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Abstract

In this work we present the mathematical modeling and the simulation
of the diffusive transport of an electron gas confined in a nanostructure. A
coupled quantum-classical system is considered, where the coupling occurs in
the momentum variable : the electrons are like point particles in the direction
parallel to the gas, while they behave like waves in the transverse direction. A
drift-diffusion description in the transport direction is obtained thanks to an
asymptotic limit of the Boltzmann transport equation for confined electrons.
The system is used to model the transport of charged carriers in a nanoscale
Double-Gate MOSFET. Simulations of transport in such a device are presented.

Keywords : Schrodinger equation, Drift-Diffusion system, Subband model, Nan-
otransistor, Gummel iterations.

1 Introduction

The significant trend of miniaturization in Microelectronics brougth, in the recent
years, the scaling process down to the nanometer scale, with improvements in speed
and functionality of electronic components. In this task, modeling and numerical
simulation play an important role to predict the behaviour of devices whose elec-
tron transport properties are largely based on quantum effects [1, 2, 3]. In these
ultimate size devices like nanoscale Double-Gate MOSFETs [4], electrons might be
extremely confined in one or several directions, which are referred to as the confined
directions. This leads to a partial quantization of energies. This article proposes to
describe nanoscale semiconductor devices using a subband decomposition approach
which consists of a diagonalization of the Hamiltonian on slices perpendicular to the
transport direction. A self-consistent process between the calculation of the elec-
tron density and the space charge effects using the Poisson equation is defined. The
subband model describes the system as a statistical mixture of eigenstates of the
Schrodinger operator in the confined direction. The elementary states are obtained
thanks to the resolution of a classical transport equation. Thanks to the separation
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of the confined and the transport directions, the computational gain is significant by
the reduction of the dimension of the transport problem |5, 6].

Here, we consider a diffusive transport described by means of a drift—diffusion
model |7, 8, 9]. Starting from a set of Boltzmann equations, one for each subband,
we derive the effective potential energy for the single drift—diffusion equation of the
model. Under the assumption of dominant electron-phonon scattering, which is the
leading scattering mechanism in the diffusive regime, a limit in the scaled mean free
path is performed. The main difficulty here stands in the highly non linear coupling
with the subband decomposition method. Though for devices with short channel
length far-from-equilibrium effects become relevant (see [10, 11], e.g.) and higher
order moment models seem to be more appropriate, however the low computational
cost and the good convergence properties of the iteration procedure make attractive
the use of a drift—diffusion model for rapid design calculation. The simulation results
presented in Section 5 show a good agreement with similar results reported in the
literature and obtained with Monte—Carlo simulation [12].

In ultra short channel devices quantum effects (such as tunneling from source to
drain) take place in the transport direction and classical transport cannot be used.
We refer to [13, 5|, where a purely ballistic quantum transport of Schrodinger type
and its numerical treatment relying on the subband approach are presented.

In the recent literature, wide interest has been shown in modifications of the drift—
diffusion model (of low computational cost) in order to take into account quantum
effects, see e.g. [14, 15, 16]. A full quantum drift-diffusion model (quantum in
both directions) was derived in [17] and its numerical simulation was addressed in
[18]. A quite similar model was introduced in [19] and used in [20| to simulate
nanoscale MOSFETs. A quantum drift-diffusion model is presented and simulated
as a nonlinear parabolic system in [21], in order to describe the switching behavior
of a resonant tunneling diode.

The paper is organized as follows. In Section 2 we present an overview of the
model under consideration. Section 3 deals with the formal diffusive limit of the
Boltzmann semiconductor equation towards the drift-diffusion equation. Moreover,
modifications in the model when anisotropy of silicon is taken into account are in-
troduced. In Section 4 we describe the numerical scheme and the iterative procedure
used in the simulation. Finally, results of the simulation of a nanoscale Double-Gate
MOSFET are presented in the last section.

2 Presentation of the model

In this section we present the model used and implemented in this work. We assume
to have one confined direction, that we denote by z, belonging to the interval [0, ¢].
The transport direction(s) are denoted by .



2.1 The subband decomposition method

In the subband decomposition approach the system is viewed as a statistical mixture
of eigenstates of the Schrodinger operator in the confined direction. The occupation
number of each state is given by a statistic function: for Boltzmann statistics it is
exp(ig;f), for Fermi-Dirac statistics this is 1/(1 +exp(i;%”)). In these expressions
€ is the energy of the considered state, kg is the Boltzmann constant, 77, is the
lattice temperature and € is the so-called Fermi energy which, at zero temperature,
represents the threshold between occupied and unoccupied states |22, 23, 24].

