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1 IntrodutionThere is a growing interest in modeling and simulating the spaeraft eletrial harging. Thisphenomenon is a soure of in-orbit failures: energeti partiles from the magnetospheri plasmainterat with spaeraft, and these omplex interations an lead to high potential di�ereneson the spaeraft surfaes. In turn, these potential di�erenes indue the formation of eletriaring that an produe irreversible failures on the embarked devies, the solar arrays being apartiularly sensible region. The problem has motivated the design of spei� numerial odesin aerospae engineering: NASCAP-2K [20℄, SPARCS [11℄, SPIS [22℄, ESCAPE [21℄ while themodeling of the disharge phenomena and eletri ar formation is addressed e. g. in [2, 5, 6℄.The in-orbit onditions make it reasonable to use a statistial desription of the plasmasurrounding the spaeraft. The harged partiles interat with the eletro-magneti �elds:the trajetories are in�uened by the eletromagneti fores, whih in turn are also modi�edby partiles motion. To be more spei�, in the geostationary orbits we are interested in,the mean free path remains large ompared to the typial size haraterizing the spaeraft1



and we an restrit to ollisionless models. Furthermore, the e�ets of the magneti �eld anbe negleted and fores then redue to the gradient of the eletri potential. We are thusled to desribe the plasma by Vlasov-Poisson equations. The harging phenomenom is drivenby the boundary onditions whih omplete the equations: sine the surfae elements of thespaeraft have di�erent dieletri properties, they have di�erent sensibilities to the harge ex-hanges mehanisms and di�erent behavior with respet to the potential variations. We shallsee below that the boundary onditions to be used for in-orbit �ight are highly non standardand lead to spei� and hallenging questions, both for mathematial analysis and numerialsimulations.The main soure of numerial ost omes from the simulation of the Vlasov-type equation.It is ostly due to the fat that the equation is set in phase spae whih means that weare working with three spae variables and three veloity variables, additionally to the timevariable. It already implies naturally a huge size of unknowns. Furthermore, the multisaleaspet of the problem may also lead to deal with sti� and deliate terms. In what follows, weshall onsider three families of numerial methods to handle the problem:- Partile-In-Cell (PIC) methods approah the plasma by a �nite number of maropartiles(see [7, 14℄ for more details). The method onsists in traking the maropartiles along theirtrajetories, that is to ompute the harateristis urves assoiated to the Vlasov equation.It adapts to 3D frameworks and allows to get satisfying results with relatively few partiles.However, PIC methods are noisy, whih an degrade the auray of the algorithm, see for in-stane the omments and urrative attempts in [3℄. Moreover the omputational time requiredseems to be very long.- Another approah onsists in disretizing the phase spae, and interpreting the Vlasovequation as a onservation law in phase spae, to propose a Finite Volume approximation (or�ux balane method) [12, 15℄.- Finally semi-lagrangian methods ombine spae phase disretization and integration alongharateristis, through an interpolation step whih is intended to projet as smartly as possi-ble the endpoint of the path on the grid after a time step. These methods usually provide anaurate approximation of the distribution funtion in the phase spae [17℄.It turns out that PIC methods have several advantages that make them well adapted forsimulating spaeraft harging. This is partiularly relevant when onsidering geostationaryorbits sine the orresponding models do not need an aurate desription of the partile dis-tribution funtion. Instead, we an fous on the omputation of the surfae urrents. Forinstane, the SPARCS ode is based on the Bak-Trajetory method, whih is a variant ofPIC algorithms: we trak the trajetories bak from the points on the surfae of the spaeraftuntil the trajetories reah the boundary where the distribution funtion is given. It allows tosolve the Vlasov equation only on some partiular points and make it interesting in that ase.Besides, the software takes into aount several physial phenomena like seondary emission,photo-emission and reolletion of seondary eletrons. Nevertheless, the reent developmentof Finite Volume and Semi Lagrangian methods, motivated e. g. from inertial or magnetion�nement fusion projets, an make it relevant to onsider these methods as potential alter-native to the Bak-Trajetory approah. Furthermore, spaeraft engineering is now onernedwith a wide range of orbits where the physial onditions an signi�antly di�er from the geo-stationary environment. Aordingly, we are led to more omplex interation models, whih2



require a more aurate evaluation of the partiles distribution funtion, inluding its spaialrepartition far from the spaeraft surfae. Hene, we wish to ompare the abilities of severalnumerial methods for solving the eletri harge equations. To this end, we shall derive belowa simple 1D model whih ontains the main di�ulties of the atual problem. It will serve as abenhmark for disussing the pros and ons of the numerial methods. The paper is organizedas follows. In the next Setion, we introdue the model, with a detailed presentation of theboundary onditions on the spaeraft, in whih the harging dynamis is embodied. In setion3, Vlasov solvers are presented and ompared when the eletrostati potential E is assumed tobe given. Finally, setion 4 deals with the resolution of the whole model of spaeraft harging.An Appendix, whih has its own interest, details the treatment of the boundary onditionswhen using the Semi-Lagrangian method.2 Modeling of the spaeraft harging2.1 Desription of the plasmaThe magnetospheri plasma is assumed to ontain two harged partiles speies : ions H+ andeletrons. The distribution funtions of these speies are denoted by fi and fe respetively. Attime t, fi/e(t, x, v) dv dx stands for the number of ions (respetively eletrons) in the domainentered at the point (x, v) of the phase spae with in�nitesimal volume dv dx. We refer to[9, 10, 11℄ for a detailed disussion of the modeling issues for geostationary plasmas, whihallow to neglet interpartiles ollisions and the e�ets of the magneti �eld. Therefore, thedistribution funtions satisfy the Vlasov equation:
∂tfi/e + v · ∇xfi/e +

qi/e

mi/e

∇xΦ · ∇vfi/e = 0, (2.1)where qi = −qe = e > 0, the elementary harge, mi and me are respetively the ion massand the eletron mass. In this equation Φ denotes the selfonsistent eletrostati potentialgenerated by the harged arriers. It is related to the marosopi densities of harge by thePoisson equation
−ǫ0∆xΦ = e(ni − ne), (2.2)where ε0 is the vauum permittivity and ni/e stand for the ion/eletron density

ni/e(t, x) =

∫
fi/e(t, x, v) dv.Far from the satellite surfaes, the system is assumed to be at the equilibrium. It meansthat:

• The distribution funtions are given by Maxwellians
lim

‖x‖→+∞
fi/e(t, x, v) = gi/e(v) = n0,i/e

(
mi/e

2πkTi/e

)3/2

exp

(
−

mi/ev
2

2kTi/e

)
,where n0,i/e is the given number density and Ti/e the temperature of the distribution ofpartiles, k being the Boltzmann onstant;3



