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tThe modeling and the numeri
al resolution of the ele
tri
al 
harging of a spa
e
raft inintera
tion with the Earth magnetosphere is 
onsidered. It involves the Vlasov�Poissonsystem, endowed with non standard boundary 
onditions. We dis
uss the pros and 
onsof several numeri
al methods for solving this system, using as ben
hmark a simple 1Dmodel whi
h exhibits the main di�
ulties of the original models.
1 Introdu
tionThere is a growing interest in modeling and simulating the spa
e
raft ele
tri
al 
harging. Thisphenomenon is a sour
e of in-orbit failures: energeti
 parti
les from the magnetospheri
 plasmaintera
t with spa
e
raft, and these 
omplex intera
tions 
an lead to high potential di�eren
eson the spa
e
raft surfa
es. In turn, these potential di�eren
es indu
e the formation of ele
tri
ar
ing that 
an produ
e irreversible failures on the embarked devi
es, the solar arrays being aparti
ularly sensible region. The problem has motivated the design of spe
i�
 numeri
al 
odesin aerospa
e engineering: NASCAP-2K [20℄, SPARCS [11℄, SPIS [22℄, ESCAPE [21℄ while themodeling of the dis
harge phenomena and ele
tri
 ar
 formation is addressed e. g. in [2, 5, 6℄.The in-orbit 
onditions make it reasonable to use a statisti
al des
ription of the plasmasurrounding the spa
e
raft. The 
harged parti
les intera
t with the ele
tro-magneti
 �elds:the traje
tories are in�uen
ed by the ele
tromagneti
 for
es, whi
h in turn are also modi�edby parti
les motion. To be more spe
i�
, in the geostationary orbits we are interested in,the mean free path remains large 
ompared to the typi
al size 
hara
terizing the spa
e
raft1



and we 
an restri
t to 
ollisionless models. Furthermore, the e�e
ts of the magneti
 �eld 
anbe negle
ted and for
es then redu
e to the gradient of the ele
tri
 potential. We are thusled to des
ribe the plasma by Vlasov-Poisson equations. The 
harging phenomenom is drivenby the boundary 
onditions whi
h 
omplete the equations: sin
e the surfa
e elements of thespa
e
raft have di�erent diele
tri
 properties, they have di�erent sensibilities to the 
harge ex-
hanges me
hanisms and di�erent behavior with respe
t to the potential variations. We shallsee below that the boundary 
onditions to be used for in-orbit �ight are highly non standardand lead to spe
i�
 and 
hallenging questions, both for mathemati
al analysis and numeri
alsimulations.The main sour
e of numeri
al 
ost 
omes from the simulation of the Vlasov-type equation.It is 
ostly due to the fa
t that the equation is set in phase spa
e whi
h means that weare working with three spa
e variables and three velo
ity variables, additionally to the timevariable. It already implies naturally a huge size of unknowns. Furthermore, the multis
aleaspe
t of the problem may also lead to deal with sti� and deli
ate terms. In what follows, weshall 
onsider three families of numeri
al methods to handle the problem:- Parti
le-In-Cell (PIC) methods approa
h the plasma by a �nite number of ma
roparti
les(see [7, 14℄ for more details). The method 
onsists in tra
king the ma
roparti
les along theirtraje
tories, that is to 
ompute the 
hara
teristi
s 
urves asso
iated to the Vlasov equation.It adapts to 3D frameworks and allows to get satisfying results with relatively few parti
les.However, PIC methods are noisy, whi
h 
an degrade the a

ura
y of the algorithm, see for in-stan
e the 
omments and 
urrative attempts in [3℄. Moreover the 
omputational time requiredseems to be very long.- Another approa
h 
onsists in dis
retizing the phase spa
e, and interpreting the Vlasovequation as a 
onservation law in phase spa
e, to propose a Finite Volume approximation (or�ux balan
e method) [12, 15℄.- Finally semi-lagrangian methods 
ombine spa
e phase dis
retization and integration along
hara
teristi
s, through an interpolation step whi
h is intended to proje
t as smartly as possi-ble the endpoint of the path on the grid after a time step. These methods usually provide ana

urate approximation of the distribution fun
tion in the phase spa
e [17℄.It turns out that PIC methods have several advantages that make them well adapted forsimulating spa
e
raft 
harging. This is parti
ularly relevant when 
onsidering geostationaryorbits sin
e the 
orresponding models do not need an a

urate des
ription of the parti
le dis-tribution fun
tion. Instead, we 
an fo
us on the 
omputation of the surfa
e 
urrents. Forinstan
e, the SPARCS 
ode is based on the Ba
k-Traje
tory method, whi
h is a variant ofPIC algorithms: we tra
k the traje
tories ba
k from the points on the surfa
e of the spa
e
raftuntil the traje
tories rea
h the boundary where the distribution fun
tion is given. It allows tosolve the Vlasov equation only on some parti
ular points and make it interesting in that 
ase.Besides, the software takes into a

ount several physi
al phenomena like se
ondary emission,photo-emission and re
olle
tion of se
ondary ele
trons. Nevertheless, the re
ent developmentof Finite Volume and Semi Lagrangian methods, motivated e. g. from inertial or magneti

on�nement fusion proje
ts, 
an make it relevant to 
onsider these methods as potential alter-native to the Ba
k-Traje
tory approa
h. Furthermore, spa
e
raft engineering is now 
on
ernedwith a wide range of orbits where the physi
al 
onditions 
an signi�
antly di�er from the geo-stationary environment. A

ordingly, we are led to more 
omplex intera
tion models, whi
h2



require a more a

urate evaluation of the parti
les distribution fun
tion, in
luding its spa
ialrepartition far from the spa
e
raft surfa
e. Hen
e, we wish to 
ompare the abilities of severalnumeri
al methods for solving the ele
tri
 
harge equations. To this end, we shall derive belowa simple 1D model whi
h 
ontains the main di�
ulties of the a
tual problem. It will serve as aben
hmark for dis
ussing the pros and 
ons of the numeri
al methods. The paper is organizedas follows. In the next Se
tion, we introdu
e the model, with a detailed presentation of theboundary 
onditions on the spa
e
raft, in whi
h the 
harging dynami
s is embodied. In se
tion3, Vlasov solvers are presented and 
ompared when the ele
trostati
 potential E is assumed tobe given. Finally, se
tion 4 deals with the resolution of the whole model of spa
e
raft 
harging.An Appendix, whi
h has its own interest, details the treatment of the boundary 
onditionswhen using the Semi-Lagrangian method.2 Modeling of the spa
e
raft 
harging2.1 Des
ription of the plasmaThe magnetospheri
 plasma is assumed to 
ontain two 
harged parti
les spe
ies : ions H+ andele
trons. The distribution fun
tions of these spe
ies are denoted by fi and fe respe
tively. Attime t, fi/e(t, x, v) dv dx stands for the number of ions (respe
tively ele
trons) in the domain
entered at the point (x, v) of the phase spa
e with in�nitesimal volume dv dx. We refer to[9, 10, 11℄ for a detailed dis
ussion of the modeling issues for geostationary plasmas, whi
hallow to negle
t interparti
les 
ollisions and the e�e
ts of the magneti
 �eld. Therefore, thedistribution fun
tions satisfy the Vlasov equation:
∂tfi/e + v · ∇xfi/e +

qi/e

mi/e

∇xΦ · ∇vfi/e = 0, (2.1)where qi = −qe = e > 0, the elementary 
harge, mi and me are respe
tively the ion massand the ele
tron mass. In this equation Φ denotes the self
onsistent ele
trostati
 potentialgenerated by the 
harged 
arriers. It is related to the ma
ros
opi
 densities of 
harge by thePoisson equation
−ǫ0∆xΦ = e(ni − ne), (2.2)where ε0 is the va
uum permittivity and ni/e stand for the ion/ele
tron density

ni/e(t, x) =

∫
fi/e(t, x, v) dv.Far from the satellite surfa
es, the system is assumed to be at the equilibrium. It meansthat:

• The distribution fun
tions are given by Maxwellians
lim

‖x‖→+∞
fi/e(t, x, v) = gi/e(v) = n0,i/e

(
mi/e

2πkTi/e

)3/2

exp

(
−

mi/ev
2

2kTi/e

)
,where n0,i/e is the given number density and Ti/e the temperature of the distribution ofparti
les, k being the Boltzmann 
onstant;3



