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tIn this work we present the mathemati
al modeling and the simulationof the di�usive transport of an ele
tron gas 
on�ned in a nanostru
ture. A
oupled quantum-
lassi
al system is 
onsidered, where the 
oupling o

urs inthe momentum variable : the ele
trons are like point parti
les in the dire
tionparallel to the gas, while they behave like waves in the transverse dire
tion. Adrift-di�usion des
ription in the transport dire
tion is obtained thanks to anasymptoti
 limit of the Boltzmann transport equation for 
on�ned ele
trons.The system is used to model the transport of 
harged 
arriers in a nanos
aleDouble-Gate MOSFET. Simulations of transport in su
h a devi
e are presented.Keywords : S
hrödinger equation, Drift-Di�usion system, Subband model, Nan-otransistor, Gummel iterations.1 Introdu
tionThe signi�
ant trend of miniaturization in Mi
roele
troni
s brougth, in the re
entyears, the s
aling pro
ess down to the nanometer s
ale, with improvements in speedand fun
tionality of ele
troni
 
omponents. In this task, modeling and numeri
alsimulation play an important role to predi
t the behaviour of devi
es whose ele
-tron transport properties are largely based on quantum e�e
ts [1, 2, 3℄. In theseultimate size devi
es like nanos
ale Double-Gate MOSFETs [4℄, ele
trons might beextremely 
on�ned in one or several dire
tions, whi
h are referred to as the 
on�neddire
tions. This leads to a partial quantization of energies. This arti
le proposes todes
ribe nanos
ale semi
ondu
tor devi
es using a subband de
omposition approa
hwhi
h 
onsists of a diagonalization of the Hamiltonian on sli
es perpendi
ular to thetransport dire
tion. A self-
onsistent pro
ess between the 
al
ulation of the ele
-tron density and the spa
e 
harge e�e
ts using the Poisson equation is de�ned. Thesubband model des
ribes the system as a statisti
al mixture of eigenstates of theS
hrödinger operator in the 
on�ned dire
tion. The elementary states are obtainedthanks to the resolution of a 
lassi
al transport equation. Thanks to the separation1Corresponding author. 1



of the 
on�ned and the transport dire
tions, the 
omputational gain is signi�
ant bythe redu
tion of the dimension of the transport problem [5, 6℄.Here, we 
onsider a di�usive transport des
ribed by means of a drift�di�usionmodel [7, 8, 9℄. Starting from a set of Boltzmann equations, one for ea
h subband,we derive the e�e
tive potential energy for the single drift�di�usion equation of themodel. Under the assumption of dominant ele
tron�phonon s
attering, whi
h is theleading s
attering me
hanism in the di�usive regime, a limit in the s
aled mean freepath is performed. The main di�
ulty here stands in the highly non linear 
ouplingwith the subband de
omposition method. Though for devi
es with short 
hannellength far-from-equilibrium e�e
ts be
ome relevant (see [10, 11℄, e.g.) and higherorder moment models seem to be more appropriate, however the low 
omputational
ost and the good 
onvergen
e properties of the iteration pro
edure make attra
tivethe use of a drift�di�usion model for rapid design 
al
ulation. The simulation resultspresented in Se
tion 5 show a good agreement with similar results reported in theliterature and obtained with Monte�Carlo simulation [12℄.In ultra short 
hannel devi
es quantum e�e
ts (su
h as tunneling from sour
e todrain) take pla
e in the transport dire
tion and 
lassi
al transport 
annot be used.We refer to [13, 5℄, where a purely ballisti
 quantum transport of S
hrödinger typeand its numeri
al treatment relying on the subband approa
h are presented.In the re
ent literature, wide interest has been shown in modi�
ations of the drift�di�usion model (of low 
omputational 
ost) in order to take into a

ount quantume�e
ts, see e.g. [14, 15, 16℄. A full quantum drift-di�usion model (quantum inboth dire
tions) was derived in [17℄ and its numeri
al simulation was addressed in[18℄. A quite similar model was introdu
ed in [19℄ and used in [20℄ to simulatenanos
ale MOSFETs. A quantum drift-di�usion model is presented and simulatedas a nonlinear paraboli
 system in [21℄, in order to des
ribe the swit
hing behaviorof a resonant tunneling diode.The paper is organized as follows. In Se
tion 2 we present an overview of themodel under 
onsideration. Se
tion 3 deals with the formal di�usive limit of theBoltzmann semi
ondu
tor equation towards the drift-di�usion equation. Moreover,modi�
ations in the model when anisotropy of sili
on is taken into a

ount are in-trodu
ed. In Se
tion 4 we des
ribe the numeri
al s
heme and the iterative pro
edureused in the simulation. Finally, results of the simulation of a nanos
ale Double-GateMOSFET are presented in the last se
tion.2 Presentation of the modelIn this se
tion we present the model used and implemented in this work. We assumeto have one 
on�ned dire
tion, that we denote by z, belonging to the interval [0, ℓ].The transport dire
tion(s) are denoted by x.
2



2.1 The subband de
omposition methodIn the subband de
omposition approa
h the system is viewed as a statisti
al mixtureof eigenstates of the S
hrödinger operator in the 
on�ned dire
tion. The o

upationnumber of ea
h state is given by a statisti
 fun
tion: for Boltzmann statisti
s it is
exp(ǫF−ǫ

kBTL
), for Fermi-Dira
 statisti
s this is 1/(1+exp(ǫ−ǫF

kBTL
)). In these expressions

ǫ is the energy of the 
onsidered state, kB is the Boltzmann 
onstant, TL is thelatti
e temperature and ǫF is the so-
alled Fermi energy whi
h, at zero temperature,represents the threshold between o

upied and uno

upied states [22, 23, 24℄.In the 
on�ned dire
tion, the system is assumed to be at equilibrium with a lo
alFermi level ǫF whi
h depends on the transport variable x. At a position (x, z), theparti
le density N(x, z) for Boltzmann statisti
s is given by
N(x, z) =

+∞∑

k=1

eβ(ǫF (x)−ǫk(x))|χk(x, z)|2, (1)where β = 1/(kBTL) and (χk,ǫk)k≥1 is the 
omplete set of eigenfun
tions and eigen-values of the S
hrödinger operator in the z variable




−
~

2

2

d

dz

(
1

m∗(z)

d

dz
χk

)
+ Uχk = ǫkχk,

χk(x, ·) ∈ H1
0 (0, ℓ),

∫ ℓ

0

χk χk′ dz = δkk′ .

