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Abstract

A self-consistent model for charged particles, accounting for quantum con-

finement, diffusive transport and electrostatic interaction is considered. The

electrostatic potential is a solution of a three dimensional Poisson equation

with the particle density as the source term. This density is the product of a

two dimensional surface density and that of a one dimensional mixed quantum

state. The surface density is the solution of a drift-diffusion equation with an

effective surface potential deduced from the fully three dimensional one and

which involves the diagonalization of a one dimensional Schrödinger operator.

The overall problem is viewed as a two dimensional drift-diffusion equation

coupled to a Schrödinger-Poisson system. The latter is proven to be well posed

by a convex minimization technique. A relative entropy and an a priori L2

estimate provide enough bounds to prove existence and uniqueness of a global

in time solution. In the case of thermodynamic equilibrium boundary data,

a unique stationary solution is proven to exist. The relative entropy allows

to prove the convergence of the transient solution towards it as time grows to

infinity. Finally, the low order approximation of the relative entropy is used to

prove that this convergence is exponential in time.

Key words: Schrödinger equation, drift-diffusion system, Poisson equation, rela-
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1 Introduction and main result

The drift-diffusion equation is one of the most used models for charged particle
transport in various areas such as gas discharges, plasmas or semiconductors. It
consists in a conservation equation for the particle density, in which the current
density is the sum of two terms. One is proportional to the particle density and
to the electrostatic forces. This term is referred to as the drift current. The second
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term is the diffusion current and is proportional to the gradient of the particle density
[28, 29, 19, 20, 10, 11].

The drift-diffusion model can be derived from kinetic theory when the mean free
path related to particle interactions with a thermal bath is small compared to the sys-
tem length-scale. In semiconductors, one of the most important mechanism driving
the electrons towards a diffusive regime is collisions with phonons (vibrations of the
semiconductor crystal lattice) which drive the electrons towards a local equilibrium
at the lattice temperature [28, 36]. We refer to [34, 25] for a rigorous derivation from
the Boltzmann equation and to [19, 28, 29, 20] and references therein for the analysis
of this system when coupled to the Poisson equation for the electrostatic potential.

Quantum systems at global thermodynamic equilibrium can be described as a
statistical mixture of eigenstates of the Schrödinger operator. The occupation num-
ber of each state is given by a thermodynamic equilibrium statistic function. Typ-
ically, it is given by exp(EF−E

kBT
) for Boltzmann statistics, or 1/(1 + exp(E−EF

kBT
)) for

Fermi-Dirac statistics, where E is the energy of the considered state, kB is the Boltz-
mann constant, T is the temperature and EF is the so-called Fermi energy which, at
zero temperature, represents the threshold between occupied and unoccupied states
[30, 31, 32, 38].

In nanoscale semiconductor devices like ultrashort channel double gate MOSFETs
(DGMOS), electrons might be extremely confined in one or several directions that we
shall refer to as the confining directions. This leads to a partial quantization of the
energy. In the non-confined direction(s), that we shall also refer to as the transport
direction(s), following the length and energy scales, transport might have a quantum
nature or be purely classical in the kinetic or diffusive regimes. In the present work,
we are interested in the last regime. Namely, we consider a particle system which
is partially quantized in one direction (denoted by z) and which, in the transport
direction denoted by x, has a diffusive motion. The system is at equilibrium in
the confined direction with a local Fermi level ǫF which depends on the transport
variable x. The variable x is assumed to lie in a bounded regular domain ω ∈ R
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while z belongs to the interval (0, 1). The spatial domain is then Ω = ω × (0, 1). At
a time t and a position (x, z), the particle density N(t, x, z) is given by

N(t, x, z) =
+∞∑

k=1

eǫF (t,x)−ǫk(t,x)|χk(t, x, z)|2, (1.1)

where ǫF is the Fermi Level and (χk,ǫk) is the complete set of eigenfunctions and
eigenvalues of the Schrödinger operator in the z variable





−1

2
∂2

zχk + V χk = ǫkχk (k ≥ 1),

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0

χk χℓ dz = δkℓ .
(1.2)

The electrostatic potential V is a solution of the Poisson equation

−∆x,zV = N. (1.3)
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The surface density

Ns(t, x) =

∫ 1

0

N(t, x, z) dz = eǫF

+∞∑

k=1

e−ǫk(t,x) (1.4)

satisfies the drift-diffusion equation

∂tNs − divx (∇xNs + Ns ∇xVs) = 0, (1.5)

where the effective potential Vs is given by

Vs = − log
∑

k

e−ǫk . (1.6)

Remark also that N can be rewritten

N(t, x, z) =
Ns(t, x)

Z(t, x)

+∞∑

k=1

e−ǫk(t,x) |χk(t, x, z)|2 , (1.7)

where the repartition function Z is given by

Z(t, x) =
+∞∑

k=1

e−ǫk(t,x). (1.8)

The unknowns of the overall system are the surface density Ns(t, x), the eigenenergies
ǫk(t, x), the eigenfunctions χk(t, x, z) and the electrostatic potential V (t, x, z). The
Fermi level ǫF is determined by :

ǫF (t, x) = log
Ns(t, x)

Z(t, x)
. (1.9)

This will be useful for the study of global equilibria. The system (1.2)–(1.8) is
completed with the initial condition

Ns(0, x) = N0
s (x) (1.10)

and with the following boundary conditions :
{

Ns(t, x) = Nb(x), V (t, x, z) = Vb(x, z), for x ∈ ∂ω, z ∈ (0, 1),

∂zV (t, x, 0) = ∂zV (t, x, 1) = 0, for x ∈ ω.
(1.11)

In application like the Double-Gate transistor [4], the frontier ∂ω × [0, 1] includes
the source and the drain contacts as well as insulating or artificial boundary. On the
other hand ω × {0} and ω × {1} represent the gate contacts (in addition to possible
insulating boundaries). Mixed type boundary conditions are then to be prescribed.
The boundary conditions (1.11) do not take into account this complexity and are
chosen for the mathematical convenience : elliptic regularity properties of the Poisson
equation (1.3) are needed in our proofs.
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1.1 Main Results

Assumption 1.1

• The initial condition satisfies N0
s ∈ L2(ω) and N0

s ≥ 0, a.e.

• The boundary data for the surface density satisfy 0 < N1 ≤ Nb ≤ N2 a.e.,
where N1 and N2 are positive constants, Nb ∈ C2(∂ω).

• The Dirichlet datum for the potential satisfies Vb ∈ C2(∂ω × [0, 1]) and the
compatibility condition

∂Vb

∂z
(x, 0) =

∂Vb

∂z
(x, 1) = 0, ∀x ∈ ∂ω.

The first result of this paper is the following existence and uniqueness theorem:

Theorem 1.2 Let T > 0 be fixed. Under Assumption 1.1, the system (1.2)–(1.11)
admits a unique weak solution such that

Ns ∈ C([0, T ], L2(ω)) ∩ L2((0, T ), H1(ω)), V ∈ C([0, T ], H2(Ω)).

The second result concerns the asymptotic behaviour of the solution as times tends to
+∞. To this aim, we shall first define the notion of global equilibrium for boundary
data, under which we show that there exists a unique stationary solution, and finally
prove that the time dependent solution converges exponentially fast to this stationary
solution.

Assumption 1.3 The boundary is said to be at global equilibrium if there exists a
real number u∞ > 0 such that ∀x ∈ ∂ω, Nb(x) = u∞e−V ∞

s (x), where V ∞
s is defined

by

V ∞
s (x) = − log(

∑

k

e−ǫk[Vb](x)).

In view of (1.9), it means that the Fermi level at the boundary is constant.

In this assumption, as well as in the sequel of the paper, for each potential V , the
notation ǫk[V ] stands for the kth eigenvalue of the Hamiltonian −1

2
∂2

z +V and χk[V ]
denotes the corresponding eigenfunction (solving (1.2)).

The stationary problem reads





−divx (∇xN
∞
s + N∞

s ∇xV
∞
s ) = 0,

−1

2
∂2

zχ
∞
k + V ∞χ∞

k = ǫ∞
k χ∞

k ,

−∆x,zV
∞ = N∞ =

N∞
s

Z∞

+∞∑

k=1

|χ∞
k |2e−ǫ∞k ,

Z∞ =
+∞∑

ℓ=1

e−ǫ∞ℓ ,

(1.12)

4



with the boundary conditions

{
N∞

s (x) = Nb(x), V ∞(x, z) = Vb(x, z) for x ∈ ∂ω, z ∈ (0, 1),

∂zV
∞(x, 0) = ∂zV

∞(x, 1) = 0 for x ∈ ω,
(1.13)

where we have used the short notation ǫ∞
k for ǫk[V

∞] and χ∞
k for χk[V

∞].

Proposition 1.4 Under Assumptions 1.1 and 1.3, the stationary problem (1.12)–
(1.13) admits a unique solution such that N∞

s ∈ C2(ω) and V ∞ ∈ C2(Ω).

The following theorem proves the exponential convergence of the time dependent
solution towards the stationary one.

Theorem 1.5 Let Assumptions 1.1 and 1.3 hold. Let Ns, V and N∞
s , V ∞ be respec-

tively the time dependent and the stationary solutions defined respectively in Theorem
1.2 and Proposition 1.4. There exist two constants λ > 0 and C > 0 such that for
all t ≥ 0,

‖Ns − N∞
s ‖L2(ω)(t) + ‖V − V ∞‖H1(ω)(t) ≤ Ce−λt.

The outline of the paper is as follows. In the next subsection, we briefly explain
how the drift-diffusion-Schrödinger system can be derived as a diffusion limit of a
Boltzmann type model. In Section 2, we prove Theorem 1.2. The strategy of the
proof as well as various notations are detailed in Subsection 2.1. Let us just mention
that two essential ingredients are used : the first is a relative entropy inequality which
provides preliminary estimates on the solution, which are then completed with an
L2 estimate on the surface density. The second ingredient is the analysis of the
Schrödinger-Poisson system (1.2)-(1.3) which is shown to be uniquely solvable by
convex minimization techniques in the spirit of [30, 31, 32]. Section 3 is devoted
to the proof of Theorem 1.5 which uses a quadratic approximation of the relative
entropy given in Section 2, and which is a Lyapunov functional for the linearized
system around the stationary solution. The Appendix is devoted to some technical
lemmata and to classical results for Sturm-Liouville operators.

1.2 Formal derivation from kinetic theory

The drift-diffusion-Schrödinger system (1.2), (1.5), (1.6) can be derived as a diffusion
limit of a kinetic system for partially quantized particles, called the kinetic subband
system. More precisely, for a partially quantized system, the particle density can be
written

N(t, x, z) =
+∞∑

k=1

ρk(t, x)|χk(t, x, z)|2

where χk is given by (1.2). In the physics terminology [5, 18, 13], the wave function
χk is called the wave function of the kth subband and ǫk its energy. The surface
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densities ρk(t, x) are the occupation numbers of the subbands and are given in the
kinetic framework by

ρk(t, x) =

∫

R2

fk(t, x, v) dv

where fk are solutions of kinetic equations, in which the electrostatic potential energy
V is replaced by the subband energy ǫk. In the collision-less case, such a model, which
in quantum chemistry is related to the so-called Born-Oppenheimer approximation
[37, 35, 23], has been obtained by the first two authors in [6] by a partial semiclassical
limit of the Schrödinger equation and analyzed in [7, 8]. In order to obtain the
diffusive regime, we introduce intersubband collisions [5, 1] in the Fermi golden rule
approximation

∂tf
η
k +

1

η
{Hk, f

η
k } =

1

η2
Q(fη)k, (1.14)

where η is the scaled mean free path assumed to be small and {·, ·} is the Poisson
bracket {g, h} = ∇xh · ∇vg −∇vh · ∇xg, Moreover Hp is the energy of the system in
the kth subband

Hk(t, x, v) =
1

2
v2 + ǫk(t, x),

where we recall that ǫk is the subband energy. The collision operator Q is defined
by

Q(f)p =
∑

k′

∫

R2

αk,k′(v, v′)(Mk(v)fk′(v′) −Mk′(v′)fk(v)) dv′,

where α depends on the system and the function Mk is the Maxwellian :

Mk(t, x, v) =
1

2πZ e−Hk(t,x,v).

