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b Institut de Mathématiques de Toulouse, (UMR 5219), Université Paul Sabatier,118, route de Narbonne, 31062 Toulouse edex 4, FraneE-mail addresses: paola.pietra�imati.nr.it ; vauhel�mip.ups-tlse.fr.AbstratIn this work we present the mathematial modeling and the simulationof the di�usive transport of an eletron gas on�ned in a nanostruture. Aoupled quantum-lassial system is onsidered, where the oupling ours inthe momentum variable : the eletrons are like point partiles in the diretionparallel to the gas, while they behave like waves in the transverse diretion. Adrift-di�usion desription in the transport diretion is obtained thanks to anasymptoti limit of the Boltzmann transport equation for on�ned eletrons.The system is used to model the transport of harged arriers in a nanosaleDouble-Gate MOSFET. Simulations of transport in suh a devie are presented.Keywords : Shrödinger equation, Drift-Di�usion system, Subband model, Nan-otransistor, Gummel iterations.1 IntrodutionThe signi�ant trend of miniaturization in Miroeletronis brougth, in the reentyears, the saling proess down to the nanometer sale, with improvements in speedand funtionality of eletroni omponents. In this task, modeling and numerialsimulation play an important role to predit the behaviour of devies whose ele-tron transport properties are largely based on quantum e�ets [1, 2, 3℄. In theseultimate size devies like nanosale Double-Gate MOSFETs [4℄, eletrons might beextremely on�ned in one or several diretions, whih are referred to as the on�neddiretions. This leads to a partial quantization of energies. This artile proposes todesribe nanosale semiondutor devies using a subband deomposition approahwhih onsists of a diagonalization of the Hamiltonian on slies perpendiular to thetransport diretion. A self-onsistent proess between the alulation of the ele-tron density and the spae harge e�ets using the Poisson equation is de�ned. Thesubband model desribes the system as a statistial mixture of eigenstates of theShrödinger operator in the on�ned diretion. The elementary states are obtainedthanks to the resolution of a lassial transport equation. Thanks to the separation1Corresponding author. 1



of the on�ned and the transport diretions, the omputational gain is signi�ant bythe redution of the dimension of the transport problem [5, 6℄.Here, we onsider a di�usive transport desribed by means of a drift�di�usionmodel [7, 8, 9℄. Starting from a set of Boltzmann equations, one for eah subband,we derive the e�etive potential energy for the single drift�di�usion equation of themodel. Under the assumption of dominant eletron�phonon sattering, whih is theleading sattering mehanism in the di�usive regime, a limit in the saled mean freepath is performed. The main di�ulty here stands in the highly non linear ouplingwith the subband deomposition method. Though for devies with short hannellength far-from-equilibrium e�ets beome relevant (see [10, 11℄, e.g.) and higherorder moment models seem to be more appropriate, however the low omputationalost and the good onvergene properties of the iteration proedure make attrativethe use of a drift�di�usion model for rapid design alulation. The simulation resultspresented in Setion 5 show a good agreement with similar results reported in theliterature and obtained with Monte�Carlo simulation [12℄.In ultra short hannel devies quantum e�ets (suh as tunneling from soure todrain) take plae in the transport diretion and lassial transport annot be used.We refer to [13, 5℄, where a purely ballisti quantum transport of Shrödinger typeand its numerial treatment relying on the subband approah are presented.In the reent literature, wide interest has been shown in modi�ations of the drift�di�usion model (of low omputational ost) in order to take into aount quantume�ets, see e.g. [14, 15, 16℄. A full quantum drift-di�usion model (quantum inboth diretions) was derived in [17℄ and its numerial simulation was addressed in[18℄. A quite similar model was introdued in [19℄ and used in [20℄ to simulatenanosale MOSFETs. A quantum drift-di�usion model is presented and simulatedas a nonlinear paraboli system in [21℄, in order to desribe the swithing behaviorof a resonant tunneling diode.The paper is organized as follows. In Setion 2 we present an overview of themodel under onsideration. Setion 3 deals with the formal di�usive limit of theBoltzmann semiondutor equation towards the drift-di�usion equation. Moreover,modi�ations in the model when anisotropy of silion is taken into aount are in-trodued. In Setion 4 we desribe the numerial sheme and the iterative proedureused in the simulation. Finally, results of the simulation of a nanosale Double-GateMOSFET are presented in the last setion.2 Presentation of the modelIn this setion we present the model used and implemented in this work. We assumeto have one on�ned diretion, that we denote by z, belonging to the interval [0, ℓ].The transport diretion(s) are denoted by x.
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2.1 The subband deomposition methodIn the subband deomposition approah the system is viewed as a statistial mixtureof eigenstates of the Shrödinger operator in the on�ned diretion. The oupationnumber of eah state is given by a statisti funtion: for Boltzmann statistis it is
exp(ǫF−ǫ

kBTL
), for Fermi-Dira statistis this is 1/(1+exp(ǫ−ǫF

kBTL
)). In these expressions

ǫ is the energy of the onsidered state, kB is the Boltzmann onstant, TL is thelattie temperature and ǫF is the so-alled Fermi energy whih, at zero temperature,represents the threshold between oupied and unoupied states [22, 23, 24℄.In the on�ned diretion, the system is assumed to be at equilibrium with a loalFermi level ǫF whih depends on the transport variable x. At a position (x, z), thepartile density N(x, z) for Boltzmann statistis is given by
N(x, z) =

+∞∑

k=1

eβ(ǫF (x)−ǫk(x))|χk(x, z)|2, (1)where β = 1/(kBTL) and (χk,ǫk)k≥1 is the omplete set of eigenfuntions and eigen-values of the Shrödinger operator in the z variable
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+ Uχk = ǫkχk,

χk(x, ·) ∈ H1
0 (0, ℓ),

∫ ℓ

0

χk χk′ dz = δkk′ .