• The ele
trostati
 potential vanishes at in�nity
lim

‖x‖→+∞
Φ(t, x) = 0.The derivation of the boundary 
ondition on the spa
e
raft is more subtle. The externalsurfa
es of the spa
e
raft are subje
t to the 
urrent

Jext(t, x) = e

∫
v(fi − fe) dvdue to the 
harged parti
les of the plasma. This 
urrent indu
es a modi�
ation of the ele
tro-stati
 potential on the boundary of the spa
e
raft. Indeed the Ampère equation furnishes theevolution in time of the ele
trostati
 potential:

ǫ0
∂

∂t

∂Φ

∂ν
− Jext · ν = 0, (2.3)at the boundary between the spa
e
raft and the plasma where ν(x) stands for the outwardunit ve
tor at a point x of the spa
e
raft boundary. It is 
ompleted by boundary 
onditions forthe 
harged parti
les distribution that take into a

ount re�e
tion of the impinging parti
les,various emission phenomena with di�erent energy spe
trum, as well as re
olle
tion of se
ondaryele
trons. The originality of this model is that these boundary 
onditions are time-dependentwith a time derivative. The derivation of the evolution equations at the boundary will be
lari�ed in the next se
tion.Let us make a short break on s
aling issues, still referring to [9, 10, 11℄. In geostationaryorbits, the Debye length is large with respe
t to the 
hara
teristi
 length of a spa
e
raft.A

ordingly, asymptoti
 arguments allow to get rid of the time derivative in (2.1) and toassume quasi-neutrality. Hen
e, (2.1)-(2.2) 
an be repla
ed in this situation by the system





v · ∇xfi/e +
qi/e

mi/e

∇xΦ · ∇vfi/e = 0,

∆Φ = 0.

(2.4)However, the s
aling does not disregard the time derivative in the boundary 
onditions forthe potential (2.3). Hen
e, the time variable appears as a parameter in the stationary Vlasov-Lapla
e system, and the evolution of the 
harging phenomena is governed by the non stationaryboundary 
onditions at the spa
e
raft surfa
e.2.2 One-dimension modelLet us now derive a one-dimension 
ari
ature of the spa
e
raft 
harging model. The simpli�edmodel is intended to exhibit the main features of the a
tual equations, in parti
ular the evolu-tion terms arising in the boundary 
onditions. Having at hand su
h a toy model allows to pointout easily the di�
ulties of the model as well as to evaluate the advantages and drawba
ksof numeri
al methods. It 
an be seen as a ne
essary step to extend the simulations in higherdimension.
4
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h
XFigure 1: S
heme of the spa
e
raft.Sin
e we are mainly 
on
erned with numeri
al purposes, we 
onsider a bounded domain,
hara
terized by 0 < L < ∞. The spa
e
raft is seen as an assembly of a diele
tri
 layer anda metalli
 
ondu
tor. We 
onsider that the 
ondu
tor o

upies the interval [0, hc] whereasthe diele
tri
 takes pla
e in [−hd, 0) (see Figure 1). Therefore hd denotes the thi
kness ofthe diele
tri
 layer and hc the width of the 
ondu
tor. Hen
e, the plasma �lls the domain

] − L − hd,−hd[∪]hc, L + hc[. A

ording to the previous Se
tion, we use the following 1Dversion of the Vlasov-Poisson system:
∂tfi/e+v ·∂xfi/e+

qi/e

mi/e

∂xΦ·∂vfi/e = 0, t > 0, x ∈]−L−hd,−hd[∪]hc, L+hc[, v ∈ R. (2.5)where the ele
trostati
 �eld E = −∂xΦ is 
al
ulated thanks to the Poisson equation :
{

−ǫ0 ∂2
xxΦ = e(ni − ne) =

∫

R

e(fi − fe) dv, x ∈] − L − hd,−hd[∪]hc, L + hc[. (2.6)At the initial time, the system is assumed to be not perturbed and the distribution fun
tionsare given by the Maxwellian distribution :
fi/e(0, x, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
. (2.7)At the external boundary, bearing in mind that L is a 
ut-o� parameter to be 
hosen largeenough, we use the equilibrium as in
oming boundary 
onditions:





fi/e(t,−L − hd, v) = n0,i/e

√
mi/e

2πkTi/e
exp

(
−

mi/ev
2

2kTi/e

)
, for v > 0,

fi/e(t, L + hc, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
, for v < 0.

(2.8)while for the potential we get
Φ(−L − hd) = Φ(L + hc) = 0. (2.9)At the spa
e
raft boundary, we assume that parti
les are spe
ularly re�e
ted

{
fi/e(t,−hd, v) = α fi/e(t,−hd,−v) if v < 0,

fi/e(t, hc, v) = α fi/e(t, hc,−v) if v > 0,
(2.10)with 0 ≤ α ≤ 1 a parameter measuring the proportion of re�e
ted parti
les. It thus remainsto dis
uss the boundary 
onditions on −hd and hc for the potential. These boundary 
ondi-tions will 
onne
t the behavior of the plasma in the two intervals (−L−hd,−hd) and (hc, L+hc).5



To this end, it is 
onvenient to introdu
e a referen
e potential Φref whi
h 
orresponds tothe potential 
reated by a s
atterer o

upying (−hd, hc) and 
harged uniformly. The referen
e
harge being �xed to 1V , Φref is de�ned by
{

∂2
xxΦref = 0,

Φref(−hd) = Φref (hc) = 1, Φref (L + hc) = Φref(−L − hd) = 0.
(2.11)Next, in a perfe
t 
ondu
tor the potential remains 
onstant at any pla
e. Hen
e, let us denoteby φabs(t), the so�
alled absolute potential, the value of the potential in [0, hc]:

Φ(t, x) = φabs(t), for all x ∈ [0, hc].This value is of 
ourse still to be determined. Then, we write
Φ(t, x) = φabs(t) Φref(x) + Φ′(t, x), (2.12)whi
h de�nes the di�erential potential Φ′. Thanks to (2.6) and (2.11), we dedu
e that thedi�erential potential Φ′ satis�es :





−ǫ0 ∂2
xxΦ

′(t, x) = e(ni − ne),

Φ′(t, L + hc) = Φ′(t,−L − hd) = 0,

Φ′(t, hc) = 0.

(2.13)We are thus left with the task of de�ning 
onditions for φabs and Φ′(t,−hd).2.3 Charging evolutionA
tually, the ele
trostati
 �eld E = −∂xΦ is de�ned in the whole domain
] − L − hd,−hd[∪[−hd, 0[∪[0, hc]∪]hc, L + hc[,where the four intervals 
orrespond to di�erent physi
al properties (that is va
uum, diele
tri
,
ondu
tor, va
uum). On the one hand, at any pla
e, E = −∂xΦ satis�es the equation

ǫ ∂xE = ρ,where ǫ is the permittivity, depending on the medium, and ρ is the density of 
harge. On theother hand, the 
harge 
onservation
∂tρ + ∂xJ = 0,holds where J is the 
urrent density. In the plasma domain ] − L − hd,−hd[∪]hc, L + hc[, wehave

ρ = e(ni − ne), J = e

∫

R

v(fi − fe) dv,and the 
ontinuity equation follows by integrating with respe
t to v the Vlasov equations.Therefore, we have
ǫ ∂t∂xE + ∂xJ = 0.6



Sin
e this relation must be satis�ed in all the domain (−L−hd, L+hc), it yields jump 
onditionsat ea
h boundary
−

∂

∂t

[
ǫ
∂Φ

∂x

]
+ [J ] = 0, (2.14)where [.] denotes the jump at the interfa
es.Let us denote by Jext the net 
urrent on the spa
e
raft from the plasma, that is

Jext(t, hc) = e

∫

R

v(fi − fe)(t, hc, v) dv

Jext(t,−hd) = e

∫

R

v(fi − fe)(t,−hd, v) dvIn view of the boundary 
ondition (2.10), it reads
Jext(t, hc) = (1 − α) e

∫

v<0

v(fi − fe)(t, hc, v) dv

Jext(t,−hd) = (1 − α) e

∫

v>0

v(fi − fe)(t,−hd, v) dv.The 
urrent inside the 
ondu
tor is denoted Jcond. We re
all that in the 
ondu
tor the ele
-trostati
 potential keeps a 
onstant value denoted φabs. We make the assumption that thediele
tri
 layer is very thin, hd ≪ 1, so that there is no volumi
 
harge in the diele
tri
 andthe derivative of the potential in the diele
tri
 
an be approximated by the �nite di�eren
e
∂Φ

∂x
≃

φabs − Φ(−hd)

hd
.Finally there exists a runaway 
urrent between the diele
tri
 and the 
ondu
tor, whi
h isproportional to the di�eren
e of potential, see [19℄,