(2)In this equation ~ is the redu
ed Plan
k 
onstant, m∗ the e�e
tive mass. Moreover,
U is the potential energy de�ned by U = −eV , where e the elementary 
harge and
V denotes the self-
onsistent ele
trostati
 potential, solution of the Poisson equation

div x,z(εR(x, z)∇x,zV ) =
e

ε0
(N − ND). (3)Here εR(x, z) denotes the relative permittivity, ε0 the permittivity 
onstant in va
-uum and ND(x, z) is the pres
ribed doping density.2.2 The di�usive regimeIn the transport dire
tion(s), we 
onsider a purely 
lassi
al transport in the di�usiveregime, whi
h is des
ribed by the stationary drift-di�usion equation :

−divx J(x) = 0, (4)
J(x) = D(∇xNs(x) + βNs(x)∇xUs(x)), (5)where Ns is the surfa
e density, D denotes the di�usion 
oe�
ient D = µkBTL for a
onstant mobility µ and the e�e
tive energy Us is given by

Us = −kBTL log

(
+∞∑

k=1

e−βǫk

)
. (6)3



If we de�ne the repartition fun
tion Z as
Z(x) =

+∞∑

k=1

e−βǫk(x), (7)then, we obtain easily from (1) and (2) that the surfa
e density satis�es
Ns(x) =

∫ ℓ

0

N(x, z) dz = eβǫFZ(x).Therefore, ǫF (x) in (1) 
an be written in terms of Ns and Ns 
an be 
hosen asunknown in the model. We have then
N(x, z) =

Ns(x)

Z(x)

+∞∑

k=1

e−βǫk(x)|χk(x, z)|2. (8)If we introdu
e the Slotboom variable u de�ned by
u(x) = eβǫF =

Ns(x)

Z(x)
, (9)then, we get easily that the drift-di�usion equation (4)�(5) reads

−div x(DZ(x)∇xu(x)) = 0. (10)The drift-di�usion equation 
an be derived from kineti
 theory when the meanfree path is small 
ompared to the system length-s
ale [25, 26℄. Su
h a derivationfrom the semi
ondu
tor Boltzmann equation is formally derived in Se
tion 3.The unknowns of the overall system are the surfa
e density Ns(x), the eigenen-ergies ǫk(x), the eigenfun
tions χk(x, z) and the ele
trostati
 potential V (x, z). Ifwe assume that the ele
trostati
 potential V is given, then a diagonalization of theone dimensional S
hrödinger operator (2) provides the eigenvalues and eigenve
tors
(ǫk, χk). The e�e
tive energy Us 
an be 
omputed from (6). This allows us to ob-tain the surfa
e density Ns by solving the drift-di�usion problem (4)�(5). Then, thedensity N is evaluated using (8) and a new potential is 
omputed by solving Poissonequation (3).This �x point map is used in [27℄ to establish existen
e of solutions. More detailsabout its use as numeri
al algorithm are given in Se
tion 4.3 Formal limit of the Boltzmann equation to thedrift-di�usion equationIn order to understand the expression of the e�e
tive energy Us given in (6) and therole of the e�e
tive mass when the anisotropy of sili
on is taken into a

ount, wepresent in this se
tion the formal derivation of the stationary drift-di�usion equation4



from the semi
ondu
tor Boltzmann equation for the subband model. The di�usivelimit of the Boltzmann equation towards the drift-di�usion equation is well known(see [25, 26℄ for a rigorous proof of this limit). In the subband de
omposition ap-proa
h, be
ause of the non linear 
oupling with the S
hrödinger-Poisson system,we need to renormalize the Boltzmann equation. We refer to [28℄ for the rigorousderivation.Let η > 0 be the s
aled mean free path assumed to be small. We 
onsider thes
aled Boltzmann equation for the subband model de�ned on the phase spa
e R
2×R

2.We denote by x the position, x ∈ R
2, and by p the momentum, p ∈ R

2. The timevariable t is nonnegative. We 
onsider a di�usion s
aling with parameter η

t′ = η2t and x′ = ηx.Then, (writing again t for t′ and x for x′) the ele
tron distribution fun
tion in ea
hsubband f η
k satis�es (see [26℄ and referen
es therein)

∂tf
η
k +

1

η
(

p

m∗
· ∇xf

η
k −∇xǫk · ∇pf

η
k ) =

1

η2
QB(f η)k, (11)whi
h 
an be rewritten as

∂tf
η
k +

1

η
{Hk, f

η
k } =

1

η2
QB(f η)k,where {·, ·} denotes the Poisson bra
ket : {g, h} = ∇xh · ∇pg −∇ph · ∇xg. Moreover

Hk is the energy of the system in the kth subband
Hk(t, x, p) =

1

2

|p|2

m∗
+ ǫk(t, x).The 
ollision operator QB, des
ribing the s
attering between ele
trons and phonons,is assumed in the linear BGK approximation for Boltzmann statisti
s.It reads in the following form :

QB(f)k =
+∞∑

k′=1

∫

R2

αk,k′(p, p′)(Mk(p)fk′(p′) −Mk′(p′)fk(p)) dp′, (12)where the fun
tion Mk is the Maxwellian
Mk(t, x, p) =