(2)In this equation ~ is the redued Plank onstant, m∗ the e�etive mass. Moreover,
U is the potential energy de�ned by U = −eV , where e the elementary harge and
V denotes the self-onsistent eletrostati potential, solution of the Poisson equation

div x,z(εR(x, z)∇x,zV ) =
e

ε0
(N − ND). (3)Here εR(x, z) denotes the relative permittivity, ε0 the permittivity onstant in va-uum and ND(x, z) is the presribed doping density.2.2 The di�usive regimeIn the transport diretion(s), we onsider a purely lassial transport in the di�usiveregime, whih is desribed by the stationary drift-di�usion equation :

−divx J(x) = 0, (4)
J(x) = D(∇xNs(x) + βNs(x)∇xUs(x)), (5)where Ns is the surfae density, D denotes the di�usion oe�ient D = µkBTL for aonstant mobility µ and the e�etive energy Us is given by

Us = −kBTL log

(
+∞∑

k=1

e−βǫk

)
. (6)3



If we de�ne the repartition funtion Z as
Z(x) =

+∞∑

k=1

e−βǫk(x), (7)then, we obtain easily from (1) and (2) that the surfae density satis�es
Ns(x) =

∫ ℓ

0

N(x, z) dz = eβǫFZ(x).Therefore, ǫF (x) in (1) an be written in terms of Ns and Ns an be hosen asunknown in the model. We have then
N(x, z) =

Ns(x)

Z(x)

+∞∑

k=1

e−βǫk(x)|χk(x, z)|2. (8)If we introdue the Slotboom variable u de�ned by
u(x) = eβǫF =

Ns(x)

Z(x)
, (9)then, we get easily that the drift-di�usion equation (4)�(5) reads

−div x(DZ(x)∇xu(x)) = 0. (10)The drift-di�usion equation an be derived from kineti theory when the meanfree path is small ompared to the system length-sale [25, 26℄. Suh a derivationfrom the semiondutor Boltzmann equation is formally derived in Setion 3.The unknowns of the overall system are the surfae density Ns(x), the eigenen-ergies ǫk(x), the eigenfuntions χk(x, z) and the eletrostati potential V (x, z). Ifwe assume that the eletrostati potential V is given, then a diagonalization of theone dimensional Shrödinger operator (2) provides the eigenvalues and eigenvetors
(ǫk, χk). The e�etive energy Us an be omputed from (6). This allows us to ob-tain the surfae density Ns by solving the drift-di�usion problem (4)�(5). Then, thedensity N is evaluated using (8) and a new potential is omputed by solving Poissonequation (3).This �x point map is used in [27℄ to establish existene of solutions. More detailsabout its use as numerial algorithm are given in Setion 4.3 Formal limit of the Boltzmann equation to thedrift-di�usion equationIn order to understand the expression of the e�etive energy Us given in (6) and therole of the e�etive mass when the anisotropy of silion is taken into aount, wepresent in this setion the formal derivation of the stationary drift-di�usion equation4



from the semiondutor Boltzmann equation for the subband model. The di�usivelimit of the Boltzmann equation towards the drift-di�usion equation is well known(see [25, 26℄ for a rigorous proof of this limit). In the subband deomposition ap-proah, beause of the non linear oupling with the Shrödinger-Poisson system,we need to renormalize the Boltzmann equation. We refer to [28℄ for the rigorousderivation.Let η > 0 be the saled mean free path assumed to be small. We onsider thesaled Boltzmann equation for the subband model de�ned on the phase spae R
2×R

2.We denote by x the position, x ∈ R
2, and by p the momentum, p ∈ R

2. The timevariable t is nonnegative. We onsider a di�usion saling with parameter η

t′ = η2t and x′ = ηx.Then, (writing again t for t′ and x for x′) the eletron distribution funtion in eahsubband f η
k satis�es (see [26℄ and referenes therein)

∂tf
η
k +

1

η
(

p

m∗
· ∇xf

η
k −∇xǫk · ∇pf

η
k ) =

1

η2
QB(f η)k, (11)whih an be rewritten as

∂tf
η
k +

1

η
{Hk, f

η
k } =

1

η2
QB(f η)k,where {·, ·} denotes the Poisson braket : {g, h} = ∇xh · ∇pg −∇ph · ∇xg. Moreover

Hk is the energy of the system in the kth subband
Hk(t, x, p) =

1

2

|p|2

m∗
+ ǫk(t, x).The ollision operator QB, desribing the sattering between eletrons and phonons,is assumed in the linear BGK approximation for Boltzmann statistis.It reads in the following form :

QB(f)k =
+∞∑

k′=1

∫

R2

αk,k′(p, p′)(Mk(p)fk′(p′) −Mk′(p′)fk(p)) dp′, (12)where the funtion Mk is the Maxwellian
Mk(t, x, p) =