• The eletrostati potential vanishes at in�nity
lim

‖x‖→+∞
Φ(t, x) = 0.The derivation of the boundary ondition on the spaeraft is more subtle. The externalsurfaes of the spaeraft are subjet to the urrent

Jext(t, x) = e

∫
v(fi − fe) dvdue to the harged partiles of the plasma. This urrent indues a modi�ation of the eletro-stati potential on the boundary of the spaeraft. Indeed the Ampère equation furnishes theevolution in time of the eletrostati potential:

ǫ0
∂

∂t

∂Φ

∂ν
− Jext · ν = 0, (2.3)at the boundary between the spaeraft and the plasma where ν(x) stands for the outwardunit vetor at a point x of the spaeraft boundary. It is ompleted by boundary onditions forthe harged partiles distribution that take into aount re�etion of the impinging partiles,various emission phenomena with di�erent energy spetrum, as well as reolletion of seondaryeletrons. The originality of this model is that these boundary onditions are time-dependentwith a time derivative. The derivation of the evolution equations at the boundary will belari�ed in the next setion.Let us make a short break on saling issues, still referring to [9, 10, 11℄. In geostationaryorbits, the Debye length is large with respet to the harateristi length of a spaeraft.Aordingly, asymptoti arguments allow to get rid of the time derivative in (2.1) and toassume quasi-neutrality. Hene, (2.1)-(2.2) an be replaed in this situation by the system





v · ∇xfi/e +
qi/e

mi/e

∇xΦ · ∇vfi/e = 0,

∆Φ = 0.

(2.4)However, the saling does not disregard the time derivative in the boundary onditions forthe potential (2.3). Hene, the time variable appears as a parameter in the stationary Vlasov-Laplae system, and the evolution of the harging phenomena is governed by the non stationaryboundary onditions at the spaeraft surfae.2.2 One-dimension modelLet us now derive a one-dimension ariature of the spaeraft harging model. The simpli�edmodel is intended to exhibit the main features of the atual equations, in partiular the evolu-tion terms arising in the boundary onditions. Having at hand suh a toy model allows to pointout easily the di�ulties of the model as well as to evaluate the advantages and drawbaksof numerial methods. It an be seen as a neessary step to extend the simulations in higherdimension.
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h
XFigure 1: Sheme of the spaeraft.Sine we are mainly onerned with numerial purposes, we onsider a bounded domain,haraterized by 0 < L < ∞. The spaeraft is seen as an assembly of a dieletri layer anda metalli ondutor. We onsider that the ondutor oupies the interval [0, hc] whereasthe dieletri takes plae in [−hd, 0) (see Figure 1). Therefore hd denotes the thikness ofthe dieletri layer and hc the width of the ondutor. Hene, the plasma �lls the domain

] − L − hd,−hd[∪]hc, L + hc[. Aording to the previous Setion, we use the following 1Dversion of the Vlasov-Poisson system:
∂tfi/e+v ·∂xfi/e+

qi/e

mi/e

∂xΦ·∂vfi/e = 0, t > 0, x ∈]−L−hd,−hd[∪]hc, L+hc[, v ∈ R. (2.5)where the eletrostati �eld E = −∂xΦ is alulated thanks to the Poisson equation :
{

−ǫ0 ∂2
xxΦ = e(ni − ne) =

∫

R

e(fi − fe) dv, x ∈] − L − hd,−hd[∪]hc, L + hc[. (2.6)At the initial time, the system is assumed to be not perturbed and the distribution funtionsare given by the Maxwellian distribution :
fi/e(0, x, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
. (2.7)At the external boundary, bearing in mind that L is a ut-o� parameter to be hosen largeenough, we use the equilibrium as inoming boundary onditions:





fi/e(t,−L − hd, v) = n0,i/e

√
mi/e

2πkTi/e
exp

(
−

mi/ev
2

2kTi/e

)
, for v > 0,

fi/e(t, L + hc, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
, for v < 0.

(2.8)while for the potential we get
Φ(−L − hd) = Φ(L + hc) = 0. (2.9)At the spaeraft boundary, we assume that partiles are speularly re�eted

{
fi/e(t,−hd, v) = α fi/e(t,−hd,−v) if v < 0,

fi/e(t, hc, v) = α fi/e(t, hc,−v) if v > 0,
(2.10)with 0 ≤ α ≤ 1 a parameter measuring the proportion of re�eted partiles. It thus remainsto disuss the boundary onditions on −hd and hc for the potential. These boundary ondi-tions will onnet the behavior of the plasma in the two intervals (−L−hd,−hd) and (hc, L+hc).5



To this end, it is onvenient to introdue a referene potential Φref whih orresponds tothe potential reated by a satterer oupying (−hd, hc) and harged uniformly. The refereneharge being �xed to 1V , Φref is de�ned by
{

∂2
xxΦref = 0,

Φref(−hd) = Φref (hc) = 1, Φref (L + hc) = Φref(−L − hd) = 0.
(2.11)Next, in a perfet ondutor the potential remains onstant at any plae. Hene, let us denoteby φabs(t), the so�alled absolute potential, the value of the potential in [0, hc]:

Φ(t, x) = φabs(t), for all x ∈ [0, hc].This value is of ourse still to be determined. Then, we write
Φ(t, x) = φabs(t) Φref(x) + Φ′(t, x), (2.12)whih de�nes the di�erential potential Φ′. Thanks to (2.6) and (2.11), we dedue that thedi�erential potential Φ′ satis�es :





−ǫ0 ∂2
xxΦ

′(t, x) = e(ni − ne),

Φ′(t, L + hc) = Φ′(t,−L − hd) = 0,

Φ′(t, hc) = 0.

(2.13)We are thus left with the task of de�ning onditions for φabs and Φ′(t,−hd).2.3 Charging evolutionAtually, the eletrostati �eld E = −∂xΦ is de�ned in the whole domain
] − L − hd,−hd[∪[−hd, 0[∪[0, hc]∪]hc, L + hc[,where the four intervals orrespond to di�erent physial properties (that is vauum, dieletri,ondutor, vauum). On the one hand, at any plae, E = −∂xΦ satis�es the equation

ǫ ∂xE = ρ,where ǫ is the permittivity, depending on the medium, and ρ is the density of harge. On theother hand, the harge onservation
∂tρ + ∂xJ = 0,holds where J is the urrent density. In the plasma domain ] − L − hd,−hd[∪]hc, L + hc[, wehave

ρ = e(ni − ne), J = e

∫

R

v(fi − fe) dv,and the ontinuity equation follows by integrating with respet to v the Vlasov equations.Therefore, we have
ǫ ∂t∂xE + ∂xJ = 0.6



Sine this relation must be satis�ed in all the domain (−L−hd, L+hc), it yields jump onditionsat eah boundary
−

