð2Þ ¼ ðDiasjDiasÞ0ð2Þ
is fana;an‘;‘na;‘n‘g. The relations of Dias are easy to remember. Represent
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the operation a by the tree and the operation ‘ by the tree . Any element of
Fða:k l‘:kÞð3Þ can be seen as a tree with exactly one path from one leaf to the root.
For example, the composition a �1 ‘ corresponds to the tree . To get the relations

of Dias, identify the trees with paths from the same leaf. For instance, we have
a �1 ‘ ¼ ‘ �2 a, which corresponds to ¼ . The relations of Dias are

a �1 a ¼ a �2 a ¼ a �2 ‘ ðLÞ;
a �1 ‘ ¼ ‘ �2 a ðMÞ;
‘ �1 a ¼ ‘ �1 ‘ ¼ ‘ �2 ‘ ðRÞ;

8><
>:

where the first line corresponds to the Left leaf, the second one to the Middle leaf and the
last one to the Right leaf. For simplicity, denote these compositions and relations by

L1 ¼ L 02 ¼ L 002 ;

M1 ¼M2;

R 01 ¼ R 001 ¼ R2:

8><
>:

The operad Dias is equal to FðV 0n k½S2�Þ=ðR 0n k½S3�Þ. One can see that the following
relations are elements of

�
RnFðV 0Þ þFðV 0ÞnR

�
X ImF:

ðL;LÞ L1 nL1 ¼ L 02 nL 02 ¼ L 002 nL 02 ¼ L 02 nL 002 ¼ L 002 nL 002 ;

ðL;MÞ L1 nM1 ¼ L 02 nM2 ¼ L 002 nM2;

ðL;RÞ L1 nR 01 ¼ L1nR 001 ¼ L 02 nR2 ¼ L 002 nR2;

ðM;MÞ M1nM1 ¼M2nM2:

8>>><
>>>:

The other ones are obtained by the symmetries $ and an b$ bn a. We get

23 linearly independent elements in
�
RnFðV 0Þ þFðV 0ÞnR

�
X ImF. Since the

dimension of Quad 0ð3Þ is 23 ¼ 32� 9, we know that these elements form a basis of�
RnFðV 0Þ þFðV 0ÞnR

�
X ImF. Hence, they give the relations defining Quad !.

Interpret these relations in the same way as the ones of Dias. An element of
F
�
ða:k l‘:kÞn ða:k l‘:kÞ

�
ð3Þ can be seen as a tree with two kinds of paths, one given

by the left side of n and the second one by the right side of n. For instance, the tree
represents ðan‘Þ �1 ð‘naÞ, where the left side corresponds to ¼ and the right side to � � � .
This produces two indexes for the leaves. With this identification, the relations of Quad !

mean that any elements written with trees such that the same leaves are indexed by the
same ‘‘colors’’ are equal. Therefore, a basis for Quad !ðnÞ is given by planar corollas with n

leaves indexed by two colors. The composition of such trees is a corolla and to know which
leaf is indexed by which color, follow the path of the same color. As a consequence, we
have DiasjDias ¼ PermnDias. (A basis for the operad Dias is given by corollas with
one leaf emphasized. Tensoring with Perm induces another independent index of the
leaves. And the compositions are the same.) r

Remark. More generally, we get the duals of the operad coding octo-algebras of P.
Leroux [42] and its follow-up. Since Octo ¼ Dend n 3, we get Octo! ¼ Permn3 nAs and,
for any n A N,

�
Dend n n

�! ¼ Diasj n ¼ PermnnnAs.
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Corollary 48. The dimensions of the components of the Koszul dual of Quad are equal

to

dim
�
Quad !ðnÞ

�
¼ n2:n!:

Proof. We have dim
�
Quad !ðnÞ

�
¼ dim

�
PermðnÞnk DiasðnÞ

�
¼ n2:n!. r

Proposition 17 gives that

DiasjDias ¼ PermnDias ¼ Perm �Dias ¼ PermnPermnAs ¼ Perm �Perm �As:

We have Dias ¼ SðPermÞ and DiasjDias ¼ SðPerm �PermÞ ¼ SðPermn2Þ. By duality,
we get another form for Quad.

Corollary 49. We have Quad ¼ Perm �Perm �As.

5.7. Koszulity of Quad and other operads defined by square products. Aguiar
and Loday made in [1] the conjecture that the operad Quad is Koszul. We show this
statement using poset’s method of [70]. More generally, we prove that the operads of
the form Dend n n and Diasj n are Koszul. P. Leroux introduced in [43] the operad
Ennea ¼TriDend nTriDend. We prove the same results for the family TriDend n n and
Triasj n. All these families provide infinitely many examples of the generalized Deligne’s
conjecture proved in Theorem 45.