The diffusion limit consists in letting η going to 0 (a rigorous study of this limit will
be the object of a future work). Admitting that f η

k converges as η tends to zero
towards a limit f 0

k , then f 0
k ∈ Ker Q which can be shown to be equal to

Ker Q = {f such that ∃ρ ∈ R : fk = ρMk, ∀ k ≥ 1}.

Therefore
f 0

k (t, x, v) = Ns(t, x)Mk(t, x, v).

We remark that Ns(t, x) =
∑

k

∫

R2

f 0
k (t, x, v) dv is the surface density of particles.

Identifying the terms in (1.14) and letting η goes to 0, one can prove in the same
spirit as in previous works on diffusion approximation [25, 34] that Ns satisfies the
drift-diffusion equation :

∂tNs − divx (D(∇xNs + Ns∇xVs)) = 0,

where Vs is the effective potential defined by (1.6) and D is a diffusion matrix (sym-
metric positive definite) depending on the choice of the transition rates αk,k′ . In this
paper, we consider for simplicity the case D = I where I is the identity matrix in R

2.
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2 Existence and uniqueness (Proof of Theorem 1.2)

2.1 Notations and strategy of the proof

As done in [7], we view the system as a two dimensional drift-diffusion equation
(1.5) for the surface density coupled to the quasistatic Schrödinger-Poisson system
(1.2), (1.3). The drift-diffusion equation determines the value of the surface density
in terms of the electrostatic potential, while the Schrödinger-Poisson systems allows
to compute the potential as a function of the surface density.

The overall problem is then solved by a fixed-point procedure for the unknown
Ns, as for the standard drift-diffusion-Poisson problem [19, 28, 29]. The global in
time existence heavily relies on an entropy estimate.

The first block now in the proof is to consider the quasistatic Schrodinger-Poisson
system which consists, for any given nonnegative function Ns(x) defined on ω, in
finding a potential V (x, z) defined on Ω and satisfying





−∆x,zV = N(x, z); (x, z) ∈ Ω

N(x, z) = Ns(x)
+∞∑

k=1

e−ǫk(x)

Z(x)
|χk(x, z)|2 ; Z(x) =

+∞∑

ℓ=1

e−ǫℓ(x)





−1

2
∂2

zχk + V χk = ǫkχk (k ≥ 1),

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0

χk χℓ dz = δkℓ ,

V = Vb on ∂ω × (0, 1), ∂zV (x, 0) = ∂zV (x, 1) = 0 for x ∈ ω.

(2.1)

For this problem, we have the following result whose proof is postponed.

Proposition 2.1 Let Ns ∈ L2(ω) such that Ns ≥ 0. Then the system (2.1) admits
a unique solution (V, (ǫk, χk)k≥1), which satisfies the estimates ‖V ‖H2(Ω) ≤ C(Ns),
the constant C(Ns) depending only on the L2(ω) norm of Ns. Moreover, for two

arbitrary data Ns and Ñs, the corresponding solutions satisfy :

‖V − Ṽ ‖H2(Ω) ≤ C(Ns, Ñs) ‖Ns − Ñs‖L2(ω).

In order to prove existence of solutions of the overall problem, we need to show
some a priori estimates for the solution. We shall begin with a relative entropy
inequality (see e.g. [2, 3, 17] for classical counterparts), then show a uniform Lp

estimate for the surface density. In order to do so, we proceed like in the standard
drift-diffusion case [19] and define the slotboom variable

u = eǫF =
Ns

Z . (2.2)

We also define the surface current density

Js = −∇xNs − Ns∇xVs = −
∑

k

e−ǫk∇xu, (2.3)
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in such a way that the drift-diffusion equation is written

∂tNs + divx Js = 0.

We denote by ρk the occupation factor of the kth subband

ρk = u e−ǫk (2.4)

so that
N =

∑

k

ρk |χk|2 ; Ns =
∑

k

ρk.

Now we introduce two extensions Ns and V of the boundary data. These exten-
sions are respectively defined on ω and Ω and chosen in such a way that

• Ns ∈ C2(ω), 0 < N1 ≤ Ns ≤ N2 with two nonnegative constants N1 and N2,
and Ns|∂ω = Nb.

• V ∈ C2(Ω) and satisfies the boundary conditions : V |∂ω×(0,1) = Vb and for all
x ∈ ω, ∂zV (x, 0) = ∂zV (x, 1) = 0 .

It is clear that for regular enough domains such functions exist. Solving (1.2) with V
instead of V , we find two sequences ǫk[V ](x) and χk[V ](x, z), that we shall shortly
denote by ǫk and χk. We then define u, ǫF , Z and ρk by

u =
Ns

Z ; Z =
∑

k

e−ǫk ; ǫF = log u ; ρk = ue−ǫk = eǫF−ǫk ,

as well as the density

N(x, z) =
∑

k

ρk(x)|χk(x, z)|2.

It is readily seen that
‖∇xu/u‖L∞(ω) < ∞. (2.5)

The relative entropy of (ρk, V ) with respect to (ρk, V ) is defined by :

W =
∑

k

∫

ω

(ρk log(ρk/ρk) − ρk + ρk) dx +
1

2

∫∫

Ω

|∇x,z(V − V )|2 dxdz

+

∫

ω

∑

k

u e−ǫk
(
ǫk[V ] − ǫk[V ] − 〈|χk|2(V − V )〉

)
dx,

(2.6)

where we use the notation 〈f〉 =
∫ 1

0
f dz. As will be shown later on, the three terms

of right hand side of the above identity are nonnegative. Besides, W has the following
compact form

W =

∫∫

Ω

(
N(ǫF − V − (ǫF − V )) − N + N

)
dxdz +

1

2

∫∫

Ω

|∇x,z(V − V )|2 dxdz.
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Let us comment on this formula. One can note that the familiar form of the relative
entropy for classical drift-diffusion systems is recovered here. The main difference
is that, in the classical case, the relation between the Fermi level, the electrostatic
potential and the density is local: ǫF − V = log N (see e.g. [2, 10, 19]), while here
this relation is non local in space. This form is also similar to the one recently
obtained in [21] for a fully quantum drift-diffusion model (QDD). This model was
derived in [14] by following the strategy of quantum moments developed in [16] (see
also the review paper [15]). It consists of a 3D drift-diffusion equation involving a
quantum chemical potential which depends on the density in a non local way, via
the resolution of a quasistatic auxiliary quantum problem. In the QDD model, the
quantum chemical potential is the generalization of the term ǫF − V of the present
model.

The following two propositions provide some a priori estimates needed for the
resolution of the coupled system:

Proposition 2.2 Let T>0. Let (Ns, V ) be a weak solution of (1.5), (1.2), (1.3),
(1.11) such that Ns ∈ C([0, T ], L2(ω)) ∩ L2([0, T ], H1(ω)) and V ∈ C([0, T ], H2(Ω)).
Then we have

∀t ∈ [0, T ], 0 ≤ W (t) < CT ,

where CT is a constant only depending on T , W (0) and u.

Proposition 2.3 Let T > 0 and assume N0
s ∈ Lp(ω) for some p ∈ [2, +∞] and let

(Ns, V ) be weak solution of (1.5), (1.2), (1.3), (1.11) such that Ns ∈ C([0, T ], L2(ω))∩
L2([0, T ], H1(ω)) and V ∈ C([0, T ], H2(Ω)). Then

Ns ∈ C([0, T ], Lp(ω)),

for any T > 0, with a bound depending only on T , Nb, Vb and ‖N0
s ‖Lp(ω).

2.2 Proof of the entropy inequality

The aim of this subsection is the proof of Proposition 2.2. Let (Ns, V ) be a weak
solution of (1.5), (1.2), (1.3). Since V ∈ C([0, T ], H2(Ω)), by Lemma A.6, we deduce
that Vs ∈ C([0, T ], H2(Ω)). This is enough to ensure that Ns ≥ 0, thanks to the
maximum principle for parabolic equations (see for instance [27]).

The relative entropy is the sum of three positive terms.

Let us now show that the relative entropy W defined by (2.6) is nonnegative. This
is obviously the case for the two first terms. In order to deal with the third one, let
us denote ǫs

k := ǫk[sV + (1 − s)V ], and χs
k = χk[sV + (1 − s)V ]. Straightforward

computations using Lemma A.3 of the Appendix lead to
∑

k

u e−ǫk
(
ǫk[V ] − ǫk[V ] − 〈|χk|2(V − V )〉

)
=

=

∫ 1

0

∫ s

1

∑

k,ℓ6=k

u
e−ǫk − e−ǫℓ

ǫσ
k − ǫσ

ℓ

〈χσ
k(V − V )χσ

ℓ 〉2 dσds ≥ 0,
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since the sequence (ǫk = ǫk[V ])k≥1 is increasing. This is enough to conclude that
W ≥ 0, as the sum of three nonnegative terms.

The initial relative entropy is finite.

Since N0
s ∈ L2(ω), then by Proposition 2.1 we have V ∈ H2(Ω) ⊂ L∞(Ω). From

Lemma A.1 we deduce that

‖ǫk −
1

2
π2k2‖L∞(ω) ≤ ‖V ‖L∞(Ω).

This is enough to deduce that W (0) < +∞.

Relative entropy dissipation.

Let us now compute dW/dt. We first remark that

d

dt

∑

k

∫

ω

(ρk log(ρk/ρk) − ρk + ρk) dx =
∑

k

∫

ω

∂tρk log(ρk/ρk) dx.

Taking advantage from the identity Ns =
∑

ρk and from log ρk = log u − ǫk, the
right hand side is equal to

∫

ω

∂tNs log(u/u) dx −
∑

k

∫

ω

∂tρk (ǫk − ǫk) dx.

With the identity ∂tǫk = 〈|χk|2 ∂tV 〉 (see Lemma (A.3)) and (1.5) we obtain

d

dt

∑

k

∫

ω

(ρk log(ρk/ρk) − ρk + ρk) dx =

∫

ω

divx

(
∑

k

e−ǫk∇xu

)
log

u

u
dx

− d

dt

∫

ω

∑

k

ρk(ǫk − ǫk) dx

+

∫∫

Ω

∑

k

ρk|χk|2∂tV dxdz.

The Poisson equation and the fact that V = V on ∂ω × (0, 1) give

d

dt

1

2

∫∫

Ω

|∇x,z(V − V )|2 dxdz =

∫∫

Ω

∂tN(V − V ) dxdz

=
d

dt

∫∫

Ω

N(V − V ) dxdz −
∫∫

Ω

N∂tV dxdz.

By using (1.6) and the expression of ρk, we obtain

d

dt
W =

∫

ω

divx

(
∑

k

e−ǫk∇xu

)
log(u/u) dx.