∂

∂t

[
ǫ
∂Φ

∂x

]
+ [J ] = 0, (2.14)where [.] denotes the jump at the interfaes.Let us denote by Jext the net urrent on the spaeraft from the plasma, that is

Jext(t, hc) = e

∫

R

v(fi − fe)(t, hc, v) dv

Jext(t,−hd) = e

∫

R

v(fi − fe)(t,−hd, v) dvIn view of the boundary ondition (2.10), it reads
Jext(t, hc) = (1 − α) e

∫

v<0

v(fi − fe)(t, hc, v) dv

Jext(t,−hd) = (1 − α) e

∫

v>0

v(fi − fe)(t,−hd, v) dv.The urrent inside the ondutor is denoted Jcond. We reall that in the ondutor the ele-trostati potential keeps a onstant value denoted φabs. We make the assumption that thedieletri layer is very thin, hd ≪ 1, so that there is no volumi harge in the dieletri andthe derivative of the potential in the dieletri an be approximated by the �nite di�erene
∂Φ

∂x
≃

φabs − Φ(−hd)

hd
.Finally there exists a runaway urrent between the dieletri and the ondutor, whih isproportional to the di�erene of potential, see [19℄,

Jdiel = −σd
φabs − Φ(−hd)

hd

,

σd being the ondutivity of the dieletri. Therefore, the jump relations read as follows
• At the interfae x = −hd between the plasma and the dieletri

∂t

(
ǫ0∂xΦ(−hd) − ǫd

φabs − Φ(−hd)

hd

)
= Jext(−hd) + σd

φabs − Φ(−hd)

hd

. (2.15)
• At the interfae x = 0 between the dieletri and the ondutor

∂t

(
ǫd

φabs − Φ(−hd)

hd

)
= −σd

φabs − Φ(−hd)

hd

− Jcond. (2.16)
• At the interfae x = −hc between the ondutor and the plasma

−∂t(ǫ0∂xΦ(hc)) = Jcond − Jext(hc). (2.17)7



We get rid of the unknown Jcond by summing equation (2.16) with (2.17) whih yields
∂t

(
ǫd

φabs − Φ(−hd)

hd
− ǫ0∂xΦ(hc)

)
= −σd

φabs − Φ(−hd)

hd
− Jext(hc).We an �nally sum this last relation with (2.15) to obtain

ǫ0∂t∂x(Φ(−hd) − Φ(hc)) = Jext(−hd) − Jext(hc). (2.18)Furthermore (2.15) an be rewritten, using the de�nition of Φ′ in (2.12),
ǫ0∂t∂xΦ(−hd) +

ǫd

hd

∂tΦ
′(−hd) +

σd

hd

Φ′(−hd) = Jext(−hd). (2.19)The two identities (2.18) and (2.19) are evolution equations whih de�ne the two quantities
Φ′(−hd) and φabs. Therefore the Vlasov-Poisson system (2.5)�(2.10) is ompleted with theboundary onditions for the potential :

Φ(t, hc) = φabs(t) ; Φ(t,−hd) = φabs(t) + Φ′(t,−hd). (2.20)2.4 Asymptoti issuesWe set δ = hd/hc, Ve =
√

kTe/me, the thermal veloity of the eletrons, Φ0 = meV
2
e /e. Weintrodue typial value for the density n0,e, and we de�ne J0 = en0,eVe, and T0 =
ǫ0Φ0

J0hd
, thetypial time of harging of the dieletri. We de�ne the dimensionless quantities :

Φ̃ =
Φ

Φ0
, J̃ =

J

J0
, x̃ =

x

hc
, t̃ =

t

T0
.Therefore equations (2.18) and (2.19) in dimensionless form beome

δ∂t̃∂x̃(Φ̃(−hd) − Φ̃(hc)) = J̃ext(−hd) − J̃ext(hc),

δ∂t̃∂x̃Φ̃(−hd) +
ǫd

ǫ0

∂t̃Φ̃
′(−hd) +

σd

hd

meVe

e2n0,e

Φ̃′(−hd) = J̃ext(−hd).As already said the dieletri layer is very thin, and in appliations we are interested in thease 0 < δ ≪ 1. Thus, from now on we will formally neglet the term with δ in fator. Finally,the equations on the unknowns Φ′(−hd) and φabs are
Jext(−hd) = Jext(hc), (2.21)

Cd
d

dt
Φ′(−hd) + SdΦ

′(−hd) = Jext(−hd), (2.22)where Cd is the given apaity and Sd the ondutane of the dieletri.Let us reap the 1D model we will use for desribing the evolution of the harge at theexternal surfae of the spaeraft. The distribution funtion fi and fe are solutions for x ∈
] − L − hd, hd[∪]hc, L + hc[ and v ∈ R of the Vlasov equation

∂tfi/e + v · ∂xfi/e +
qi/e

mi/e

∂xΦ · ∂vfi/e = 0, t > 0,8



ompleted with the initial ondition
fi/e(0, x, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
,and the boundary onditions (with 0 ≤ α ≤ 1)





fi/e(t,−hd, v) = α fi/e(t,−hd,−v), for v < 0,

fi/e(t, hc, v) = α fi/e(t, hc,−v), for v > 0,

fi/e(t,−L − hd, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
, for v > 0,

fi/e(t, L + hc, v) = n0,i/e

√
mi/e

2πkTi/e
exp

(
−

mi/ev
2

2kTi/e

)
, for v < 0.The eletrostati potential Φ is alulated thanks to the Poisson problem :





−ǫ0∂xxΦ = e(ni − ne) =

∫

R

e(fi − fe) dv, x ∈] − L − hd,−hd[∪]hc, L + hc[,

Φ(−L − hd) = Φ(L + hc) = 0,

Φ(hc) = φabs, Φ(−hd) = φabs + Φ′(−hd).Eventually, given
Jext(t,−hd) = (1 − α) e

∫

v>0

(fi(t,−hd, v) − fe(t,−hd, v)) dv,

Jext(t, hc) = (1 − α) e

∫

v<0

(fi(t, hc, v) − fe(t, hc, v)) dv,
(2.23)

φabs and Φ′(t,−hd) are determined by
Jext(−hd) = Jext(hc),

Cd
d

dt
Φ′(−hd) + SdΦ

′(−hd) = Jext(−hd).
(2.24)Even in the mere 1D framework, this model is highly non standard; its mathematial analysisis ertainly tough and it provides an already hallenging test for numerial simulations.Remark 2.1 In the ase of total re�etion α = 1, the external urrent vanishes on the bound-aries Jext(t,−hd) = 0 = Jext(t, hc). Aordingly, the di�erential potential on the dieletri