In the confined direction, the system is assumed to be at equilibrium with a local
Fermi level € which depends on the transport variable x. At a position (z, z), the

particle density N(zx, z) for Boltzmann statistics is given by

+o0o
N(w,z) =Y MCr@=C@ |y, (& 2)P, (1)
k=1

where 5 = 1/(kpTy) and (X, €x)r>1 is the complete set of eigenfunctions and eigen-
values of the Schrodinger operator in the z variable

_h_2 i ;i + U =€
2 dz \m*(2) dZXk Xk = CeXk;
‘

(2)
xi(z,+) € Hy(0,0), / Xk Xk A2 = Oppr -
0

In this equation A is the reduced Planck constant, m* the effective mass. Moreover,
U is the potential energy defined by U = —eV', where e the elementary charge and
V' denotes the self-consistent electrostatic potential, solution of the Poisson equation

e

div ,.(eg(z,2)V,.V) = —(N — Np). (3)

€0

Here eg(z, z) denotes the relative permittivity, £ the permittivity constant in vac-
uum and Np(x, z) is the prescribed doping density.

2.2 The diffusive regime

In the transport direction(s), we consider a purely classical transport in the diffusive
regime, which is described by the stationary drift-diffusion equation :

—div, J(z) = 0, (4)
J(x) = D(VyNs(z) + BNs(2)V.Us(2)), (5)

where Ny is the surface density, D denotes the diffusion coefficient D = ukgTy for a
constant mobility u and the effective energy U is given by

—+o00
U, = —kgTy log <Z e‘ﬁ€k> ) (6)

k=1



If we define the repartition function Z as

—+00

Z(z) = Z e~Pe(®) (7)

k=1

then, we obtain easily from (1) and (2) that the surface density satisfies

Ny(z) = /0 N(z, 2) dz = %5 Z(z).

Therefore, €p(z) in (1) can be written in terms of Ny and Ny can be chosen as
unknown in the model. We have then

Nz, 2) = 2 §™ seatol )y 0, )2 ®)

k=1

If we introduce the Slotboom variable u defined by

u(z) = e’ = N (@)
(@ ), o)

then, we get easily that the drift-diffusion equation (4)-(5) reads
—div . (DZ(x)V,u(x)) = 0. (10)

The drift-diffusion equation can be derived from kinetic theory when the mean
free path is small compared to the system length-scale [25, 26]. Such a derivation
from the semiconductor Boltzmann equation is formally derived in Section 3.

The unknowns of the overall system are the surface density Ny(x), the eigenen-
ergies €x(z), the eigenfunctions xx(z, z) and the electrostatic potential V(z,z). If
we assume that the electrostatic potential V' is given, then a diagonalization of the
one dimensional Schréodinger operator (2) provides the eigenvalues and eigenvectors
(€k, xx). The effective energy U, can be computed from (6). This allows us to ob-
tain the surface density N by solving the drift-diffusion problem (4)—(5). Then, the
density N is evaluated using (8) and a new potential is computed by solving Poisson
equation (3).

This fix point map is used in [27] to establish existence of solutions. More details
about its use as numerical algorithm are given in Section 4.

3 Formal limit of the Boltzmann equation to the
drift-diffusion equation

In order to understand the expression of the effective energy U, given in (6) and the
role of the effective mass when the anisotropy of silicon is taken into account, we
present in this section the formal derivation of the stationary drift-diffusion equation



from the semiconductor Boltzmann equation for the subband model. The diffusive
limit of the Boltzmann equation towards the drift-diffusion equation is well known
(see |25, 26| for a rigorous proof of this limit). In the subband decomposition ap-
proach, because of the non linear coupling with the Schrédinger-Poisson system,
we need to renormalize the Boltzmann equation. We refer to [28] for the rigorous
derivation.

Let n > 0 be the scaled mean free path assumed to be small. We consider the
scaled Boltzmann equation for the subband model defined on the phase space R? x R?.
We denote by x the position, x € R?, and by p the momentum, p € R?. The time
variable ¢ is nonnegative. We consider a diffusion scaling with parameter n

t' = n*t and 2’ = na.

Then, (writing again ¢ for ¢ and x for ') the electron distribution function in each
subband f,' satisfies (see [26] and references therein)

1 1
Ofl+ 2 LV f] = V€V, f]) = QM (11)
which can be rewritten as

where {-, -} denotes the Poisson bracket: {g,h} = V,h-V,g —V,h-V,.g. Moreover
‘Hj, is the energy of the system in the kth subband

The collision operator () g, describing the scattering between electrons and phonons,
is assumed in the linear BGK approximation for Boltzmann statistics.
It reads in the following form :

Qs(flk= /R g p') (M (p) fer (1) = M (1) fi(p)) di, (12)

where the function My, is the Maxwellian

1
2rm* kT Z(t, x)

M (t,z,p) = e Ttltep), (13)

normalized such that .
Z ./\/lkdp = 1,
1 /R?

and where the repartition function Z is given by (7).