1

2πm∗kBTLZ(t, x)
e−βHk(t,x,p), (13)normalized suh that

+∞∑

k=1

∫

R2

Mkdp = 1,and where the repartition funtion Z is given by (7).Here and in the following, we shall use the notation gk for a funtion dependingon the k-th subband, and the notation g = (gk)k≥1 when the entire set of subbandsis taken into aount. 5



Assumption 3.1 The ross-setion α is symmetri and bounded from above andfrom below :
∃α1, α2 > 0, 0 < α1 ≤ αk,k′(p, p′) ≤ α2, ∀ k, k′ ≥ 1, ∀ p ∈ R

2, ∀ p′ ∈ R
2. (14)The initial ondition is assumed to be given by :

f η(0, x, p) = f in(x, p). (15)For the sake of simpliity, we onsider the transport on the whole spae R
2 withno harge arriers at in�nity : lim|x|→+∞ f(t, x, p) = 0.Assumption 3.2 We assume that the given initial ondition satis�es f in ∈ ℓ1(L∞(R2×

R
2)), f in ≥ 0.Assumption 3.3 We assume that the potential energy ǫk is given for all k ≥ 1 in

L∞((0, T ), H1(R2)) and that ∂tǫk ∈ L∞((0, T ) × R
2), that is

∃µ > 0 suh that ∀ (t, x) ∈ (0, T ) × R
2, |∂tǫk| ≤ µ. (16)Moreover, we suppose that (ǫk)k≥1 is a nondereasing sequene of positive funtionssatisfying

∃C > 0, ∀ (t, x) ∈ (0, T ) × R
2, ∀ k ≥ 1, |ǫk(t, x) −

1

2
π2k2| ≤ C0,suh that we an give a sense to Z in (7).Remark 3.4 Assumptions 3.3 are not really strong. Indeed, if ǫk is given by thesubband model, i.e. it is the k-th eigenvalue of the stationary Shrödinger operator foran eletrostati potential energy U , then all these estimates hold true with onstants

µ and C0 depending on U (see [29℄ and appendix of [27℄). It remains to obtain someregularity on the potential energy U .3.1 Properties of the ollision operatorIn this setion, the time variable t and the position x are only parameters, and,for the sake of simpliity, we omit the dependene on t and x and only onsiderthe dependene on p. Here we establish some well-known properties of the ollisionoperator QB de�ned by (12). To this aim, we de�ne the weighted-spae
L2
M = {f = (fk)k≥1 suh that +∞∑

k=1

∫

R2

f 2
k

Mk

dp < ∞}, (17)whih is an Hilbert spae with the salar produt
〈f, g〉M =

+∞∑

k=1

∫

R2

fkgk

Mk

dp.6



Proposition 3.5 We assume that the ross-setion α satis�es (14). Then the fol-lowing properties hold for QB :
(i)

∑
k

∫
QB(f)k dp = 0.

(ii) QB is a linear, selfadjoint and negative bounded operator on L2
M.

(iii) Ker QB = {f ∈ L2
M, suh that ∃Ns ∈ R, fk = NsMk}.

(iv) If P is the orthogonal projetion on Ker QB with the salar produt 〈·, ·〉M, then
−〈QB(f), f〉M ≥ α1‖f − P(f)‖2

M. (18)Proof. (i) follows immediately from the symmetry of the ross-setion.For the sake of simpliity we will use the standard notation f ′ = f(p′). For proving
(ii), we start with writing :

〈QB(f), g〉M =
∑

k,k′

∫

(R2)2
αk,k′MkM

′
k′

(
f ′

k′

M′
k′

−
fk

Mk

)
gk

Mk

dpdp′.With our assumption (14) and the fat that (
∑

k

∫
|fk| dp)2 ≤ ‖f‖2

M we get
|〈QB(f), g〉M| ≤ C‖f‖M‖g‖M ,for all f, g in L2

M. Thus, QB is bounded. Moreover, we obtain easily
〈QB(f), g〉M = −

1

2

∑

k,k′

∫

(R2)2
αk,k′MkM

′
k′(

f ′
k′

M′
k′

−
fk

Mk

)(
g′

k′

M′
k′

−
gk

Mk

) dpdp′. (19)This provides the selfadjointness and negativity of QB.The inlusion ⊇ in (iii) is obvious. If f ∈ Ker QB, then 〈QB(f), f〉M = 0 andequality (19) implies that fk oinide with the Maxwellian up to a multipliativeonstant.Thus, (iii) holds true.We are left with proving (iv). The de�nition of L2
M and (iii) allow us to hara-terize (Ker QB)⊥ as

(Ker QB)⊥ = {f ∈ L2
M suh that +∞∑

k=1

∫

R2

fk dp = 0}. (20)We have,
〈QB(f), f〉M = 〈QB(f) − QB(P(f)), f〉M = 〈f −P(f), QB(f)〉M

= 〈g, QB(g)〉M ,where we take g = f − P(f). Therefore, by using (19) we obtain
−〈QB(f), f〉M =

1

2

∑

k,k′

∫

(R2)2
αk,k′MkM

′
k′

(
g′

k′

M′
k′

−
gk

Mk

)2

dpdp′. (21)7



From (14) and sine g ∈ (Ker QB)⊥, (21) gives
−〈QB(f), f〉M ≥ α1

+∞∑

k=1

(∫

R2

g2
k

Mk

dp

)
α1‖f − P(f)‖2

M.