1

2πm∗kBTLZ(t, x)
e−βHk(t,x,p), (13)normalized su
h that

+∞∑

k=1

∫

R2

Mkdp = 1,and where the repartition fun
tion Z is given by (7).Here and in the following, we shall use the notation gk for a fun
tion dependingon the k-th subband, and the notation g = (gk)k≥1 when the entire set of subbandsis taken into a

ount. 5



Assumption 3.1 The 
ross-se
tion α is symmetri
 and bounded from above andfrom below :
∃α1, α2 > 0, 0 < α1 ≤ αk,k′(p, p′) ≤ α2, ∀ k, k′ ≥ 1, ∀ p ∈ R

2, ∀ p′ ∈ R
2. (14)The initial 
ondition is assumed to be given by :

f η(0, x, p) = f in(x, p). (15)For the sake of simpli
ity, we 
onsider the transport on the whole spa
e R
2 withno 
harge 
arriers at in�nity : lim|x|→+∞ f(t, x, p) = 0.Assumption 3.2 We assume that the given initial 
ondition satis�es f in ∈ ℓ1(L∞(R2×

R
2)), f in ≥ 0.Assumption 3.3 We assume that the potential energy ǫk is given for all k ≥ 1 in

L∞((0, T ), H1(R2)) and that ∂tǫk ∈ L∞((0, T ) × R
2), that is

∃µ > 0 su
h that ∀ (t, x) ∈ (0, T ) × R
2, |∂tǫk| ≤ µ. (16)Moreover, we suppose that (ǫk)k≥1 is a nonde
reasing sequen
e of positive fun
tionssatisfying

∃C > 0, ∀ (t, x) ∈ (0, T ) × R
2, ∀ k ≥ 1, |ǫk(t, x) −

1

2
π2k2| ≤ C0,su
h that we 
an give a sense to Z in (7).Remark 3.4 Assumptions 3.3 are not really strong. Indeed, if ǫk is given by thesubband model, i.e. it is the k-th eigenvalue of the stationary S
hrödinger operator foran ele
trostati
 potential energy U , then all these estimates hold true with 
onstants

µ and C0 depending on U (see [29℄ and appendix of [27℄). It remains to obtain someregularity on the potential energy U .3.1 Properties of the 
ollision operatorIn this se
tion, the time variable t and the position x are only parameters, and,for the sake of simpli
ity, we omit the dependen
e on t and x and only 
onsiderthe dependen
e on p. Here we establish some well-known properties of the 
ollisionoperator QB de�ned by (12). To this aim, we de�ne the weighted-spa
e
L2
M = {f = (fk)k≥1 su
h that +∞∑

k=1

∫

R2

f 2
k

Mk

dp < ∞}, (17)whi
h is an Hilbert spa
e with the s
alar produ
t
〈f, g〉M =

+∞∑

k=1

∫

R2

fkgk

Mk

dp.6



Proposition 3.5 We assume that the 
ross-se
tion α satis�es (14). Then the fol-lowing properties hold for QB :
(i)

∑
k

∫
QB(f)k dp = 0.

(ii) QB is a linear, selfadjoint and negative bounded operator on L2
M.

(iii) Ker QB = {f ∈ L2
M, su
h that ∃Ns ∈ R, fk = NsMk}.

(iv) If P is the orthogonal proje
tion on Ker QB with the s
alar produ
t 〈·, ·〉M, then
−〈QB(f), f〉M ≥ α1‖f − P(f)‖2

M. (18)Proof. (i) follows immediately from the symmetry of the 
ross-se
tion.For the sake of simpli
ity we will use the standard notation f ′ = f(p′). For proving
(ii), we start with writing :

〈QB(f), g〉M =
∑

k,k′

∫

(R2)2
αk,k′MkM

′
k′

(
f ′

k′

M′
k′

−
fk

Mk

)
gk

Mk

dpdp′.With our assumption (14) and the fa
t that (
∑

k

∫
|fk| dp)2 ≤ ‖f‖2

M we get
|〈QB(f), g〉M| ≤ C‖f‖M‖g‖M ,for all f, g in L2

M. Thus, QB is bounded. Moreover, we obtain easily
〈QB(f), g〉M = −

1

2

∑

k,k′

∫

(R2)2
αk,k′MkM

′
k′(

f ′
k′

M′
k′

−
fk

Mk

)(
g′

k′

M′
k′

−
gk

Mk

) dpdp′. (19)This provides the selfadjointness and negativity of QB.The in
lusion ⊇ in (iii) is obvious. If f ∈ Ker QB, then 〈QB(f), f〉M = 0 andequality (19) implies that fk 
oin
ide with the Maxwellian up to a multipli
ative
onstant.Thus, (iii) holds true.We are left with proving (iv). The de�nition of L2
M and (iii) allow us to 
hara
-terize (Ker QB)⊥ as

(Ker QB)⊥ = {f ∈ L2
M su
h that +∞∑

k=1

∫

R2

fk dp = 0}. (20)We have,
〈QB(f), f〉M = 〈QB(f) − QB(P(f)), f〉M = 〈f −P(f), QB(f)〉M

= 〈g, QB(g)〉M ,where we take g = f − P(f). Therefore, by using (19) we obtain
−〈QB(f), f〉M =

1

2

∑

k,k′

∫

(R2)2
αk,k′MkM

′
k′

(
g′

k′

M′
k′

−
gk

Mk

)2

dpdp′. (21)7



From (14) and sin
e g ∈ (Ker QB)⊥, (21) gives
−〈QB(f), f〉M ≥ α1

+∞∑

k=1

(∫

R2

g2
k

Mk

dp

)
α1‖f − P(f)‖2

M.