In order to study the homological properties of the algebras over an operad, it is cru-
cial to prove that the operad is Koszul. We refer the reader to the paper of B. Fresse [24] or
to the book of M. Markl, S. Shnider and J. Stashe¤ [58] for a full treatment of the subject.
Since an operad is Koszul if and only if its Koszul dual is Koszul, we work with the sim-
plest one to prove that the pair is a pair of Koszul operads. In the case of the operads Quad
and Quad ! ¼ PermnDias, we will prove that the Koszul property holds for the last one,
PermnDias.

Let P be an algebraic operad coming from an operad in the category of sets. For in-
stance, it is the case when the relations defining the operads only involve equalities between
two terms and no linear combination. The operads As, Com, Perm and Dias are of this
type. In [70], we defined a family of partition type posets associated to such an operad P
and proved that the operad is Koszul over Z and over any field k if and only if each max-
imal intervals of the posets are Cohen-Macaulay.

We saw in the proof of Theorem 47 that

Quad ! ¼ PermnDias ¼ PermnPermnAs.

Therefore, Quad ! is a set operad with basis fði; j; sÞ j 1e i; je n; s A Sng. The partitions
associated to Quad ! are of the form

�
sð1Þ; . . . ; sðiÞ; . . . ; sð jÞ; . . . ; sðnÞ

�
, where 1e i; je n

and s A Sn. The order between the Quad !-partitions is given by the refinement of partitions
with respect to the two indexes. For instance, we have fð3; 1; 5Þ; ð2; 4Þge fð3; 1; 5; 2; 4Þg.

Lemma 50. For each n A N, the maximal intervals of the poset PPermnDiasðnÞ associ-
ated to the operad PermnDias are totally semi-modular.
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Proof. The proof is the same as [18], Lemma 1.10, 1.15 and 2.6. r

Theorem 51. The operad Quad is Koszul over Z.

Proof. The maximal intervals of the posets PPermnDiasðnÞ are totally semi-modular.
Therefore they are Cohen-Macaulay over Z by [5], [23]. One can see that the operad
PermnDias is a basic set operad (see [70], page 6). Then we can apply [70], Theorem
9. r

Corollary 52. The dimensions of the homogeneous components of Quad are equal to

dim
�
QuadðnÞ

�
¼ ðn� 1Þ!

P2n�1
j¼n

3n

nþ 1þ j

� �
:

j � 1

j � n

� �
:

Proof. When an operad P is Koszul, there are relations between the dimensions of
PðnÞ and the dimensions of P!ðnÞ (see [31], Theorem (3.3.2), or [46], Appendix B.5.c.). Use
these relations with Corollary 48 to conclude. r

More generally, we have seen that, for every n A N,
�
Dend n n

�! ¼ PermnnnAs,
which is a basic set operad. The related partitions have the same form as the ones for
Quad ! but with n types of indices instead of 2.

Theorem 53. For every n, the operad Dend n n is Koszul over Z.

Proof. Apply the same arguments. r

J.-L. Loday and M. Ronco introduced in [47] the pair of Koszul dual operads
Trias and TriDend. A Trias-algebra is a Dias-algebra with an extra operation. In [70],
we defined a commutative analogue of Trias which we denoted by ComTrias. The
ComTrias-partitions are partitions with at least one element of each block emphasized.
The Trias-partitions are ordered partitions with at least one element in the block empha-
sized. Using the same ideas as before, we have the following results. The operad
Triasj n GComTriasnn nAs. The maximal intervals of PTriasj n are totally semi-modular.

Theorem 54. For every n, the operads Triasj n and TriDend n n are Koszul over Z.

Recall from [22], Proposition 3.5, that TriDend nTriDend is isomorphic to the
Ennea operad defined by P. Leroux in [43]. The previous theorem gives that the Ennea op-
erad is Koszul over Z.

From this result, we get four infinite families of operads for which Deligne’s conjec-
ture holds.

Corollary 55. Let P be an operad of the form Dend n n, Diasj n, TriDend n n or

Triasj n. Then for any P-algebra A, the chain complex C�PðAÞ is an algebra over an operad

equivalent to the singular chains of the little disks operad.

