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Abstract— A self-consistent model for charged particles,
accounting for quantum confinement, diffusive transport
and electrostatic interaction is considered. In this coupled
quantum-classical system, the coupling occurs in the mo-
mentum variable : the electrons are like point particles in
the direction parallel to the gas (classical transport) while
they behave like waves in the transversal direction (quantum
description). Numerical implementation of this model pro-
vides a simulation of the transport of charge carriers in a
quasi bidimensional electron gas confined in a nanostructure.

Index Terms— nanotransistor, Gummel iterations,
Schrödinger equation, Fermi level, drift-diffusion system,
Poisson equation, subband model, finite element method.

I. INTRODUCTION

Nowadays, a great challenge consists in the down-
scaling at the nanometer scale of electronic components
in order to improve speed and efficiency of semiconductor
materials. In this task, modeling and numerical simulations
play an important role in the determination of the limit size
of the nanotransistors [14]. In nanoscale semiconductor
devices like ultrashort channel double gate MOSFETs
(DGMOS) [1], electrons might be extremely confined in
one or several directions that we shall refer to as the
confining directions. This leads to a partial quantization
of the energy. In this work, we present a simulation of the
transport in such a device. We consider a particle system
which is partially quantized in one confined direction
(denoted by � ) and which, in the non-confined one, refered
to as the transport direction and denoted by � , has a
diffusive motion.

The subband model describes quantum systems at par-
tial thermodynamic equilibrium as a statistical mixture of
eigenstates of the Schrödinger operator in the transverse
direction. The occupation number of each state is given by
a thermodynamic equilibrium statistic function. Typically,
it is given by �����
	�������������� for Boltzmann statistics, or��� 	 ��� ������	 ����� ��� � �!� for Fermi-Dirac statistics, where �
is the energy of the considered state, "$# is the Boltzmann
constant, % is the temperature and ��& is the so-called
Fermi energy which, at zero temperature, represents the

threshold between occupied and unoccupied states [13],
[19].

In the transport direction, the motion of the charge
carriers is governed by the drift-difusion equation. This
equation is one of the most used models for charged
particle transport in various areas such as gas discharges,
plasmas or semiconductors. It consists in a conservation
equation for the particle density, in which the current
density is the sum of the diffusion current and the drift
current which takes into account the electrostatic forces
[10], [11], [17].

The system is at equilibrium in the confined direction
with a local Fermi level ��& which depends on the transport
variable � . The variable � is assumed to lie in 	('�)+* �-,/.
where * is the length of the device while � belongs to
the interval 	0'1)32 � with a width 2 . At a time 4 and a posi-
tion 	5��)+� � , the particle density 67	(4�)!��)+� � for Boltzmann
statistics is given by

67	(4�)!�
)8� �:9 ;
<=��>�?�@BA1C �  CEDGF HJI ����K CEDGF HJI5I�L M � 	54�)+�
)+� � L N ) (1)

where O 9 �P� 	Q"R#:% � , � & is the Fermi Level and	 M � ) � � � �JS�? is the complete set of eigenfunctions and
eigenvalues of the Schrödinger operator in the � variableTVU NWYXX �

Z �[]\ 	0� � XX � M ��^ � 	 @P_ �a`:b � M � 9 � � M ��c
(2)

In this equation U is the Planck constant, [d\ the effec-
tive mass, @ the elementary charge and

`eb
is a given

potential barrier between the silicon and the oxyde in the
nanotransistor. On the boundary we impose M � 	(4�)!��)+' �f9M � 	54�)+�
)!2 �:9 ' . The electrostatic potential _ is a solution
of the Poisson equationThg�ikj HlF m 	onlp:q HlF m _ �-9 @n�r 	(6 T 6ts � ) (3)

where nlp is the relative permittivity, nlr the permittivity
constant in vacuum and 6us is the doping density. We



define the repartition function v byvw	54�)!� �-9 ;
<=��>�?1@ � ARx K CEDGF HJI c (4)

The surface density6uyl	54�)!� �:9{z}|r 67	(4�)!��)+� � X � 9 @BARx  vw	54�)+� � (5)

satisfies the drift-diffusion equationXX 4 6 y T XX �
Z1~�Z XX � 6 y � O�6 y XX � ` y ^h^ 9 '�) (6)

where

~
denotes the diffusion coefficient

~ 9�� " # % for
a constant mobility � and the effective energy

` y is given
by ` y 9 T " # %����R��� ;�<=��>�?�@ � ARx KP� c (7)

The originality of this system is that the parameters of
the drift-diffusion equation keep a trace of the quantum
confinement in the transversal direction. Indeed, the ex-
pression of the effective potential (7) involves the diag-
onalization of the one dimensional Schrödinger operator
(2). Remark that the density 6 satisfies :67	(4�)!�
)8� �:9 6 y 	(4�)!� �vw	54�)+� � = � @ � ARx K L M � 	(4�)!�
)8� � L N c (8)

The unknowns of the overall system are the surface
density 6uy�	(4�)!� � , the eigenenergies � � 	(4�)!� � , the eigenfunc-
tions M � 	(4�)!�
)8� � and the electrostatic potential _ 	(4�)!��)+� � .We say that the system is at the thermal equilibrium when
the Fermi level �1& is constant.