Here and in the following, we shall use the notation g, for a function depending
on the k-th subband, and the notation g = (gx)r>1 when the entire set of subbands
is taken into account.



Assumption 3.1 The cross-section « is symmetric and bounded from above and
from below :

ElOél,Oég > 0, 0< a; < Oék,k/(p,p/) < O{Q’Vk’ K > 1, Vp S Rz, Vp/ S Rz. (14)
The initial condition is assumed to be given by :
f10,2,p) = (=, p). (15)

For the sake of simplicity, we consider the transport on the whole space R? with
no charge carriers at infinity : lim, o f(¢, 2, p) = 0.

Assumption 3.2 We assume that the given initial condition satisfies f € £1(L>°(R*x
R?)), f > 0.

Assumption 3.3 We assume that the potential energy €, is given for all k > 1 in
L>((0,T), HY(R?)) and that ;€5 € L°°((0,T) x R?), that is

Ju > 0 such that V (t,z) € (0,T) x R?, |0,€1] < pu. (16)

Moreover, we suppose that (€x)r>1 is a nondecreasing sequence of positive functions
satisfying

1
3C >0, V(t,z) € (0,T) x R*, Vk > 1, |€(t,x) — 57r2l<;2| < C,
such that we can give a sense to Z in (7).

Remark 3.4 Assumptions 3.3 are not really strong. Indeed, if € is given by the
subband model, i.e. it is the k-th eigenvalue of the stationary Schridinger operator for
an electrostatic potential energy U, then all these estimates hold true with constants
w and Cy depending on U (see [29] and appendiz of [27]). It remains to obtain some
reqularity on the potential energy U.

3.1 Properties of the collision operator

In this section, the time variable ¢ and the position z are only parameters, and,
for the sake of simplicity, we omit the dependence on ¢t and x and only consider
the dependence on p. Here we establish some well-known properties of the collision
operator Qg defined by (12). To this aim, we define the weighted-space

+o00 2
L3 = {f = (fi)x>1 such that Z/ f—kdp < o0}, (17)
- = Sz M
which is an Hilbert space with the scalar product
< [ fuoe
) = Ve dp
(f,9)m ; e My



Proposition 3.5 We assume that the cross-section « satisfies (14). Then the fol-
lowing properties hold for Qp :

() X0 S Qu(Fedp=0.

(i) Qp is a linear, selfadjoint and negative bounded operator on LA.
(iii) Ker Qp = {f € LA, such that AN, € R, fr = NyMy}.
(

iv) If P is the orthogonal projection on Ker Qg with the scalar product (-, ) s, then
—(@Qs(f), flm = eall f = P2 (18)

Proof. (i) follows immediately from the symmetry of the cross-section.
For the sake of simplicity we will use the standard notation f" = f(p’). For proving
(1), we start with writing:

o (e e\ o
: : - dpdp’
2 Z/Rz M ( v M) M

k kl k/

With our assumption (14) and the fact that (3", [ /x| dp)® < || f|I54 we get

(QB(f), gyl < Cllfllmllgllaa

for all f, g in LA,. Thus, Qp is bounded. Moreover, we obtain easily

<QB( = ——Z/Rz akk’MkMk,( fk; . Af/};k)( gk,’ Mk)dpdp (19)

k k/ k/ k/

This provides the selfadjointness and negativity of ()p.

The inclusion D in (7i) is obvious. If f € Ker @p, then (Qp(f), f)m = 0 and
equality (19) implies that f coincide with the Maxwellian up to a multiplicative
constant. Thus, (i27) holds true.

We are left with proving (iv). The definition of L3, and (i) allow us to charac-
terize (Ker Qp)*

—+00

(KerQp)*™ = {f € L}, such that Z frdp =0}. (20)
R2

We have,

(Qs(f), flm 2 s(f 2 )>QB( () = (f =P(f), Qs(f))m

where we take g = f — P(f). Therefore, by using (19) we obtain

/ 2
—(@Qa(f = Z/]m O‘kk’MkM//<gk; —%) dpdyp'. (21)

k k/ kl




From (14) and since g € (Ker Qp)™*, (21) gives

@s(h) M>a12(/ e ) aullf = PR

Proposition 3.6 Im Qg is a closed subset of L3,.