�Proposition 3.6 Im QB is a losed subset of L2
M.Proof. Let (hn)n∈N ∈ Im QB be a sequene onverging towards h in L2

M. Sine
hn = QB(fn) = QB(gn), where gn = fn − P (fn), Proposition 3.5 (ii) and (iv) imply

α1‖gn − gm‖
2
M ≤ ‖hn − hm‖M‖gn − gm‖M.This gives that (gn) is a Cauhy sequene in L2

M. Thus, there exists g ∈ L2
M suhthat gn −→ g. By ontinuity of QB and uniqueness of the limit, h = QB(g). �Corollary 3.7 Sine QB is selfadjoint, we have (Ker QB)⊥ = Im QB.Thus QB(f) = h admits a solution in L2

M i� h ∈ (Ker QB)⊥. Moreover this solutionis unique if we impose f ∈ (Ker QB)⊥.Proposition 3.8 There exists Θ ∈ (L2
M)2 suh that for all k ≥ 1,

QB(Θ)k = −
p

m∗
Mk and +∞∑

k=1

∫

R2

Θk dp = 0. (22)We de�ne the di�usion matrix by
D =

∫

R2

+∞∑

k=1

Θk ⊗
p

m∗
dp. (23)Then, D is a symmetri oerive matrix.Proof. (22) is an easy onsequene of Corollary 3.7 and of (20). It remains to provethe symmetry and the oerivity of D.

Di,j =
1

m∗

∫

R2

pi

(
+∞∑

k=1

Θk

)

j

dp = −
+∞∑

k=1

∫

R2

(Θk)jQB(Θi)k

Mk

dp = −〈Θj , QB(Θi)〉M.The selfadjointness of QB implies the symmetry of D. For X ∈ R
2, we set fX =

X1Θ1 + X2Θ2,
〈DX, X〉M =

∑

1≤i,j≤2

Di,jXiXj = −〈QB(fX), fX〉M.8



Sine Θ ∈ (Ker QB)⊥, we have fX ∈ (Ker Q)⊥. Using (18), we get :
〈DX, X〉M ≥ α1‖fX‖

2
M.We onlude by showing that X 7→ ‖fX‖M is a norm on R

2. Atually, the linearityof QB gives
2∑

i=1

XiΘi = 0 ⇒

2∑

i=1

XiQB(Θi)k = 0, ∀ k ≥ 1.This implies that ∑i XipiMk = 0, ∀ k ≥ 1. Thus X = 0. �Remark 3.9 Partiular ase when α is a onstantLet us assume that for all k, k′, p, p′, α(k, p, k′, p′) = 1/τ , where τ is a relaxation timeindependent of p, whih might depend on some parameters like time t and position
x. Then, D is equal to :

D =

+∞∑

k=1

∫

R2

τMk

p

m∗
⊗

p

m∗
dp = τId. (24)3.2 Asymptoti expansion for the di�usive limitWe will show in this setion the formal di�usive limit of the Boltzmann equation(11) as η → 0, using a Hilbert expansion. First, we reall an existene result for ourproblem whih is a diret orollary of well-known existene results on the Boltzmannequation (see for instane [30℄, [31℄).Theorem 3.10 For �xed η > 0, under Assumptions 3.1, 3.2 and 3.3, the Boltzmannboundary value problem (11)�(15) admits a unique weak solution f η ∈ L∞

loc(R
+, ℓ1(L1(R2×

R
2))) with f η ≥ 0.Proposition 3.11 Under Assumptions 3.1, 3.2 and 3.3, if the solution f η in The-orem 3.10 admits a Hilbert expansion with respet to η, f η = f 0 + ηf 1 + . . ., then

f 0 = NsM and Ns is the solution of the drift-di�usion equation
∂tNs − div x(D(∇xNs + βNs∇xUs)) = 0, (25)where D is given in (23) and Us is de�ned by

Us = −kBTL logZ. (26)Proof. Formally, inserting the expansion into (11) and negleting higher orderterms, we have :
QB(f 0)k + ηQB(f 1)k + O(η2) = η(

p

m∗
· ∇xf

0
k −∇xǫk · ∇pf

0
k ) + O(η2).9



By identi�ation with respet to powers of η, we get f 0 ∈ Ker QB. Thus, Proposition3.5 (iii) gives:
f 0

k = NsMk , ∀k ≥ 1. (27)Moreover, f 1 is solution of the integral equation
QB(f 1)k = Hk, (28)where we de�ne

Hk =
p

m∗
· ∇xf

0
k −∇xǫk · ∇pf

0
k .By Corollary 3.7, f 1 exists i�

H ∈ (KerQB)⊥. (29)Di�erentiating Mk with respet to x and p, we obtain
∇xMk = −βMk∇xǫk + βMk∇xUs,with Us de�ned in (26), and

∇pMk = −
βp

m∗
Mk.Therefore, from (27) it follows

Hk = Mk

p

m∗
· (∇xNs + βNs∇xUs).Sine pMk is an odd funtion, we have ∫ pMk dp = 0, so that (29) holds. We hoose

Θ ∈ (L2
M)2 as in (22). Thus,

f 1 = −Θ · (∇xNs + βNs∇xUs). (30)We integrate (11) with respet to p and sum over k. By observing that ∫ ∇pf
η
k dp = 0,and by using Proposition 3.5 (i), we obtain