Jdiel = −σd
φabs − Φ(−hd)

hd

,

σd being the 
ondu
tivity of the diele
tri
. Therefore, the jump relations read as follows
• At the interfa
e x = −hd between the plasma and the diele
tri


∂t

(
ǫ0∂xΦ(−hd) − ǫd

φabs − Φ(−hd)

hd

)
= Jext(−hd) + σd

φabs − Φ(−hd)

hd

. (2.15)
• At the interfa
e x = 0 between the diele
tri
 and the 
ondu
tor

∂t

(
ǫd

φabs − Φ(−hd)

hd

)
= −σd

φabs − Φ(−hd)

hd

− Jcond. (2.16)
• At the interfa
e x = −hc between the 
ondu
tor and the plasma

−∂t(ǫ0∂xΦ(hc)) = Jcond − Jext(hc). (2.17)7



We get rid of the unknown Jcond by summing equation (2.16) with (2.17) whi
h yields
∂t

(
ǫd

φabs − Φ(−hd)

hd
− ǫ0∂xΦ(hc)

)
= −σd

φabs − Φ(−hd)

hd
− Jext(hc).We 
an �nally sum this last relation with (2.15) to obtain

ǫ0∂t∂x(Φ(−hd) − Φ(hc)) = Jext(−hd) − Jext(hc). (2.18)Furthermore (2.15) 
an be rewritten, using the de�nition of Φ′ in (2.12),
ǫ0∂t∂xΦ(−hd) +

ǫd

hd

∂tΦ
′(−hd) +

σd

hd

Φ′(−hd) = Jext(−hd). (2.19)The two identities (2.18) and (2.19) are evolution equations whi
h de�ne the two quantities
Φ′(−hd) and φabs. Therefore the Vlasov-Poisson system (2.5)�(2.10) is 
ompleted with theboundary 
onditions for the potential :

Φ(t, hc) = φabs(t) ; Φ(t,−hd) = φabs(t) + Φ′(t,−hd). (2.20)2.4 Asymptoti
 issuesWe set δ = hd/hc, Ve =
√

kTe/me, the thermal velo
ity of the ele
trons, Φ0 = meV
2
e /e. Weintrodu
e typi
al value for the density n0,e, and we de�ne J0 = en0,eVe, and T0 =
ǫ0Φ0

J0hd
, thetypi
al time of 
harging of the diele
tri
. We de�ne the dimensionless quantities :

Φ̃ =
Φ

Φ0
, J̃ =

J

J0
, x̃ =

x

hc
, t̃ =

t

T0
.Therefore equations (2.18) and (2.19) in dimensionless form be
ome

δ∂t̃∂x̃(Φ̃(−hd) − Φ̃(hc)) = J̃ext(−hd) − J̃ext(hc),

δ∂t̃∂x̃Φ̃(−hd) +
ǫd

ǫ0

∂t̃Φ̃
′(−hd) +

σd

hd

meVe

e2n0,e

Φ̃′(−hd) = J̃ext(−hd).As already said the diele
tri
 layer is very thin, and in appli
ations we are interested in the
ase 0 < δ ≪ 1. Thus, from now on we will formally negle
t the term with δ in fa
tor. Finally,the equations on the unknowns Φ′(−hd) and φabs are
Jext(−hd) = Jext(hc), (2.21)

Cd
d

dt
Φ′(−hd) + SdΦ

′(−hd) = Jext(−hd), (2.22)where Cd is the given 
apa
ity and Sd the 
ondu
tan
e of the diele
tri
.Let us re
ap the 1D model we will use for des
ribing the evolution of the 
harge at theexternal surfa
e of the spa
e
raft. The distribution fun
tion fi and fe are solutions for x ∈
] − L − hd, hd[∪]hc, L + hc[ and v ∈ R of the Vlasov equation

∂tfi/e + v · ∂xfi/e +
qi/e

mi/e

∂xΦ · ∂vfi/e = 0, t > 0,8




ompleted with the initial 
ondition
fi/e(0, x, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
,and the boundary 
onditions (with 0 ≤ α ≤ 1)





fi/e(t,−hd, v) = α fi/e(t,−hd,−v), for v < 0,

fi/e(t, hc, v) = α fi/e(t, hc,−v), for v > 0,

fi/e(t,−L − hd, v) = n0,i/e

√
mi/e

2πkTi/e

exp

(
−

mi/ev
2

2kTi/e

)
, for v > 0,

fi/e(t, L + hc, v) = n0,i/e

√
mi/e

2πkTi/e
exp

(
−

mi/ev
2

2kTi/e

)
, for v < 0.The ele
trostati
 potential Φ is 
al
ulated thanks to the Poisson problem :





−ǫ0∂xxΦ = e(ni − ne) =

∫

R

e(fi − fe) dv, x ∈] − L − hd,−hd[∪]hc, L + hc[,

Φ(−L − hd) = Φ(L + hc) = 0,

Φ(hc) = φabs, Φ(−hd) = φabs + Φ′(−hd).Eventually, given
Jext(t,−hd) = (1 − α) e

∫

v>0

(fi(t,−hd, v) − fe(t,−hd, v)) dv,

Jext(t, hc) = (1 − α) e

∫

v<0

(fi(t, hc, v) − fe(t, hc, v)) dv,
(2.23)

φabs and Φ′(t,−hd) are determined by
Jext(−hd) = Jext(hc),

Cd
d

dt
Φ′(−hd) + SdΦ

′(−hd) = Jext(−hd).
(2.24)Even in the mere 1D framework, this model is highly non standard; its mathemati
al analysisis 
ertainly tough and it provides an already 
hallenging test for numeri
al simulations.Remark 2.1 In the 
ase of total re�e
tion α = 1, the external 
urrent vanishes on the bound-aries Jext(t,−hd) = 0 = Jext(t, hc). A

ordingly, the di�erential potential on the diele
tri


Φ′(t,−hd) vanishes exponentially fast (or stays at zero if it is initially) and the absolute poten-tial φabs remains 
onstant; there is no 
harging, in agreement to the physi
al intuition.3 Presentation of Vlasov solversClearly, having in mind appli
ations to spa
e
raft engineering, 
omputational time and memorysize 
onsumption will be 
ru
ial 
riteria addressed on numeri
al s
hemes.
9



3.1 Some properties of the Vlasov equationWe �rst re
all brie�y some well known properties of the Vlasov equation. Indeed, the numeri
almethods for solving the Vlasov equation :
∂f

∂t
(t, x, v) + v · ∂xf(t, x, v) −

q

m
E(t, x) · ∂vf(t, x, v) = 0, (3.1)relies

• either on this non 
onservative form of the equation, whi
h appeals (negle
ting anydi�
ulty related to the regularity of the potential) to de�ne the 
hara
teristi
s 
urves bythe ODE system:




dX

ds
(s; x, v, t) = V (s; x, v, t), X(t; x, v, t) = x,

dV

ds
(s; x, v, t) = −

q

m
E(s, X(s; x, v, t)), V (t; x, v, t) = v

(3.2)Hen
e (3.1) means that parti
les are 
onserved along the 
hara
teristi
s
d

ds

[
f(s, X(s; x, v, t), V (s; x, v, t))

]
= 0,or, in other words

f(t, x, v) = f(s, X(s; x, v, t), V (s; x, v, t)), ∀ s ≥ 0.This property is at the basis of semi-lagrangian and parti
le methods.
• or we note that divx,v(v,− q

m
E) = 0 and we rewrite the equation on the 
onservative form

∂f

∂t
(t, x, v) + ∂x

(
vf(t, x, v)

)
− ∂v

( q

m
E(t, x)f(t, x, v)

)
= 0whi
h appeals to the �nite volume framework developed for the simulation of 
onservationlaws [18℄.3.2 Finite volumeThe Vlasov equation re
asts in the 
onservative form

∂tf + div(x,v)(U(t, x, v)f) = 0,where U(t, ·, ·) : R
2 → R

2, (x, v) 7→ (v,− q
m

E). The phase spa
e domain (x, v) is meshed bythe nodes (xi)1≤i≤Nx
and (vj)1≤j≤Nv

, with mesh steps ∆x and ∆v respe
tively. The 
ontrolvolume is denoted by Ci,j = [xi, xi+1] × [vj , vj+1]. Integrating the Vlasov equation (3.1) on
(tn, tn+1) × Ci,j yields

∫

Cij

f(tn+1, x, v) dv dx −

∫

Cij

f(tn, x, v) dv dx

= −

∫ tn+1

tn

∫ vj+1

vj

v(f(s, xi+1, v) − f(s, xi, v)) dv ds

+

∫ tn+1

tn

∫ xi+1

xi

q

m
E(s, x)(f(s, x, vj+1) − f(s, x, vj)) dx ds.