�Proposition 3.6 Im QB is a 
losed subset of L2
M.Proof. Let (hn)n∈N ∈ Im QB be a sequen
e 
onverging towards h in L2

M. Sin
e
hn = QB(fn) = QB(gn), where gn = fn − P (fn), Proposition 3.5 (ii) and (iv) imply

α1‖gn − gm‖
2
M ≤ ‖hn − hm‖M‖gn − gm‖M.This gives that (gn) is a Cau
hy sequen
e in L2

M. Thus, there exists g ∈ L2
M su
hthat gn −→ g. By 
ontinuity of QB and uniqueness of the limit, h = QB(g). �Corollary 3.7 Sin
e QB is selfadjoint, we have (Ker QB)⊥ = Im QB.Thus QB(f) = h admits a solution in L2

M i� h ∈ (Ker QB)⊥. Moreover this solutionis unique if we impose f ∈ (Ker QB)⊥.Proposition 3.8 There exists Θ ∈ (L2
M)2 su
h that for all k ≥ 1,

QB(Θ)k = −
p

m∗
Mk and +∞∑

k=1

∫

R2

Θk dp = 0. (22)We de�ne the di�usion matrix by
D =

∫

R2

+∞∑

k=1

Θk ⊗
p

m∗
dp. (23)Then, D is a symmetri
 
oer
ive matrix.Proof. (22) is an easy 
onsequen
e of Corollary 3.7 and of (20). It remains to provethe symmetry and the 
oer
ivity of D.

Di,j =
1

m∗

∫

R2

pi

(
+∞∑

k=1

Θk

)

j

dp = −
+∞∑

k=1

∫

R2

(Θk)jQB(Θi)k

Mk

dp = −〈Θj , QB(Θi)〉M.The selfadjointness of QB implies the symmetry of D. For X ∈ R
2, we set fX =

X1Θ1 + X2Θ2,
〈DX, X〉M =

∑

1≤i,j≤2

Di,jXiXj = −〈QB(fX), fX〉M.8



Sin
e Θ ∈ (Ker QB)⊥, we have fX ∈ (Ker Q)⊥. Using (18), we get :
〈DX, X〉M ≥ α1‖fX‖

2
M.We 
on
lude by showing that X 7→ ‖fX‖M is a norm on R

2. A
tually, the linearityof QB gives
2∑

i=1

XiΘi = 0 ⇒

2∑

i=1

XiQB(Θi)k = 0, ∀ k ≥ 1.This implies that ∑i XipiMk = 0, ∀ k ≥ 1. Thus X = 0. �Remark 3.9 Parti
ular 
ase when α is a 
onstantLet us assume that for all k, k′, p, p′, α(k, p, k′, p′) = 1/τ , where τ is a relaxation timeindependent of p, whi
h might depend on some parameters like time t and position
x. Then, D is equal to :

D =

+∞∑

k=1

∫

R2

τMk

p

m∗
⊗

p

m∗
dp = τId. (24)3.2 Asymptoti
 expansion for the di�usive limitWe will show in this se
tion the formal di�usive limit of the Boltzmann equation(11) as η → 0, using a Hilbert expansion. First, we re
all an existen
e result for ourproblem whi
h is a dire
t 
orollary of well-known existen
e results on the Boltzmannequation (see for instan
e [30℄, [31℄).Theorem 3.10 For �xed η > 0, under Assumptions 3.1, 3.2 and 3.3, the Boltzmannboundary value problem (11)�(15) admits a unique weak solution f η ∈ L∞

loc(R
+, ℓ1(L1(R2×

R
2))) with f η ≥ 0.Proposition 3.11 Under Assumptions 3.1, 3.2 and 3.3, if the solution f η in The-orem 3.10 admits a Hilbert expansion with respe
t to η, f η = f 0 + ηf 1 + . . ., then

f 0 = NsM and Ns is the solution of the drift-di�usion equation
∂tNs − div x(D(∇xNs + βNs∇xUs)) = 0, (25)where D is given in (23) and Us is de�ned by

Us = −kBTL logZ. (26)Proof. Formally, inserting the expansion into (11) and negle
ting higher orderterms, we have :
QB(f 0)k + ηQB(f 1)k + O(η2) = η(

p

m∗
· ∇xf

0
k −∇xǫk · ∇pf

0
k ) + O(η2).9



By identi�
ation with respe
t to powers of η, we get f 0 ∈ Ker QB. Thus, Proposition3.5 (iii) gives:
f 0

k = NsMk , ∀k ≥ 1. (27)Moreover, f 1 is solution of the integral equation
QB(f 1)k = Hk, (28)where we de�ne

Hk =
p

m∗
· ∇xf

0
k −∇xǫk · ∇pf

0
k .By Corollary 3.7, f 1 exists i�

H ∈ (KerQB)⊥. (29)Di�erentiating Mk with respe
t to x and p, we obtain
∇xMk = −βMk∇xǫk + βMk∇xUs,with Us de�ned in (26), and

∇pMk = −
βp

m∗
Mk.Therefore, from (27) it follows

Hk = Mk

p

m∗
· (∇xNs + βNs∇xUs).Sin
e pMk is an odd fun
tion, we have ∫ pMk dp = 0, so that (29) holds. We 
hoose

Θ ∈ (L2
M)2 as in (22). Thus,

f 1 = −Θ · (∇xNs + βNs∇xUs). (30)We integrate (11) with respe
t to p and sum over k. By observing that ∫ ∇pf
η
k dp = 0,and by using Proposition 3.5 (i), we obtain

∂t

∫

R2

∑

k

f η
k dp +

1

η

∫

R2

∑

k

p

m∗
· ∇xf

η
k dp = 0.Moreover, the se
ond term 
an be written as follows

1

η

∫
p

m∗
· ∇xf

η
k dp =

1

η

∫
p

m∗
· ∇x(NsMk) dp +

∫
p

m∗
· ∇xf

1
k dp + O(η)

= −div x

∫
(Θk ⊗

p

m∗
)(∇xNs + βNs∇xUs) dp + O(η),thanks to (30). By assuming that we 
an pass to the limit, we �nd the drift-di�usionequation :

∂tNs − div x(D · (∇xNs + βNs∇xUs)) = 0,where the operator D is de�ned in (23). �10