∂t

∫

R2

∑

k

f η
k dp +

1

η

∫

R2

∑

k

p

m∗
· ∇xf

η
k dp = 0.Moreover, the seond term an be written as follows

1

η

∫
p

m∗
· ∇xf

η
k dp =

1

η

∫
p

m∗
· ∇x(NsMk) dp +

∫
p

m∗
· ∇xf

1
k dp + O(η)

= −div x

∫
(Θk ⊗

p

m∗
)(∇xNs + βNs∇xUs) dp + O(η),thanks to (30). By assuming that we an pass to the limit, we �nd the drift-di�usionequation :

∂tNs − div x(D · (∇xNs + βNs∇xUs)) = 0,where the operator D is de�ned in (23). �10



3.3 The 3 valley aseOur physial devies of interest are nanosale Double-Gate-MOSFETs of silionstruture. Due to e�etive mass anisotropy in silion valleys, we introdue the trans-verse e�etive mass m∗
t and the longitudinal one m∗

ℓ . Then three di�erent eletronon�gurations appear in the band struture, ounted twie, due to the symmetryof eah valley (see Figure 1): (m∗
t , m

∗
t , m

∗
ℓ), (m∗

t , m
∗
ℓ , m

∗
t ) and (m∗

ℓ , m
∗
t , m

∗
t ). In thefollowing, we will onsider the generi on�guration (m∗

x, m
∗
y, m

∗
z), where m∗

x (m∗
y and

m∗
z , respetively) orresponds to the e�etive mass in the x diretion ( y and z di-retion, respetively). Notie a slight hange of notation from the previous setions,where the transport diretions are simply denoted by x.

x

z

y

Figure 1: Surfae of onstant energy in the �rst ondution band of silion (sixellipsoids and three di�erent on�gurations for the eletrons due to the symmetryproperties).In this setion, we explain brie�y the modi�ation of the system when we takeinto aount the three di�erent on�gurations.The distribution funtion of the kth subband and the ith valley, denoted by f i
k(i = 1, 2, 3), satis�es the following Boltzmann equation :

η∂tf
i,η
k +

px

m∗
x

∂xf
i,η
k +

py

m∗
y

∂yf
i,η
k − ∂xǫi

k∂px
f i,η

k − ∂yǫi
k∂py

f i,η
k =

1

η
QB(f η)i

k, (31)with
QB(f)i

k =
∑

k′,i′

∫

R2

αi,i′

k,k′(p, p
′)(f i′

k′(p′)Mi
k(p) − f i

k(p)Mi′

k′(p′)) dp′.11



This ollision operator takes into aount intravalley and inter-valley ollisions. Ofourse, all the properties stated in Proposition 3.5 still hold. The normalizedMaxwellianis now de�ned by
Mi

k(p) =
exp

(
−β( p2

x

2m∗

x
+

p2
y

2m∗

y
+ ǫi

k)
)

Z̃
, (32)where the normalization oe�ient is de�ned by

Z̃ =
∑

k,i

∫

R2

e
−β(

p2
x

2m∗
x

+
p2
y

2m∗
y

+ǫi
k
)
dp. (33)Proposition 3.12 Let f η ∈ L∞([0, T ], L2

M) be a solution of the three valley Boltz-mann equation (31) oupled with the subband problem (35)-(37). Then, formally, as
η → 0 the solution f η onverges towards NsMk, where Ns is the solution of thedrift-di�usion equation (34) oupled with the Shödinger-Poisson system (35)-(37) :

∂tNs + div (D(∇Ns + βNs∇Us)) = 0, (34)
−

1

2

d

dz

(
1

m∗
t

d

dz
χt

k

)
+ Uχt

k = ǫt
kχ

t
k, χt

k ∈ H1(0, 1),

∫ ℓ

0

χt
kχ

t
k′ dz = δkk′, (35)

−
1

2

d

dz

(
1

m∗
ℓ

d

dz
χℓ

k

)
+ Uχℓ

k = ǫℓ
kχ

ℓ
k, χℓ

k ∈ H1(0, 1),

∫ ℓ

0

χℓ
kχ

ℓ
k′ dz = δkk′, (36)

div x,z(εR(x, z)∇x,zV ) =
e

ε0

(N − ND), (37)where
U = −eV ; N =

Ns

Z

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
, (38)

Us = −kBTL logZ ; Z = 2
+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k . (39)

D is a symmetri oerive matrix whih will be determined in the proof (see (40)),
β = 1/kBTL. Moreover, ǫR, ǫ0, e, ND in (37) are de�ned as in Setion 2.Proof. As before, we assume that f η admits a Hilbert expansion of the form :
f η = f 0 + ηf 1 + ... Then, by identi�ation with respet to powers of η, we obtain

QB(f 0)i
k = 0,that implies f 0,i

k = NsM
i
k, and

QB(f 1)i
k =

px

m∗
x

∂x(NsM
i
k) +

py

m∗
y

∂y(NsM
i
k) − ∂xǫi

k∂px
f 0,i

k − ∂yǫi
k∂py

f 0,i
k .12



We an prove in the same manner as in Proposition 3.8 that there exists a funtion
Θi ∈ L2

Mi suh that QB(Θx)
i
k = − px

m∗

x
Mi

k and QB(Θy)
i
k = − py

m∗

y
Mi

k. Therefore,
f 1,i = −(∇x,yNs + βNs∇x,y(−kBTL log Z̃))Θi

k.We de�ne the di�usion matrix (whih is symmetri and oerive) as
D =

∑

k,i

∫

R2

Θi
k ⊗

p

m
dp, (40)where p

m
= ( px

m∗
x
, py

m∗
y
). Integrating equation (31) and passing formally to the limit

η → 0, we get :
∂tNs + div x,y(D(∇x,yNs + βNs∇x,y(−kBTL log Z̃))) = 0. (41)Moreover,