Proof. By the previous theorems, these operads are finitely generated binary non-
symmetric and Koszul. Then apply Theorem 45. r
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Notice that the poset’s method of [70] allowed us to prove that these operads are Kos-
zul over Z. Since the proof of Deligne’s conjecture [50] also works over the ring of integers,
this last corollary holds over Z.

Appendix A. Associative algebras, operads and properads

This appendix is a short survey on the notions of associative algebras, operads and
properads which are the main examples of 2-monoidal categories treated in this text. For
a complete treatment of the subject, we refer the reader to [69].

A.1. Associative algebras. Associative algebras, operads and properads are monoids
in some monoidal categories.

Let k be the ground field and let ðk-Mod; nk; kÞ be the monoidal category of k-
modules equipped with the tensor product over k.

Definition (Associative algebra). A monoid ðA; m; hÞ in ðk-Mod; nk; kÞ is an asso-

ciative algebra. The product m : Ank A!
m
A is associative and k !h A is the unit of A.

The product of elements a1; . . . ; al of A can be represented by an indexed branch, see
Figure 2.

Example. Let M be a k-module. Denote by EndðMÞ :¼ HomkðM;MÞ the space of
endomorphisms of M. With the composition of endomorphisms, EndðMÞ is an associative
algebra.

An associative coalgebra is a comonoid in ðk-Mod;nk; kÞ, that is a monoid in the
opposite category.

A.2. Operads. An S-module is a collection fPðnÞgn AN� of right modules over the
symmetric group Sn. In the category of S-modules, one defines a monoidal product by
the following formula:

P � QðnÞ :¼
L

1elen

� L
i1þ���þil¼n

PðlÞnk

�
Qði1Þnk � � �nk QðilÞ

�
nSi1

�����Sil
k½Sn�

�
Sl

;

Figure 2. Product of a1; . . . ; al .
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where the coinvariants are taken with respect to the action of the symmetric group Sl given
by ðpnk q1 . . . ql nk sÞn :¼ pnnk qnð1Þ . . . qnðlÞnk n

�1:s for p A PðlÞ, qj A QðijÞ, s A Sn and
n A Sl , such that n is the induced block permutation.

The notion of S-module is used to model the multi-linear operations acting on some
algebras. The monoidal product � reflects the compositions of operations and can be repre-
sented by 2-levelled trees whose vertices are indexed by the elements of P and Q, see Figure
3. The unit of this monoidal category is given by the S-module I ¼ ðk; 0; 0; . . .Þ, which cor-
responds to the identity operation represented by j.

Definition (Operad). A monoid ðP; m; hÞ in ðS-Mod; �; IÞ is called an operad. The
associative product m : P �P! P is called the composition product and h : I ! P is the
unit.

Example. Let M be a k-module and consider EndðMÞ :¼
L

n AN�
HomkðMnn;MÞ.

The permutation of the inputs of a morphism in HomkðMnn;MÞ makes EndðMÞ into an
S-module. With the natural composition of morphisms, EndðMÞ is an operad called the
endomorphism operad.

A cooperad is a comonoid in ðS-Mod; �; IÞ.

To every k-module V , one can associate an S-module ~VV :¼ ðV ; 0; 0; . . .Þ concentrated
in arity 1. This defines an embedding of k-Mod into S-Mod. One can check that this
embedding is compatible with the monoidal products, that is gVnWVnW ¼ ~VV � ~WW . Therefore,
ðk-Mod;nk; kÞ is a full monoidal subcategory of ðS-Mod; �; IÞ. Thus every associative al-
gebra is an operad.

We can forget the action of the symmetric groups and work in the category of N�-
graded vector spaces. This category is endowed with a monoidal product, a non-symmetric
analog of the previous one. We still denote it by �:

P � QðnÞ :¼
L

1elen

� L
i1þ���þil¼n

PðlÞnk

�
Qði1Þnk � � �nk QðilÞ

��
:

Definition (Non-symmetric operad). A monoid in this monoidal category is called a
non-symmetric operad.

Figure 3. The monoidal product P � Q.
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We can also define a notion of operads with colors indexing the inputs and the out-
puts. The composition of such operations have to fit with the colors. Such operads are
called colored operads (cf. [72], [12]).

A.3. Properads. We are going to pursue this generalization. Elements of an associa-
tive algebra can be seen as operations with one input and one output (see Figure 2). Ele-
ments of an operad represent operations with multiple inputs but one output. To model
operations with multiple inputs and multiple outputs, one uses the notion of S-bimodule.
An S-bimodule is a collection fPðm; nÞgm;n AN� of modules over the symmetric groups
Sn on the right and Sm on the left. In this category, we define a monoidal product based
on the composition of operations indexing the vertices of a 2-levelled directed connected
graph, see Figure 4.