Φ′(t,−hd) vanishes exponentially fast (or stays at zero if it is initially) and the absolute poten-tial φabs remains onstant; there is no harging, in agreement to the physial intuition.3 Presentation of Vlasov solversClearly, having in mind appliations to spaeraft engineering, omputational time and memorysize onsumption will be ruial riteria addressed on numerial shemes.
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3.1 Some properties of the Vlasov equationWe �rst reall brie�y some well known properties of the Vlasov equation. Indeed, the numerialmethods for solving the Vlasov equation :
∂f

∂t
(t, x, v) + v · ∂xf(t, x, v) −

q

m
E(t, x) · ∂vf(t, x, v) = 0, (3.1)relies

• either on this non onservative form of the equation, whih appeals (negleting anydi�ulty related to the regularity of the potential) to de�ne the harateristis urves bythe ODE system:




dX

ds
(s; x, v, t) = V (s; x, v, t), X(t; x, v, t) = x,

dV

ds
(s; x, v, t) = −

q

m
E(s, X(s; x, v, t)), V (t; x, v, t) = v

(3.2)Hene (3.1) means that partiles are onserved along the harateristis
d

ds

[
f(s, X(s; x, v, t), V (s; x, v, t))

]
= 0,or, in other words

f(t, x, v) = f(s, X(s; x, v, t), V (s; x, v, t)), ∀ s ≥ 0.This property is at the basis of semi-lagrangian and partile methods.
• or we note that divx,v(v,− q

m
E) = 0 and we rewrite the equation on the onservative form

∂f

∂t
(t, x, v) + ∂x

(
vf(t, x, v)

)
− ∂v

( q

m
E(t, x)f(t, x, v)

)
= 0whih appeals to the �nite volume framework developed for the simulation of onservationlaws [18℄.3.2 Finite volumeThe Vlasov equation reasts in the onservative form

∂tf + div(x,v)(U(t, x, v)f) = 0,where U(t, ·, ·) : R
2 → R

2, (x, v) 7→ (v,− q
m

E). The phase spae domain (x, v) is meshed bythe nodes (xi)1≤i≤Nx
and (vj)1≤j≤Nv

, with mesh steps ∆x and ∆v respetively. The ontrolvolume is denoted by Ci,j = [xi, xi+1] × [vj , vj+1]. Integrating the Vlasov equation (3.1) on
(tn, tn+1) × Ci,j yields

∫

Cij

f(tn+1, x, v) dv dx −

∫

Cij

f(tn, x, v) dv dx

= −

∫ tn+1

tn

∫ vj+1

vj

v(f(s, xi+1, v) − f(s, xi, v)) dv ds

+

∫ tn+1

tn

∫ xi+1

xi

q

m
E(s, x)(f(s, x, vj+1) − f(s, x, vj)) dx ds.

(3.3)
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Therefore, the disrete unknown fn
ij is intended to be an approximation of the average value attime tn on the ell Cij , that is 1

∆x ∆v

∫
Ci,j

f(tn, x, v) dx dv and �nite volume methods are basedon the determination of �uxes on the volume interfaes to onstrut an iterative proedureinspired from (3.3). Namely, the sheme an be written as
fn+1

i,j = fn
i,j −

∆t

∆x

(
Fn

i+1/2,j − Fn
i−1/2,j

)
+

∆t

∆v

(
Gn

i,j+1/2 − Gn
i,j−1/2

)
. (3.4)We use a time�expliit sheme sine the �uxes in the right hand side only depend on the valuesof the unknown at time tn. The �uxes at the interfae of the ontrol volume Cij are determinedby using the reonstrution method presented in [12℄ based on the seond order PFC method[15℄. We set

fn
i+1/2,j =

1

2
(fn

i,j + fn
i+1,j) , fn

i,j+1/2 =
1

2
(fn

i,j + fn
i,j+1).Let Ẽn

i be an approximation of E(tn, x) for x ∈ [xi, xi+1) omputed through the resolution ofthe Poisson equation. Then, we get in (3.4)
Fn

i+1/2,j = vj fn
i+1/2,j , Gn

i,j+1/2 = Ẽn
i fn

i,j+1/2.However, this seond order approximation reonstrution method an generate spurious osil-lations sine we obtain then a lassial entered sheme . Therefore a slope orretor, ensuringthe positivity of the distribution funtion, has been introdued in [12℄. The �nal sheme isthen given in equation (3.6) of [12℄.Eventually, in order to guaranty the stability of the sheme, a CFL ondition has to beimposed on the time step (see Proposition 3.2 of [12℄) ensuring the positivity of the distributionfuntion :
∆t ≤ max

(
∆x

Vmax

,
∆v

Emax

)
,where Emax is the maximum value of the eletri �eld Emax and Vmax is the bound of theveloity domain. This CFL ondition an be very restritive and even prohibitive for theappliation treated here. Indeed, for geostationary orbits, the thermal veloity for eletrons is

Ve = 4.5 107m.s−1. Choosing Vmax = 2Ve, the CFL ondition imposes a time step ∆t lesserthan 10−8 s ! The omplexity of this algorithm for eah time step is O(NxNv).3.3 Semi-lagrangian methodsThese methods onsist in alulating the distribution funtion at time tn+1 = tn + ∆t thanksto the one whih has been obtained at the time tn by using the onservation relation alongthe harateristis urves (see setion 3.1). It thus relies on a disrete approximation of therelation
f(tn + ∆t, xi, vj) = f(tn, X(tn; xi, vj, t

n + ∆t), V (tn; xi, vj , t
n + ∆t))where the notations are de�ned in (3.2). Therefore two main steps are neessary :1. Find the point (X(tn; xi, vj , t

n + ∆t), V (tn; xi, vj, t
n + ∆t) = (Xn, V n). Starting from

(xi, vj), it su�es to go bak along the harateristis urves during the time step ∆t. Tothis end, we have to solve (3.2). This resolution is splitted into three steps [24, 1, 13℄ :
11



• bakward advetion of ∆t/2 in the spatial diretion :
Xn+1/2 = Xn+1 −

∆t

2
V n+1 = xi −

∆t

2
vj .

• bakward advetion of ∆t in the veloity diretion :
V n = V n+1 + ∆t

q

m
E(tn+1/2, Xn+1/2).