Z̃ =
2π

β

∑

k,i

√
m∗

xm
∗
y e−βǫi

k .Sine the possible on�gurations for silion are the three following on�gurations(ounted twie for symmetry reasons) (m∗
t , m

∗
t , m

∗
ℓ), (m∗

t , m
∗
ℓ , m

∗
t ) and (m∗

ℓ , m
∗
t , m

∗
t ),we have

Z̃ =
2π

β
(2m∗

t

∑

k

e−βǫ1

k + 2
√

m∗
t m

∗
ℓ

∑

k

e−βǫ2

k + 2
√

m∗
t m

∗
ℓ

∑

k

e−βǫ3

k).The eigenenergies ǫi
k of the kth subband and the ith valley are the eigenvalues of theHamiltonian in the z-diretion. Thus, these quantities only depends on the e�etivemass on the z-diretion :

−
1

2

d

dz

(
1

m∗
z

d

dz
χi

k

)
+ Uχi

k = ǫi
kχ

i
k.The density of harge arriers for the whole system, whih enters Poisson equation(37), is given by

N =
∑

k,i

∫

R2

NsM
i
k(p)|χi

k|
2 dp.We have two on�gurations in whih m∗

z = m∗
t , thus the eigensystem is (ǫt

k, χ
t
k)k≥1for four ellipsoids. And there is one on�guration where m∗

z = m∗
ℓ , the eigensystemis then (ǫℓ

k, χ
ℓ
k)k≥1 for two ellipsoids. Thus we have,

Z̃ =
2π

β
m∗

t

(
2

+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k

)
.For simpliity of notation, we prefer to use Z as de�ned in (39) to obtain

N =
Ns

Z

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
.13



Notie that ∇x,y(logZ) = ∇x,y(log Z̃), so that the drift-di�usion equation (41) oin-ides with (34).
�4 Numerial implementation4.1 The modeled devieIn this work we are interested in a nanosale Double-Gate MOSFET (Metal OxideSemiondutor Field E�et Transistor). The devie onsists of a silion �lm, har-aterized by two highly doped regions near the Ohmi ontats (denoted by soureand drain) and an ative region, alled hannel, with lower doping. The silion �lmis sandwihed between two thin layers of silion dioxide SiO2, eah of them with agate ontat.
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Si Si
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z=l

N−

z=0

SiO2

2SiO

DSV

GS

ox

lSi

l

oxl

L C L DL S

Si
N+ N+

Figure 2: Shemati representation of the modeled devie.We assume invariane in the y diretion (in�nite boundary onditions), so thatthe problem is studied in a (x, z)-domain. The devie oupies a region of a 2Ddomain denoted by Ω=[0, L] × [0, ℓ]. A shemati representation of the devie isshown in Figure 2.For the sake of ompleteness, we reall the stationary drift�di�usion Shrödinger�Poisson system whih is used for the simulation, taking into aount the preseneof the oxide and the anisotropy of silion. As before, we will use the notation β =
1/kBTL.Find Ns(x), (ǫt

k(x), χt
k(x, z)), (ǫℓ

k(x), χℓ
k(x, z)), for k ≥ 1, and V (x, z) suh that

d

dx

(
D

(
d

dx
Ns + βNs

d

dx
Us

))
= 0 in (0, L), (42)
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dz
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1

m∗
t (z)

d

dz
χt

k

)
+ (U + Uc)χ

t
k = ǫt

kχ
t
k.

χt
k(x, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χt
k χt

k′ dz = δkk′ ,
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−
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2

2

d
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(
1

m∗
ℓ(z)

d

dz
χℓ

k

)
+ (U + Uc)χ

ℓ
k = ǫl

kχ
ℓ
k.

χℓ
k(x, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χℓ
k χℓ

k′ dz = δkk′ ,

(44)
div x,z(εR(x, z)∇x,zV ) =

e

ε0
(N − ND) in Ω, (45)where

U = −eV ; N =
Ns

Z

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
, (46)

Us = −kBTL logZ ; Z = 2

+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k . (47)In (43)-(44) Uc is a given potential barrier between the silion and the oxide. More-over, the di�usion oe�ient D in (42), and ǫR, ǫ0, e, ND in (45) are de�ned asin Setion 2. Finally, m∗

t and m∗
ℓ denote e�etive masses: in silion they are dif-ferent in the transverse (m∗

t ) and in the longitudinal diretion (m∗
ℓ), while in theoxide they take the same value. The system is then supplemented by boundaryonditions. At the ohmi soure, drain, and gate ontats (denoted by ΓS, ΓD, and

ΓG, respetively) Dirihlet boundary onditions are imposed. The remaining part ofthe boundary (denoted by ΓN) is onsidered insulated, and homogeneous Neumannboundary onditions are imposed. More preisely, due to the high doping, the drainand the soure ontats an be onsidered as small eletron reservoirs in whih weassume that the potential does not depend on the transport diretion. Therefore,the surfae density Ns at the viinity of the drain and soure ontats is assumed tobe onstant and is then equal to N+ × ℓSi.Moreover, the eletrostati potential V equals the sum of the applied voltage andthe potential at thermal equilibrium, that we denote by Vb(xc, z), with xc = 0 or
xc = L. In order to �nd Vb(xc, z) the following 1D Shrödinger-Poisson system mustbe solved on the vertial edge x = xc
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d
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)
+ (Ub + Uc)χ

t
k = ǫt

kχ
t
k.