We present here a simulation of a Double-Gate MOS-
FET. The I-V characteristic is obtained by the drift-
diffusion-Schrödinger-Poisson system (6)-(2)-(3). A math-
ematical study of this system has been done in [2].
Numerical simulations for nanotransistors which rely on
the discretization of a Schrödinger-Poisson system are
studied in [13] in particular to describe quantum ballistic
transports [16]. In this work, this system is coupled with
the drift-diffusion equation.

Let us end this introduction by referring to two other
models which intend to incorporate quantum effects in
the drift-diffusion equation. A full quantum drift-diffusion
model (quantum in both directions) was derived in [7]
and its numerical simulation was adressed in [8]. A quite
similar model was introduced in [15] and used in [6] to
simulate nanoscale MOSFETs.

II. NUMERICAL SIMULATION FOR A NANOTRANSISTOR

A. Presentation of the modeled device

Our typical device of interest are very small ��� � ���3� Nstructures. Fig. 1 presents a scheme of the modeled double-
gate MOSFET. The transport of the electrons takes place

TABLE I

TABLE OF THE MAIN VALUE USED

Parameter Value Length Value��� �!���G�����t��� � � �!���R�� �!�J 0¡���� ��� �£¢ ¤����R�¥�¦ §f¨�© � ª �!���R�«�¬� ®�¯k° ����± ² ³3´!µ ¤��$�«�¬� ®1¯o¶ � ° §J± · ³+�P¸ ¹��$�
in the channel, which is the active region outside the
reservoir.
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Fig. 1. Schematic representation of the modeled device

The transistor is assumed to be dopped by a large
density 6 ;

. These positive doping profile regions at the
source and the drain contacts are equivalent to small
electron reservoirs, in which we assume that the potential
does not depend on the transport direction. The high
barrier potential

` b
which is of order Î @P_ forces the

electrons to stay in the silicon zone.
Table I presents some numerical values used in the code.

B. The numerical method

In order to simulate the described device, we use finite
elements method with Gummel iterations [9]. The Gummel
method is well-known for the simulation of drift-diffusion
models [4] and we apply it here with a self-consistent
potential obtained by the resolution of a Schrödinger-
Poisson system. More precisely our computation follows
the next steps :

Step 1. First, we express the boundary conditions for
the surface density 6Ïy and the electrostatic potential _ .
Because of several ohmics contacts we have to choose
mixed boundary conditions for the potential. At the con-
tacts (drain, source and gates) the potential is fixed which
implies Dirichlet-type boundary conditions, whereas the
insulating frontier impose a Neumann-type condition.
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Fig. 2. Ð�Ñ © characteristics for the device with differents gate-source
voltage
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Step 2. Next, we have to determine the density at the

thermal equilibrium when there is no applied voltage.
Since the Fermi level is constant, it is equal to its value
at the boundary. We iterate a Gummel method for the
resolution of the Schrödinger-Poisson system.

Step 3. In this last step we start from the equilibrium
and apply a voltage at the contacts. Thus the whole
coupled system (6)-(2)-(3) is considered. We implement
again Gummel iterations. We point out the fact that the
resolution of the Poisson equation needs a quasi-Newton
method [5] in order to handle a well-conditionned system.

C. Numerical results

The main interest of this simulation is to obtain the I-
V characteristics of the device, presented in Fig. 2, for
different applied potential at the gates _ Ó�Ô .

Fig. 3 and 4 present the potential and the density at the
equilibrium obtained at the end of the second step.

Fig. 5 shows the value of the density of electrons when
there is an applied drain-source voltage and no applied
voltage at the gate. We constat an accumulation in the
channel. In the Fig. 6 the applied voltage _ Ó�Ô keeps the
same value but the gate-source voltage is equal to ' c Î _ .
We notice that the maximum value is smaller and is moved
in the transversal direction.

All these results are presented in the context of Boltz-
mann statistics and the same ideas can be extended for
Fermi-Dirac statistics. This kind of implementation can be
used for a one-valley silicon as well as for a three-valley
silicon when the transverse effective mass differs from
the longitudinal one due to anisotropic effects. The model
presented is justified in particular for large the doping
zones of the nanotransistor. In a future work, we will study

Fig. 3. Electrostatic potential at the equilibrium (
©

)

Fig. 4. Density at the equilibrium (
� ���

)

Fig. 5. Density of charge carriers for a applied drain-source voltage© ª �ÖÕ��J± ¤�©
and for

© Ò �×Õ���©



Fig. 6. Density of charge carriers for a applied drain-source voltage©lª � Õ��J± ¤�©
and for

©lÒ � Õ��J± ¤�©
its coupling with a purely balistic model of Schrödinger
type [3], [12].
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