• bakward advetion of ∆t/2 in the spatial diretion :
Xn = Xn+1/2 −

∆t

2
V n.Obviously, if the trajetory reahes a boundary x = −hd or x = hc, then we use speularre�exion : V n is replaed by its opposite and Xn by its symmetri. More preisely, if forinstane Xn+1/2 < −L − hd and Xn > −L − hd, then

tsym :=
Xn+1 + L + hd

−V n+1
, Xn+1/2 = −L − hd − tsymV n+1,

V n = −V n+1 + ∆t
q

m
E(tn+1/2, Xn+1/2), Xn = Xn+1/2 −

∆t

2
V n.The value E(tn+1/2, Xn+1/2) is omputed by a linear interpolation.2. Sine f at time tn is known only on the nodes of the mesh, we interpolate the distributionfuntion at the point (X(tn; tn+∆t, xi, vj), V (tn; tn+∆t, xi, vj)). We use a Hermite splineinterpolation whih is a well established high order interpolation method. We refer e. g.to [24, 13℄ for details on this interpolation step, an alternative approah based on theWENO proedure has been proposed reently in [8℄. However, most of the referenes weare aware of restrit to periodi boundary onditions and do not address the questionof the interpolation rule to be adopted for boundary points. We give some hints in thisdiretion in the Appendix, this aspet being important to preserve the auray of thenumerial sheme.Although the high order of the interpolation step allows to obtain a good numerial a-uray, this step is also highly time and memory onsuming. Indeed, eah time step involvesthe inversion of Nv + 1 matries of size (Nx + 3) × (Nx + 3) and Nx + 3 matries of size

(Nv + 3) × (Nv + 3). Moreover, for memory size reasons, we impose that the trajetories donot ross over more than 2 or 3 ells of the mesh during a time step. It implies a onstrainton the time step ∆t ≤ 2 ∆x/Vmax whih is yet less restritive than the CFL ondition for the�nite volume method. The omplexity is of the same order than for the �nite volume method :eah time step requires O(NxNv) operations. In fat, the onstrution of the splines basisand therefore the LU deomposition of the Nx + 3 + Nv + 1 matries is done only one atthe beginning of the proedure and demands therefore O(NxNv) operations. Then Nx × Nvinterpolations are neessary. We underline �nally that due to the memory size required, thismethod is not a�ordable for 3D simulations.
12



3.4 Bak-Trajetory methodThis method is a Partile In Cell (PIC) type method [4℄. Like with a standard PIC method, theplasma is approximated by a �nite number of maropartiles. Eah maropartile is trakedbakward its trajetory [9, 11℄. More preisely, we use the onservation relation along theharateristis urves again and we distinguish two situations:
• Either the trajetory reahes the external boundary at time s∞ > 0 with position, veloitypair (X(s∞; x, v, t), V (s∞; x, v, t)). We remind that the external boundary is �xed farfrom the spaeraft and the data f∞ there is intended to reprodue the equilibrium atin�nity of the original model. We get

f(t, x, v) = f∞(X(s∞; x, v, t), V (s∞; x, v, t)).

• or we set
f(t, x, v) = f0(X(0; x, v, t), V (0; x, v, t)), (3.5)where f0 is the given initial distribution funtion.Therefore the main step of the algorithm onsists in omputing the origin of the harateristis

(X(0; x, v, t), V (0; x, v, t)) or (X(s∞; x, v, t), V (s∞; x, v, t)) whih reahes (x, v) at time t. Weuse an impliit-expliit disretization of (3.2) (see [14℄)). To ompute the distribution funtionat time tN = N∆t, N ∈ N
∗, at node (x, v) = (XN , V N), we trak the harateristis bak intime with the sheme





X i+1 − X i

∆t
= −V i+1 ; XN = x,

V i+1 − V i

∆t
=

q

m
E(ti, X i) ; V N = v,for i = N − 1, N − 2, · · · Three ases an our. If the trajetory reahes a boundary ofthe satellite, we use the speular re�etion law (2.10) and the omputation ontinues. If thetrajetory goes to the external boundary, the solution is given by the Maxwellian at in�nity in(2.7). Otherwise after N iterations in time we have omputed the values of X(0; x, v, tN) and

V (0; x, v, tN) whih allows to determine f thanks to (3.5).One the distribution funtion f is omputed, the urrent at the point x is obtained thanksto a disretization of the integral :
J(t, x) = q

∫

R

vf(t, x, v) dv =
∑

k

αkq

(∫

Bk(t,x)

vf0(X(0; x, v, t), V (0; x, v, t)) dv

+

∫

Ak(t,x)

vf∞(X(s∞; x, v, t), V (s∞; x, v, t)) dv

)
,

(3.6)where Ak(t, x) (resp. Bk(t, x)) is the set of veloities v ∈ R for whih the trajetory reahing
(x, v) at time t omes from the external (�in�nity�) boundary (resp. from a point loated insidethe domain at time 0) after k hits on the boundary.The main advantage of this approah is that it is possible to disregard the volume �lled bythe plasma, but instead to fous on the boundary. This is well adapted to the geostationary13



environment, where we use the simpli�ed model (2.4). In this ase, the right hand side ofthe Poisson equation is zero, then the Vlasov equation is solved only to ompute the externalurrent Jext at the boundaries x = −hc and x = hd. By using the BakTrajetory method wean ompute the distribution funtion on the nodes of the boundary without the knowledgeof the distribution funtion in the entire domain. Moreover, no onstraint on the time stepis neessary to insure the stability and the dynamial alloation of memory stays moderatesuh that we an easily extend to the 3D framework. At eah time step Nx × Nv trajetoriesare alulated. Eah trajetory whih do not reah the external boundary demands O(N)operations. Therefore the number of operations inreases with time. However due to the �nitenumber of maropartiles used, these methods are known to be extremely noisy, a di�ultywhih beomes sensible for long time simulations. In fat, a small modi�ation of the issue
(x, v) of the harateristis an modify a trajetory suh that v moves from Ak(t, x) to Bk(t, x)or onversely from Bk(t, x) to Ak(t, x). With the expression of the urrent (3.6), this smallmodi�ation of the data indues a jump of the value of the urrent. Therefore, even if thismethod does not onstraint the time step, ∆t should be su�iently small to have a good au-ray in the alulation of the origins of the harateristis. Furthermore, the more iterationsin time we make, the higher the omputational time is : we need in fat to realulate all thetrajetories until their origin.3.5 Numerial resultsIn order to ompare the omputational time and the relative error of these methods, we onsiderthe ase of a onstant given eletrostati �eld E in the Vlasov equation (3.1). The boundaryondition is assumed fully re�etive: α = 1. Then, we an ompute expliitly the exat solutionof the Vlasov equation at the equilibrium. The physial numerial values used here are the oneof the eletrons of the plasma in geostationary orbit, therefore the evolution in time is reallyfast and the time step ∆t should be taken very small.We onsider the spae domain [−L − hd,−hd] ∪ [hc, L + hc] that we mesh by Nx nodes
(xi)1≤i≤Nx

with a onstant step xi+1 − xi = ∆x. The veloity domain is given by [−2 ∗
Vtherm, 2 ∗ Vtherm] where Vtherm =