χt
k(xc, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χt
k χt

k′ dz = δkk′ ,
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−
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2
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(
1

m∗
ℓ(z)

d

dz
χℓ
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)
+ (Ub + Uc)χ

ℓ
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kχ
ℓ
k.
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k(xc, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χℓ
k χℓ

k′ dz = δkk′ ,

(49)
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d

dz

(
εR(xc, z)

d

dz
Vb

)
=

e

ε0

(N − ND), Vb = 0 at z = 0 and z = ℓ, (50)where
Ub = −eVb, N(xc, z) =

Ns(xc)

Z(xc)

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
,

Z(xc) = 2

+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k .Summarizing, the boundary onditions for system (42)� (45) are

Ns = N+ × ℓSi
at x = 0 and x = L, (51)

V (z) = Vb(0, z) on ΓS, V (z) = Vb(L, z) + VDS on ΓD, (52)
V (x) = VGate on ΓG, (53)

∂V

∂n
= 0 on ΓN . (54)4.2 Iterative proedureWe introdue a partition of [0, L] with nodes xi, i = 1, · · · , Nx, and a partition of

[0, ℓ] with nodes zj , j = 1, · · · , Nz. Then, we mesh the domain [0, L] × [0, ℓ] withretangular triangles using the nodes (xi, zj) previously de�ned. The Shrödingerequations and the Poisson equation are disretized with onforming P 1 �nite ele-ments, while for the 1D drift-di�usion equation the Sharfetter�Gummel sheme isused (see [32℄,[33℄). From now on, when referring to equations and formulas (42)�(54)we intend their disretized ounterpart.The �rst step for initializing the proedure is the omputation of Vb on the soureand drain ontats. To this aim a Gummel iteration method, desribed at the endof this setion, is used to solve the 1D Shrödinger-Poisson system.Seondly, we onsider the whole system for zero applied soure-drain voltage.Equation (42) does not need to be solve in this ase. Atually, the Slotboom variable
u = Ns/Z, solution of the 1D equation (10), is onstant. It is then su�ient toevaluate it on the boundary (for x = 0 for instane), where Ns is presribed. Itremains to alulate a 2D Shrödinger-Poisson system, with boundary onditions(52) �(54) and VDS = 0.Finally, we onsider the resolution of the drift-di�usion-Shrödinger-Poisson sys-tem when a drain-soure voltage VDS is applied. We start from the previously ob-tained potential and inrement the voltage by steps of 0.02V .The iterative proedure for the solution of one drift�di�usion�Shrödinger�Poissonsystem onsists of an iteration on the eletrostati potential and it is summarized inthe following steps. 16



1. For a given potential Vold in the whole domain Ω we solve the eigenvalueproblems (43)�(44) on eah slie of the devie (x = xi, i = 1, · · · , Nx) bydiagonalization of the Hamiltonian. Thus, we obtain Nx sets of eigenfun-tions {χt
k(xi, z)}i=1,···,Nx

and eigenvalues {ǫt
k}, and Nx sets of eigenfuntions

{χℓ
k(xi, z)}i=1,···,Nx

and eigenvalues {ǫℓ
k}.2. Next, we ompute the e�etive energy Us from (47). We are then able tosolve the 1D stationary drift-di�usion equation (42) with Dirihlet boundaryonditions (51).3. We have then all the ingredients to ompute the density N thanks to theexpression (46).4. The Poisson equation is solved in the 2D domain using boundary onditions(52)�(54). The system is solved using the preonditioned onjugate gradientmethod. A new potential Vnew is then obtained.5. We repeat the four previous steps until the di�erene ‖Vnew − Vold‖L∞ is su�-iently small.We onlude the desription of the iteration proedure with few remarks on im-plementation aspets.

• The solution of the highly non�linear oupled Shrödinger�Poisson system isthe most deliate step in the proedure desribed above. A simple mindeddeoupling algorithm fails and a Newton-Raphson method is very expensive.Following the idea of Caussigna et al. [34℄, we used a Gummel iterative algo-rithm [35℄ whih amounts to substitute in the proedure the Poisson equationwith
−∇(εR∇Vnew) +

e

ε0

N(x, z)
Vnew

Vref

=
e

ε0

(
ND − N(x, z)

(
1 −

Vold

Vref

))
,with Vref = kBTL/e. This method an be viewed as an approximate Newtonmethod where the Jaobian of the system is replaed by a diagonal matrix, afterthat information about the strong oupling of the unknowns are inorporatedinto Poisson equation. This is done by onsidering an exponential dependeneof the eletron density N on the potential V . We refer to [5℄ where this methodis used in the simulation of a 2D ballisti Shrödinger�Poisson system.

• When solving the eigenvalue problems it is not neessary to ompute all the
Nz modes beause of the exponential dependene of Us on the energy levels
ǫk's (see (47)). Here we used only the �rst 12 modes.