After an integration by parts, we deduce thanks to u = u on ∂ω that

d

dt
W = −

∫

ω

∑

k

e−ǫk
|∇xu|2

u
dx +

∫

ω

∑

k

e−ǫk
∇xu.∇xu

u
dx. (2.7)
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In the sequel, we shall use the notation

D(t) =

∫

ω

∑

k

e−ǫk
|∇xu|2

u
dx (2.8)

and shall refer to this term as the entropy dissipation rate. Let now define β =
‖∇xu/u‖L∞(ω) < +∞ (from (2.5)). A straightforward Cauchy-Schwarz inequality
leads to :

d

dt
W + D ≤ β

√
D
√

‖Ns‖L1(ω).

Using the inequality 2ab ≤ ε2a2 + 1/ε2b2 for ε > 0 small enough, we get

d

dt
W ≤ C‖Ns‖L1(ω)

Since the function F (t) = t log(t) − t + 1, satisfies F (t) ≥ t + (1 − e), we obtain

W ≥
∑

k

∫

ω

ρk F (ρk/ρk) dx ≥
∑

k

∫

ω

ρk

(
ρk/ρk + 1 − e

)
dx

≥
∫

ω

Ns dx − (e − 1)

∫

ω

Ns dx,

which leads to the differential inequality

d

dt
W ≤ C

∫

ω

Ns dx ≤ C(W + C0),

where C0 only depends on the data of the problem (and not on the considered
solution). The Gronwall lemma implies W (t) ≤ CT for all t ∈ [0, T ], where CT only
depends on T , W (0) and data (W (0) < +∞ if N0

s ∈ L2(ω)).

Remark 2.4 The above manipulations are formal for weak solutions (defined such
that Ns ∈ C([0, T ], L2(ω))). To make the argument rigorous, it is enough to regu-
larize the data, obtain a regular solution for which the result holds, then pass to the
limit in the regularization parameter and use the uniqueness of the weak solution
(proved in Section 2.5).

2.3 Proof of the Lp estimate

The aim of this subsection is the proof of Proposition 2.3. We have seen in Section
2.2 that W (0) < C(‖N0

s ‖L2(ω)). Hence Proposition 2.2 implies

∀ t ≤ T, ‖V (t)‖H1(Ω) + ‖Ns(t)‖L1(ω) ≤ CT . (2.9)

Thanks to the Trudinger inequality (A.8) and to (A.6), as well as Lemma A.5 the
functions

S1(t, x) = sup
k≥1

‖χk(t, x, ·)‖2
L∞

z
; S2(t, x) =

∑

k≥1

e−ǫk(t,x)

Z(t, x)
(ǫk(t, x))2 (2.10)
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are in L∞((0, T ), Lp(ω)) for any finite p and satisfy the bound

∀p < +∞, ‖S1(t, .)‖Lp(ω) + ‖S2(t, .)‖Lp(ω) ≤ Cp , (2.11)

where Cp is a constant only depending on ‖V (t)‖H1(Ω). From now on, we denote

ns = Ns − Ns ; n = N − N ; vs = Vs − Vs ; v = V − V . (2.12)

Proof of Proposition 2.3 for p ∈ [2, +∞).
Multiply (1.5) by ns|ns|p−2 and integrate on ω. After an integration by parts, we get

1

p

d

dt

∫

ω

|ns|p dx + (p − 1)

∫

ω

|∇xns|2|ns|p−2 dx +
p − 1

p

∫

ω

∇x|ns|p · ∇xVs dx =

=

∫

ω

∆xNs ns|ns|p−2 dx +

∫

ω

divx (Ns∇xVs)ns|ns|p−2 dx.

The last term of the left hand side can be written after an integration by parts

−p − 1

p

∫

ω

|ns|p∆xVs dx.

The above computations follow closely the standard drift-diffusion Poisson system
for which the above term is nonnegative. In our case however, −∆xVs 6= Ns which
induces additional difficulties. Indeed, with the Poisson equation (1.3), we have :
−∆xV = ∂2

zV + N. And, after some integrations by parts,

〈∂2
zV |χk|2〉 = 2〈V χk∂

2
zχk〉 + 2〈V |∂zχk|2〉.

Thanks to the Schrödinger equation (1.2), we have :

∂2
zχk = 2(V − ǫk)χk and 2〈V |χk|2〉 + |∂zχk|2 = 2ǫk.

Thus,
〈∂2

zV |χk|2〉 = 4〈V 2|χk|2〉 + 2〈(V + ǫk)|∂zχk|2〉 − 4ǫ2
k.

These remarks lead to the following identity :

−∆xVs = −4S2(t, x) +
〈N2 + 4V 2 N〉

Ns

+ 2
∑

k

e−ǫk

Z
〈
(V + ǫk)|∂zχk|2

〉

− 1

Z
∑

k

∑

ℓ6=k

(
e−ǫk − e−ǫℓ

ǫk − ǫℓ

)
〈χkχℓ ∇xV 〉2

+
∑

k

e−ǫk

Z
〈
|χk|2 ∇xV

〉2 −
(
∑

k

e−ǫk

Z
〈
|χk|2 ∇xV

〉
)2

,

(2.13)

where S2 is defined in (2.10). By the Cauchy-Schwarz inequality, the sum of the last
two terms of the right hand side is nonnegative. Moreover, except for the first one,
the other terms are obviously nonnegative. By an integration by parts, we deduce

1

p

d

dt

∫

ω

|ns|p dx + (p − 1)

∫

ω

|∇xns|2|ns|p−2 dx ≤ I + II + III (2.14)
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where

I = 4
p − 1

p

∫

ω

|ns|pS2 dx,

II =

∫

ω

∆xNsns|ns|p−2 dx,

III =

∫

ω

divx (Ns∇xVs)ns|ns|p−2 dx.

Let us now analyze each term separately.

Estimating I.
Thanks to the Hölder inequality, for all r > 1 and r′ = r/(r − 1) we have :

I = 4
p − 1

p

∫

ω

|ns|pS2 dx ≤ C‖|ns|
p
2‖2

L2r‖S2‖Lr′ .

By applying Gagliardo-Nirenberg and Young inequalities we have for r > 1

∥∥∥|ns|
p
2

∥∥∥
2

L2r(ω)
≤ C

∥∥∥|ns|
p
2

∥∥∥
2/r

L2(ω)

∥∥∥|ns|
p
2

∥∥∥
2(1−1/r)

H1(ω)
≤ C

(
1

εr
‖ns‖p

Lp + ε
r

r−1

∥∥∥|ns|
p
2

∥∥∥
2

H1(ω)

)
.

By using the estimate (2.11) and Poincaré inequality we obtain

I ≤ Cε‖ns‖p
Lp + Cε

∫

ω

|∇x|ns|p/2|2 dx. (2.15)

Estimating II.
This is an easy task. By a straightforward Hölder inequality, we have

|II| =

∣∣∣∣
∫

ω

∆xNsns|ns|p−2 dx

∣∣∣∣ ≤ ‖ns‖p−1
Lp(ω)‖∆xNs‖Lp(ω). (2.16)

Estimating III.
This term needs more work. We first begin by an integration by parts and obtain

III = −(p − 1)

∫∫

Ω

Ns

∑

k

e−ǫk

Z |χk|2 ∇xV · ∇xns|ns|p−2 dxdz.

This leads to the inequality

|III| ≤ (p − 1)‖Ns‖L∞

∫∫

Ω

|S1(t, x)| |∇xV | |∇xns| |ns|p−2 dxdz,

where S1 is defined in (2.10). Taking advantage of (2.11), we find after a Hölder
inequality

|III| ≤ Cq,r‖Ns‖L∞‖∇xV ‖Lq‖∇xns|ns|p−2‖Lr (2.17)
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for any (q, r) such that q < +∞ and r > q′, where q′ = q/(q − 1). By choosing
r = p

p−1
, we have by a Hölder inequality

‖∇xns|ns|p−2‖Lr ≤ ‖∇xns|ns|
p−2
2 ‖L2‖ns‖

p−2
2

Lp .

Now one can apply (2.17) with any q > p. By choosing q close enough to p, the
following Sobolev inequality holds

‖∇xV ‖Lq ≤ C1‖V ‖W 2,s ≤ C2‖N‖Ls + C3

for some s < p. Using again the inequality

N ≤ NsS1, (2.18)

where S1 is defined by (2.10) and satisfies the uniform bound (2.11), we immediately
obtain ‖N‖Ls ≤ C‖Ns‖Lp ≤ C(‖Ns‖Lp + ‖ns‖Lp). Besides, we have

∫

ω

|∇xns|2|ns|p−2 dx =
4

p2

∫

ω

|∇x(|ns|p/2)|2 dx. (2.19)

All in all, (2.17) becomes

|III| ≤ C‖∇x(|ns|p/2)‖L2(ω)‖ns‖(p−2)/2
Lp(ω) (‖ns‖Lp(ω) + ‖Ns‖Lp(ω) + 1),

which leads, after a Young inequality to

|III| ≤ C1ε
2

∫

ω

|∇x(|ns|p/2)|2 dx +
C2

ε2
‖ns‖p

Lp(ω) +
C3

ε2
‖ns‖p−2

Lp(ω), (2.20)

where ε is an arbitrarily small constant and C1, C2, C3 are independent from ε.
Consider now the inequality (2.14). Inserting the inequalities (2.19), (2.16), (2.15)

and (2.20) in (2.14) and fixing ε small enough, there exists A > 0 and nonnegative
constants still denoted by C1, C2 and C3 such that

1

p

d

dt

∫

ω

|ns|p dx + A

∫

ω

|∇x(|ns|p/2)|2 dx

≤ C1

∫

ω

|ns|p dx + C2‖ns‖p−1
Lp(ω) + C3‖ns‖p−2

Lp(ω).

A Gronwall argument leads to the boundedness on [0, T ] of ‖ns(t)‖Lp(ω).

Proof of Proposition 2.3 for p = +∞.

Since Ns ∈ Lp(ω) for all 1 ≤ p < +∞, then by (2.18) and (2.11), n ∈ Lr(Ω) for
all 1 ≤ r < +∞. Therefore the Poisson equation (1.3) leads to V ∈ W 2,r(Ω). By
Sobolev embeddings, the potential V lies in L∞([0, T ] × Ω). Hence from (2.13) and
(A.2) we deduce that there exists a nonnegative constant a such that ∆xVs ≤ a. We
use the standard notation f+ for the positive part of f :

f+ =

{
f if f ≥ 0,
0 else.
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Let us define

A(t) = λeat, where λ ≥ max(‖N0
s ‖L∞(ω), ‖Nb‖L∞(∂ω)). (2.21)

Then, from (1.5) and the choice of a,

∂t(Ns − A(t)) − divx (∇x(Ns − A(t)) + (Ns − A(t))∇xVs) ≤ 0.

Multiplying this equation by (Ns − A(t))+ and integrating over ω, we get after an
integration by part

1

2

d

dt

∫

ω

(Ns−A(t))2
+ dx+

∫

ω

|∇x(Ns−A(t))+|2 dx+
1

2

∫

ω

∇x(Ns−A(t))2
+∇xVs dx ≤ 0.

After another integration by parts and since ∆xVs ≤ a,

d

dt

∫

ω

(Ns − A(t))2
+ dx − a

∫

ω

(Ns − A(t))2
+ dx ≤ 0.

We deduce from this inequality and the choice of λ in (2.21) that for all t ∈ [0, T ],
Ns ≤ A(t) thus Ns ≤ λeaT .