Let a and b be the number of vertices on the first and on the second level respectively.
Let N be the number of edges between the first and the second level. To an a-tuple of inte-
gers { :¼ ði1; . . . ; iaÞ, we associate j{j :¼ i1 þ � � � þ ia. Given two a-tuples { and |, we denote
by Qð |; {Þ the tensor product Qð j1; i1Þn � � �nQð ja; iaÞ and we denote by S{ the image of
the direct product of the groups Si1 � � � � � Sin in Sj{j.

Definition (Connected permutations). Let N be an integer. Let k ¼ ðk1; . . . ; kbÞ be a
b-tuple and | ¼ ð j1; . . . ; jaÞ be an a-tuple such that

jkj ¼ k1 þ � � � þ kb ¼ j |j ¼ j1 þ � � � þ ja ¼ N:

A ðk; |Þ-connected permutation s is a permutation of SN such that the graph of
a geometric representation of s is connected if one gathers the inputs labelled by
j1 þ � � � þ ji þ 1; . . . ; j1 þ � � � þ ji þ jiþ1, for 0e ie a� 1, and the outputs labelled by
k1 þ � � � þ ki þ 1; . . . ; k1 þ � � � þ ki þ kiþ1, for 0e ie b� 1. The set of ðk; |Þ-connected
permutations is denoted by Sc

k; |
.

Example. Consider the permutation (1324) in S4 and take k ¼ ð2; 2Þ and | ¼ ð2; 2Þ.
If one links the inputs 1, 2 and 3, 4 and the outputs 1, 2 and 3, 4, it gives the following
connected graph:

Figure 4. Composition of operations with multiple inputs and multiple outputs.
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:

Therefore, the permutation (1324) is
�
ð2; 2Þ; ð2; 2Þ

�
-connected.

Let P and Q be two S-bimodules, their monoidal product is given by the formula

Pnc Qðm; nÞ :¼
L

N AN�

� L
l;k; |; {

k½Sm�nS
l
Pðl; kÞnS

k
k½Sc

k; |
�nS|

Qð |; {ÞnS{
k½Sn�

�
S

op
b
�Sa

;

where the second direct sum runs over the b-tuples l, k and the a-tuples |, { such that
jlj ¼ m, jkj ¼ j |j ¼ N, j{j ¼ n and where the coinvariants correspond to the following
action of Sop

b � Sa:

yn p1 n � � �n pb n sn q1n � � �n qa no

@ yt�1
l

n pt�1ð1Þn � � �n pt�1ðbÞn t
k
sn| n qnð1Þn � � �n qnðaÞn n�1{ o;

for y A Sm, o A Sn, s A Sc

k; |
and for t A Sb with t

k
the corresponding block permutation,

n A Sa and n| the corresponding block permutation. The unit I for this monoidal product
is given by

Ið1; 1Þ :¼ k; and

Iðm; nÞ :¼ 0 otherwise.

�

We denote by ðS-biMod;n; IÞ this monoidal category.

Remark. We need to restrict compositions to connected graphs and connected per-
mutations in order to get a monoidal category (see [69], Proposition 1.6).

Definition (Properad). A properad is a monoid in the monoidal category
ðS-biMod;n; IÞ.

Example. Let M be a k-module and consider

EndðMÞ :¼
L

m;n AN�
HomkðMnn;MnmÞ:

The permutation of the inputs and the outputs of an element of HomkðMnn;MnmÞ makes
EndðMÞ into an S-bimodule. Once again, EndðMÞ, endowed with the natural (connected)
composition of morphisms, is a properad.

A comonoid in ðS-biMod;n; IÞ is called a coproperad.

To an S-module V , we associate an S-bimodule ~VV defined by

~VVð1; nÞ :¼ VðnÞ and
~VVðm; nÞ :¼ 0 for m > 1:

�
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This defines an embedding of monoidal categories, that is gV �WV �W ¼ ~VV n ~WW . The category
ðS-Mod; �; IÞ is a full monoidal subcategory of ðS-biMod;n; IÞ. Hence, an operad is a
properad.

Since the notion of properad includes the one of associative algebras and operads, we
work in this general framework throughout the text. We resume these notions in the follow-
ing table:

Monoidal category: ðk-Mod;nkÞ a���! ðS-Mod; �Þ a���! ðS-biMod;nÞ;
Monoid: associative algebra a���! operad a���! properad:

Remark that the first monoidal product nk is bilinear and symmetric, the second one � is
only linear on the left and has no symmetry. The third one n has no linear nor symmetric
properties in general.