Proof. Let (h,)neny € IMmQp be a sequence converging towards h in L%,. Since
hy, = Qp(fn) = @p(gn), where g, = f,, — P(f,), Proposition 3.5 (i) and (iv) imply

This gives that (g,) is a Cauchy sequence in L3,. Thus, there exists ¢ € L3, such
that g, — ¢. By continuity of @ and uniqueness of the limit, h = Qp(g). O

Corollary 3.7 Since Qp is selfadjoint, we have (Ker Qp)* = ImQp.
Thus Qp(f) = h admits a solution in L3, iff h € (Ker Qg)*. Moreover this solution
is unique if we impose f € (Ker Qp)= .

Proposition 3.8 There exists © € (L},)? such that for all k > 1,

We define the diffusion matriz by

(23)

R? =1
Then, D is a symmetric coercive matriz.

Proof. (22) is an easy consequence of Corollary 3.7 and of (20). It remains to prove
the symmetry and the coercivity of .

[ » <Zek> ip=- Z [, 2O 1y~ (o, Qute)

The selfadjointness of Qg implies the symmetry of D. For X € R? we set fx =
X101 + X120,

D;

DX, X)u = Y Di;XiX; = —(Qs(fx), fx)m

1<4,5<2



Since © € (Ker Qp)*, we have fx € (Ker Q)*. Using (18), we get :
(DX, X) > an| e

We conclude by showing that X +— || fx|/a¢ is a norm on R?. Actually, the linearity
of Qp gives

2 2
=1 1=1

This implies that Y. X;p;M; =0, Vk > 1. Thus X = 0. O

Remark 3.9 PARTICULAR CASE WHEN « IS A CONSTANT

Let us assume that for all k, k', p,p', a(k,p, k', p') = 1/7, where T is a relaxation time
independent of p, which might depend on some parameters like time t and position
x. Then, D is equal to:

m*

+00
p b
D:Z/Rzrj\/lk ® —dp=rld (24)
k=1

3.2 Asymptotic expansion for the diffusive limit

We will show in this section the formal diffusive limit of the Boltzmann equation
(11) as n — 0, using a Hilbert expansion. First, we recall an existence result for our
problem which is a direct corollary of well-known existence results on the Boltzmann
equation (see for instance 30|, |31]).

Theorem 3.10 For fized n > 0, under Assumptions 3.1, 3.2 and 3.3, the Boltzmann
boundary value problem (11)—~(15) admits a unique weak solution f7 € L2 (R™, ¢* (L' (R*x
R?))) with f7 > 0.

Proposition 3.11 Under Assumptions 3.1, 3.2 and 3.3, if the solution f" in The-
orem 3.10 admits a Hilbert expansion with respect to n, f7 = fO+nfl + ..., then
O = N,M and Ny is the solution of the drift-diffusion equation

N, — div ,(D(V,.Ns + SN, V,Uy)) = 0, (25)
where D is given in (23) and Us is defined by
Us = _kBTL lOgZ (26)

Proof. Formally, inserting the expansion into (11) and neglecting higher order
terms, we have:

Qu(f*)i+ 1Qu(f )+ OP) =0 - Vaf = Vi Vuf) + O0P),




By identification with respect to powers of n, we get f° € Ker Q. Thus, Proposition
3.5 (#i1) gives:

fe=NMy, Vk>1 (27)
Moreover, f! is solution of the integral equation
Qp(f1)s = Hy, (28)
where we define
Hy = 772;* Vafy = Va€i - Vpfy.
By Corollary 3.7, f! exists iff
H e (KerQp)*. (29)

Differentiating M. with respect to x and p, we obtain
VoM = =M V€ + BM V., U,

with Uy defined in (26), and

Bp

m*

V, My, = —

M.
Therefore, from (27) it follows

Hy, = Mk% - (VaN, + BNV, UL).

Since pMj, is an odd function, we have [ pM; dp = 0, so that (29) holds. We choose
O € (L3,)* as in (22). Thus,

f!'=—-0-(V.N,+ NV, U,). (30)

We integrate (11) with respect to p and sum over k. By observing that [V, f' dp = 0,
and by using Proposition 3.5 (i), we obtain