(3.3)
10



Therefore, the dis
rete unknown fn
ij is intended to be an approximation of the average value attime tn on the 
ell Cij , that is 1

∆x ∆v

∫
Ci,j

f(tn, x, v) dx dv and �nite volume methods are basedon the determination of �uxes on the volume interfa
es to 
onstru
t an iterative pro
edureinspired from (3.3). Namely, the s
heme 
an be written as
fn+1

i,j = fn
i,j −

∆t

∆x

(
Fn

i+1/2,j − Fn
i−1/2,j

)
+

∆t

∆v

(
Gn

i,j+1/2 − Gn
i,j−1/2

)
. (3.4)We use a time�expli
it s
heme sin
e the �uxes in the right hand side only depend on the valuesof the unknown at time tn. The �uxes at the interfa
e of the 
ontrol volume Cij are determinedby using the re
onstru
tion method presented in [12℄ based on the se
ond order PFC method[15℄. We set

fn
i+1/2,j =

1

2
(fn

i,j + fn
i+1,j) , fn

i,j+1/2 =
1

2
(fn

i,j + fn
i,j+1).Let Ẽn

i be an approximation of E(tn, x) for x ∈ [xi, xi+1) 
omputed through the resolution ofthe Poisson equation. Then, we get in (3.4)
Fn

i+1/2,j = vj fn
i+1/2,j , Gn

i,j+1/2 = Ẽn
i fn

i,j+1/2.However, this se
ond order approximation re
onstru
tion method 
an generate spurious os
il-lations sin
e we obtain then a 
lassi
al 
entered s
heme . Therefore a slope 
orre
tor, ensuringthe positivity of the distribution fun
tion, has been introdu
ed in [12℄. The �nal s
heme isthen given in equation (3.6) of [12℄.Eventually, in order to guaranty the stability of the s
heme, a CFL 
ondition has to beimposed on the time step (see Proposition 3.2 of [12℄) ensuring the positivity of the distributionfun
tion :
∆t ≤ max

(
∆x

Vmax

,
∆v

Emax

)
,where Emax is the maximum value of the ele
tri
 �eld Emax and Vmax is the bound of thevelo
ity domain. This CFL 
ondition 
an be very restri
tive and even prohibitive for theappli
ation treated here. Indeed, for geostationary orbits, the thermal velo
ity for ele
trons is

Ve = 4.5 107m.s−1. Choosing Vmax = 2Ve, the CFL 
ondition imposes a time step ∆t lesserthan 10−8 s ! The 
omplexity of this algorithm for ea
h time step is O(NxNv).3.3 Semi-lagrangian methodsThese methods 
onsist in 
al
ulating the distribution fun
tion at time tn+1 = tn + ∆t thanksto the one whi
h has been obtained at the time tn by using the 
onservation relation alongthe 
hara
teristi
s 
urves (see se
tion 3.1). It thus relies on a dis
rete approximation of therelation
f(tn + ∆t, xi, vj) = f(tn, X(tn; xi, vj, t

n + ∆t), V (tn; xi, vj , t
n + ∆t))where the notations are de�ned in (3.2). Therefore two main steps are ne
essary :1. Find the point (X(tn; xi, vj , t

n + ∆t), V (tn; xi, vj, t
n + ∆t) = (Xn, V n). Starting from

(xi, vj), it su�
es to go ba
k along the 
hara
teristi
s 
urves during the time step ∆t. Tothis end, we have to solve (3.2). This resolution is splitted into three steps [24, 1, 13℄ :
11



• ba
kward adve
tion of ∆t/2 in the spatial dire
tion :
Xn+1/2 = Xn+1 −

∆t

2
V n+1 = xi −

∆t

2
vj .

• ba
kward adve
tion of ∆t in the velo
ity dire
tion :
V n = V n+1 + ∆t

q

m
E(tn+1/2, Xn+1/2).

• ba
kward adve
tion of ∆t/2 in the spatial dire
tion :
Xn = Xn+1/2 −

∆t

2
V n.Obviously, if the traje
tory rea
hes a boundary x = −hd or x = hc, then we use spe
ularre�exion : V n is repla
ed by its opposite and Xn by its symmetri
. More pre
isely, if forinstan
e Xn+1/2 < −L − hd and Xn > −L − hd, then

tsym :=
Xn+1 + L + hd

−V n+1
, Xn+1/2 = −L − hd − tsymV n+1,

V n = −V n+1 + ∆t
q

m
E(tn+1/2, Xn+1/2), Xn = Xn+1/2 −

∆t

2
V n.The value E(tn+1/2, Xn+1/2) is 
omputed by a linear interpolation.2. Sin
e f at time tn is known only on the nodes of the mesh, we interpolate the distributionfun
tion at the point (X(tn; tn+∆t, xi, vj), V (tn; tn+∆t, xi, vj)). We use a Hermite splineinterpolation whi
h is a well established high order interpolation method. We refer e. g.to [24, 13℄ for details on this interpolation step, an alternative approa
h based on theWENO pro
edure has been proposed re
ently in [8℄. However, most of the referen
es weare aware of restri
t to periodi
 boundary 
onditions and do not address the questionof the interpolation rule to be adopted for boundary points. We give some hints in thisdire
tion in the Appendix, this aspe
t being important to preserve the a

ura
y of thenumeri
al s
heme.Although the high order of the interpolation step allows to obtain a good numeri
al a
-
ura
y, this step is also highly time and memory 
onsuming. Indeed, ea
h time step involvesthe inversion of Nv + 1 matri
es of size (Nx + 3) × (Nx + 3) and Nx + 3 matri
es of size

(Nv + 3) × (Nv + 3). Moreover, for memory size reasons, we impose that the traje
tories donot 
ross over more than 2 or 3 
ells of the mesh during a time step. It implies a 
onstrainton the time step ∆t ≤ 2 ∆x/Vmax whi
h is yet less restri
tive than the CFL 
ondition for the�nite volume method. The 
omplexity is of the same order than for the �nite volume method :ea
h time step requires O(NxNv) operations. In fa
t, the 
onstru
tion of the splines basisand therefore the LU de
omposition of the Nx + 3 + Nv + 1 matri
es is done only on
e atthe beginning of the pro
edure and demands therefore O(NxNv) operations. Then Nx × Nvinterpolations are ne
essary. We underline �nally that due to the memory size required, thismethod is not a�ordable for 3D simulations.
12



3.4 Ba
k-Traje
tory methodThis method is a Parti
le In Cell (PIC) type method [4℄. Like with a standard PIC method, theplasma is approximated by a �nite number of ma
roparti
les. Ea
h ma
roparti
le is tra
kedba
kward its traje
tory [9, 11℄. More pre
isely, we use the 
onservation relation along the
hara
teristi
s 
urves again and we distinguish two situations:
• Either the traje
tory rea
hes the external boundary at time s∞ > 0 with position, velo
itypair (X(s∞; x, v, t), V (s∞; x, v, t)). We remind that the external boundary is �xed farfrom the spa
e
raft and the data f∞ there is intended to reprodu
e the equilibrium atin�nity of the original model. We get

f(t, x, v) = f∞(X(s∞; x, v, t), V (s∞; x, v, t)).