3.3 The 3 valley 
aseOur physi
al devi
es of interest are nanos
ale Double-Gate-MOSFETs of sili
onstru
ture. Due to e�e
tive mass anisotropy in sili
on valleys, we introdu
e the trans-verse e�e
tive mass m∗
t and the longitudinal one m∗

ℓ . Then three di�erent ele
tron
on�gurations appear in the band stru
ture, 
ounted twi
e, due to the symmetryof ea
h valley (see Figure 1): (m∗
t , m

∗
t , m

∗
ℓ), (m∗

t , m
∗
ℓ , m

∗
t ) and (m∗

ℓ , m
∗
t , m

∗
t ). In thefollowing, we will 
onsider the generi
 
on�guration (m∗

x, m
∗
y, m

∗
z), where m∗

x (m∗
y and

m∗
z , respe
tively) 
orresponds to the e�e
tive mass in the x dire
tion ( y and z di-re
tion, respe
tively). Noti
e a slight 
hange of notation from the previous se
tions,where the transport dire
tions are simply denoted by x.

x

z

y

Figure 1: Surfa
e of 
onstant energy in the �rst 
ondu
tion band of sili
on (sixellipsoids and three di�erent 
on�gurations for the ele
trons due to the symmetryproperties).In this se
tion, we explain brie�y the modi�
ation of the system when we takeinto a

ount the three di�erent 
on�gurations.The distribution fun
tion of the kth subband and the ith valley, denoted by f i
k(i = 1, 2, 3), satis�es the following Boltzmann equation :

η∂tf
i,η
k +

px

m∗
x

∂xf
i,η
k +

py

m∗
y

∂yf
i,η
k − ∂xǫi

k∂px
f i,η

k − ∂yǫi
k∂py

f i,η
k =

1

η
QB(f η)i

k, (31)with
QB(f)i

k =
∑

k′,i′

∫

R2

αi,i′

k,k′(p, p
′)(f i′

k′(p′)Mi
k(p) − f i

k(p)Mi′

k′(p′)) dp′.11



This 
ollision operator takes into a

ount intravalley and inter-valley 
ollisions. Of
ourse, all the properties stated in Proposition 3.5 still hold. The normalizedMaxwellianis now de�ned by
Mi

k(p) =
exp

(
−β( p2

x

2m∗

x
+

p2
y

2m∗

y
+ ǫi

k)
)

Z̃
, (32)where the normalization 
oe�
ient is de�ned by

Z̃ =
∑

k,i

∫

R2

e
−β(

p2
x

2m∗
x

+
p2
y

2m∗
y

+ǫi
k
)
dp. (33)Proposition 3.12 Let f η ∈ L∞([0, T ], L2

M) be a solution of the three valley Boltz-mann equation (31) 
oupled with the subband problem (35)-(37). Then, formally, as
η → 0 the solution f η 
onverges towards NsMk, where Ns is the solution of thedrift-di�usion equation (34) 
oupled with the S
hödinger-Poisson system (35)-(37) :

∂tNs + div (D(∇Ns + βNs∇Us)) = 0, (34)
−

1

2

d

dz

(
1

m∗
t

d

dz
χt

k

)
+ Uχt

k = ǫt
kχ

t
k, χt

k ∈ H1(0, 1),

∫ ℓ

0

χt
kχ

t
k′ dz = δkk′, (35)

−
1

2

d

dz

(
1

m∗
ℓ

d

dz
χℓ

k

)
+ Uχℓ

k = ǫℓ
kχ

ℓ
k, χℓ

k ∈ H1(0, 1),

∫ ℓ

0

χℓ
kχ

ℓ
k′ dz = δkk′, (36)

div x,z(εR(x, z)∇x,zV ) =
e

ε0

(N − ND), (37)where
U = −eV ; N =

Ns

Z

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
, (38)

Us = −kBTL logZ ; Z = 2
+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k . (39)

D is a symmetri
 
oer
ive matrix whi
h will be determined in the proof (see (40)),
β = 1/kBTL. Moreover, ǫR, ǫ0, e, ND in (37) are de�ned as in Se
tion 2.Proof. As before, we assume that f η admits a Hilbert expansion of the form :
f η = f 0 + ηf 1 + ... Then, by identi�
ation with respe
t to powers of η, we obtain

QB(f 0)i
k = 0,that implies f 0,i

k = NsM
i
k, and

QB(f 1)i
k =

px

m∗
x

∂x(NsM
i
k) +

py

m∗
y

∂y(NsM
i
k) − ∂xǫi

k∂px
f 0,i

k − ∂yǫi
k∂py

f 0,i
k .12



We 
an prove in the same manner as in Proposition 3.8 that there exists a fun
tion
Θi ∈ L2

Mi su
h that QB(Θx)
i
k = − px

m∗

x
Mi

k and QB(Θy)
i
k = − py

m∗

y
Mi

k. Therefore,
f 1,i = −(∇x,yNs + βNs∇x,y(−kBTL log Z̃))Θi

k.We de�ne the di�usion matrix (whi
h is symmetri
 and 
oer
ive) as
D =

∑

k,i

∫

R2

Θi
k ⊗

p

m
dp, (40)where p

m
= ( px

m∗
x
, py

m∗
y
). Integrating equation (31) and passing formally to the limit

η → 0, we get :
∂tNs + div x,y(D(∇x,yNs + βNs∇x,y(−kBTL log Z̃))) = 0. (41)Moreover,

Z̃ =
2π

β

∑

k,i

√
m∗

xm
∗
y e−βǫi

k .Sin
e the possible 
on�gurations for sili
on are the three following 
on�gurations(
ounted twi
e for symmetry reasons) (m∗
t , m

∗
t , m

∗
ℓ), (m∗

t , m
∗
ℓ , m

∗
t ) and (m∗

ℓ , m
∗
t , m

∗
t ),we have

Z̃ =
2π

β
(2m∗

t

∑

k

e−βǫ1

k + 2
√

m∗
t m

∗
ℓ

∑

k

e−βǫ2

k + 2
√

m∗
t m

∗
ℓ

∑

k

e−βǫ3

k).The eigenenergies ǫi
k of the kth subband and the ith valley are the eigenvalues of theHamiltonian in the z-dire
tion. Thus, these quantities only depends on the e�e
tivemass on the z-dire
tion :