2.4 Analysis of the Schrödinger-Poisson system

In this subsection, we prove Proposition 2.1. We use the functional spaces

H1
ω =

{
V ∈ H1(Ω) : ∀x ∈ ∂ω, z ∈ [0, 1], V (x, z) = 0

}

and

Lp
xL

q
z(Ω) = {u ∈ L1

loc(Ω) such that ‖u‖Lp
xLq

z(Ω) =

(∫

ω

‖u(x, ·)‖p
Lq(0,1) dx

)1/p

< +∞}.

Thanks to Gagliardo-Nirenberg inequalities and interpolation estimates, one can
prove the

Lemma 2.5 We have the Sobolev imbedding of H1(Ω) into L2
xL

∞
z (Ω).

Let V0 ∈ H2(Ω) be such that V0 = Vb on ∂ω×(0, 1) and ∂zV0(x, 0) = ∂zV0(x, 1) =
0 for all x ∈ ω (for instance we can take V0 = V ). Proceeding as in [7] and in the
spirit of [30] we can show that a weak solution of (2.1) in the affine space V0 + H1

ω is
a critical point with respect to V of the functional

J(V,Ns) = J0(V ) + J1(V,Ns)

=
1

2

∫∫

Ω

|∇x,zV |2 +

∫

ω

Ns log
∑

k

e−ǫk[V ] dx,

where we recall that (ǫk[V ])k≥1 denote the eigenvalues of the Hamiltonian −1
2

d2

dz2 +V ,
i.e. satisfy (1.2).
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The functional J0 is clearly continuous and strongly convex on H1(Ω). The
analysis of the functional V 7→ J1(V,Ns) relies on the properties of ǫk[V ]. From the
inequality (see Lemma A.1)

|ǫk[V ] − ǫk[Ṽ ]|(x) ≤ ‖V (x, ·) − Ṽ (x, ·)‖L∞

z (0,1)

and

log

∑
k e−ǫk[V ]

∑
k e−ǫk[eV ]

≤ log

∑
k e−ǫk[eV ]+supℓ(|ǫℓ[V ]−ǫℓ[eV ]|)

∑
k e−ǫk[eV ]

,

we deduce

|J1(V,Ns) − J1(Ṽ , Ns)| ≤
∫

ω

|Ns(x)| sup
k

(
|ǫk[V ] − ǫk[Ṽ ]|(x)

)
dx

≤ ‖Ns‖L2(ω) ‖V − Ṽ ‖L2
xL∞

z (Ω).

(2.22)

The functional J1(·, Ns) is globally Lipschitz continuous on L2
xL

∞
z (Ω), thus on H1(Ω),

thanks to Lemma 2.5.
Next, J1(·, Ns) is twice Gâteaux differentiable on L∞(Ω) and

d2
V J1(V,Ns)W · W = −

∫

ω

Ns

Z
∑

k

∑

ℓ6=k

e−ǫk − e−ǫℓ

ǫk − ǫℓ

〈χkχℓ W 〉2 dx

+

∫

ω

Ns

{
∑

k

e−ǫk

Z 〈|χk|2 W 〉2 −
(∑

k e−ǫk〈|χk|2 W 〉
Z

)2
}

dx.

When Ns is nonnegative, this quantity is nonnegative thanks to the Cauchy-Schwarz
inequality. Thus J1(·, Ns) is convex. As a consequence, the functional J(·, Ns) =
J0 + J1(·, Ns) is continuous and strongly convex on V0 + H1

ω. Moreover, using the

Poincaré inequality on H1
ω and (2.22) with Ṽ = 0, we have

J(V,Ns) ≥ C‖V ‖2
H1(Ω) − C‖Ns‖L2(Ω)‖V ‖H1(Ω) + J(0, Ns),

thus J(·, Ns) is coercive and bounded from below on H1
ω : it admits a unique min-

imizer, denoted by V , which is then solution of our problem with the boundary
conditions (1.11).

Now we prove the H2 estimate of V . Since V is a minimizer of J(·, Ns) we have
J(V,Ns) ≤ J(0, Ns). Thus,

1

2

∫∫

Ω

|∇x,zV |2 dxdz ≤ J1(0, Ns) − J1(V,Ns).

Applying (2.22), we deduce that V is bounded in H1(Ω), with a bound only de-
pending on the L2 norm of Ns. Therefore the function S1 defined in (2.10) satisfies
the bound (2.11). Since N ≤ NsS1, we deduce that the density N lies in Lr(Ω) for
any r < 2, which implies by elliptic regularity that V ∈ W 2,r(Ω). This implies that
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V actually lies in L∞ which leads, in view of (A.6), to S1 ∈ L∞. Therefore, N is
bounded in L2(Ω), which gives V ∈ H2(Ω) thanks to the elliptic regularity.

Let us now prove the Lipschitz dependence of V with respect to Ns in H2(Ω).

Let V and Ṽ denote the minimizers of J(·, Ns) and J(·, Ñs). Using the linearity of
J1 with respect to Ns, its Lipschitz dependence with respect to V from (2.22), the

strong convexity of J and the fact that Ṽ minimizes J(·, Ñs), we get

1

C
‖V − Ṽ ‖2

H1(Ω) ≤ J(Ṽ , Ns) − J(V,Ns)

= J1(Ṽ , Ns − Ñs) − J1(V,Ns − Ñs) + J(Ṽ , Ñs) − J(V, Ñs)

≤ C ′‖V − Ṽ ‖H1(Ω) ‖Ns − Ñs‖L2(ω).

Thus, we have first the Lipschitz dependence of V in H1(Ω). The Poisson equation

gives −∆(V − Ṽ ) = N − Ñ , and

N − Ñ = (Ns − Ñs)
∑

k

e−ǫk |χk|2
Z + Ñs

∑

k

(
e−ǫk

Z − e−fǫk

Z̃

)
|χk|2

+Ñs

∑

k

e−fǫk

Z̃
(|χk|2 − |χ̃k

2|)

(we denote ǫ̃k instead of ǫk[Ṽ ] and χ̃k instead of χk[Ṽ ]). With Lemma A.4,

‖χk − χ̃k‖L∞

z
≤ C1e

C2(‖V ‖
L2

z
+‖eV ‖

L2
z
)‖V − Ṽ ‖L1

z
. (2.23)

Denoting χs
k = χk[Ṽ + s(V − Ṽ )] and ǫs

k = ǫk[Ṽ + s(V − Ṽ )], we have with Lemma
A.3,

∑

k

(
e−ǫk

Z − e−fǫk

Z̃

)
|χk|2 =

∫ 1

0

∑
k〈|χs

k|2(V − Ṽ )〉e−ǫs
k∑

ℓ e−ǫs
ℓ

∑
k |χk|2e−ǫs

k∑
ℓ e−ǫs

ℓ
ds−

∫ 1

0

∑

k

〈|χs
k|2(V − Ṽ )〉e−ǫs

k∑
ℓ e−ǫs

ℓ
|χk|2 ds.

Thus, since we have proved that χs
k ∈ L∞(Ω), ∀ s ∈ [0, 1], we deduce

∣∣∣∣∣
∑

k

(
e−ǫk

Z − e−fǫk

Z̃

)
|χk|2

∣∣∣∣∣ ≤ C‖V − Ṽ ‖L1
z
. (2.24)

Hence, from (2.23) and (2.24), it yields,

‖N − Ñ‖L2(Ω) ≤ C‖Ns − Ñs‖L2(ω) + C‖V − Ṽ ‖L2(Ω).

Finally, from the Lipschitz dependence of V with respect to Ns in H1(Ω), we have

locally ‖V − Ṽ ‖L2(Ω) ≤ C‖Ns − Ñs‖L2(ω). Thus, ‖N − Ñ‖L2(Ω) ≤ C‖Ns − Ñs‖L2(ω)

with a constant C depending on ‖Ns‖L2(ω) and ‖Ñs‖L2(ω). Applying the elliptic reg-

ularity, we conclude ‖V − Ṽ ‖H2(Ω) ≤ C(‖Ns‖L2(ω), ‖Ñs‖L2(ω))‖Ns − Ñs‖L2(Ω).
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Remark 2.6 We can also solve this problem by assuming that u ∈ L2(ω) is given
such that u ≥ 0. More precisely, the system (1.2), (1.3) is now written





1

2
∂2

zχk + V χk = ǫk

−∆x,zV = u
∑

k

|χk|2 e−ǫk .

Following the same idea as above, a weak solution of this system in the affine space
V0 + H1(Ω) is the unique minimizer with respect to V of the convex functional :

J(V ) =
1

2

∫∫

Ω

|∇xV |2 dxdz +

∫

ω

u
∑

k

e−ǫk[V ] dx,

(in fact, for H1 potentials, it is not guaranteed that this functional takes finite values;
to circumvent this difficulty, one can instead solve an auxiliary problem where the
exponential is truncated for negative arguments, then estimate its solution and show
that it is nonnegative). As before, we have V ∈ H2(Ω) for u ∈ L2(ω).

Proof of Proposition 1.4. We consider the stationary problem (1.12)–(1.13).
First, we remark that the stationary drift-diffusion equation and the boundary con-
ditions gives 




−div (
∑

k

e−ǫ∞k ∇xu) = 0 for x ∈ ω,

u = u∞ for x ∈ ∂ω,

Thus u = u∞. Then (1.12) can be written





−1

2
∂2

zχ
∞
k + V ∞χ∞

k = ǫ∞
k χ∞

k ,

−∆x,zV
∞ = u∞

∑

k

|χ∞
k |2e−ǫ∞k .

And the solution of this Schrödinger-Poisson system is the minimum of the convex
functional (see Remark 2.6) :

J(V ) =
1

2

∫∫

Ω

|∇x,zV |2 dxdz +

∫

ω

u∞
∑

k

e−ǫk[V ] dx,

where (ǫk[V ])p≥1 are the eigenvalues of the Hamiltonian, i.e. satisfy (1.2).

2.5 Proof of Theorem 1.2

The proof of existence and uniqueness relies on a contraction argument in the spirit
of [28]. We first define the map F : Ns 7→ N̂s as follows :
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Step 1. For a given Ns ≥ 0, solve the Schrödinger-Poisson system (2.1) as in Section
2.4. From the obtained V ∈ C([0, T ], H2(Ω)) (see Proposition 2.1), define Vs by (1.6).
Thanks to Lemma A.6, Vs belongs to C([0, T ], H2(ω)).

Step 2. The surface potential Vs being known, solve the following parabolic equation
for the unknown N̂s :

∂tN̂s − div x(∇xN̂s + N̂s∇xVs) = 0, (2.25)

with the boundary condition :

N̂s(t, x) = Nb(x) for x ∈ ∂ω, (2.26)

and the initial value :

N̂s(0, x) = N0
s (x) for x ∈ ∂ω.

Standard results on parabolic equations ([27]) leads to the existence and uniqueness

of the solution N̂s of (2.25), (2.26). Of course, N̂s ≥ 0. The map F is then defined

after these two steps by F (Ns) := N̂s.
Let us now show that F is a contraction on the space Ma,T defined by Ma,T =

{n : ‖n‖T ≤ a}, where the norm is :

‖n‖T =

[
max
0≤t≤T

‖n(t)‖2
L2(ω) +

∫ T

0

‖n(t)‖2
H1(ω) dt

]1/2

. (2.27)

These two parameters T and a will be specified later on. Let Ns and Ñs be two
elements of Ma,T . The difference δF = F (Ñs) − F (Ns) verify

∂tδF − div x(∇xδF + δF∇xVs + F (Ñs)∇xδVs) = 0 , (2.28)

with the notation δVs = Vs − Ṽs. The boundary conditions become :

δF (0, x) = 0, ∀x ∈ ω ; δF (t, x) = 0, ∀x ∈ ∂ω, ∀t ∈ [0, T ].