• or we set
f(t, x, v) = f0(X(0; x, v, t), V (0; x, v, t)), (3.5)where f0 is the given initial distribution fun
tion.Therefore the main step of the algorithm 
onsists in 
omputing the origin of the 
hara
teristi
s

(X(0; x, v, t), V (0; x, v, t)) or (X(s∞; x, v, t), V (s∞; x, v, t)) whi
h rea
hes (x, v) at time t. Weuse an impli
it-expli
it dis
retization of (3.2) (see [14℄)). To 
ompute the distribution fun
tionat time tN = N∆t, N ∈ N
∗, at node (x, v) = (XN , V N), we tra
k the 
hara
teristi
s ba
k intime with the s
heme





X i+1 − X i

∆t
= −V i+1 ; XN = x,

V i+1 − V i

∆t
=

q

m
E(ti, X i) ; V N = v,for i = N − 1, N − 2, · · · Three 
ases 
an o

ur. If the traje
tory rea
hes a boundary ofthe satellite, we use the spe
ular re�e
tion law (2.10) and the 
omputation 
ontinues. If thetraje
tory goes to the external boundary, the solution is given by the Maxwellian at in�nity in(2.7). Otherwise after N iterations in time we have 
omputed the values of X(0; x, v, tN) and

V (0; x, v, tN) whi
h allows to determine f thanks to (3.5).On
e the distribution fun
tion f is 
omputed, the 
urrent at the point x is obtained thanksto a dis
retization of the integral :
J(t, x) = q

∫

R

vf(t, x, v) dv =
∑

k

αkq

(∫

Bk(t,x)

vf0(X(0; x, v, t), V (0; x, v, t)) dv

+

∫

Ak(t,x)

vf∞(X(s∞; x, v, t), V (s∞; x, v, t)) dv

)
,

(3.6)where Ak(t, x) (resp. Bk(t, x)) is the set of velo
ities v ∈ R for whi
h the traje
tory rea
hing
(x, v) at time t 
omes from the external (�in�nity�) boundary (resp. from a point lo
ated insidethe domain at time 0) after k hits on the boundary.The main advantage of this approa
h is that it is possible to disregard the volume �lled bythe plasma, but instead to fo
us on the boundary. This is well adapted to the geostationary13



environment, where we use the simpli�ed model (2.4). In this 
ase, the right hand side ofthe Poisson equation is zero, then the Vlasov equation is solved only to 
ompute the external
urrent Jext at the boundaries x = −hc and x = hd. By using the Ba
kTraje
tory method we
an 
ompute the distribution fun
tion on the nodes of the boundary without the knowledgeof the distribution fun
tion in the entire domain. Moreover, no 
onstraint on the time stepis ne
essary to insure the stability and the dynami
al allo
ation of memory stays moderatesu
h that we 
an easily extend to the 3D framework. At ea
h time step Nx × Nv traje
toriesare 
al
ulated. Ea
h traje
tory whi
h do not rea
h the external boundary demands O(N)operations. Therefore the number of operations in
reases with time. However due to the �nitenumber of ma
roparti
les used, these methods are known to be extremely noisy, a di�
ultywhi
h be
omes sensible for long time simulations. In fa
t, a small modi�
ation of the issue
(x, v) of the 
hara
teristi
s 
an modify a traje
tory su
h that v moves from Ak(t, x) to Bk(t, x)or 
onversely from Bk(t, x) to Ak(t, x). With the expression of the 
urrent (3.6), this smallmodi�
ation of the data indu
es a jump of the value of the 
urrent. Therefore, even if thismethod does not 
onstraint the time step, ∆t should be su�
iently small to have a good a

u-ra
y in the 
al
ulation of the origins of the 
hara
teristi
s. Furthermore, the more iterationsin time we make, the higher the 
omputational time is : we need in fa
t to re
al
ulate all thetraje
tories until their origin.3.5 Numeri
al resultsIn order to 
ompare the 
omputational time and the relative error of these methods, we 
onsiderthe 
ase of a 
onstant given ele
trostati
 �eld E in the Vlasov equation (3.1). The boundary
ondition is assumed fully re�e
tive: α = 1. Then, we 
an 
ompute expli
itly the exa
t solutionof the Vlasov equation at the equilibrium. The physi
al numeri
al values used here are the oneof the ele
trons of the plasma in geostationary orbit, therefore the evolution in time is reallyfast and the time step ∆t should be taken very small.We 
onsider the spa
e domain [−L − hd,−hd] ∪ [hc, L + hc] that we mesh by Nx nodes
(xi)1≤i≤Nx

with a 
onstant step xi+1 − xi = ∆x. The velo
ity domain is given by [−2 ∗
Vtherm, 2 ∗ Vtherm] where Vtherm =

√
kTe/me is the thermal velo
ity. We take Nv di�erentvalues of the velo
ity in this interval. We assume that a spa
e
raft is lo
ated in [−hd, hc] andwe 
hose the numeri
al values hd = 0, hc = 10, L = 10000. The problem is to solve the Vlasovequation (2.5) 
oupled with the initial 
ondition (2.7), the in�nite boundary 
ondition (2.8)and the spe
ular re�e
tion 
ondition (2.10) with α = 1.In this 
ase, the exa
t solution for t ≥ 5.10−3 s (time for whi
h the equilibrium is rea
hed)
an be 
omputed exa
tly and is represented in green in Figure 2. The blue 
urves represent the
omputed values of the ele
tron density for t = 1.25 10−4, 2.5 10−4, 3.75 10−4, · · · . We noti
ethe 
onvergen
e of the blue 
urves towards the exa
t solution. For t = 5.10−3 s, the relativeerror εrr for the density between the exa
t solution and the 
omputed value is estimated, εrrbeing de�ned by

εrr = max
i=1,...,Nx

|nexac(xi) − napp(xi)|

nexac(xi)
, (3.7)where nexac is the exa
t solution and napp is the approximated solution obtained with ouralgorithm.The 
omputational time and the relative errors are reported in Table 1 where we usethe abbreviation FV for �nite volume method, SL for semi-lagrangian with spline Hermite14
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Figure 2: Evolution in time of the density of ele
trons in the geostationary magnetospheri
plasma (in blue). The green 
urve represents the theoreti
al value of the distribution fun
tionat the equilibrium rea
hed for t ≥ 5.10−3 s.interpolation method and Ba
kTraj for Ba
k-Traje
tory method. Results have been obtainedwith a 2.66 GHz CPU pro
essor.Table 1: Comparison of the relative error and the 
omputational time between a �nite volumemethod (FV), a semi-lagrangian method (SL) and a Ba
k-Traje
tory method (Ba
kTraj) forthe resolution of the Vlasov equation.CPU Time Relative error εrrNb nodes FV SL Ba
kTraj FV SL Ba
kTraj
Nx = 200, Nv = 100 1h15′ 3′51′′ 4h50′ 2.09 × 10−4 1.73 × 10−4 2.54 × 10−4

Nx = 300, Nv = 100 2h04′ 5′41′′ 1.96 × 10−4 1.46 × 10−4 3.04 × 10−4

Nx = Nv = 200 4h34′ 6′43′′ 3.53 × 10−4 2.41 × 10−4 8.62 × 10−5

Nx = 300, Nv = 200 7h02′ 15′24′′ 6h27′ 6.22 × 10−5 2.41 × 10−4 5.79 × 10−5

Nx = 350, Nv = 200 12′29′′ 2.41 × 10−4 5.03 × 10−5

Nx = Nv = 300 15′46′′ 1.65 × 10−4 7.21 × 10−5

• For the �nite volume method, the CFL 
ondition imposes a very restri
tive bound on thetime step : ∆t < ∆x/(2Vtherm) ≃ 5.10−7 s ! Furthermore, if we 
hoose ∆t = 0.5 10−8, theCFL 
ondition is satis�ed but os
illations appears in the 
omputed solution (see Figure3). To avoid this phenomena, we have to take a time step even smaller in order to satisfylargely the CFL 
ondition. In the tests, we have taken ∆t = 2.5 10−9 s, therefore 2.106iterations are ne
essary to rea
h the equilibrium. It implies a long 
omputational timeand when Nx ≥ 350 we have to 
hoose a smaller time step to avoid the phenomenonobserved in Figure 3. For this reason the table has not been 
ompleted for Nx ≥ 350.The relative error is good sin
e the method is of se
ond order.
• For the semi-lagrangian (SL) and Ba
k-Traje
tory methods, we have taken a time step