1 p
8/ f"dp+—/ -V.fldp=0.
Moreover, the second term can be written as follows
1 1
_/ p* vgcfl?dp = _/ p* vm(NsMk)dp_'_/%vxflidp_'_O(n)
nJ m nJ m m

p
m

thanks to (30). By assuming that we can pass to the limit, we find the drift-diffusion
equation :
O Ns; — div (D - (V,Ns + BNV, U)) =0,

where the operator D is defined in (23). O

10



3.3 The 3 valley case

Our physical devices of interest are nanoscale Double-Gate-MOSFETs of silicon
structure. Due to effective mass anisotropy in silicon valleys, we introduce the trans-
verse effective mass m; and the longitudinal one mj. Then three different electron
configurations appear in the band structure, counted twice, due to the symmetry
of each valley (see Figure 1): (mj,m;,m;), (m;,m;,m}) and (mj, m;, m;). In the
following, we will consider the generic configuration (mj;, my, m?), where m} (m; and
m¥, respectively) corresponds to the effective mass in the z direction ( y and z di-
rection, respectively). Notice a slight change of notation from the previous sections,
where the transport directions are simply denoted by .

z

Figure 1: Surface of constant energy in the first conduction band of silicon (six
ellipsoids and three different configurations for the electrons due to the symmetry
properties).

In this section, we explain briefly the modification of the system when we take
into account the three different configurations.

The distribution function of the kth subband and the ith valley, denoted by f{
(1 =1,2,3), satisfies the following Boltzmann equation :

NS+ 2 el L0, [ — 0,610, 1" — €10y, fi" = —QB<f DS
y
with

=Y / o (0,0 (F () Mi(D) — Fi ()M () di.

k//

11



This collision operator takes into account intravalley and inter-valley collisions. Of
course, all the properties stated in Proposition 3.5 still hold. The normalized Maxwellian
is now defined by

, exp —6(2’:3* + ;E’* + €1)
M(p) = ( E . >> (32)

where the normalization coefficient is defined by

Pz

(et < +el)
Z /R e dp. (33)

Proposition 3.12 Let f7 € L>([0,T], L},) be a solution of the three valley Boltz-
mann equation (31) coupled with the subband problem (35)-(37). Then, formally, as
n — 0 the solution f7 converges towards Ns My, where Ny is the solution of the
drift-diffusion equation (34) coupled with the Schiodinger-Poisson system (35)-(37) :

O,N, + div (D(VN, + BN,VU,)) = 0, (34)
1d /(1 d ¢
S () U B0, [ b= (39
t
1d /(1 d ¢
52 (W%X ) + UXk = 6ka7 Xf; S Hl(oa 1)7/0 XiXi/ dz = Op, (36)
¢
div ,.(en(z, 2)V,.V) = i(N — Np), (37)
where
N = —,66 2 Z —56 2
U=—eV; N = ?Z 2e k| XL |2 + 4 s ap (38)
k=1 t
—+00 ,
Us = —k’BTL 10gZ ; Z =72 26_56]“ +4 Z e_ﬁet (39)
my k=1

D is a symmetric coercive matriz which will be determined in the proof (see (40)),
B =1/kgTy. Moreover, €g, €y, e, Np in (37) are defined as in Section 2.

Proof. As before, we assume that f7 admits a Hilbert expansion of the form:
f7= f9+nft+ .. Then, by identification with respect to powers of 1, we obtain

QB(fO)z = 07
that implies f,g’i = N, M}, and

QB(fl);c e (N M ) py* ay(NsMZ) - 8x€20pr£’i - 8y€28pyf£’i.
my,

mx

12



We can prove in the same manner as in Proposition 3.8 that there exists a function
©' € L}, such that Q5(0,); = —Z=Mj and Qp(0,)), = —2M;. Therefore,
T Yy

1 = —(VayNe + BNV, (—kpTy log Z))OL.

We define the diffusion matrix (which is symmetric and coercive) as

i p
- [ eio L. (40)
ki

where £ = (£= Lu)  TIntegrating equation (31) and passing formally to the limit
x Y
n — 0, we get :
N, + div 4y (D(Vay Ny + BNV, (—ksTylog Z))) = 0. (41)

Moreover,
~ 27 i
o x »—BEL
= _ﬁ g Vmymy e .
ki

Since the possible configurations for silicon are the three following configurations
(counted twice for symmetry reasons) (m;,my,m;), (m;, m;,m;) and (mj, m;,m;),
we have

= thZE 66k—|—21/ Ze 56k_|_2 /m. Ze 563

The eigenenergies €} of the kth subband and the ith valley are the eigenvalues of the
Hamiltonian in the z-direction. Thus, these quantities only depends on the effective
mass on the z-direction:

1d 1d.+U ci
5ds dek Xk = ka

The density of charge carriers for the whole system, which enters Poisson equation

(37), is given by
N =Y [ VAP
i

We have two configurations in which m? = m;}, thus the eigensystem is (€, x})r>1
for four ellipsoids. And there is one configuration where m} = mj, the eigensystem
is then (€5, x%)r>1 for two ellipsoids. Thus we have,

x T00
_ m _ B¢t
= _mt (2 E e 6Ek +4 E}i E e 6€k> .