A.4. P-gebras. In this section, we precise the previous analogy with multi-linear
operations and recall the notion of an (al)gebra over a properad.

Let ðA; m; uÞ be an associative algebra and let M be a k-module. Recall that a
structure of module over A on M is given by a morphism of associative algebras
f : A! EndðMÞ. More generally, we have the following definition.

Definition (P-gebras). Let P be a properad and let M be a k-module. A structure of
P-gebra on M is a morphism of properads f : P! EndðMÞ.

When P is an operad, this corresponds to the notion of algebra over P or P-algebra

(see V. Ginzburg and M. Kapranov [31]). There is an operad As such that the category of
As-algebras is equal to the category of non-unital associative algebras, an operad Com
such that the category of Com-algebras is equal to the category of non-unital commutative
associative algebras and an operad Lie such that the category of Lie-algebras is equal to
the category of Lie algebras.

Categories of ‘‘algebras’’ defined by products and coproducts (multiple outputs),
cannot be modelled by operads, one has to use properads. Recall from [69], that there is a
properad Bi such that the category of Bi-gebras is equal to the category of non-unital non-
counital bialgebras and there exists a properad BiLie such that the category of BiLie-
gebras is equal to the category of Lie bialgebras, for instance.

Remark. Following the article of J.-P. Serre [67], we choose to call a gebra any al-
gebraic structure like modules over an associative algebra, associative algebras, Lie alge-
bras, commutative algebras or bialgebras, Lie bialgebras, etc. . . . .

This point of view on algebraic structures allows us to understand and describe gen-
eral properties between di¤erent types of gebras. Constructions on the levels of operads or
properads induce general relations between the related types of gebras.

A.5. Free and quadratic properad. The forgetful functor U from the category of
properads to the category of S-bimodules has a left adjoint F:
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U : properads T S-biMod : F:

We gave an explicit construction of it in [71] by means of a particular colimit. For
every S-bimodule V , it provides the free properad FðVÞ on V . It is given by the direct
sum of connected directed graphs with the vertices indexed by elements of V . The compo-
sition product m is simply defined by the grafting of graphs. Therefore, the number of
vertices is preserved by m and it induces a natural graduation denoted FðoÞðVÞ and called
the weight.

Remark that, when V is a k-module, we find the tensor algebra TðVÞ on V , which is
the free associative algebra on V . When V is an S-module, we get the free operad in terms
of indexed trees like in [31], Section 2.1.

We can generalize the notion of ideal for an associative algebra to ideals for operads
and properads (see Appendix B). Let V be an S-bimodule and R be a sub-S-bimodule of
FðVÞ, we consider the ideal generated by R in FðVÞ and we denote it by ðRÞ. As usual,
the quotient FðVÞ=ðRÞ has a natural structure of properads. When RHFð2ÞðVÞ, the quo-
tient properad is called a quadratic properad. When V is a k-module, this definition corre-
sponds to the notion of quadratic algebra (see Y. Manin [53]) and when V is an S-module it
corresponds to the notion of quadratic operad of [31].

Examples. The symmetric and the exterior algebras are natural examples of qua-
dratic algebras. The operads As, Com and Lie are the most common quadratic operads
(see [31]). The properads BiLie of Lie bialgebras, eBi of infinitesimal bialgebras and
Frob of Frobenius bialgebras are quadratic properads (see [69], Section 2.9).

Since R is homogeneous of weight 2, the quotient properad FðVÞ=ðRÞ is graded by
the weight.

Dually, there is a connected cofree coproperad denoted FcðVÞ (see [69], Section 2.8).

A.6. Hadamard tensor product. We define another monoidal product in the cate-
gory of S-bimodules.

Definition (Hadamard product of S-bimodules). Let V and W be two S-bimodules.
Their Hadamard product is defined by ðV nH WÞðm; nÞ :¼ Vðm; nÞnk Wðm; nÞ.

When V and W are S-modules, the Hadamard product is equal to

ðV nH W ÞðnÞ :¼ VðnÞnk W ðnÞ:

When it is obvious that in the context we are dealing with the Hadamard product, we sim-
ply denote it byn.