∆t = 2.5 10−7 s. Less iterations are then ne
essary than for �nite volume to rea
h theequilibrium. Thus the 
omputational time for the semi-lagrangian method is shorter15
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Figure 3: Apparition of os
illations for large time with the �nite volume method when thetime step ∆t is 
lose to the upper bound imposed by the CFL 
ondition.even if we have tridiagonal matri
es to inverse (see Appendix). Moreover the high orderinterpolation method allows us to obtain a good relative error.
• Computational time for the Ba
k-Traje
tory method is really long. In fa
t at ea
hiteration all the traje
tories must be re
al
ulated for all the positions of the phase spa
e:the algorithm 
omputes the distribution fun
tion at time tn+1 without using the one at

tn. Therefore for large time, the method is very time 
onsuming. However, the memorysize required is small and we 
an 
ompute the solution and the relative error at a giventime with only one iteration sin
e in that parti
ular 
ase E is 
onstant. Consequently,Table 1 presents only the relative error for most 
ases. This error is better than the oneobserved for the others methods. Indeed for E 
onstant, the traje
tories are paraboli
and easy to 
ompute.Despite the long 
omputational time of this last method, we have to keep in mind thatthis method allows to 
ompute the density and the 
urrent only on some nodes xi of themesh. Moreover this is the only one whi
h does not impose a 
onstraint on the time step.The following table presents the relative error εrr 
omputed for di�erent time steps bythe Ba
k-Traje
tory method. We noti
e that the relative error remains good even if wetake a time step 10 times greater. However, when the time step be
omes too large, we
an not improve the error even if we take a very thin grid. This remark highlights thenumeri
al noise inherent to parti
les methods.
Nx = 200, Nx = 300, Nx = 300, Nx = 500,
Nv = 200 Nv = 200 Nv = 300 Nv = 500

∆t = 2.5 × 10−7 s 8.62 × 10−5 5.79 × 10−5 7.21 × 10−5 4.64 × 10−5

∆t = 2.5 × 10−6 s 1.04 × 10−4 7.96 × 10−5 7.35 × 10−5 4.64 × 10−5

∆t = 2.5 × 10−5 s 1.40 × 10−3 1.39 × 10−3 1.39 × 10−3 1.39 × 10−3In 
on
lusion, the semi-lagrangian method seems to be the most performing for this prob-lem: good a

ura
y and low 
omputational time for algorithms with many iterations. TheBa
k-Traje
tory method 
an be promising if the Vlasov equation has to be solved only on16



some nodes of the mesh and if the a

ura
y required allows to take a time step not too small.In a 3-dimensional framework the semi-lagrangian method is yet too demanding in term ofmemory size to be implemented. Therefore we should prefer the Ba
k-Traje
tory method.4 Numeri
al results for a 1D model of spa
e
raft 
harging4.1 Des
ription of the algorithmWe 
onsider now the whole model presented in Se
tion 1. In the Vlasov equation, the ele
-trostati
 potential E is no more 
onstant but derives from a potential solution of the Poissonequation. The main goal is to 
ompute φabs(t) and Φ′(t,−hd) by solving (2.21)�(2.22). To thisend, we use an impli
it in time s
heme for φabs and expli
it for Φ′. The main reason for usingsu
h a s
heme is that if we want to apply it for higher dimensions, we have to keep in mindthat the di�erential potential is not 
onstant on the surfa
e of the spa
e
raft. The fun
tion
Φ′ in this 
ase is then dependent on the position x and the algorithm is really mu
h moreexpensive if we do it impli
itly. Therefore, knowing the values at t = tn, the s
heme writes :

Jext

[
φn+1

abs Φref + (Φ′)n)
]
(−hd) = Jext

[
φn+1

abs Φref + (Φ′)n
]
(hc), (4.1)

Cd
(Φ′)n+1(−hd) − (Φ′)n(−hd)

∆t
+ Sd(Φ

′)n(−hd) = Jext

[
φn+1

abs Φref + (Φ′)n
]
(−hd). (4.2)In this system, we use the notation





Jext[φabsΦref + Φ′](hd) = (1 − α) e

∫

v<0

v(fi − fe) dv,

Jext[φabsΦref + Φ′](−hc) = (1 − α) e

∫

v>0

v(fi − fe) dv,to underline the fa
t that fi and fe are (approximations of) solutions of the following Vlasovequation :
∂tfi/e + v · ∂xfi/e +

qi/e

mi/e

(φabs∂xΦref + ∂xΦ
′) · ∂vfi/e = 0, (4.3)
oupled with boundary 
onditions (2.8) and (2.10).Equations (4.1) and (4.2) 
orrespond to a time dis
retization of (2.21) and (2.22), φabs beingtreated impli
itely, Φ′ expli
itely. A
tually, the treatment of the 
onstraint (4.1) we propose
an be understood by 
oming ba
k to (2.18) whi
h 
an be re
ast as

ǫ0∂t

[
φabs(t)

(
∂xΦref(−hd) − ∂xΦref (hc)

)]
+ ǫ0∂t

[
∂xΦ

′(t,−hd) − ∂xΦ
′(t, hc)

]

= Jext(−hd) − Jext(hc)by using (2.12). Bearing in mind the asymptoti
 regime in Se
tion 2.4 and negle
ting thetime variation of the di�erential potential Φ′, it appears as a sti� ODE determining φabs.A

ordingly, let us denote
Cap = ∂xΦref (−hd) − ∂xΦref(hc);then, φn+1

abs is de�ned by the impli
it relation
ǫ0Cap

φn+1
abs − φn

abs

∆t
= Jext

[
φn+1

abs Φref + (Φ′)n)
]
(−hd) − Jext

[
φn+1

abs Φref + (Φ′)n
]
(hc) (4.4)17



(where ǫ0Cap ≪ 1).Clearly, the referen
e potential Φref de�ned in (2.11) should be 
al
ulated only on
e at thebeginning of the pro
edure. Next, knowing (Φ′)n(−hd), equation (4.4) is a nonlinear equationfor the unknown φn+1
abs . The resolution of this nonlinear equation involves the resolution of theVlasov equations (4.3) for fi and fe and the de
omposition of Φ with φabs and Φ′ does notallows to solve immediately the Poisson equation in this step. On
e we have obtained φn+1

abs , we
an �rst solve equation (4.2) for the unknown (Φ′)n+1(−hd), and, next, the last step 
onsists insolving the Poisson equation (2.13) to update the di�erential potential Φ′ in the whole domain.The algorithm is then 
omposed of the following steps :1. Initialization : we 
ompute the referen
e potential Φref and initialize the value of thedistribution fun
tions.2. Resolution of the nonlinear equation (4.4) : sin
e the derivative of Jext with respe
t to
φabs is di�
ult to 
ompute, we use in this step a quasi-Newton method. An advantage ofthis method is that no 
onstraint on the time step is needed to guarantee the 
onvergen
eof the s
heme. In fa
t in this 
ase the right hand side of (4.4) is a de
reasing fun
tion withrespe
t to φn+1

abs , sin
e it has been observed that the spa
e
raft re
eives less 
urrent fromthe magnetosphere when the potential on the 
ondu
tor body in
reases. The rigorousmathemati
al proof of this result is still a work in progress. A loop for the 
omputationof φn+1
abs is implemented involving several resolutions of the Vlasov equation. The threemethods presented in the previous se
tion are used for the 
al
ulation of Jext. We noti
ethat in this step we only need to 
al
ulate Jext at the two nodes x = −hd and x = hc.3. Computation of (Φ′)n+1(−hd) thanks to (4.2).4. Resolution of the Poisson equation (2.13) with the boundary 
ondition for x = −hdobtained in step 3. We use P1 �nite element approximation (whi
h in the present onedimension framework 
oin
ides with the standard �nite di�eren
e approximation). The
omputation of the densities ni and ne in the whole 
omputational domain is ne
essary.5. Go ba
k to the se
ond step for the next iteration in time.In this des
ription, the se
ond step is the most demanding in terms of 
omputational timesin
e we need several resolutions of the Vlasov equation to solve the nonlinear equation (4.4).On the 
ontrary, for a given time step, we solve only one Poisson equation in step 4. And no
onstraint on the time step is ne
essary for the 
onvergen
e of this algorithm.For these reasons,the resolution of the Vlasov equation is the more 
hallenging issue in the whole 
omputationalstrategy.4.2 Numeri
al simulationsA numeri
al simulation of the 
harging of a 1D spa
e
raft is obtained thanks to the algorithmpresented above. The numeri
al values used are the one of the plasma in geostationary orbit.The three methods of resolution of the Vlasov equation are implemented. The evolution withrespe
t to time of the absolute potential φabs and of the di�erential potential Φ′(−hd) aregiven in Figure 4.2 for several values of the re�e
tion parameter: α = 0, α = 1/3, α = 2/3,respe
tively. In 
ase of total re�e
tion α = 1, as already remarked, the spa
e
raft does not18