k=1

For simplicity of notation, we prefer to use Z as defined in (39) to obtain

N, <X
N = 2—5% 2 4 Z —,BEk 2
ZkE;(e \x\+\/mt x|

13



Notice that V,_,(log Z) = V,,(log Z), so that the drift-diffusion equation (41) coin-
cides with (34).
UJ

4 Numerical implementation

4.1 The modeled device

In this work we are interested in a nanoscale Double-Gate MOSFET (Metal Oxide
Semiconductor Field Effect Transistor). The device consists of a silicon film, char-
acterized by two highly doped regions near the Ohmic contacts (denoted by source
and drain) and an active region, called channel, with lower doping. The silicon film
is sandwiched between two thin layers of silicon dioxide Si0,, each of them with a

gate contact.
\%
s Sio,
Gate
7=l
lOX ¢

Source Drain
N+ N- N+
lg | @ - ] f e
Si Si Si Vs
L S L C L D

lox ¢ |__.z=0
L X=L
x=0 Gate
Sio,

Figure 2: Schematic representation of the modeled device.

We assume invariance in the y direction (infinite boundary conditions), so that
the problem is studied in a (x,z)-domain. The device occupies a region of a 2D
domain denoted by Q=[0, L] x [0,¢]. A schematic representation of the device is
shown in Figure 2.

For the sake of completeness, we recall the stationary drift—diffusion Schrodinger—
Poisson system which is used for the simulation, taking into account the presence
of the oxide and the anisotropy of silicon. As before, we will use the notation 3 =
1/]{;BTL-

Find Ny(x), (€L(z), x4 (x, 2)), (€4(z), xL(x, 2)), for k > 1, and V(z, 2) such that

d d d
< (D (%Ns + ﬂNs%Us)) —0  in(0,L), (42)

14



( Rd( 1 d,
- = U+ UL = €.
2 dz (mf(z) dek) + (U + Uo)xi X

¢ (43)
Xi(z,-) € Hy(0,0), / Xk X 42 = O
(B d ( 1 d é)
5 o\ X (U + U)X, = €ELxG
2 dz \mj(z)dz"" . X = Cr Xk (44)
Xi(x,-) € Hy(0,0), / Xi X d2 = O

div ,.(ep(z, 2)V, V) = 5—(N — Np) in Q, (45)
0
where
U=—eV: N= Ei 2e P + 4y [ TL e Pek 2 (46)
7 Z & my

400 , * +0c0
U= —kpTplogZ; Z=2Y e % 44, [t el (47)

my k=1

In (43)-(44) U, is a given potential barrier between the silicon and the oxide. More-
over, the diffusion coefficient D in (42), and €g, €, ¢, Np in (45) are defined as
in Section 2. Finally, m; and mj denote effective masses: in silicon they are dif-
ferent in the transverse (m;) and in the longitudinal direction (mj), while in the
oxide they take the same value. The system is then supplemented by boundary
conditions. At the ohmic source, drain, and gate contacts (denoted by I's, I'p, and
[, respectively) Dirichlet boundary conditions are imposed. The remaining part of
the boundary (denoted by I'y) is considered insulated, and homogeneous Neumann
boundary conditions are imposed. More precisely, due to the high doping, the drain
and the source contacts can be considered as small electron reservoirs in which we
assume that the potential does not depend on the transport direction. Therefore,
the surface density N, at the vicinity of the drain and source contacts is assumed to
be constant and is then equal to Nt x (g;.

Moreover, the electrostatic potential V' equals the sum of the applied voltage and
the potential at thermal equilibrium, that we denote by Vj(z., z), with z. = 0 or
x. = L. In order to find Vj(x., z) the following 1D Schrédinger-Poisson system must
be solved on the vertical edge x = x.

( ﬁ2 d 1 d
¢ (48)
X (e, ) € H0(07€>7 / Xk Xi dz = Oper
\ 0
( R? d ( 1 d z) ' L
5 1 Xk | T (U +Uc)X) = € X
2 dz \mj(z)dz . (49)
o) € HY0.0), [ Xixkdz = e
0
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d d
P <5R(:L'c,z)%vb) zg%(N—ND), V, =0 atz=0and z =1/, (50)
where
Uy, = —eV N(e,2) N(ze) 3~ 2% |xk[? + 4 @e‘“ilxtlz
b b? (3] Z(l’c) k:1 k m;{; k )
400 , « 100
Z(z.) = 2Ze_ﬁ€k + 44— Ze‘ﬁek

k=1 b k=1

Summarizing, the boundary conditions for system (42)— (45) are

N,=N"x/ls, atz=0andz =1L, (51)
V(z) =V4(0,2) on I, V(z) =Vy(L,2) + Vps on'p, (52)
V(z) = Vigae on g, (53)
ov
o = 0 only. (54)