Multiplying (2.28) by δF and integrating on ω, we get after an integration by parts

1

2

d

dt

∫

ω

|δF |2 dx +

∫

ω

|∇x(δF )|2 dx +

∫

ω

∇x(δF )(δF∇xVs + F (Ñs)∇x(δVs)) dx = 0.

The Cauchy-Schwarz inequality applied to the third term leads to :

1

2

d

dt
‖δF‖2

L2 + ‖∇x(δF )‖2
L2 ≤ ‖∇x(δF )‖L2

(
‖δF∇xVs‖L2 + ‖F (Ñs)∇x(δVs)‖L2

)
.

Thus,

d

dt
‖δF‖2

L2 + ‖∇x(δF )‖2
L2 ≤ 2‖δF∇xVs‖2

L2 + 2‖F (Ñs)∇x(δVs)‖2
L2

≤ 2‖δF‖2
L4‖∇xVs‖2

L4 + 2‖F (Ñs)‖2
L4‖∇x(δVs)‖2

L4 .
(2.29)
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Besides, we have

|∇xVs| =
|∑k

∫ 1

0
|χk|2∇xV e−ǫk dz|∑

k e−ǫk
≤ |S2(t, x)|

∫ 1

0

|∇xV | dz,

where S2 is defined by (2.10). From Proposition 2.1 and the fact that Ns ∈ Ma,T ,
we deduce that

max
0≤t≤T

‖V (t)‖H2(Ω) ≤ C1(a) ,

where C1(a) is a constant only depending on a. From Lemma A.6 and the imbedding
H2(Ω) →֒ L∞(Ω), we deduce the pointwise in time inequalities

max
0≤t≤T

(
‖S2(t)‖L∞ + ‖Vs(t)‖H2(ω)

)
≤ C2(a).

From Lemma A.6 and Proposition 2.1, we know that there exists a constant C2(a)
such that,

‖∇x(δVs)‖L4 ≤ C‖δVs‖H2(ω) ≤ C2(a)‖δNs‖L2(ω).

Inserting the above inequalities in (2.29), we obtain the inequality

d

dt
‖δF‖2

L2 + ‖∇x(δF )‖2
L2 ≤ C3(a)

(
‖δF‖2

L4 + ‖F (Ñs)‖2
L4‖δNs‖2

L2

)
.

The Gagliardo Nirenberg inequality leads to

d

dt
‖δF‖2

L2 +
1

2
‖∇x(δF )‖2

L2 ≤ C4(a)
(
‖δF‖2

L2 + ‖F (Ñs)‖2
L4‖δNs‖2

L2

)
. (2.30)

Taking Ñs = 0 in the above inequality leads to

d

dt
‖F (Ns) − F (0)‖2

L2 +
1

2
‖∇x(F (Ns) − F (0))‖2

L2 ≤

C4(a)
(
‖F (Ns) − F (0)‖2

L2 + ‖F (0)‖2
L4‖Ns‖2

L2

)
,

which implies

‖F (Ns)(t) − F (0)(t)‖2
L2 ≤ ‖F (Ns)(0) − F (0)(0)‖2

L2 eC4(a)t

+C4(a)‖F (0)‖2
L4

∫ t

0

‖Ns(τ)‖2
L2 eC4(a)(t−τ) dτ .

We then obtain
‖F (Ns)‖T ≤ C5(a)eC5(a)T ,

where ‖ · ‖T is defined in (2.27) and C5 only depends on a. Of course, since Ns and

Ñs play the same role, we obviously have

‖F (Ñs)‖T ≤ C5(a)eC5(a)T . (2.31)
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Let us now go back to (2.30), which after a Gronwall inequality yields

‖δF (t)‖2
L2 ≤ C4(a)‖δNs‖2

T

∫ t

0

eC4(a)(t−τ) ‖F (Ñs)(τ)‖2
L4 dτ

≤ C4(a) eC4(a)t ‖δNs‖2
T

∫ t

0

‖F (Ñs)(τ)‖L2 ‖∇xF (Ñs)(τ)‖L2 dτ

≤ C4(a) eC4(a)t ‖δNs‖2
T

√
T ‖F (Ñs)‖2

T .

We then deduce from (2.31) that

‖δF (t)‖T ≤ C6(a) T 1/4 eC6(a)T ‖δNs‖T .

Let us now take a = 2‖F (0)‖1 and choose the parameter T ≤ 1 small enough so that
C6(a) T 1/4 eC6(a)T ≤ 1/2. Since ‖ · ‖T is increasing with respect to T , it is readily
seen that F leaves Ma,T invariant and is a contraction on this set. We have then
constructed a unique solution on a time interval T0 which only depends on the L2

norm of the initial datum and on the H1/2(∂ω) norm of the boundary values for
Ns and Vs. In order to construct a global solution, we take T0 as the origin and
prove as above the existence and uniqueness of the solution on [T0, 2T0]. This is
made possible thanks to the locally uniform in time L2 a priori estimate on the self-
consistent solution, given in Proposition 2.3. Proceeding analogously we construct
the solution [2T0, 3T0] until covering completely the interval [0, T ].

3 Long time behaviour

The study of the exponential convergence to the equilibrium is established in two
steps. First we prove the convergence towards 0 as t goes to +∞ and the decreasing
of the relative entropy defined by

W (t) =
∑

k

∫

ω

(ρk log(ρk/ρ
∞
k ) − ρk + ρ∞

k ) dx +
1

2

∫∫

Ω

|∇x,z(V − V ∞)|2 dxdz

+

∫

ω

∑

k

u e−ǫk

(
ǫk[V ] − ǫk[V

∞] −
∫ 1

0

|χk|2(V − V ∞) dz

)
dx,

(3.1)
where we define ρ∞

k = u∞e−ǫ∞k . We denote

n = N − N∞, v = V − V ∞, vs = Vs − V ∞
s , ns = Ns − N∞

s . (3.2)

We deduce :



∂tns − divx (∇xns + N∞
s ∇xvs + ns∇xV

∞
s + ns∇xvs) = 0,

−∆x,zv = n.
(3.3)

Next we consider a quadratic approximation of the relative entropy and prove its
exponential convergence to 0 as t goes to +∞.

In the sequel, the letter C stands for a positive constant depending only on the
data and ε stands for an arbitrarily small positive constant.
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3.1 Convergence of the relative entropy

This section is devoted to the following preliminary result:

Proposition 3.1 Under Assumption 1.1 and 1.3, the solution of the drift-diffusion-
Schrödinger-Poisson system (1.1)–(1.11) is such that :

(i) The relative entropy W defined by (3.1) is decreasing and

lim
t→+∞

W (t) = 0.

(ii) We have ns −→ 0 in L1(ω) and v −→ 0 in H1(ω) as t goes to +∞.

Proof. This proof is based on an idea developed in [19]. Let (N∞
s , V ∞) solve the

stationary problem (1.12). We deduce from (2.7) that the relative entropy satisfies :

d

dt
W (t) = −D(t),

where D is given by (2.8). Then, for all t ≥ 0, we have

W (t) +

∫ t

0

D(τ) dτ = W (0), (3.4)

which implies that there exists a sequence tj −→ +∞ such that

D(tj) −→ 0 as j −→ +∞. (3.5)

Now, straightforward calculations using Ns = ue−Vs give

D =

∫

ω

(4|∇x

√
Ns|2 + 2∇xNs · ∇xVs + Ns|∇xVs|2) dx. (3.6)

After an integration by parts, we get

∫

ω

∇xNs · ∇xVs dx = −
∫

ω

Ns ∆xVs dx +

∫

∂ω

Ns ∂νVs dσ,

where ν(x) denotes the outward unitary normal vector at x ∈ ∂ω and dσ the surface
measure on ∂ω induced by the Lebesgue measure. Therefore we deduce from (3.6)
that

4‖∇x

√
Ns‖2

L2 ≤ D + 2

∫
Ns∆xVs dx − 2

∫

∂ω

Ns∂νVs dσ

≤ D + 8

∫

ω

NsS2 dx − 2

∫

∂ω×(0,1)

N∂νV dσdz

≤ D + 8‖Ns‖L4‖S2‖L4/3 + 2‖Nb‖L∞‖V ‖H2

≤ D + C‖Ns‖L4 + C‖N‖L2 + C,
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where we recall that S2 is given by (2.10) and satisfies (2.11). Besides, it is readily
seen that N ≤ NsS1 where S1 is given in (2.10) and satisfies (2.11). Therefore
‖N‖L2 ≤ C‖Ns‖L4 . We conclude from the above inequality that

4‖∇x

√
Ns‖2

L2 ≤ D + C‖Ns‖L4 + C.

Applying a Gagliardo-Nirenberg inequality to the function
√

Ns in the right-hand
side, we obtain (for any ε > 0)

4‖∇x

√
Ns‖2

L2 ≤ D + C‖Ns‖1/2

L1 ‖
√

Ns‖H1 + C ≤ D + Cε‖Ns‖L1 + ε‖∇x

√
Ns‖2

L2 + C,

which leads, in view of (2.9), to the inequality

‖∇x

√
Ns‖2

L2(t) ≤ C(D(t) + 1). (3.7)

By evaluating (3.5) and (3.7) at t = tj, we deduce the boundedness in H1(ω) of the
sequence (

√
Ns(tj))j. Because of the compactness embedding of H1(ω) into L4(ω),

we can assume without loss of generality that there exists Ns belonging to L2(ω)

such that
√

Ns ∈ H1(ω) and

Ns(tj) −→ Ns in L2(ω). (3.8)

Thanks to the properties of the trace of H1(ω) functions and the compact embedding
H1/2(∂ω) →֒ L4(∂ω), we have Ns|∂ω = Nb. From Proposition 2.1, we know that the
mapping Ns 7→ V defined by





−1

2
∂2

zχk + V χk = ǫkχk (k ≥ 1),

−∆x,zV = N = Ns

∑

k

|χk|2e−ǫk

Z ,

(with the boundary conditions of V in (1.11)) is well-posed for Ns ∈ L2(ω) such that
Ns ≥ 0 a.e. and is continuous from L2(ω) into H2(Ω). Moreover, by Lemma A.6 we
also know that the mapping V 7→ Vs defined by





Vs = − log(
∑

k

e−ǫk)

−1

2
∂2

zχk + V χk = ǫkχk

is continuous from H2(Ω) to H2(ω). It follows that

∃Vs ∈ H2(ω) such that Vs(tj) −→ Vs in H2(ω) ⊂ C(ω).

Hence,

u(tj) = Ns(tj)e
Vs(tj) −→ Nse

Vs in L2(ω). (3.9)
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Now (3.5) and (3.8) imply that, for any h ∈ (L4(ω))2, we have

∣∣∣∣
∫

ω

∇x(Ns(tj)e
Vs(tj))h dx

∣∣∣∣ =

∣∣∣∣
∫

ω

∇xu(tj) h dx

∣∣∣∣

≤
(∫

ω

e−Vs(tj)
|∇xu(tj)|2

u(tj)
dx

)
‖Ns(tj)e

2Vs(tj)‖1/2

L2(ω)‖h‖L4(ω)

−→ 0 as j → +∞.