re
eive any �ux from its environment: we have then φabs = Φ′ = 0 for all time. In thissimulation, we have 
hosen Nx = 500 nodes and Nv = 200 nodes. For ea
h method, we runthe algorithm until we rea
h the �nal time Tf = 1.5 10−4 s. at whi
h the unknowns have rea
hstabilized states.Sin
e the 
urrent of ele
trons is initially mu
h larger than the 
urrent of ions, the spa
e
raft
harges negatively. Then, it a
ts repulsively on ele
trons and attra
tively on ions so that astationary state 
an be exhibited, with a di�erential potential whi
h remains small 
omparedto the absolute potential. All these features 
an be observed on real simulations, despite thesimpli
ity of our toy-model. The simulations reveal a behavior highly sensitive to the valueof α. As α de
reases, the 
harge in
reases faster in the earlier times, and it rea
hes higherlimit value. It 
orresponds to the physi
al intuition sin
e for α = 0 all in
oming parti
les are
aught by the boundary. Changing the value of α 
an be 
ompared with the situation wherethe spa
e
raft passes from darkness (α = 0) to light where photoemission phenomena shouldbe a

ounted for (α > 0). All these phenomena are interesting and 
ertainly deserve furthermathemati
al analysis, with all the ne
essary 
riti
ism to extend pra
ti
al information due tothe oversimpli�ed geometry. Let us 
omment further on the performan
es of the numeri
almethods.
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Figure 4: Absolute potential (left) and di�erential potential (right) with respe
t to the timefor the �nite volume (green 
ross), semi-lagrangian (red plus sign) and Ba
k-Traje
tory (bluediamond) methods and for several value of the re�e
tion parameter α.The �rst observation is that the dis
repan
ies between the three methods remain very small,at least in the 
onsidered time interval. The time step is taken in order to respe
t the 
onstraintimposed by the �nite volume method and by the semi-lagrangian method. Table 2 reports theCPU time required with a pro
essor 2.66 GHz and the relative error obtained. This error isde�ned with formula (3.7) where nexac is 
omputed with 5000 nodes for the semi-lagrangianmethod, (a
tually in this 
ase, the relative errors between the three methods for 5000 nodes islesser than 1%).We �rst remark that the relative error is better with the semi-lagrangian method. Con
ern-ing the 
omputational time, the previous 
on
lusions are still available. However, an importantpoint has to be underlined. As pre
ised above, the se
ond step of the algorithm needs the 
om-putation of Jext only on the two nodes x = −hd and x = hc. The Ba
k-Traje
tory methodallows to 
ompute the distribution fun
tion only on these parti
ular points of the mesh. There-19



Table 2: Comparison of CPU time for ea
h methodMethod Time step ∆t Nb of nodes Relative error CPU time(nb of iterations) (Nx, Nv)VF ∆t = 3. 10−9 s (50000 it) (500, 200) 0.16 1h10′SL ∆t = 1.5 10−8 s (10000 it) (500, 200) 0.03 46′08′′SL ∆t = 3. 10−8 s (5000 it) (500, 200) 0.03 18′01′′Ba
kTraj ∆t = 3. 10−8 s (5000 it) (500, 200) 0.1 27h35′Ba
kTraj ∆t = 1.5 10−7 s (1000 it) (500, 200) 0.12 1h07′Ba
kTraj ∆t = 3. 10−7 s (500 it) (500, 200) 0.13 17′30′′fore the 
omputation of φabs is settled fastly with this method. The resolution of the Vlasovequation in the whole 
omputational domain is then implemented only to 
ompute the den-sities in step 4. A
tually if we 
ompute by this method the distribution fun
tion everywherefor ea
h iteration of step 2, CPU time is more than 5 times greater : 
al
ulation takes 6hfor 1000 iterations and 2h for 500 iterations. Moreover, the Ba
k-Traje
tory method is less
onstrained by stability 
ondition and we 
an 
hoose a larger time step to run the simulationfaster. Nevertheless the results be
ome less a

urate and the numeri
al noise inherent to thismethod 
an bother the 
onvergen
e of loop in step 2. For instan
e for ∆t = 5. 10−7 s thealgorithm does not 
onverge for the 
al
ulation of φabs. Sin
e the algorithm re
al
ulates alltraje
tories from their origin for ea
h iteration, the CPU time is very high when the numberof iterations be
omes large, i.e. when we want to study long time behavior of the solution.Con
lusion1. In a 1D framework, the semi-lagrangian method seems to be the most promising. How-ever, the memory 
apa
ities needed avoid to apply this method in 3D. On the 
ontrarythe Ba
k-Traje
tory method needs less memory 
apa
ity.2. To in
rease the 
ode speed, a parallelization of the Vlasov solver 
an be 
onsidered. Sin
eea
h traje
tory is self-supported, PIC methods 
an be easily parallelized by 
omputing
hara
teristi
s on di�erent pro
essors. For the semi-lagrangian and the �nite volumemethods, the parallelization needs more e�ort. In fa
t splitting the 
omputational spa
einto several domains, these domains are not independent one from ea
h other. If we treatthem separately on di�erent pro
essors, we have to take 
are of interfa
e 
onditions. Aparallelization pro
edure of the semi-lagrangian method is presented in [13℄.3. The Ba
k-Traje
tory method be
omes really interesting when we use the geostationaryapproximation. In fa
t the Poisson equation is simpli�ed into the Lapla
e equation, see(2.4). Therefore, we do not need in step 4 to 
ompute the densities ni and ne. It impliesthat in the algorithm the Vlasov equation is solved only to 
al
ulate Jext in two nodes.The Ba
k-Traje
tory method is the one whi
h allows us to 
ompute these two values of
Jext without solving the Vlasov equation in the whole 
omputational domain and thusthe CPU time gain is parti
ularly signi�
ant. Furthermore, parallelization appears in aquite natural way and does not require a huge and intri
ate development work. For these20



reasons, the software SPARCS uses it to furnish a good simulation of spa
e
raft 
hargingin geostationary orbits. Moreover, for an extension of the algorithm presented here inthree dimensions, we should prefer the Ba
k-Traje
tory method, for whi
h no 
onstrainton the time step are needed and whi
h is easily parallelizable without la
k of a

ura
y.AppendixBoundary 
onditions for the semi-lagrangian methodThe spline Hermite interpolation used for the semi-lagrangian method has proved its e�
ien
yfor obtaining a

urate solutions of the Vlasov equation (see [15, 24℄). We re
all shortly themain idea of this high order interpolation method.Letting (xi)i=0,··· ,N being N + 1 nodes su
h that xi = x0 + i · h where h is the mesh size :
h = (xN − x0)/(N + 1). The proje
tion s of f onto the 
ubi
 spline basis reads :

f(x) ≃ s(x) =

N+1∑

ν=−1

ηνBν(x),where Bν is the 
ubi
 B-spline
Bν(x) =

1

6h3





(x − xν−2)
3 x ∈ [xν−2, xν−1],

h3 + 3h2(x − xν−1) + 3h(x − xν−1)
2 − 3(x − xν−1)

3 x ∈ [xν−1, xν ],

h3 + 3h2(xν+1 − x) + 3h(xν+1 − x)2 − 3(xν+1 − x)3 x ∈ [xν , xν+1],

(xν+2 − x)3 x ∈ [xν+1, xν+2],

0 otherwise.The interpolating spline s is uniquely determined by the (N + 1) 
onditions
f(xi) = s(xi), ∀ i = 0, · · · , N,with the Hermite boundary 
onditions at the ends of the interval whi
h allows to 
onstru
t a

C1 global approximation :
f ′(x0) ≃ s′(x0), f ′(xN ) ≃ s′(xN ).The only 
ubi
 B-spline not vanishing at point xi are Bi±1(xi) = 1/6 and Bi(xi) = 2/3. Thenthe interpolating 
onditions lead to

f(xi) =
1

6
ηi−1 +

2

3
ηi +

1

6
ηi+1, i = 0, · · · , N.Moreover, we have B′

i±1(xi) = ±1/(2h) and B′(xi) = 0. Thus the Hermite boundary 
onditionsimply
f ′(x0) ≃ s′(x0) = −