√
kTe/me is the thermal veloity. We take Nv di�erentvalues of the veloity in this interval. We assume that a spaeraft is loated in [−hd, hc] andwe hose the numerial values hd = 0, hc = 10, L = 10000. The problem is to solve the Vlasovequation (2.5) oupled with the initial ondition (2.7), the in�nite boundary ondition (2.8)and the speular re�etion ondition (2.10) with α = 1.In this ase, the exat solution for t ≥ 5.10−3 s (time for whih the equilibrium is reahed)an be omputed exatly and is represented in green in Figure 2. The blue urves represent theomputed values of the eletron density for t = 1.25 10−4, 2.5 10−4, 3.75 10−4, · · · . We notiethe onvergene of the blue urves towards the exat solution. For t = 5.10−3 s, the relativeerror εrr for the density between the exat solution and the omputed value is estimated, εrrbeing de�ned by

εrr = max
i=1,...,Nx

|nexac(xi) − napp(xi)|

nexac(xi)
, (3.7)where nexac is the exat solution and napp is the approximated solution obtained with ouralgorithm.The omputational time and the relative errors are reported in Table 1 where we usethe abbreviation FV for �nite volume method, SL for semi-lagrangian with spline Hermite14
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Figure 2: Evolution in time of the density of eletrons in the geostationary magnetospheriplasma (in blue). The green urve represents the theoretial value of the distribution funtionat the equilibrium reahed for t ≥ 5.10−3 s.interpolation method and BakTraj for Bak-Trajetory method. Results have been obtainedwith a 2.66 GHz CPU proessor.Table 1: Comparison of the relative error and the omputational time between a �nite volumemethod (FV), a semi-lagrangian method (SL) and a Bak-Trajetory method (BakTraj) forthe resolution of the Vlasov equation.CPU Time Relative error εrrNb nodes FV SL BakTraj FV SL BakTraj
Nx = 200, Nv = 100 1h15′ 3′51′′ 4h50′ 2.09 × 10−4 1.73 × 10−4 2.54 × 10−4

Nx = 300, Nv = 100 2h04′ 5′41′′ 1.96 × 10−4 1.46 × 10−4 3.04 × 10−4

Nx = Nv = 200 4h34′ 6′43′′ 3.53 × 10−4 2.41 × 10−4 8.62 × 10−5

Nx = 300, Nv = 200 7h02′ 15′24′′ 6h27′ 6.22 × 10−5 2.41 × 10−4 5.79 × 10−5

Nx = 350, Nv = 200 12′29′′ 2.41 × 10−4 5.03 × 10−5

Nx = Nv = 300 15′46′′ 1.65 × 10−4 7.21 × 10−5

• For the �nite volume method, the CFL ondition imposes a very restritive bound on thetime step : ∆t < ∆x/(2Vtherm) ≃ 5.10−7 s ! Furthermore, if we hoose ∆t = 0.5 10−8, theCFL ondition is satis�ed but osillations appears in the omputed solution (see Figure3). To avoid this phenomena, we have to take a time step even smaller in order to satisfylargely the CFL ondition. In the tests, we have taken ∆t = 2.5 10−9 s, therefore 2.106iterations are neessary to reah the equilibrium. It implies a long omputational timeand when Nx ≥ 350 we have to hoose a smaller time step to avoid the phenomenonobserved in Figure 3. For this reason the table has not been ompleted for Nx ≥ 350.The relative error is good sine the method is of seond order.
• For the semi-lagrangian (SL) and Bak-Trajetory methods, we have taken a time step

∆t = 2.5 10−7 s. Less iterations are then neessary than for �nite volume to reah theequilibrium. Thus the omputational time for the semi-lagrangian method is shorter15
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Figure 3: Apparition of osillations for large time with the �nite volume method when thetime step ∆t is lose to the upper bound imposed by the CFL ondition.even if we have tridiagonal matries to inverse (see Appendix). Moreover the high orderinterpolation method allows us to obtain a good relative error.
• Computational time for the Bak-Trajetory method is really long. In fat at eahiteration all the trajetories must be realulated for all the positions of the phase spae:the algorithm omputes the distribution funtion at time tn+1 without using the one at

tn. Therefore for large time, the method is very time onsuming. However, the memorysize required is small and we an ompute the solution and the relative error at a giventime with only one iteration sine in that partiular ase E is onstant. Consequently,Table 1 presents only the relative error for most ases. This error is better than the oneobserved for the others methods. Indeed for E onstant, the trajetories are paraboliand easy to ompute.Despite the long omputational time of this last method, we have to keep in mind thatthis method allows to ompute the density and the urrent only on some nodes xi of themesh. Moreover this is the only one whih does not impose a onstraint on the time step.The following table presents the relative error εrr omputed for di�erent time steps bythe Bak-Trajetory method. We notie that the relative error remains good even if wetake a time step 10 times greater. However, when the time step beomes too large, wean not improve the error even if we take a very thin grid. This remark highlights thenumerial noise inherent to partiles methods.
Nx = 200, Nx = 300, Nx = 300, Nx = 500,
Nv = 200 Nv = 200 Nv = 300 Nv = 500

∆t = 2.5 × 10−7 s 8.62 × 10−5 5.79 × 10−5 7.21 × 10−5 4.64 × 10−5

∆t = 2.5 × 10−6 s 1.04 × 10−4 7.96 × 10−5 7.35 × 10−5 4.64 × 10−5

∆t = 2.5 × 10−5 s 1.40 × 10−3 1.39 × 10−3 1.39 × 10−3 1.39 × 10−3In onlusion, the semi-lagrangian method seems to be the most performing for this prob-lem: good auray and low omputational time for algorithms with many iterations. TheBak-Trajetory method an be promising if the Vlasov equation has to be solved only on16



some nodes of the mesh and if the auray required allows to take a time step not too small.In a 3-dimensional framework the semi-lagrangian method is yet too demanding in term ofmemory size to be implemented. Therefore we should prefer the Bak-Trajetory method.4 Numerial results for a 1D model of spaeraft harging4.1 Desription of the algorithmWe onsider now the whole model presented in Setion 1. In the Vlasov equation, the ele-trostati potential E is no more onstant but derives from a potential solution of the Poissonequation. The main goal is to ompute φabs(t) and Φ′(t,−hd) by solving (2.21)�(2.22). To thisend, we use an impliit in time sheme for φabs and expliit for Φ′. The main reason for usingsuh a sheme is that if we want to apply it for higher dimensions, we have to keep in mindthat the di�erential potential is not onstant on the surfae of the spaeraft. The funtion
Φ′ in this ase is then dependent on the position x and the algorithm is really muh moreexpensive if we do it impliitly. Therefore, knowing the values at t = tn, the sheme writes :

Jext

[
φn+1

abs Φref + (Φ′)n)
]
(−hd) = Jext

[
φn+1

abs Φref + (Φ′)n
]
(hc), (4.1)

Cd
(Φ′)n+1(−hd) − (Φ′)n(−hd)