−
1

2

d

dz

(
1

m∗
z

d

dz
χi

k

)
+ Uχi

k = ǫi
kχ

i
k.The density of 
harge 
arriers for the whole system, whi
h enters Poisson equation(37), is given by

N =
∑

k,i

∫

R2

NsM
i
k(p)|χi

k|
2 dp.We have two 
on�gurations in whi
h m∗

z = m∗
t , thus the eigensystem is (ǫt

k, χ
t
k)k≥1for four ellipsoids. And there is one 
on�guration where m∗

z = m∗
ℓ , the eigensystemis then (ǫℓ

k, χ
ℓ
k)k≥1 for two ellipsoids. Thus we have,

Z̃ =
2π

β
m∗

t

(
2

+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k

)
.For simpli
ity of notation, we prefer to use Z as de�ned in (39) to obtain

N =
Ns

Z

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
.13



Noti
e that ∇x,y(logZ) = ∇x,y(log Z̃), so that the drift-di�usion equation (41) 
oin-
ides with (34).
�4 Numeri
al implementation4.1 The modeled devi
eIn this work we are interested in a nanos
ale Double-Gate MOSFET (Metal OxideSemi
ondu
tor Field E�e
t Transistor). The devi
e 
onsists of a sili
on �lm, 
har-a
terized by two highly doped regions near the Ohmi
 
onta
ts (denoted by sour
eand drain) and an a
tive region, 
alled 
hannel, with lower doping. The sili
on �lmis sandwi
hed between two thin layers of sili
on dioxide SiO2, ea
h of them with agate 
onta
t.

Source Drain

Si Si

Gate

Gate

V

x=Lx=0

z=l

N−

z=0

SiO2

2SiO

DSV

GS

ox

lSi

l

oxl

L C L DL S

Si
N+ N+

Figure 2: S
hemati
 representation of the modeled devi
e.We assume invarian
e in the y dire
tion (in�nite boundary 
onditions), so thatthe problem is studied in a (x, z)-domain. The devi
e o

upies a region of a 2Ddomain denoted by Ω=[0, L] × [0, ℓ]. A s
hemati
 representation of the devi
e isshown in Figure 2.For the sake of 
ompleteness, we re
all the stationary drift�di�usion S
hrödinger�Poisson system whi
h is used for the simulation, taking into a

ount the presen
eof the oxide and the anisotropy of sili
on. As before, we will use the notation β =
1/kBTL.Find Ns(x), (ǫt

k(x), χt
k(x, z)), (ǫℓ

k(x), χℓ
k(x, z)), for k ≥ 1, and V (x, z) su
h that

d

dx

(
D

(
d

dx
Ns + βNs

d

dx
Us

))
= 0 in (0, L), (42)
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



−
~

2

2

d

dz

(
1

m∗
t (z)

d

dz
χt

k

)
+ (U + Uc)χ

t
k = ǫt

kχ
t
k.

χt
k(x, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χt
k χt

k′ dz = δkk′ ,

(43)





−
~

2

2

d

dz

(
1

m∗
ℓ(z)

d

dz
χℓ

k

)
+ (U + Uc)χ

ℓ
k = ǫl

kχ
ℓ
k.

χℓ
k(x, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χℓ
k χℓ

k′ dz = δkk′ ,

(44)
div x,z(εR(x, z)∇x,zV ) =

e

ε0
(N − ND) in Ω, (45)where

U = −eV ; N =
Ns

Z

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
, (46)

Us = −kBTL logZ ; Z = 2

+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k . (47)In (43)-(44) Uc is a given potential barrier between the sili
on and the oxide. More-over, the di�usion 
oe�
ient D in (42), and ǫR, ǫ0, e, ND in (45) are de�ned asin Se
tion 2. Finally, m∗

t and m∗
ℓ denote e�e
tive masses: in sili
on they are dif-ferent in the transverse (m∗

t ) and in the longitudinal dire
tion (m∗
ℓ), while in theoxide they take the same value. The system is then supplemented by boundary
onditions. At the ohmi
 sour
e, drain, and gate 
onta
ts (denoted by ΓS, ΓD, and

ΓG, respe
tively) Diri
hlet boundary 
onditions are imposed. The remaining part ofthe boundary (denoted by ΓN) is 
onsidered insulated, and homogeneous Neumannboundary 
onditions are imposed. More pre
isely, due to the high doping, the drainand the sour
e 
onta
ts 
an be 
onsidered as small ele
tron reservoirs in whi
h weassume that the potential does not depend on the transport dire
tion. Therefore,the surfa
e density Ns at the vi
inity of the drain and sour
e 
onta
ts is assumed tobe 
onstant and is then equal to N+ × ℓSi.Moreover, the ele
trostati
 potential V equals the sum of the applied voltage andthe potential at thermal equilibrium, that we denote by Vb(xc, z), with xc = 0 or
xc = L. In order to �nd Vb(xc, z) the following 1D S
hrödinger-Poisson system mustbe solved on the verti
al edge x = xc





−
~

2

2

d

dz

(
1

m∗
t (z)

d

dz
χt

k

)
+ (Ub + Uc)χ

t
k = ǫt

kχ
t
k.

χt
k(xc, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χt
k χt

k′ dz = δkk′ ,

(48)





−
~

2

2

d

dz

(
1

m∗
ℓ(z)

d

dz
χℓ

k

)
+ (Ub + Uc)χ

ℓ
k = ǫl

kχ
ℓ
k.