1

2h
η−1 +

1

2h
η1,

f ′(xN ) ≃ s′(xN ) = −
1

2h
ηN−1 +

1

2h
ηN+1.21



Finally, the 
omputation of (η−1, · · · , ηN+1) involves the inversion of a (N +3)×(N +3) matrix.In our algorithm, the inverse of this matrix is determined thanks to a LU de
omposition.In order to obtain an a

urate interpolation, we have to use a high order approximation ofthe derivatives at x0 and xN . The originality of this problem is due to the fa
t that we usespe
ular boundary 
onditions in the end point of the domain representing the spa
e
raft andin�nite boundary 
onditions in the external boundary of the interval : for instan
e, we assumethat [x0, xN ] is the interval [−L − hc,−hc], therefore
f(x0, v) = f∞(v), for v > 0,

f(xN , v) = f(xN ,−v), for v < 0.Contrary to the 
ase of periodi
 boundary 
onditions (see [13℄), the values of the fun
tionoutside [x0, xN ] 
an not be known. Therefore we have to use the values of f at time tninside this interval to 
ompute the distribution fun
tion at time tn + ∆t. Thanks to ourboundary 
onditions, at the boundary we only have to 
ompute f(tn +∆t, x0, v) for v < 0 and
f(tn + ∆t, xN , v) for v > 0. This 
an be easily done with the pro
edure des
ribed in se
tion3.3 sin
e for v < 0, X(tn; x0, v, tn+1) ∈ [x0, xN ] and for v > 0, X(tn; xN , v, tn+1) ∈ [x0, xN ].Moreover to obtain an a

urate approximation of the derivatives, we use the Taylor identities :





f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) +

h4

24
f (4)(x) + o(h4).

f(x + 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +
4h3

3
f (3)(x) +

2h4

4
f (4)(x) + o(h4).

f(x + 3h) = f(x) + 3hf ′(x) +
9h2

2
f ′′(x) +

9h3

2
f (3)(x) +

27h4

8
f (4)(x) + o(h4).Thus we dedu
e that

f(x + 3h) −
9

2
f(x + 2h) + 9f(x + h) −

11

2
f(x) = 3hf ′(x) +

3

4
h4f (4)(x) + o(h4).Then we �nd the following approximation for the derivative in x0 :

f ′(x0) =
1

3h
(f(x3) −

9

2
f(x2) + 9f(x1) −

11

2
f(x0)). (A.1)And by the same token, we obtain :

f ′(xN) = −
1

3h
(f(xN−3) −

9

2
f(xN−2) + 9f(xN−1) −

11

2
f(xN)). (A.2)This idea is similar to the one used in WENO-type interpolations methods (see [8℄ andreferen
es therein) for re
onstru
tion of smooth solutions.

Referen
es[1℄ R. Belaouar, N. Crouseilles, P. Degond, E. Sonnendrü
ker, An asymptoti
ally stable semi-lagrangian s
heme in the quasi-neutral limit, preprint (2007).22



[2℄ M. Cho, Ar
ing on high voltage solar arrays in low earth orbit: theory and 
omputerparti
le simulation, Ph.D. thesis, Massa
husetts Institute of Te
hnology, February 1992.[3℄ J.-P. Chehab, A. Cohen, D. Jennequin, J. J. Nieto, Ch. Roland, J.-R. Ro
he, An adaptiveparti
le-in-
ell method using multi-resolution analysis, in Numeri
al methods for hyper-boli
 and kineti
 problems, IRMA Le
t. Math. Theor. Phys., vol. 7, S. Cordier, T. Goudon,M. Gutni
 and E. Sonnendrü
ker Eds. (Eur. Math. So
., Züri
h, 2005) pp. 29�42.[4℄ G.-H. Cottet, P.-A. Raviart, Parti
le methods for the one-dimensional Vlasov�Poissonequations, SIAM J. Numer. Anal. 21 1 (1984) 52�76.[5℄ P. Crispel, Modèlisation mathématique et simulation de la transition d'une dé
harge éle
-trostatique primaire vers un ar
 éle
trique se
ondaire entretenu par la puissan
e pho-tovoltaïque d'un générateur solaire de satellite, PhD thesis, Université Paul SabatierToulouse III, 2006.[6℄ P. Crispel, P. Degond, M.-H. Vignal, Quasi-neutral �uid models for 
urrent-
arrying plas-mas, J. Comput. Phys., 205 2 (2005) 408�438.[7℄ C. K. Birdsall, A. B. Langdon, Plasma Physi
s via Computer Simulation, Institute ofPhysi
s Publishing, Bristol and Philadelphia, 1991.[8℄ J. A. Carrillo, F. Ve
il, Non-os
illatory interpolation methods applied to Vlasov-Basedmodels, SIAM J. S
i. Comput. 29 3 (2007) 1179�1206.[9℄ O. Chanrion, Simulation de l'in�uen
e de la propulsion plasmique sur la 
harge éle
trosta-tique d'un satellite en milieu magnétosph'erique, PhD Thesis, E
ole Nationale des Pontset Chaussées, 2001.[10℄ M. Chane-Yook, S. Cler
, S. Piperno, Spa
e 
harge and potential distribution around aspa
e
raft in a isotropi
 plasma, J. Geophys. Res. - Spa
e Physi
s 111 (2006).[11℄ S. Cler
, S. Brosse, M. Chane-Yook, Spar
s : an advan
ed software for spa
e
raft 
harginganalysis, 8th Spa
e
raft Charging Te
h. Conf., Huntsville, Alabama, 2003.[12℄ N. Crouseilles, F. Filbet, Numeri
al approximation of 
ollisional plasma by high ordermethods, J. Comp. Phys. 201, 2 (2004) 546�572.[13℄ N. Crouseilles, G. Latu, E. Sonnendrü
ker, Hermite spline interpolation on pat
hes forparallely solving the Vlasov-Poisson equation, Int. J. Appl. Math. Comput. S
. 17, 3(2007) 101�115.[14℄ P. Degond, F. Deluzet, L. Navoret, An asymptoti
ally stable Parti
le-In-Cell (PIC) s
hemefor 
ollisionless plasma simulations near quasineutrality, C. R. A
ad. S
i. Paris, Ser. I 343(2006) 613�618.[15℄ F. Filbet, E. Sonnendrü
ker, P. Bertrand, Conservative numeri
al s
hemes for the Vlasovequation, J. Comput. Phys. 172 (2001) 166�187.[16℄ F. Filbet, E. Sonnendrü
ker, Comparison of Eulerian Solver, Comput. Phys. Commun.151 (2003) 247�266. 23



[17℄ A. Ghizzo, P. Bertrand, M. Shou
ri, T.W. Johnston, E. Filjakow, M.R. Feix, A Vlasov
ode for the numeri
al simulation of stimulated Raman s
attering, J. Comput. Phys. 90(1990) 431.[18℄ R. J. LeVeque, Numeri
al Methods for Conservation Laws, Le
tures in Mathemati
s, ETH-Zuri
h (Birkhauser-Verlag, Basel, 1990).[19℄ L. Lévy, Charge des matériaux et systèmes en environnment spatial, CERT�ONERA,in Spa
e environment prevention of risks related to spa
e
raft 
harging, ed. Cepaduès-éditions, Toulouse, F, 1996.[20℄ M. J. Mandell, V. A. Davies, L. G. Mikelides, NASCAP-2K Preliminary Do
umentation,S
ien
e Appli
ations International Corp, San Diego, CA, S
ienti�
 rept. no. 2, A555024,2002.[21℄ A. P. Plokhikh, V. G. Malko, V. A. Semenov, Es
ape software modeling for the ele
tro-stati
 
harging with ele
tri
 propulsion in the ionosphere earth, Manuel d'utilisation v-1,Resear
h Institute of Applied Me
hani
s and Ele
trodynami
s, Mos
ou, 1998.[22℄ J. F. Roussel, F. Rogier, M. Lemoine, D. Volpert, G. Rousseau, G. Sookahet, P. Sng, A.Hilgers, Design of a new modular spa
e
raft plasma intera
tion modeling software (SPIS),Pro
eedings of the 8th Spa
e
raft Charging Te
h. Conf., Huntsville, AL, O
tober 20-24,2003.[23℄ M. Shou
ri, G. Knorr, Numeri
al integration of the Vlasov equation, J. Comput. Phys. 14(1974) 84�92.[24℄ E. Sonnendrü
ker, J. Ro
he, P. Bertrand, A. Ghizzo, The semi-lagrangian method for thenumeri
al resolution of the Vlasov equation, J. Comput. Phys. 149 (1999) 201�220.

24