This monoidal product is bilinear and symmetric. The unit of the Hadamard product
is the S-bimodule K defined by Kðm; nÞ :¼ k, with trivial action of Sn and Sm, for all n, m
(and KðnÞ ¼ k for S-modules). (The properad K models commutative and cocommutative
Frobenius algebras.)
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Appendix B. Categorical algebra

The aim of this section is to define the notion of ‘‘ideal of a monoid’’ in a modern,
categorical point of view. Working in the opposite category, we get the dual notion for co-
monoids. The other purpose of this categorical treatment is to characterize the ideal ‘‘gen-
erated by’’ and its dual notion.

B.1. Definition of the ‘‘ideal’’ notions. In this section we define the notions of ideal
monomorphism and ideal subobject of monoids. Dually, we define the notions of coideal epi-
morphism and coideal quotient.

Let us work in an abelian monoidal category, that is an abelian category A endowed
with a monoidal product n. Consider the subcategory MonA whose objects ar monoids
in A. One natural question now is to ask whether MonA is still an abelian category. The
answer is no because the class of monomorphisms is too wide, for instance. Recall that
in an abelian category the class of monomorphisms is equal to the class of kernels. Every

morphism A!f B in MonA admits a kernel i : KqA is A. The following diagram is com-
mutative:

KnK ���!ini
AnA ���!fn f

BnB

mK

???ymA

???ymB

K a���!i A ���!f B;
��������

a

where mA and mB stand for the product of the monoid A and B respectively. Since
ð f n f Þ � ðin iÞ ¼ ð f � iÞn ð f � iÞ ¼ 0, the composite f � mA � ðin iÞ is equal to 0. By
the universal property of the kernel i, there exists an associative map mK : KnK ! K

making K into a monoid and i : KqA a morphism in MonA. Hence kernels exist in
MonA and every kernel is a monomorphism. Actually, K has more properties than just be-
ing a submonoid of A (see B.2), which explains why not all monomorphisms are kernels.
On the other hand, let I qA be a monomorphism of monoids, its cokernel A=I in A is
not necessarily a monoid. Following Kummer’s language, we restrict our attention to ideal

monomorphisms, that is monomorphisms that are kernels in MonA.

Definition (Ideal monomorphism). Let I qA!! Q be an exact sequence in A,
where A is a monoid. In other words, I qA is the kernel of A!! Q and A!! Q is the
cokernel of I qA.

The monomorphism I qA in MonA is an ideal monomorphism if A!! Q is a mor-
phism in MonA.

In this case, we say that I is an ideal (subobject) of A and Q is naturally a quotient

monoid, also denoted by A=I .

Dually, recall that a comonoid in A is a monoid in the opposite category Aop. If we
dualize the previous arguments in the opposite category, we can see that the category
ComonA of comonoids in A is not an abelian category because the class of epimorphisms
is too big. The cokernel in A of a morphism in ComonA is a morphism in ComonA (and
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even more), but the kernel in A of a morphism in ComonA is not necessarily a morphism
in ComonA. Therefore, every epimorphism of comonoids is not a cokernel. Once again, we
call coideal epimorphisms, the epimorphisms that are cokernels.

Definition (Coideal epimorphism). Let I qC !! Q be an exact sequence in A,
where C is a comonoid. The epimorphism C !! Q in ComonA is a coideal epimorphism if
I qC is a morphism in ComonA.

In this case, the subobject I qC is naturally a subcomonoid of C and the quotient Q
is called a coideal quotient.

Remark. The term coideal is already used in the literature, but stands for a (coideal)
subobject JqC (or a monomorphism) in A of a comonoid C such that its cokernel in A
is a morphism in ComonA. It is equivalent to ask that the quotient C=J is a comonoid.

This notion does not correspond to the dual of the notion of ideal, where ‘‘dual’’
means ‘‘in the opposite category’’.

B.2. Relation with the classical definition. We now relate this definition of ideal with
the classical notion. Let I q

i
A!!p Q be a sequence in MonA, exact in A. Denote by mA

and mQ the products of A and Q respectively. The morphism p is a morphism in MonA,
means that the following diagram commutes:

AnA ���!pnp
QnQ???ymA

???ymQ

A ���!p Q:

Let k : KI qAnA be the kernel of pn p in A.

Proposition 56. Let A be a monoidal category such that the monoidal product n pre-

serves epimorphisms. A monomorphism I qA is an ideal monomorphism if and only if the

composite p � mA � k is equal to 0.

Proof. ð)Þ It comes from p � mA � k ¼ mQ � ðpn pÞ � k ¼ 0.