• The solution of one Shrödinger problem on a slie is independent of the others,therefore, the most ostly part of the algorithm is fully and easily parallelizable.17



Table 1: Table of the main physial valuesParameter Value Length Value
N+ 1026m−3 LS 10nm
N− 1021m−3 LC 30nm
Uc 3 eV LD 10nm

εR[Si] 11.7 ℓox 3nm
εR[SiO2] 3.9 ℓSi 4, 5 or 7nm5 Numerial resultsThe silion region in the Double�Gate MOSFET under onsideration onsists ofsoure and drain regions, with length LS and LD, respetively, whih are highlydoped with density N+, and of a hannel region, with length LC whih is intrinsi.The total length is L = LS + LC + LD. The thikness of the oxide layer is de�nedby ℓox (see Figure 2). The numerial values used in the implementation are reportedin Table 1. For suh a devie geometry short hannel e�ets are aeptable (seee.g. [12℄). Denoting by me the eletron mass, then the transverse and longitudinale�etive masses in silion are m∗

t = 0.19me and m∗
ℓ = 0.98me. The e�etive massin the oxide is hosen as 0.5me. The lattie is assumed to be at room temperature(TL = 300K).All the omputations in this setion are performed with a �eld dependent mobility(see [8℄,[9℄, e.g.) given by

µ(Es) =
2µ0

1 +
√

1 + (2µ0|Es|/vsat)2
,where Es = d

dx
Us is the e�etive eletri �eld, the low �eld mobility is µ0 = 0.12m2V −1s−1and the saturation veloity is vsat = 1.1 105ms−1. The di�usion oe�ient in (5) isomputed using a generalized Einstein relation D = µ(E)kBTL.We take Nx = 50 points in the transport diretion and Nz = 50 in the on�neddiretion for all the tests. The �rst sets of pitures are obtained for VGate = 0 andwith ℓSi = 7nm. Fig. 3 shows the eletron density at the equilibrium state for theone valley ase when m∗

z = m∗
t (left) and for the three valley ase (right). We notiethat, as expeted, the on�guration of the eletron density and thus the on�nementare not the same. Figure 4 shows the eletron density for a drain-soure voltage

VDS = 0.2V (left) and VDS = 0.5V (right). Beause of this bias, the density doesnot remain symmetri but the eletron onentration is higher in the soure region.In Fig. 5 we present the variation of the �rst energy levels ǫk(x) in the on�neddiretion z along the transport diretion x for the two ases m∗
z = m∗

ℓ and m∗
z = m∗

t .The results are shown for VDS = 0V (left) and for VDS = 0.5V (right). We reallthat the eigenvalues of the Hamiltonian form an inreasing sequene of real valuednumbers. We notie that the eigenvalues are loser to eah other in the on�guration
m∗

z = m∗
ℓ than in the on�guration m∗

z = m∗
t . This explains why the on�nement is18



Figure 3: Eletron density (in m−3) at the equilibrium state. On the left, we plotthe one valley ase, while we plot the three valley ase on the right.

Figure 4: Eletron density (in m−3) for an applied Drain-Soure potential VDS =
0.2V on the left and VDS = 0.5V on the right.so di�erent in the two ases. Indeed, if we ompute the oupation fator of eahstate (see Figure 6), we notie that four modes are not negligible when m∗

z = m∗
ℓand only one when m∗

z = m∗
t , beause of the exponential dependene on ǫk. Thatis the reason why we only onsider a �nite number of modes in our omputation.The hoie of 12 omputed modes made here is done in order to avoid any loss inauray, but in view of these onsiderations, we ould hoose less modes for a fasteromputation. Moreover, in Figure 5 on the right, we observe a shift in the energylevels at the drain ontat, whih, as expeted, is equal to the amplitude of theassoiated drain voltage.In Figure 7 we plot the potential energy observed in the devie. The energypotential barrier between the soure and the hannel is visible. The gate voltage

VGate modulates the height of this barrier and thus the number of free eletrons inthe hannel. 19
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Figure 5: Energy levels ǫk(x) along the x transport diretion for the two e�etivemass on�gurations in the z diretion, at VDS = 0V (on the left) and VDS = 0.5V(on the right).
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t(right). The on�nement is muh more important in the seond ase.The I −V harateristis of the Double-Gate-MOSFET for di�erent gate voltage
VGate are presented in Figure 8. The urrent is de�ned by the quantity J in (5).Figure 8 (left) plots drain urrent versus drain voltage VDS for di�erent gate voltages
VGate, Figure 8 (right) shows drain urrent versus gate voltage VGate for di�erent drainvoltages, for ℓSi = 5nm. Finally, Figure 9 shows the dependene of the urrent onthe silion thikness ℓSi. These �gures show I − V harateristis similar to thatof the onventional MOSFETs with two typial regimes : a ohmi regime for smallvalues of VDS and a quasi-saturation regime. We notie a good agreement with theresults presented in [12℄ where Monte Carlo simulation is used for the same deviegeometry.Conlusion A subband deomposition approah has been used to derive a ou-20



Figure 7: Potential energy for VGate = 0V and VDS = 0.2V .
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VDS (left) and of the Gate bias VGate (right) for VDS = 0.1 V (blue), 0.3 V (green)and 0.5 V (red) for ℓSi = 5nm.pled quantum�lassial system for an eletron gas on�ned in a nanostruture. Asingle transport equation is obtained with a limiting proess in the saled meanfree path from the Boltzmann equations, one for eah subband, under a di�usivetransport assumption. The model is used to simulate a DG-MOSFET with han-nel length of 30nm. The results show that the model provides a good desriptionof the transport in a Double-Gate MOSFET, making it attrative for rapid designomputation.
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