χℓ
k(xc, ·) ∈ H1

0 (0, ℓ),

∫ ℓ

0

χℓ
k χℓ

k′ dz = δkk′ ,

(49)
15



d

dz

(
εR(xc, z)

d

dz
Vb

)
=

e

ε0

(N − ND), Vb = 0 at z = 0 and z = ℓ, (50)where
Ub = −eVb, N(xc, z) =

Ns(xc)

Z(xc)

+∞∑

k=1

(
2e−βǫℓ

k |χℓ
k|

2 + 4

√
m∗

ℓ

m∗
t

e−βǫt
k |χt

k|
2

)
,

Z(xc) = 2

+∞∑

k=1

e−βǫℓ
k + 4

√
m∗

ℓ

m∗
t

+∞∑

k=1

e−βǫt
k .Summarizing, the boundary 
onditions for system (42)� (45) are

Ns = N+ × ℓSi
at x = 0 and x = L, (51)

V (z) = Vb(0, z) on ΓS, V (z) = Vb(L, z) + VDS on ΓD, (52)
V (x) = VGate on ΓG, (53)

∂V

∂n
= 0 on ΓN . (54)4.2 Iterative pro
edureWe introdu
e a partition of [0, L] with nodes xi, i = 1, · · · , Nx, and a partition of

[0, ℓ] with nodes zj , j = 1, · · · , Nz. Then, we mesh the domain [0, L] × [0, ℓ] withre
tangular triangles using the nodes (xi, zj) previously de�ned. The S
hrödingerequations and the Poisson equation are dis
retized with 
onforming P 1 �nite ele-ments, while for the 1D drift-di�usion equation the S
harfetter�Gummel s
heme isused (see [32℄,[33℄). From now on, when referring to equations and formulas (42)�(54)we intend their dis
retized 
ounterpart.The �rst step for initializing the pro
edure is the 
omputation of Vb on the sour
eand drain 
onta
ts. To this aim a Gummel iteration method, des
ribed at the endof this se
tion, is used to solve the 1D S
hrödinger-Poisson system.Se
ondly, we 
onsider the whole system for zero applied sour
e-drain voltage.Equation (42) does not need to be solve in this 
ase. A
tually, the Slotboom variable
u = Ns/Z, solution of the 1D equation (10), is 
onstant. It is then su�
ient toevaluate it on the boundary (for x = 0 for instan
e), where Ns is pres
ribed. Itremains to 
al
ulate a 2D S
hrödinger-Poisson system, with boundary 
onditions(52) �(54) and VDS = 0.Finally, we 
onsider the resolution of the drift-di�usion-S
hrödinger-Poisson sys-tem when a drain-sour
e voltage VDS is applied. We start from the previously ob-tained potential and in
rement the voltage by steps of 0.02V .The iterative pro
edure for the solution of one drift�di�usion�S
hrödinger�Poissonsystem 
onsists of an iteration on the ele
trostati
 potential and it is summarized inthe following steps. 16



1. For a given potential Vold in the whole domain Ω we solve the eigenvalueproblems (43)�(44) on ea
h sli
e of the devi
e (x = xi, i = 1, · · · , Nx) bydiagonalization of the Hamiltonian. Thus, we obtain Nx sets of eigenfun
-tions {χt
k(xi, z)}i=1,···,Nx

and eigenvalues {ǫt
k}, and Nx sets of eigenfun
tions

{χℓ
k(xi, z)}i=1,···,Nx

and eigenvalues {ǫℓ
k}.2. Next, we 
ompute the e�e
tive energy Us from (47). We are then able tosolve the 1D stationary drift-di�usion equation (42) with Diri
hlet boundary
onditions (51).3. We have then all the ingredients to 
ompute the density N thanks to theexpression (46).4. The Poisson equation is solved in the 2D domain using boundary 
onditions(52)�(54). The system is solved using the pre
onditioned 
onjugate gradientmethod. A new potential Vnew is then obtained.5. We repeat the four previous steps until the di�eren
e ‖Vnew − Vold‖L∞ is su�-
iently small.We 
on
lude the des
ription of the iteration pro
edure with few remarks on im-plementation aspe
ts.

• The solution of the highly non�linear 
oupled S
hrödinger�Poisson system isthe most deli
ate step in the pro
edure des
ribed above. A simple mindedde
oupling algorithm fails and a Newton-Raphson method is very expensive.Following the idea of Caussigna
 et al. [34℄, we used a Gummel iterative algo-rithm [35℄ whi
h amounts to substitute in the pro
edure the Poisson equationwith
−∇(εR∇Vnew) +

e

ε0

N(x, z)
Vnew

Vref

=
e

ε0

(
ND − N(x, z)

(
1 −

Vold

Vref

))
,with Vref = kBTL/e. This method 
an be viewed as an approximate Newtonmethod where the Ja
obian of the system is repla
ed by a diagonal matrix, afterthat information about the strong 
oupling of the unknowns are in
orporatedinto Poisson equation. This is done by 
onsidering an exponential dependen
eof the ele
tron density N on the potential V . We refer to [5℄ where this methodis used in the simulation of a 2D ballisti
 S
hrödinger�Poisson system.

• When solving the eigenvalue problems it is not ne
essary to 
ompute all the
Nz modes be
ause of the exponential dependen
e of Us on the energy levels
ǫk's (see (47)). Here we used only the �rst 12 modes.