∆t
+ Sd(Φ

′)n(−hd) = Jext

[
φn+1

abs Φref + (Φ′)n
]
(−hd). (4.2)In this system, we use the notation





Jext[φabsΦref + Φ′](hd) = (1 − α) e

∫

v<0

v(fi − fe) dv,

Jext[φabsΦref + Φ′](−hc) = (1 − α) e

∫

v>0

v(fi − fe) dv,to underline the fat that fi and fe are (approximations of) solutions of the following Vlasovequation :
∂tfi/e + v · ∂xfi/e +

qi/e

mi/e

(φabs∂xΦref + ∂xΦ
′) · ∂vfi/e = 0, (4.3)oupled with boundary onditions (2.8) and (2.10).Equations (4.1) and (4.2) orrespond to a time disretization of (2.21) and (2.22), φabs beingtreated impliitely, Φ′ expliitely. Atually, the treatment of the onstraint (4.1) we proposean be understood by oming bak to (2.18) whih an be reast as

ǫ0∂t

[
φabs(t)

(
∂xΦref(−hd) − ∂xΦref (hc)

)]
+ ǫ0∂t

[
∂xΦ

′(t,−hd) − ∂xΦ
′(t, hc)

]

= Jext(−hd) − Jext(hc)by using (2.12). Bearing in mind the asymptoti regime in Setion 2.4 and negleting thetime variation of the di�erential potential Φ′, it appears as a sti� ODE determining φabs.Aordingly, let us denote
Cap = ∂xΦref (−hd) − ∂xΦref(hc);then, φn+1

abs is de�ned by the impliit relation
ǫ0Cap

φn+1
abs − φn

abs

∆t
= Jext

[
φn+1

abs Φref + (Φ′)n)
]
(−hd) − Jext

[
φn+1

abs Φref + (Φ′)n
]
(hc) (4.4)17



(where ǫ0Cap ≪ 1).Clearly, the referene potential Φref de�ned in (2.11) should be alulated only one at thebeginning of the proedure. Next, knowing (Φ′)n(−hd), equation (4.4) is a nonlinear equationfor the unknown φn+1
abs . The resolution of this nonlinear equation involves the resolution of theVlasov equations (4.3) for fi and fe and the deomposition of Φ with φabs and Φ′ does notallows to solve immediately the Poisson equation in this step. One we have obtained φn+1

abs , wean �rst solve equation (4.2) for the unknown (Φ′)n+1(−hd), and, next, the last step onsists insolving the Poisson equation (2.13) to update the di�erential potential Φ′ in the whole domain.The algorithm is then omposed of the following steps :1. Initialization : we ompute the referene potential Φref and initialize the value of thedistribution funtions.2. Resolution of the nonlinear equation (4.4) : sine the derivative of Jext with respet to
φabs is di�ult to ompute, we use in this step a quasi-Newton method. An advantage ofthis method is that no onstraint on the time step is needed to guarantee the onvergeneof the sheme. In fat in this ase the right hand side of (4.4) is a dereasing funtion withrespet to φn+1

abs , sine it has been observed that the spaeraft reeives less urrent fromthe magnetosphere when the potential on the ondutor body inreases. The rigorousmathematial proof of this result is still a work in progress. A loop for the omputationof φn+1
abs is implemented involving several resolutions of the Vlasov equation. The threemethods presented in the previous setion are used for the alulation of Jext. We notiethat in this step we only need to alulate Jext at the two nodes x = −hd and x = hc.3. Computation of (Φ′)n+1(−hd) thanks to (4.2).4. Resolution of the Poisson equation (2.13) with the boundary ondition for x = −hdobtained in step 3. We use P1 �nite element approximation (whih in the present onedimension framework oinides with the standard �nite di�erene approximation). Theomputation of the densities ni and ne in the whole omputational domain is neessary.5. Go bak to the seond step for the next iteration in time.In this desription, the seond step is the most demanding in terms of omputational timesine we need several resolutions of the Vlasov equation to solve the nonlinear equation (4.4).On the ontrary, for a given time step, we solve only one Poisson equation in step 4. And noonstraint on the time step is neessary for the onvergene of this algorithm.For these reasons,the resolution of the Vlasov equation is the more hallenging issue in the whole omputationalstrategy.4.2 Numerial simulationsA numerial simulation of the harging of a 1D spaeraft is obtained thanks to the algorithmpresented above. The numerial values used are the one of the plasma in geostationary orbit.The three methods of resolution of the Vlasov equation are implemented. The evolution withrespet to time of the absolute potential φabs and of the di�erential potential Φ′(−hd) aregiven in Figure 4.2 for several values of the re�etion parameter: α = 0, α = 1/3, α = 2/3,respetively. In ase of total re�etion α = 1, as already remarked, the spaeraft does not18



reeive any �ux from its environment: we have then φabs = Φ′ = 0 for all time. In thissimulation, we have hosen Nx = 500 nodes and Nv = 200 nodes. For eah method, we runthe algorithm until we reah the �nal time Tf = 1.5 10−4 s. at whih the unknowns have reahstabilized states.Sine the urrent of eletrons is initially muh larger than the urrent of ions, the spaeraftharges negatively. Then, it ats repulsively on eletrons and attratively on ions so that astationary state an be exhibited, with a di�erential potential whih remains small omparedto the absolute potential. All these features an be observed on real simulations, despite thesimpliity of our toy-model. The simulations reveal a behavior highly sensitive to the valueof α. As α dereases, the harge inreases faster in the earlier times, and it reahes higherlimit value. It orresponds to the physial intuition sine for α = 0 all inoming partiles areaught by the boundary. Changing the value of α an be ompared with the situation wherethe spaeraft passes from darkness (α = 0) to light where photoemission phenomena shouldbe aounted for (α > 0). All these phenomena are interesting and ertainly deserve furthermathematial analysis, with all the neessary ritiism to extend pratial information due tothe oversimpli�ed geometry. Let us omment further on the performanes of the numerialmethods.
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Table 2: Comparison of CPU time for eah methodMethod Time step ∆t Nb of nodes Relative error CPU time(nb of iterations) (Nx, Nv)VF ∆t = 3. 10−9 s (50000 it) (500, 200) 0.16 1h10′SL ∆t = 1.5 10−8 s (10000 it) (500, 200) 0.03 46′08′′SL ∆t = 3. 10−8 s (5000 it) (500, 200) 0.03 18′01′′BakTraj ∆t = 3. 10−8 s (5000 it) (500, 200) 0.1 27h35′BakTraj ∆t = 1.5 10−7 s (1000 it) (500, 200) 0.12 1h07′BakTraj ∆t = 3. 10−7 s (500 it) (500, 200) 0.13 17′30′′fore the omputation of φabs is settled fastly with this method. The resolution of the Vlasovequation in the whole omputational domain is then implemented only to ompute the den-sities in step 4. Atually if we ompute by this method the distribution funtion everywherefor eah iteration of step 2, CPU time is more than 5 times greater : alulation takes 6hfor 1000 iterations and 2h for 500 iterations. Moreover, the Bak-Trajetory method is lessonstrained by stability ondition and we an hoose a larger time step to run the simulationfaster. Nevertheless the results beome less aurate and the numerial noise inherent to thismethod an bother the onvergene of loop in step 2. For instane for ∆t = 5. 10−7 s thealgorithm does not onverge for the alulation of φabs. Sine the algorithm realulates alltrajetories from their origin for eah iteration, the CPU time is very high when the numberof iterations beomes large, i.e. when we want to study long time behavior of the solution.Conlusion1. In a 1D framework, the semi-lagrangian method seems to be the most promising. How-ever, the memory apaities needed avoid to apply this method in 3D. On the ontrarythe Bak-Trajetory method needs less memory apaity.2. To inrease the ode speed, a parallelization of the Vlasov solver an be onsidered. Sineeah trajetory is self-supported, PIC methods an be easily parallelized by omputingharateristis on di�erent proessors. For the semi-lagrangian and the �nite volumemethods, the parallelization needs more e�ort. In fat splitting the omputational spaeinto several domains, these domains are not independent one from eah other. If we treatthem separately on di�erent proessors, we have to take are of interfae onditions. Aparallelization proedure of the semi-lagrangian method is presented in [13℄.3. The Bak-Trajetory method beomes really interesting when we use the geostationaryapproximation. In fat the Poisson equation is simpli�ed into the Laplae equation, see(2.4). Therefore, we do not need in step 4 to ompute the densities ni and ne. It impliesthat in the algorithm the Vlasov equation is solved only to alulate Jext in two nodes.The Bak-Trajetory method is the one whih allows us to ompute these two values of
Jext without solving the Vlasov equation in the whole omputational domain and thusthe CPU time gain is partiularly signi�ant. Furthermore, parallelization appears in aquite natural way and does not require a huge and intriate development work. For these20