4.2 Iterative procedure

We introduce a partition of [0, L] with nodes z;, i = 1,---, N,, and a partition of
0,¢] with nodes z;, 7 = 1,---, N,. Then, we mesh the domain [0, L] x [0, ¢] with
rectangular triangles using the nodes (z;, z;) previously defined. The Schrodinger
equations and the Poisson equation are discretized with conforming P! finite ele-
ments, while for the 1D drift-diffusion equation the Scharfetter-Gummel scheme is
used (see [32[,[33]). From now on, when referring to equations and formulas (42)—(54)
we intend their discretized counterpart.

The first step for initializing the procedure is the computation of V}, on the source
and drain contacts. To this aim a Gummel iteration method, described at the end
of this section, is used to solve the 1D Schrédinger-Poisson system.

Secondly, we consider the whole system for zero applied source-drain voltage.
Equation (42) does not need to be solve in this case. Actually, the Slotboom variable
u = Ny/Z, solution of the 1D equation (10), is constant. It is then sufficient to
evaluate it on the boundary (for x = 0 for instance), where N is prescribed. It
remains to calculate a 2D Schrodinger-Poisson system, with boundary conditions
(52) —(54) and Vpg = 0.

Finally, we consider the resolution of the drift-diffusion-Schrédinger-Poisson sys-
tem when a drain-source voltage Vpg is applied. We start from the previously ob-
tained potential and increment the voltage by steps of 0.02V.

The iterative procedure for the solution of one drift—diffusion-Schrédinger—Poisson
system consists of an iteration on the electrostatic potential and it is summarized in
the following steps.
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1. For a given potential V4 in the whole domain €2 we solve the eigenvalue
problems (43)-(44) on each slice of the device (z = z;,i = 1,---,N,) by
diagonalization of the Hamiltonian. Thus, we obtain N, sets of eigenfunc-
tions {x%(zi, 2)}iz1..n, and eigenvalues {€L}, and N, sets of eigenfunctions
{x4 (i, 2) biz1.. v, and eigenvalues {€4}.

2. Next, we compute the effective energy Us from (47). We are then able to
solve the 1D stationary drift-diffusion equation (42) with Dirichlet boundary
conditions (51).

3. We have then all the ingredients to compute the density N thanks to the
expression (46).

4. The Poisson equation is solved in the 2D domain using boundary conditions
(52)—(54). The system is solved using the preconditioned conjugate gradient
method. A new potential V., is then obtained.

5. We repeat the four previous steps until the difference ||V,,e, — Viallz is suffi-
ciently small.

We conclude the description of the iteration procedure with few remarks on im-
plementation aspects.

e The solution of the highly non-linear coupled Schrédinger—Poisson system is
the most delicate step in the procedure described above. A simple minded
decoupling algorithm fails and a Newton-Raphson method is very expensive.
Following the idea of Caussignac et al. |34], we used a Gummel iterative algo-
rithm [35] which amounts to substitute in the procedure the Poisson equation
with

e Vnew € ‘/;)ld
- new —N ) =—|Np—N ) 1- )
V(erVView) + - (x,2) Ve o ( D (x,2) ( V}ef))

with V,.; = kgTp/e. This method can be viewed as an approximate Newton
method where the Jacobian of the system is replaced by a diagonal matrix, after
that information about the strong coupling of the unknowns are incorporated
into Poisson equation. This is done by considering an exponential dependence
of the electron density /N on the potential V. We refer to [5] where this method
is used in the simulation of a 2D ballistic Schrodinger—Poisson system.

e When solving the eigenvalue problems it is not necessary to compute all the
N, modes because of the exponential dependence of U on the energy levels
€r’s (see (47)). Here we used only the first 12 modes.

e The solution of one Schrodinger problem on a slice is independent of the others,
therefore, the most costly part of the algorithm is fully and easily parallelizable.
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Table 1: Table of the main physical values

‘ Parameter H Value H‘ Length H Value ‘
N+ 10%m =3 Lg 10nm
N- 10%'m =3 Le 30nm
U.. 3 eV Lp 10nm
er[Si] 11.7 los 3nm
er[S10,] 3.9 lg; 4,5 or Tnm

5 Numerical results

The silicon region in the Double-Gate MOSFET under consideration consists of
source and drain regions, with length Lg and Lp, respectively, which are highly
doped with density N*, and of a channel region, with length Lo which is intrinsic.
The total length is L = Lg + Lo + Lp. The thickness of the oxide layer is defined
by los (see Figure 2). The numerical values used in the implementation are reported
in Table 1. For such a device geometry short channel effects are acceptable (see
e.g. |12]). Denoting by m. the electron mass, then the transverse and longitudinal
effective masses in silicon are m; = 0.19m, and m; = 0.98m,. The effective mass
in the oxide is chosen as 0.5m.. The lattice is assumed to be at room temperature
(T, = 300K).