• The solution of one S
hrödinger problem on a sli
e is independent of the others,therefore, the most 
ostly part of the algorithm is fully and easily parallelizable.17



Table 1: Table of the main physi
al valuesParameter Value Length Value
N+ 1026m−3 LS 10nm
N− 1021m−3 LC 30nm
Uc 3 eV LD 10nm

εR[Si] 11.7 ℓox 3nm
εR[SiO2] 3.9 ℓSi 4, 5 or 7nm5 Numeri
al resultsThe sili
on region in the Double�Gate MOSFET under 
onsideration 
onsists ofsour
e and drain regions, with length LS and LD, respe
tively, whi
h are highlydoped with density N+, and of a 
hannel region, with length LC whi
h is intrinsi
.The total length is L = LS + LC + LD. The thi
kness of the oxide layer is de�nedby ℓox (see Figure 2). The numeri
al values used in the implementation are reportedin Table 1. For su
h a devi
e geometry short 
hannel e�e
ts are a

eptable (seee.g. [12℄). Denoting by me the ele
tron mass, then the transverse and longitudinale�e
tive masses in sili
on are m∗

t = 0.19me and m∗
ℓ = 0.98me. The e�e
tive massin the oxide is 
hosen as 0.5me. The latti
e is assumed to be at room temperature(TL = 300K).All the 
omputations in this se
tion are performed with a �eld dependent mobility(see [8℄,[9℄, e.g.) given by

µ(Es) =
2µ0

1 +
√

1 + (2µ0|Es|/vsat)2
,where Es = d

dx
Us is the e�e
tive ele
tri
 �eld, the low �eld mobility is µ0 = 0.12m2V −1s−1and the saturation velo
ity is vsat = 1.1 105ms−1. The di�usion 
oe�
ient in (5) is
omputed using a generalized Einstein relation D = µ(E)kBTL.We take Nx = 50 points in the transport dire
tion and Nz = 50 in the 
on�neddire
tion for all the tests. The �rst sets of pi
tures are obtained for VGate = 0 andwith ℓSi = 7nm. Fig. 3 shows the ele
tron density at the equilibrium state for theone valley 
ase when m∗

z = m∗
t (left) and for the three valley 
ase (right). We noti
ethat, as expe
ted, the 
on�guration of the ele
tron density and thus the 
on�nementare not the same. Figure 4 shows the ele
tron density for a drain-sour
e voltage

VDS = 0.2V (left) and VDS = 0.5V (right). Be
ause of this bias, the density doesnot remain symmetri
 but the ele
tron 
on
entration is higher in the sour
e region.In Fig. 5 we present the variation of the �rst energy levels ǫk(x) in the 
on�neddire
tion z along the transport dire
tion x for the two 
ases m∗
z = m∗

ℓ and m∗
z = m∗

t .The results are shown for VDS = 0V (left) and for VDS = 0.5V (right). We re
allthat the eigenvalues of the Hamiltonian form an in
reasing sequen
e of real valuednumbers. We noti
e that the eigenvalues are 
loser to ea
h other in the 
on�guration
m∗

z = m∗
ℓ than in the 
on�guration m∗

z = m∗
t . This explains why the 
on�nement is18



Figure 3: Ele
tron density (in m−3) at the equilibrium state. On the left, we plotthe one valley 
ase, while we plot the three valley 
ase on the right.

Figure 4: Ele
tron density (in m−3) for an applied Drain-Sour
e potential VDS =
0.2V on the left and VDS = 0.5V on the right.so di�erent in the two 
ases. Indeed, if we 
ompute the o

upation fa
tor of ea
hstate (see Figure 6), we noti
e that four modes are not negligible when m∗

z = m∗
ℓand only one when m∗

z = m∗
t , be
ause of the exponential dependen
e on ǫk. Thatis the reason why we only 
onsider a �nite number of modes in our 
omputation.The 
hoi
e of 12 
omputed modes made here is done in order to avoid any loss ina

ura
y, but in view of these 
onsiderations, we 
ould 
hoose less modes for a faster
omputation. Moreover, in Figure 5 on the right, we observe a shift in the energylevels at the drain 
onta
t, whi
h, as expe
ted, is equal to the amplitude of theasso
iated drain voltage.In Figure 7 we plot the potential energy observed in the devi
e. The energypotential barrier between the sour
e and the 
hannel is visible. The gate voltage

VGate modulates the height of this barrier and thus the number of free ele
trons inthe 
hannel. 19
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Figure 5: Energy levels ǫk(x) along the x transport dire
tion for the two e�e
tivemass 
on�gurations in the z dire
tion, at VDS = 0V (on the left) and VDS = 0.5V(on the right).
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upation of ea
h subband in the 
ase m∗
z = m∗

ℓ (left) and m∗
z = m∗

t(right). The 
on�nement is mu
h more important in the se
ond 
ase.The I −V 
hara
teristi
s of the Double-Gate-MOSFET for di�erent gate voltage
VGate are presented in Figure 8. The 
urrent is de�ned by the quantity J in (5).Figure 8 (left) plots drain 
urrent versus drain voltage VDS for di�erent gate voltages
VGate, Figure 8 (right) shows drain 
urrent versus gate voltage VGate for di�erent drainvoltages, for ℓSi = 5nm. Finally, Figure 9 shows the dependen
e of the 
urrent onthe sili
on thi
kness ℓSi. These �gures show I − V 
hara
teristi
s similar to thatof the 
onventional MOSFETs with two typi
al regimes : a ohmi
 regime for smallvalues of VDS and a quasi-saturation regime. We noti
e a good agreement with theresults presented in [12℄ where Monte Carlo simulation is used for the same devi
egeometry.Con
lusion A subband de
omposition approa
h has been used to derive a 
ou-20



Figure 7: Potential energy for VGate = 0V and VDS = 0.2V .
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Figure 8: Drain 
urrent I in the stru
ture as a fun
tion of the drain-sour
e voltage
VDS (left) and of the Gate bias VGate (right) for VDS = 0.1 V (blue), 0.3 V (green)and 0.5 V (red) for ℓSi = 5nm.pled quantum�
lassi
al system for an ele
tron gas 
on�ned in a nanostru
ture. Asingle transport equation is obtained with a limiting pro
ess in the s
aled meanfree path from the Boltzmann equations, one for ea
h subband, under a di�usivetransport assumption. The model is used to simulate a DG-MOSFET with 
han-nel length of 30nm. The results show that the model provides a good des
riptionof the transport in a Double-Gate MOSFET, making it attra
tive for rapid design
omputation.
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Figure 9: I−VDS 
hara
teristi
s for three di�erent stru
tures whi
h di�ers only fromthe Sili
on thi
kness LSi for VGate = 0V .A
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