reasons, the software SPARCS uses it to furnish a good simulation of spaeraft hargingin geostationary orbits. Moreover, for an extension of the algorithm presented here inthree dimensions, we should prefer the Bak-Trajetory method, for whih no onstrainton the time step are needed and whih is easily parallelizable without lak of auray.AppendixBoundary onditions for the semi-lagrangian methodThe spline Hermite interpolation used for the semi-lagrangian method has proved its e�ienyfor obtaining aurate solutions of the Vlasov equation (see [15, 24℄). We reall shortly themain idea of this high order interpolation method.Letting (xi)i=0,··· ,N being N + 1 nodes suh that xi = x0 + i · h where h is the mesh size :
h = (xN − x0)/(N + 1). The projetion s of f onto the ubi spline basis reads :

f(x) ≃ s(x) =

N+1∑

ν=−1

ηνBν(x),where Bν is the ubi B-spline
Bν(x) =

1

6h3





(x − xν−2)
3 x ∈ [xν−2, xν−1],

h3 + 3h2(x − xν−1) + 3h(x − xν−1)
2 − 3(x − xν−1)

3 x ∈ [xν−1, xν ],

h3 + 3h2(xν+1 − x) + 3h(xν+1 − x)2 − 3(xν+1 − x)3 x ∈ [xν , xν+1],

(xν+2 − x)3 x ∈ [xν+1, xν+2],

0 otherwise.The interpolating spline s is uniquely determined by the (N + 1) onditions
f(xi) = s(xi), ∀ i = 0, · · · , N,with the Hermite boundary onditions at the ends of the interval whih allows to onstrut a

C1 global approximation :
f ′(x0) ≃ s′(x0), f ′(xN ) ≃ s′(xN ).The only ubi B-spline not vanishing at point xi are Bi±1(xi) = 1/6 and Bi(xi) = 2/3. Thenthe interpolating onditions lead to

f(xi) =
1

6
ηi−1 +

2

3
ηi +

1

6
ηi+1, i = 0, · · · , N.Moreover, we have B′

i±1(xi) = ±1/(2h) and B′(xi) = 0. Thus the Hermite boundary onditionsimply
f ′(x0) ≃ s′(x0) = −

1

2h
η−1 +

1

2h
η1,

f ′(xN ) ≃ s′(xN ) = −
1

2h
ηN−1 +

1

2h
ηN+1.21



Finally, the omputation of (η−1, · · · , ηN+1) involves the inversion of a (N +3)×(N +3) matrix.In our algorithm, the inverse of this matrix is determined thanks to a LU deomposition.In order to obtain an aurate interpolation, we have to use a high order approximation ofthe derivatives at x0 and xN . The originality of this problem is due to the fat that we usespeular boundary onditions in the end point of the domain representing the spaeraft andin�nite boundary onditions in the external boundary of the interval : for instane, we assumethat [x0, xN ] is the interval [−L − hc,−hc], therefore
f(x0, v) = f∞(v), for v > 0,

f(xN , v) = f(xN ,−v), for v < 0.Contrary to the ase of periodi boundary onditions (see [13℄), the values of the funtionoutside [x0, xN ] an not be known. Therefore we have to use the values of f at time tninside this interval to ompute the distribution funtion at time tn + ∆t. Thanks to ourboundary onditions, at the boundary we only have to ompute f(tn +∆t, x0, v) for v < 0 and
f(tn + ∆t, xN , v) for v > 0. This an be easily done with the proedure desribed in setion3.3 sine for v < 0, X(tn; x0, v, tn+1) ∈ [x0, xN ] and for v > 0, X(tn; xN , v, tn+1) ∈ [x0, xN ].Moreover to obtain an aurate approximation of the derivatives, we use the Taylor identities :





f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) +

h4

24
f (4)(x) + o(h4).

f(x + 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +
4h3

3
f (3)(x) +

2h4

4
f (4)(x) + o(h4).

f(x + 3h) = f(x) + 3hf ′(x) +
9h2

2
f ′′(x) +

9h3

2
f (3)(x) +

27h4

8
f (4)(x) + o(h4).Thus we dedue that

f(x + 3h) −
9

2
f(x + 2h) + 9f(x + h) −

11

2
f(x) = 3hf ′(x) +

3

4
h4f (4)(x) + o(h4).Then we �nd the following approximation for the derivative in x0 :

f ′(x0) =
1

3h
(f(x3) −

9

2
f(x2) + 9f(x1) −

11

2
f(x0)). (A.1)And by the same token, we obtain :

f ′(xN) = −
1

3h
(f(xN−3) −

9

2
f(xN−2) + 9f(xN−1) −

11

2
f(xN)). (A.2)This idea is similar to the one used in WENO-type interpolations methods (see [8℄ andreferenes therein) for reonstrution of smooth solutions.
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