All the computations in this section are performed with a field dependent mobility
(see [8],]9], e.g.) given by

240
p(Es) = )
1+ \/1 + (2,UzO|Es‘/rUsat>2

where E, = LU, is the effective electric field, the low field mobility is yo = 0.12m?V ~'s™!
and the saturation velocity is vee; = 1.110%ms™!. The diffusion coefficient in (5) is
computed using a generalized Einstein relation D = u(E)kgTy.

We take N, = 50 points in the transport direction and N, = 50 in the confined
direction for all the tests. The first sets of pictures are obtained for Ve = 0 and
with g; = Tnm. Fig. 3 shows the electron density at the equilibrium state for the
one valley case when m} = m; (left) and for the three valley case (right). We notice
that, as expected, the configuration of the electron density and thus the confinement
are not the same. Figure 4 shows the electron density for a drain-source voltage
Vps = 0.2V (left) and Vpg = 0.5V (right). Because of this bias, the density does
not remain symmetric but the electron concentration is higher in the source region.

In Fig. 5 we present the variation of the first energy levels €(x) in the confined
direction z along the transport direction x for the two cases m; = mj; and m} = m;.
The results are shown for Vps = 0V (left) and for Vpg = 0.5V (right). We recall
that the eigenvalues of the Hamiltonian form an increasing sequence of real valued
numbers. We notice that the eigenvalues are closer to each other in the configuration
m; = mj than in the configuration m; = mj. This explains why the confinement is
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Figure 3: Electron density (in m™3) at the equilibrium state. On the left, we plot
the one valley case, while we plot the three valley case on the right.

X (nm)

Figure 4: Electron density (in m ™) for an applied Drain-Source potential Vpg =
0.2V on the left and Vpg = 0.5V on the right.

so different in the two cases. Indeed, if we compute the occupation factor of each
state (see Figure 6), we notice that four modes are not negligible when m?¥ = m;
and only one when m} = mj, because of the exponential dependence on €;. That
is the reason why we only consider a finite number of modes in our computation.
The choice of 12 computed modes made here is done in order to avoid any loss in
accuracy, but in view of these considerations, we could choose less modes for a faster
computation. Moreover, in Figure 5 on the right, we observe a shift in the energy
levels at the drain contact, which, as expected, is equal to the amplitude of the
associated drain voltage.

In Figure 7 we plot the potential energy observed in the device. The energy
potential barrier between the source and the channel is visible. The gate voltage
Viate modulates the height of this barrier and thus the number of free electrons in
the channel.
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Figure 5: Energy levels €, (z) along the x transport direction for the two effective
mass configurations in the z direction, at Vps = 0V (on the left) and Vpg = 0.5V
(on the right).
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Figure 6: Occupation of each subband in the case m! = m; (left) and m} = m;
(right). The confinement is much more important in the second case.

The I —V characteristics of the Double-Gate-MOSFET for different gate voltage
Viate are presented in Figure 8. The current is defined by the quantity J in (5).
Figure 8 (left) plots drain current versus drain voltage Vpg for different gate voltages
Viate, Figure 8 (right) shows drain current versus gate voltage Vi, for different drain
voltages, for {g; = bnm. Finally, Figure 9 shows the dependence of the current on
the silicon thickness fg;. These figures show I — V' characteristics similar to that
of the conventional MOSFETs with two typical regimes : a ohmic regime for small
values of Vpg and a quasi-saturation regime. We notice a good agreement with the
results presented in [12] where Monte Carlo simulation is used for the same device
geometry.

Conclusion A subband decomposition approach has been used to derive a cou-
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Figure 8: Drain current [ in the structure as a function of the drain-source voltage
Vps (left) and of the Gate bias Vigage (right) for Vps = 0.1 V (blue), 0.3 V (green)
and 0.5 V (red) for £g; = bnm.

pled quantum-classical system for an electron gas confined in a nanostructure. A
single transport equation is obtained with a limiting process in the scaled mean
free path from the Boltzmann equations, one for each subband, under a diffusive
transport assumption. The model is used to simulate a DG-MOSFET with chan-
nel length of 30nm. The results show that the model provides a good description
of the transport in a Double-Gate MOSFET, making it attractive for rapid design
computation.
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