Taking into account (3.9), we deduce that Nse
Vs is constant in ω. Since Ns|∂ω =

Nb and Vs|∂ω = V ∞
s , Assumption 1.3 implies Nse

Vs = u∞. Thus, (Ns, Vs) can be
identified as the unique solution of the stationary Schrödinger-Poisson system (see
Remark 2.6) :

Ns = N∞
s , Vs = V ∞

s and analogously V (tj) −→ V ∞ as j → +∞.

Since the function W is decreasing, we have

lim
t→+∞

W (t) = lim
j→+∞

W (tj) = 0.

Consequently, ‖v(t)‖H1(Ω) → 0 and ‖ns‖L1(ω) → 0 as t → +∞ by a Poincaré inequal-
ity and the following Csiszár-Kullback inequality [3], [12], [26] : for all n1, n2 ∈ L1(ω),
n1 ≥ 0 a.e., n2 ≥ 0 a.e. with

∫
ω

n1 dx =
∫

ω
n2 dx = N0, we have

‖n1 − n2‖2
L1(ω) ≤ 2N0

∫

ω

n1 log
n1

n2

dx.

3.2 Exponential convergence

This section is devoted to the proof of the main result of this paper, i.e. the expo-
nential convergence of the surface density Ns and the electrostatic potential V to the
equilibrium functions. We will consider the differences n, ns, v, vs defined in (3.2)
and introduce the quadratic approximation of the relative entropy:

L(t) =
1

2

∫

ω

(ns)
2

N∞
s

dx+

∫

ω

nsvs dx− 1

2

∫∫

Ω

|∇v|2 dxdz+

∫

ω

N∞
s vs dx−

∫∫

Ω

N∞v dxdz.

(3.10)
Since the Poisson equation gives

∫∫
Ω

nv dxdz =
∫∫

Ω
|∇v|2 dxdz, we can rewrite

L(t) =
1

2

∫

ω

(ns)
2

N∞
s

dx +
1

2

∫∫

Ω

|∇v|2 dxdz +

∫

ω

Nsvs dx −
∫∫

Ω

Nv dxdz. (3.11)

In order to prove Theorem 1.5, we need three technical lemmata that we prove further
in subsection 3.2.2 :
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Lemma 3.2 Consider a weak solution of (1.2)–(1.11). Then for all t ≥ 0, we have

1

2

∫

ω

(ns)
2

N∞
s

dx +
1

2

∫∫

Ω

|∇v|2 dxdz ≤ L(t) ≤ 1

2

∫

ω

(ns)
2

N∞
s

dx +

∫

ω

nsvs dx.

Lemma 3.3 Let V and V belong to L2(0, 1) and Vs, Vs be defined by

Vs = − log
∑

k

exp(−ǫk[V ]) ; Vs = − log
∑

k

exp(−ǫk[V ]).

Then, by setting v = V − V and vs = Vs − Vs, we have

|∇xvs|2 ≤ C1e
C2(‖V ‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)
(〈|∇xv|〉2 + 〈|v|〉2〈|∇xV |〉2), (3.12)

where C1 and C2 are two positive constants.

Lemma 3.4 Consider a weak solution of (1.2)–(1.11). Then there exist two non-
negative constants C1 and C2 such that for all t ≥ 0,

∫

ω

(ns)
2

N∞
s

|∇xvs|2 dx ≤ 1

2

∫

ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣
2

dx + C1L(t)4 + C2L(t)‖v‖H1(Ω),

where L is defined in (3.11). Moreover, we have

‖vs‖L6(Ω) ≤ C‖v‖H1(Ω), (3.13)

for a nonnegative constant C.

3.2.1 Proof of Theorem 1.5

From (3.10) and the Poisson equation, we deduce that

d

dt
L(t) =

∫

ω

∂tns

(
ns

N∞
s

+ vs

)
dx +

∫

ω

Ns∂tvs dx −
∫∫

Ω

N∂tv dxdz.

Furthermore, e−Vs =
∑

k e−ǫk = Z and ∂tǫk = 〈|χk|2∂tv〉 imply

∂tvs =
1

Z
∑

k

〈|χk|2∂tv〉 e−ǫk .

Hence
∫

ω
Ns∂tvs dx =

∫∫
Ω

N∂tv dxdz. With (3.3) and after an integration by parts,
we get

d

dt
L(t) = −

∫

ω

(∇xns + N∞
s ∇xvs + ns∇xV

∞
s + ns∇xvs) · ∇x

(
ns

N∞
s

+ vs

)
dx.

Since ∇xN
∞
s + N∞

s ∇xV
∞
s = 0, we deduce that

d

dt
L(t) = −

∫

ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣
2

dx −
∫

ω

ns∇xvs · ∇x

(
ns

N∞
s

+ vs

)
dx. (3.14)
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Now we will show that the second term of the right-hand side of can be controlled
by the first one for long time. From Lemma 3.4, we deduce

−
∫

ω

ns∇xvs · ∇x

(
ns

N∞
s

+ vs

)
dx

≤ 1

2

∫

ω

(ns)
2

N∞
s

|∇xvs|2 dx +
1

2

∫

ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣
2

dx

≤ 3

4

∫

ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣
2

dx + C1L(t)4 + C2‖v‖H1(Ω)L(t).

Thanks to the Poincaré inequality and Lemma 3.2, we have

−1

4

∫

ω

N∞
s

∣∣∣∣∇x(
ns

N∞
s

+ vs)

∣∣∣∣
2

dx ≤ −C

4

∫

ω

N∞
s

(
ns

N∞
s

+ vs

)2

dx

≤ −C

2

∫

ω

(
1

2

(ns)
2

N∞
s

+ nsvs

)
dx ≤ −C

2
L(t).

Hence, we have obtained from (3.14)

d

dt
L(t) ≤ −C0L(t) + C1L(t)4 + C2‖v‖H1(Ω)L(t). (3.15)

By Proposition 3.1 (ii), there exists T > 0 such that, for all t ≥ T , C2‖v‖H1(ω)(t) ≤
C0/2. Thus, for all t ≥ T ,

d

dt
L(t) ≤ −C0

2
L(t) + C1L(t)4. (3.16)

From (3.5) and (3.7), there exists a sequence tj → +∞ as j → +∞ such that the
sequence (

√
Ns(tj))j∈N is bounded in H1(ω). Up to a renumbering, we can suppose

that for all j ∈ N, tj ≥ T . Moreover, by interpolation, we have
∥∥∥∥∥

ns√
N∞

s

∥∥∥∥∥
L2(ω)

≤ C‖ns‖1/4

L1(ω)‖ns‖3/4

L3(ω).

By the Sobolev embedding of H1(ω) into L6(ω), we deduce that ‖ns‖L3(ω)(tj) is
bounded. Since we have proved in Proposition 3.1 (ii) that ns → 0 in L1(ω) as t
goes to +∞, this insures the convergence towards 0 of ‖ns/

√
N∞

s ‖L2(ω)(tj) as j goes
to +∞. Moreover, with the bound of L in Lemma 3.2 we deduce

L(t) ≤ 1

2

∥∥∥∥∥
ns√
N∞

s

∥∥∥∥∥

2

L2(ω)

+ C‖ns‖L2(ω)‖vs‖L6(ω).

And (3.13) provides a bound of ‖vs‖L6(ω) by ‖v‖H1(Ω) which converges towards 0 as t
goes to +∞ thanks to Proposition 3.1. We can conclude now that limj→+∞ L(tj) = 0.
Hence,

∃ t∗ > 0 such that C1L(t∗)
3 ≤ C0

4
. (3.17)
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Now we define the set

A :=

{
t ∈ [t∗, +∞) such that ∀ s ∈ [t∗, t], C1L(s)3 ≤ C0

4

}
.

By continuity of L, A is a closed set which contains t∗ from (3.17). Moreover, if
t0 ∈ A, from (3.16) we deduce that L is decreasing near t0. By continuity of L, it
yields that A is open. Thus, A = [t∗, +∞), i.e.

∀ t ∈ [t∗, +∞),
d

dt
L(t) ≤ −C0

4
L(t).

We obtain the announced result by integrating this last inequality.

3.2.2 Proofs of the technical lemmata

Proof of Lemma 3.2. The concavity of the function x 7→ log x leads to the
inequality

vs = log

(∑
k e−ǫ∞k∑
k e−ǫk

)
= log

(
∑

k

e−ǫk

∑
ℓ e−ǫℓ

eǫk−ǫ∞k

)
≥
∑

k

e−ǫk

∑
ℓ e−ǫℓ

(ǫk − ǫ∞
k ). (3.18)

Therefore

Nsvs − 〈Nv〉 = Ns

(
vs −

∑

k

e−ǫk

∑
ℓ e−ǫℓ

〈|χk|2v〉
)

≥ Ns∑
ℓ e−ǫℓ

∑

k

e−ǫk(ǫk − ǫ∞
k − 〈|χk[V ]|2)v〉).

The right hand side of this inequality is exactly the third term of (2.6) which is
positive. Therefore ∫

ω

Nsvs dx −
∫∫

Ω

Nv dxdz ≥ 0. (3.19)

By exchanging the roles of (N,N∞) and (V, V ∞), we find
∫∫

Ω

N∞v dxdz −
∫

ω

N∞
s vs dx ≥ 0 (3.20)

which leads, by (3.11) and for all t ≥ 0, to

0 ≤ 1

2

∫

ω

(ns)
2

N∞
s

dx +
1

2

∫∫

Ω

|∇v|2 dxdz ≤ L(t).

This ends the proof of Lemma 3.2. Remark that the sum of (3.19) and (3.20) leads
to the inequality

∫

ω

nsvs dx ≥
∫∫

Ω

nv dxdz =

∫∫

Ω

|∇v|2 ≥ 0.
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Proof of Lemma 3.3. We have

∇xvs =
∑

k

e−ǫk

Z (∂xǫk − ∂xǫk) +
∑

k

(
e−ǫk

Z − e−ǫk

Z

)
∂xǫk , (3.21)

with the notation Z =
∑

ℓ e−ǫℓ . Thus, by a Jensen inequality,

|∇xvs|2 ≤ 2
∑

k

e−ǫk

Z |∂xǫk − ∂xǫk|2 + 2

∣∣∣∣∣
∑

k

(
e−ǫk

Z − e−ǫk

Z

)
∂xǫk

∣∣∣∣∣

2

. (3.22)

For the first term of the right hand side, we use the results stated in Lemma A.2 and
A.4 :

∑

k

e−ǫk

Z |∂xǫk − ∂xǫk|2

≤ 2
∑

k

e−ǫk

Z 〈|χk|2∇xv〉2 + 2
∑

k

e−ǫk

Z 〈(|χk|2 − |χk|2)∇xV 〉2

≤ C1e
C2‖V (x,.)‖L2(0,1)〈|∇xv|〉2 +

∫ 1

0

C1e
C2‖V (x,.)+sv(x,.)‖L2(0,1)〈|v|〉2〈|∇xV |〉2 ds.