ð(Þ From the hypothesis, we have that pn p is an epimorphism. Therefore, it is the
cokernel of k and by the universal property of the cokernel, there exists a morphism
mQ : QnQ! Q such that p � mA factors through pn p. It is then straightforward to check
that mQ defines an associative product on Q. r

The extra assumption, that the monoidal product has to preserve epimorphisms, is
verified in every cases studied in this paper. For a proof of this fact, we refer to Proposition
1, Proposition 10 and [71], Section 5.

The problem is now to make explicit the kernel k : KI qAnA of pn p.

Definition (Multilinear part). The multilinear part in X of An ðX lYÞnB is de-
fined either
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� by the cokernel of AnY nB �����!AniynB
An ðX lYÞnB

� or by the kernel of An ðX lYÞnB �����!AnpynB
AnY nB,

since iY is a section of pY , that is py � iY ¼ IdY , these two objects are naturally isomorphic.
We denote it An ðX lY ÞnB.

It corresponds to elements of An ðX lYÞnB with at least one element of X in
between.

Suppose that we are working in an abelian category A such that every short exact

sequence splits, that is I a���!i A ���!!b

p
Q or equivalently AG I lQ. Once again, this

condition is verified in every category studied here since they are categories of representa-
tions of finite groups over a field of characteristic 0.

Proposition 57. In a monoidal abelian category such that the monoidal product pre-

serves epimorphisms and where every short exact sequence splits, we have

KI ¼ An ðAþ IÞ þ ðAþ IÞnA;

where An ðAþ IÞ :¼ Im
�
An ðAl IÞqAn ðAl IÞ �����!AnðAþiÞ

AnA
�
.

Proof. It is enough to prove that An ðQþ IÞ þ ðQþ IÞnA is the kernel of pn p.
We have the following commutative diagram:

Qn ðQl IÞ QnA
Qnp

QnQ

b!y2 ���!!pnA
pnp ���!!pnQ

An ðQl IÞ i1
AnA

Anp
AnQ

a���! i1li2

a���! i2 a���!

An ðQl IÞl ðQl IÞnA

a���! ðQl IÞnA
b!y2 ðQl IÞnQ;��������� a a

a�����������! ��������!!

a�����������! ��������!!���
���
�a

a

�������
���!!

�������
���!

where the two dotted arrows exist by the property of kernels applied to the first line and
last column. Since An ðQþ IÞ þ ðQþ IÞnA is by definition the image of the morphism
i1 l i2, it remains to show that pn p is the cokernel of i1 l i2. The assumption that every
short exact sequence splits implies that the maps y1 and y2 are epimorphisms. It is then
straightforward to check that pn p is the cokernel of i1 l i2. r

Since i : I qA is the kernel of p : A!! Q, there exists a morphism m making the fol-
lowing diagram commute:

An ðAþ IÞ þ ðAþ IÞnA a���! AnA???ym

???ymA

I
i

A ���!!p Q:a���������������!
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Hence, we get p � i � m ¼ 0. When the monoidal product is additive on the left and on the
right, we have An ðAþ IÞ ¼ An I and ðAþ IÞnA ¼ I nA. In this case, the notion of
ideal corresponds to the classical one.

Dually, let I q
i
C !!p Q be a sequence in ComonA, exact in A. Denote by

g : CnC !! CoKQ the cokernel of in i. Note that when every short exact sequence splits,
we have CoKQGKI GCn ðC þ IÞ þ ðC þ IÞnC.

Proposition 58. Let A be a monoidal category such that the monoidal product n pre-

serves monomorphisms. An epimorphism C !! Q is a coideal epimorphism if and only if the

composite g � DC � i is equal to 0.

Proof. We work in the opposite category and we apply Proposition 56. r

In the case of a coassociative coalgebra C ¼ I lQ, it means that the composite
ðpnClCn pÞ � DC � i : I ! QnClCnQ is null. In other words, we have
DCðcÞ A I n I , for c A I .

B.3. Various notions of modules. We recall briefly the various notions of modules
and relate one of them to the notion of ideal.

Definition (Module). An object M of A is a left module over a monoid A if there
exists a map AnM !M compatible with the product of A. Dually, there is a notion of
right module. And a compatible left and right action defines a bimodule.

At first sight, the biadditive case could lead to the following definition: I is an ideal of
A if it is a bimodule over A : An I ! I and I nA! I . The main problem with such a
notion is that A=I is not a monoid when n is not biadditive. Instead of that, one has to
consider a linearized version of module.

Definition. An object M of A is called a multilinear left module over A if it is en-
dowed with a map An ðAlMÞ !M compatible with the product and the unit of A.