Consequently, we have

∑

k

e−ǫk

Z |∂xǫk−∂xǫk|2 ≤ C1e
C2(‖V ‖L2(0,1)+‖v‖L2(0,1))(〈|∇xv|〉2+〈|v|〉2〈|∇xV |〉2). (3.23)

We can write the second term of the right hand side of (3.22) as follows :

∑

k

(
e−ǫk

Z − eǫk

Z

)
∂xǫk =

∫ 1

0

∑
k〈|χs

k|2v〉e−ǫs
k∑

ℓ e−ǫs
ℓ

∑
k〈|χk|2∇xV 〉e−ǫs

k

∑
ℓ e−ǫs

ℓ
ds

−
∫ 1

0

∑

k

〈|χs
k|2v〉e−ǫs

k∑
ℓ e−ǫs

ℓ
〈|χk|2∇xV 〉 ds,

where we use the notation ǫs
k = ǫk[V + sv] and χs

k = χk[V + sv]. Thus, by applying
the L∞ bound in the z direction for χs

k and χk stated in Lemma A.2, we obtain

∣∣∣∣∣
∑

k

(
e−ǫk

Z − e−ǫk

Z

)
∂xǫk

∣∣∣∣∣

2

≤ C1e
C2(‖V ‖L2(0,1)+‖v‖L2(0,1))〈|v|〉2〈|∇xV |〉2. (3.24)

By combining (3.23) and (3.24) in (3.22), we obtain (3.12).
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Proof of Lemma 3.4. From (3.12), we deduce

∫

ω

(ns)
2

N∞
s

|∇xvs|2 dx

≤ C1

∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)
(〈|∇xv|〉2 + 〈|v|〉2〈|∇xV

∞|〉2) dx.

(3.25)
Throughout the proof, C, C1 and C2 stand for universal constants. Since V is
bounded in H1(Ω) uniformly in time, the Trudinger inequality implies

exp(C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))) ∈ Lp(ω), ∀ p ∈ [1,∞). (3.26)

Thus a Hölder inequality gives

∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)〈|∇xv|〉2 dx ≤ C

∥∥∥∥∥
ns√
N∞

s

∥∥∥∥∥

2

L3(ω)

‖〈|∇xv|〉‖2
L8(ω).

(3.27)
Using the expression given in (1.7) for n = N − N∞, we deduce

n = ns

∑

k

|χk|2e−ǫk

Z + N∞
s

∑

k

[
(|χk|2 − |χ∞

k |2)e
−ǫk

Z + |χ∞
k |2

(
e−ǫk

Z − e−ǫ∞k

Z∞

)]
.

As we saw before, denoting ǫs
k = ǫk[V + sv], and χs

k = χk[V + sv] we can rewrite
with Lemma A.3 the third term as follow :

∑

k

|χ∞
k |2

(
e−ǫk

Z − e−ǫ∞k

Z∞

)
=

∫ 1

0

∑
k〈|χs

k|2v〉e−ǫs
k∑

ℓ e−ǫs
ℓ

∑
k |χ∞

k |2e−ǫs
k∑

ℓ e−ǫs
ℓ

ds−
∫ 1

0

∑

k

〈|χs
k|2v〉e−ǫs

k∑
ℓ e−ǫs

ℓ
|χ∞

k |2 ds.

Since Lemma A.2 provides a bound of the eigenvectors of the Hamiltonian χk uni-
formly in k, we deduce, thanks to Lemma A.2 and Lemma A.4,

|n|(x, z) ≤ C1e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)
(|ns|(x) + N∞

s ‖v‖L1
z(0,1)(x)).

Therefore, using interpolation inequalities, (3.26) and N∞
s ∈ L∞(ω), ones deduces

from elliptic regularity for the Poisson equation (1.3) that :

‖v‖H2(Ω) ≤ C‖n‖L2(Ω) ≤ C(‖ns‖L18/7(ω) + ‖v‖H1(Ω)). (3.28)

With a Gagliardo-Nirenberg inequality and (3.28), we have

‖〈|∇xv|〉‖L8(ω) ≤ C‖〈|∇xv|〉‖1/4

L2(ω)‖〈|∇xv|〉‖3/4

H1(ω)

≤ C‖v‖1/4

H1(Ω)(‖ns‖3/4

L18/7(ω)
+ ‖v‖3/4

H1(Ω)).
(3.29)
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By interpolation inequalities, we get
∥∥∥∥∥

ns√
N∞

s

∥∥∥∥∥

2

L3(ω)

≤
∥∥∥∥∥

ns√
N∞

s

∥∥∥∥∥
L2(ω)

∥∥∥∥∥
ns√
N∞

s

∥∥∥∥∥
L6(ω)

(3.30)

and
‖ns‖L18/7(ω) ≤ ‖ns‖2/3

L2(ω)‖ns‖1/3

L6(ω). (3.31)

Thus by (3.27), (3.29), (3.30) and (3.31), we obtain
∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)〈|∇xv|〉2 dx

≤ C

∥∥∥∥∥
ns√
N∞

s

∥∥∥∥∥
L2(ω)

∥∥∥∥∥
ns√
N∞

s

∥∥∥∥∥
L6(ω)

‖v‖1/2

H1(Ω)(‖ns‖L2(ω)‖ns‖1/2

L6(ω) + ‖v‖3/2

H1(Ω)).

Finally, using N∞
s ≥ C > 0 and Lemma 3.2, we have

∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)〈|∇xv|〉2 dx

≤ C1L(t)‖ns‖3/2

L6(ω)‖v‖
1/2

H1(Ω) + C2L(t)1/2‖ns‖L6(ω)‖v‖2
H1(Ω).

(3.32)

Now, to handle the term ‖ns‖L6(ω), we decompose ‖ns‖L6(ω) ≤ C(‖ns/N
∞
s +vs‖L6(ω)+

‖vs‖L6(ω)). By (3.18) we have :

|vs| ≤ max

{
∑

k

e−ǫk

∑
ℓ e−ǫℓ

|ǫk − ǫ∞
k |,
∑

k

e−ǫ∞k∑
ℓ e−ǫ∞ℓ

|ǫ∞
k − ǫk|

}
.

Hence, with Lemma A.4 and (3.26), we deduce

‖vs‖L6(ω) ≤ C‖v‖L8
xL1

z(Ω) ≤ C‖v‖H1(Ω),

thanks to the Sobolev embedding of H1(Ω) into L8
xL

1
z(Ω), which proves the inequality

(3.13) in Lemma 3.4. Moreover Proposition 3.1 provides a uniform bound on ‖v‖H1(Ω)

which, with the inequality (3.32) and Lemma 3.2, leads to
∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)〈|∇xv|〉2 dx

≤ C1L(t)

∥∥∥∥
ns

N∞
s

+ vs

∥∥∥∥
3/2

L6(ω)

+ C2L(t)1/2

∥∥∥∥
ns

N∞
s

+ vs

∥∥∥∥
L6(ω)

‖v‖H1(Ω) + C3L(t)‖v‖H1(Ω).

(3.33)
Finally, using x1/4y3/4 ≤ 1

4ε3 x + 3
4
εy, we have

L(t)

∥∥∥∥
ns

N∞
s

+ vs

∥∥∥∥
3/2

L6(ω)

≤ 1

4ε3
L(t)4 +

3

4
ε

∥∥∥∥
ns

N∞
s

+ vs

∥∥∥∥
2

L6(ω)

≤ 1

4ε3
L(t)4 + Cε

∥∥∥∥∇x

(
ns

N∞
s

+ vs

)∥∥∥∥
2

L2(ω)

,
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where the Sobolev embedding H1 →֒ L6(ω) and the Poincaré inequality are used.
Proceeding analogously for the second term in (3.33), we obtain the desired inequality
for ε fixed small enough.

In order to estimate the second term in (3.25), we first use the Sobolev embedding
H1(Ω) →֒ L8

xL
1
z(Ω) and (3.26), we have

∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)〈|v|〉2〈|∇xV

∞|〉2 dx ≤ C‖v‖2
H1(Ω)

∥∥∥∥∥
ns√
N∞

s

∥∥∥∥∥

2

L3(ω)

.

With (3.30) and Lemma 3.2, it yields

∫

ω

(ns)
2

N∞
s

e
C2(‖V ∞‖

L2
z(0,1)

+‖v‖
L2

z(0,1)
)〈|v|〉2〈|∇xV

∞|〉2 dx

≤ CL(t)1/2‖v‖2
H1(Ω)

(∥∥∥∥
ns

N∞
s

+ vs

∥∥∥∥
L6(ω)

+ ‖vs‖L6(ω)

)
.

(3.34)

By proceeding as above, we obtain the desired inequality for the second term, which
concludes the proof.
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Appendix

Spectral properties of the Hamiltonian

In this appendix, we first list some basic properties of eigenfunctions and eigenvalues
of the Schrödinger operator in the z variable. Most of these properties, which are
used along the paper are either proved or can be proved by straightforwardly adapt-
ing the techniques of the book of Pöschel and Trubowitz [33]. Therefore, very few
proofs are provided in this appendix.

For a given real valued function U in L2(0, 1), let H[U ] be the Schrödinger operator

H[U ] := −1

2

d2

dz2
+ U(z)

defined on the domain D(H[U ]) = H2(0, 1) ∩ H1
0 (0, 1).

This operator admits a strictly increasing sequence of real eigenvalues (ǫk[U ])k≥1

going to +∞. The corresponding eigenvectors,denoted by (χk[U ](z))k≥1 (chosen such
that χ′

k(0) > 0), form an orthonormal basis of L2(0, 1). They satisfy of course





−1

2

d2

dz2
χk + Uχk = ǫkχk ,

χk ∈ H1
0 (0, 1),

∫ 1

0

χkχℓ dz = δkl.

(A.1)

Obviously, for U = 0, we have ǫk[0] = 1
2
π2k2 and χk[0](z) =

√
2 sin(πkz).

Lemma A.1 Let U and V be two real-valued functions in L2(0, 1) such that U−V ∈
L∞(0, 1). Then the corresponding eigenvalues verify

|ǫk[U ] − ǫk[V ]| ≤ ‖U − V ‖L∞(0,1). (A.2)

In particular, the case V = 0 gives |ǫk[U ] − 1

2
π2k2| ≤ ‖U‖L∞(0,1).

Moreover, following the study of the spectral properties of H[U ] in Chapter 2 of
[33], we have the following lemma :

Lemma A.2 There exists a positive constant CU depending only on ‖U‖L2(0,1) such
that

|ǫk[U ] − 1

2
π2k2| ≤ CU ; ‖χk[U ] −

√
2 sin(πkz)‖L∞(0,1) ≤ CU .

Moreover the constant CU can be chosen such that CU ≤ C1 exp(C2‖U‖L2(0,1)), where
the constants C1 and C2 are independent of U and k.
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Lemma A.3 Let V = V (λ, z) ∈ L∞
loc(λ, L2

z(0, 1)) where λ is a real parameter (typi-
cally λ = t or λ = xi). Let us shortly denote ǫk instead of ǫk[V (λ, ·)] and χk instead
of χk[V (λ, ·)]. Assume that ∂λV ∈ L1

loc(λ, L2
z(0, 1)). Then

(i) ∂λǫk ∈ L1
loc and

∂λǫk = 〈|χk|2∂λV 〉.
(ii) ∂λχk ∈ L1

loc(λ, L∞
z (0, 1)) and we have

∂λχk =
∑

ℓ6=k

〈χk χℓ ∂λV 〉
ǫk − ǫℓ

χℓ.