We have a similar notion on the right-hand sight and a notion of multilinear bimod-

ule. If we use this language, I is an ideal of A if and only if I is a multilinear bimodule with
the action induced by mA.

Remark. The same notion arises from the work of D. Quillen on (co)homology
theories [66]. The coe‰cient for these theories are abelian group objects. When one wants
to make explicit Quillen (co)homology of monoids, these coe‰cients are an exactly linear
version of modules. We refer the reader to the paper of H. J. Baues, M. Jibladze and A.
Tonks [9] for a complete description in the case of operads, or more generally when the
monoidal product is additive only on one side.

Dualize these definitions to get the notions of comodules and (multi)linear comodules
over a comonoid C.

B.4. ‘‘generated by’’. Following this categorical point of view, we define and make
explicit the notions of ideal generated by and subcomonoid generated by.
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Let x : RqA be a subobject of A in A, where A is a monoid. We are going to con-
sider the ‘‘cokernel’’ A!! Q of x in MonA, that is the universal epimorphism of monoids
such that the composite RqA!! Q vanishes. The resulting quotient monoid Q is the larg-
est quotient of A with relations in R.

Since our leitmotiv is to treat together ideals and quotient monoids, we would rather
use the following presentation. Consider the category Sx of sequences ðSÞ : I qA!! Q in
MonA, exact in A such that the composite RqA!! Q is equal to 0. Since I qA is the
kernel of A!! Q, this last condition is equivalent to the existence of a morphism i : Rq I

in A such that the following diagram commutes:

R

bi
x

0

I a���! A ���!! Q:

a������

a  ����
��a

Let ðS 0Þ : JqA!! O be another object of Sx, the morphisms between (S) and (S 0) corre-
spond to the pair of morphisms ði; pÞ in MonA such that the following diagram commutes:

R O
a���! x

���
���
��

aa

p

I a���! A ���!! Q

i

a������

a

J:

 ���
����a

�����
!!

a����
!

Definition (Ideal generated by R). Let A be a category such that for every
monoid A and every subobject x : RqA, the category Sx admits an initial object
S : ðRÞqA!! A=ðRÞ.

In this case, ðRÞ is called the ideal generated by R and A=ðRÞ is the induced quotient
monoid.

Remark. The terminal object of this category always exists and is given by the se-
quence AqA!! 0.

If we dualize the previous arguments in the opposite category, we get the same kind
of diagram but with C comonoid instead of A monoid.

Let x : S   C be a quotient of C in A, where C is a comonoid. We aim to consider
the largest subcomonoid of C vanishing on S. This notion is given by ‘‘kernel’’ S   C of x
in ComonA, that is the universal monomorphism of comonoids such that the composite
S   C

q

Q is equal to 0.

Consider the category Sx of sequences ðSÞ : I   C

q

Q in ComonA, exact in A
such that the composite S   C

q

Q is equal to 0. There exists a morphism p : I !! S

such that the diagram commutes:
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S

bp

���
���
��

aa

x 0

I   ��� C

a���!

Q:

������
!!

Let ðS 0Þ : J   C

q

O be another object of Sx, the morphisms between (S) and (S 0)
correspond to the pair of morphisms ði; pÞ in ComonA such that the following diagram
commutes:

S O

���!! x
a�������
a

i

I   ��� C

a���!

Q

p

���
���
��

aa

J:

�����
�!!

 ���
��a

  
����

��

Definition (Subcomonoid generated by S). Let A be a category such that for every
comonoid C and every quotient x : S   C, the category Sx admits a terminal object
S : ðSÞ   C

q

CðSÞ.

In this case, CðSÞ is called the subcomonoid of C generated by S and ðSÞ is the in-
duced coideal quotient.

Remark. The initial object is the sequence C   C

q

0.

B.5. Ideal generatedF free multilinear bimodule. Since the notion of ideal is equiv-
alent to the notion of multilinear bimodule, the ideal of A generated by R is the free A-
multilinear bimodule on R.

Proposition 59. The ideal generated by R in A is given by the image

Im
�
An ðAþ RÞnA!m

2

A
�
:

Proof. Using Proposition 57, we have that it is an ideal of A. It is easy to see that

any ideal containing R also contains Im
�
An ðAþ RÞnA!m

2

A
�
. r

If we dualize the arguments, we have the explicit form of the subcomonoid of C gen-
erated by R.

Proposition 60. Let S   C be an epimorphism in A. The subcomonoid of C gener-

ated by S is given by the kernel of

Ker
�
C �!D2

Cn3 �!proj Cn ðC þ SÞnC
�
:

Proof. Dualize. r
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