Lemma A.4 Let V and Ṽ be two real-valued functions in L2(0, 1). Then there exist

two positive constants C1 and C2 independent of p, V and Ṽ such that

|ǫk[V ] − ǫk[Ṽ ]| ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) . (A.3)

And,

‖χk[V ] − χk[Ṽ ]‖L∞(0,1) ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) . (A.4)

Proof. The estimate (A.3) is an easy consequence of Lemmata A.2 and A.3.
Let us prove (A.4). Without loss of generality, we assume that ǫk[V ] > 0 (by

shifting V and Ṽ by the same constant). Let us denote

uk =
χk[Ṽ ]′(0)

χk[V ]′(0)
χk[V ] ; ũk = χk[Ṽ ], (A.5)

so that u′
k(0) = ũk

′(0). Writing the equation satisfied by uk − ũk and proceeding like
in the proof of Lemma 1, Chapter 1 of [33], we have

uk(z) − ũk(z) = 2

∫ z

0

s(z − t)V (t)(uk − ũk)(t) dt

+2

∫ z

0

s(z − t)ũk(t)((V − Ṽ )(t) − (ǫk[V ] − ǫk[Ṽ ])) dt,

where,

s(t) =
sin(

√
2ǫk[V ] t)√

2ǫk[V ]
.

By a Gronwall argument, we prove (A.4) for the difference uk−ũk. We finally deduce

the result for χk[V ] − χk[Ṽ ] by using the property

∫ 1

0

|χk|2 dz = 1.

Now, we give two technical lemmata, where the potential is defined on Ω. We
recall that (x, z) ∈ Ω = ω × (0, 1) where ω is a bounded regular domain of R

2.
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Lemma A.5 Assume that V ∈ H1(Ω) and let ǫk be the eigenvalues defined by (1.2).
Then, for all α ≥ 0 and q ∈ [1, +∞), we have

Iα :=
1

Z
∑

k

|ǫk|α e−ǫk ∈ Lq(ω),

where Z =
∑

k e−ǫk . The Lq norm of Iα is bounded by a constant only depending on
α, q and ‖V ‖H1.

Proof. Lemma A.2 states that the eigenvalues and eigenvectors of (1.2) satisfy the
(uniform in p) estimate

∣∣∣∣ǫk(x) − π2

2
k2

∣∣∣∣+ ‖χk(x, ·)‖L∞

z
≤ C1 e

C2‖V (x,·)‖
L2

z . (A.6)

It is enough to show that

Iα(x) ≤ C3 e
αC2‖V (x,·)‖

L2
z . (A.7)

Indeed, since ‖V (x, ·)‖L2
z

is bounded in H1(ω), the Trudinger inequality,

∫

O

exp(|u|N/(N−1)) < +∞ , ∀u ∈ W 1,N(O), O ⊂ R
N (A.8)

implies that e
‖V (x,·)‖2

L2
z ∈ L1(ω), which ensures that e

αC2‖V (x,·)‖
L2

z ∈ Lq(ω) for all
q < +∞ thus leading to the result.

Let us now prove (A.7). To this aim, we treat differently low and high energies.
More precisely, we have

Iα =
1

Z
∑

|ǫk|≤KA

|ǫk|αe−ǫk +
1

Z
∑

|ǫk|≥KA

|ǫk|αe−ǫk

≤ (KA)α +
1

Z
∑

|ǫk|≥KA

|ǫk|αe−ǫk

(A.9)

where K is chosen larger than 2 (K > 2) and A is such that |ǫk − 1
2
π2k2| < A. This

choice implies that
1

2
k2π2 − A < ǫk <

1

2
k2π2 + A

and, for high energies (|ǫk| ≥ KA), that we have

A <
1

2(K − 1)
k2π2 .
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Hence, the high energy contribution can be estimated as follows:

∑

|ǫk|≥KA

|ǫk|αe−ǫk ≤
∑

k>
√

2(K−1)A/π

(
1

2
k2π2 + A

)α

e−k2π2/2 eA

≤
(

1 +
1

K − 1

)α

eA
∑

k>
√

2(K−1)A/π

(
1

2
k2π2

)α

e−k2π2/2

≤ Cα

(
1 +

1

K − 1

)α

eA

∫ ∞

√
2(K−1)A/π

(
1

2
π2x2

)α

e−π2x2/2 dx,

where we used the elementary property:

lim
n→+∞

∑

k≥n

f(k)

∫ +∞

n

f(x) dx

= 1,

for any nonnegative function decaying at infinity and such that the following inte-
gral

∫ +∞

0
f(x) dx converges. Assuming that α 6= 0 (the case α = 0 is trivial), an

integration by parts leads to the estimate

∫ ∞

√
2(K−1)A/π

(
1

2
π2x2

)α

e−π2x2/2 eA dx ≤ C((K − 1)A)α−1/2e−(K−1)A eA,

which leads to ∑

|ǫk|≥KA

|ǫk|αe−ǫk ≤ CαAα−1/2e−(K−1)A eA.

Besides, thanks to the choice of A, we obviously have

∑

k

e−ǫk ≥ Ce−A.

Therefore, going back to (A.9), we have

Iα ≤ (KA)α + CαAα−1/2e(3−K)A.

Setting K = 4, we have a bound on A−1/2e(3−K)A for large A. Thus we proved that
I ≤ CαAα and (A.7) follows thanks to (A.6) by taking A = C1 exp(C2‖V (x, .)‖L2

z
).

Lemma A.6 The map V 7→ Vs = − log(
∑

k e−ǫk[V ]) is locally Lipschitz continuous
from H2(Ω) to H2(ω), where (ǫk[V ])k denotes the whole set of eigenvalues of the
Hamiltonian −1

2
d2

dz2 + V .
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Proof. Since the summation over k can be done easily, it is enough to show the
result for the map V 7→ ǫk[V ]. Let U, V be two bounded potentials of H2(Ω). From
Lemma A.1, we deduce easily that ‖ǫk[U ] − ǫk[V ]‖L2(ω) ≤ C‖U − V ‖H2(Ω). For the
first derivative, we write with Lemma A.3 :

∫

ω

|∇xǫk[U ] −∇xǫk[V ]|2 dx ≤ 2

∫

Ω

|∇x(U − V )|2|χk[U ]|4 dxdz

+2

∫

Ω

|∇xV |2(|χk[U ]|2 − |χk[V ]|2)2 dxdz.

The Sobolev embedding of H2(Ω) into L∞(Ω) implies that for all nonnegative con-
stant C2,

exp(C2(‖U‖L2
z(0,1) + ‖V ‖L2

z(0,1))) ∈ L∞(ω).

Thus, with Lemma A.2 we have a bound of χk[U ] in L∞(Ω) and with Lemma A.4,

‖χk[U ] − χk[V ]‖L∞(Ω) ≤ C‖U − V ‖H2(Ω). (A.10)

We deduce,

∫

ω

|∇xǫk[U ] −∇xǫk[V ]|2 dx ≤ C‖U − V ‖2
H1(Ω) + C‖U − V ‖2

H2(Ω).

Now it remains to estimate the difference of the second derivative of ǫk[U ] − ǫk[V ].
We recall that from Lemma A.1, we deduce easily

‖ǫk[U ] − ǫk[V ]‖L∞(ω) ≤ C‖U − V ‖H2(Ω). (A.11)

If i = 1 or 2, j = 1 or 2, by the expression of the derivatives stated in Lemma A.3,
we have

∂xixj
ǫk[V ] =

∫ 1

0

∂xixj
V |χk[V ]|2 dz + 2

∫ 1

0

χk[V ]∂xi
χk[V ]∂xj

V dz.

As before, we can show the Lipschitz dependency in V ∈ H2(Ω) of the first term
of the right hand side. For the second one, we need the following result, which is
proved below : there exists a positive constant δV depending only on ‖V ‖H2(Ω) such
that

∀ (k, l) ∈ (N∗)2 |ǫk[V ] − ǫℓ[V ]| ≥ δV |k − l|2. (A.12)

Since χk[V ] is bounded in L∞(Ω), using the expression of ∂xi
χk[V ] in Lemma A.3

and (A.12), we have |∂xi
χk[V ]| ≤ C〈|∂xi

V |〉. Therefore,

|χk[U ]∂xi
χk[U ]∂xj

U − χk[V ]∂xi
χk[V ]∂xj

V | ≤ C |χk[U ] − χk[V ]| 〈|∂xi
U |〉 |∂xi

U |+
+ C |∂xi

U | |∂xi
χk[U ] − ∂xi

χk[V ]| + C 〈|∂xi
V |〉 |∂xi

(U − V )|.

36



Thus, it remains to see the Lipschitz dependency in V of ∂xi
χk[V ]. We have

∂xi
(χk[U ] − χk[V ]) =

∑

ℓ6=k

(〈χk[U ] χℓ[U ] ∂xi
U〉

ǫk[U ] − ǫℓ[U ]
χℓ[U ] − 〈χk[V ] χℓ[V ] ∂xi

V 〉
ǫk[V ] − ǫℓ[V ]

χℓ[V ]

)

=
∑

ℓ6=k

〈χk[U ] χℓ[U ] ∂xi
U − χk[V ] χℓ[V ] ∂xi

V 〉
ǫk[U ] − ǫℓ[U ]

χℓ[U ]

+
∑

ℓ6=k

〈χk[V ] χℓ[V ] ∂xi
V 〉

ǫk[V ] − ǫℓ[V ]
(χℓ[U ] − χℓ[V ])

+
∑

ℓ6=k

〈χk[V ] χℓ[V ] ∂xi
V 〉χℓ[V ]

ǫk[V ] − ǫk[U ] + ǫℓ[U ] − ǫℓ[V ]

(ǫk[U ] − ǫℓ[U ])(ǫk[V ] − ǫℓ[V ])
.

From (A.10), (A.11) and (A.12), we deduce that :

‖∂xi
χk[U ] − ∂xi

χk[V ]‖L2(Ω) ≤ C(1 + ‖∂xi
U‖L2(Ω) + ‖∂xi

V ‖L2(Ω))‖U − V ‖H2(Ω).

With the Sobolev embedding of H1(Ω) into L2(Ω), ‖∂xi
V ‖L2(Ω) ≤ C‖V ‖H2(Ω). This

concludes the proof of the Lipschitz dependency with respect to V of the second
derivative.

Proof of (A.12). If k = ℓ, this inequality is obvious. Let us first prove that there
exists a constant δV depending only on ‖V ‖H2(Ω), such that

min
k 6=l

|ǫk[V ] − ǫℓ[V ]| ≥ δV . (A.13)

If not, by the compact embedding of H2(Ω) into L∞(Ω) it would be possible to
find a sequence (V n) converging to V in the L∞ strong topology and a sequence
kn of integers such that ǫkn+1[V

n] − ǫkn [V n] converges to zero as n tends to +∞.
The asymptotic behaviour of the ǫk’s deduced from Lemma A.1 implies that the
sequence (kn) is bounded, thus, up to an extraction, it is stationary : kn = k.
Besides, (A.2) implies that ǫk[V

n] converges to ǫk[V ] and ǫk+1[V
n] to ǫk+1[V ]. Hence

ǫk[V ] = ǫk+1[V ], which is a contradiction with the fact that the eigenvalues are
strictly increasing. Moreover, by (A.2), we have

π2

2
k2 − ‖V ‖L∞(Ω) ≤ ǫk[V ] ≤ π2

2
k2 + ‖V ‖L∞(Ω).

Therefore, for any (k, l) :

|ǫk[V ] − ǫℓ[V ]| ≥ π2

2
|k − ℓ|2 + π2|k − ℓ| − 2‖V ‖L∞(Ω).

Hence, if π2|k − ℓ| ≥ 2‖V ‖L∞(Ω), then |ǫk[V ] − ǫℓ[V ]| ≥ π2

2
|k − ℓ|2. From this in-

equality and (A.13) we deduce easily (A.12) (up to a change of δV ).
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