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Abstract

The paper is devoted to the analysis of a drift-diffusion-Schrédinger-Poisson
(DDSP) system. From the physical point of view, it describes the transport
of a quasi-bidimensional electron gas confined in a nanostructure. Existence,
uniqueness and long time behaviour of a weak solution were already obtained
in [N. Ben Abdallah, F. Méhats, N. Vauchelet, Proc. Edinb. (2006) 49, 513-
549] for constant scalar diffusion matrices. In the present contribution, we
develop an Llog L existence theory for the DDSP system for a general class
of smooth diffusion matrices. Our argument relies on a Trudinger estimate for
the entropy functional and a sharp bound on the Hamiltonian’s spectrum.
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1 Introduction and main results

1.1 Presentation of the model

In this work, we consider the drift-diffusion-Schrédinger-Poisson (DDSP) system
whose derivation has been described in [8, 9]. This coupled quantum-classical system
models the transport of an electron gas partially confined in nanoscale semiconductor
devices [31, 32]. The coupling occurs in the momentum variable : electrons are
assumed to behave like point particles in the directions = parallel to the gas (classical
transport) while they are described by wavefunctions in the transversal direction z
(quantum description). Let w be a bounded regular domain of R?, for (z,z) € Q =
x (0,1), the DDSP system is defined by :

( 0N, — div ,(D(V,N, + N,V, Vi) =0, ¢>0,
(DD)
N,(0,z) = N)(x), =€ w,
1
-5 Exr + Ve = Exxn (k=1),

(DDSP) { (8)
xx[V](0) = xx[V](1) = 0, / Ik[V]?dz =1,

+oo
(P)  —A,.V=N=N\, Z Z \ka
\ ¢ €

where D is the given diffusion matrix and the effective potential V; is defined by :

+o00o
Vit,o) = —log(Z(t.2)),  Z(tz) =Y e o), (L1)
k=1
Z is the repartition function. We complete this system with the following conserva-
tive boundary conditions :

0,V (t,x,z) =0o0n dw x (0,1), V(t,x,0)=V(t,x,1) =0 for z € w,(1.2)
0, Ns(t,z) =0 on Ow x (0,1), (1.3)

where Ow is the boundary of w and v(z) denotes the outward unit normal vector at
x € Ow. The unknowns of the system are the surface density N,(¢,x), the electro-
static potential V' (¢, z, z), the eigenenergies €. (t,z) and the eigenvectors xy(t,z, 2)
of the 1D Schrodinger operator in the z variable.

The drift-diffusion equation (DD), governing the evolution of the surface density
Ny, describes the transport of the gas in the x direction in a diffusive regime [25, 26].
Such equations are widely used in semiconductors simulations (see e.g. [13, 16, 20,
35]). In the transversal direction z, electrons are assumed to be strongly confined.
This leads to a partial quantization of the energy in subband €,. The system is at
equilibrium in the confined direction and is Boltzmann distributed. We shall use the
notation pj for the occupation numbers of the states, namely

Nq(t,z) _
pk(tax) = Z((t7.ff>)e € (t:2) — U(t,.ﬁl?)e

—€k (t,(E)
)



where u is the so-called Slotboom variable. The Fermi level € is defined by €p =
logu. We have then py(t,z) = efr(t:2)=€(t2) which is the exponential form of the
Boltzmann statistics. Finally, the electrons generate an electric potential V' in the
device calculated from the total density /N through the resolution of the Poisson
equation (P).

It is well known that the drift-diffusion equation can be obtained from kinetic
theory when the mean free path is small compared to the system length-scale |18,
29]. Similarly, the DDSP system can be derived from a kinetic system for partially
quantized particles [34]. We refer the reader to this derivation for explanations of
the expressions of the density and the effective energy (1.1). This diffusion limit is
done in the natural framework given by the entropy functional. The estimate on the
entropy furnishes a Llog L bound on the distribution function and a H' bound on
the electrostatic potential (see [34]). For the DDSP system, we can define similarly
the free energy by :

W:Z/

1 1
prlog p dx + 3 // \V..V|*dxdz + 5 Z / or{|0xk]?) dz.  (1.4)
w Q w
k>1 k
In this expression and in the rest of the paper, we use the notation (f) = fol f(2)dz.
Therefore the Llog L bound on the surface density and the H' bound on the elec-
trostatic potential are the natural estimates for this model.

1.2 Main results

In [8] we have analyzed the DDSP system and proved an existence and uniqueness
result and studied the long time behaviour. However we have obtained this result
only in the case of a constant and scalar diffusion matrix which allows to obtain a >
estimate on the surface density V. If we want to consider a general diffusion matrix
we have to work in the natural framework given by the physical estimate on the free
energy. Therefore, we will develop a L log L theory in order to extend the results of
[8] under the following assumptions :

Assumption 1.1 The function D is assumed to be a C' function on Q into the set
of 2x2 symmetric positive definite matriz such that for all x € Q we have D(x) > al,
where o > 0 is given.

Assumption 1.2 The initial condition satisfies N > 0 a.e. and NPlog N? €
LY (w). And we denote

N}z/Nsodx.

The first result of this work concerns the existence of solutions for the (DDSP)
system.



Theorem 1.3 Let T' > 0. Under Assumptions 1.1 and 1.2 the (DDSP) system
coupled with the conditions (1.2)—(1.3) admits a weak solution such that

N,log N, € L=([0,T], L'(w)) and /N, € L*([0, T}, H'(w)),

Ve L>([0,T], H(w)).

In order to present our second result, we introduce the steady state (N, V)
of our system. The stationary drift-diffusion equation with the boundary condition
(1.3) implies that the Slotboom variable u*> is constant. The conservation of the
total mass of the system implies

TS e eV @ dz
And V' is the solution of the (S)—(P) system with the boundary conditions (1.2)

for the constant given u>. We can prove that this system admits a unique solution
Voo e C*(Q) (see [15, 27)).

uOO

Theorem 1.4 Under Assumptions 1.1 and 1.2, if Ns,V is a solution of (DDSP)
coupled to (1.2)-(1.3) defined in Theorem 1.3 and if N>,V is the solution of the
stationary system. Then there exist two constants k > 0 and C' > 0 such that for all
t>0

INs = N1y (&) + |V = V¥l () < Ce™™.

We present our results only in the case of conservative boundary conditions (1.2)-
(1.3). But following [8], we can extend them to Dirichlet boundary conditions. The
reason of this simple choice will appear clearly in the study of the long time behaviour
where the techniques used need the conservation of the mass.

1.3 Strategy of the proofs

Regarding the whole system, we shall take advantage of its structure : an evolution
drift-diffusion equation (D D) coupled to a quasistatic Schrodinger-Poisson system
(S)-(P). Therefore following [6, 8|, this structure in two blocks suggests us to use
a fixed point procedure to construct solutions : the first block furnishes the surface
density N, with the knowledge of the electrostatic potential V' by solving (DD),
whereas for a given surface density the Schrodinger-Poisson system (5)-(P) allows
us to compute the electrostatic potential V. It is then important to analyze carefully
each block of this system.

In the first block, containing the transport equation (DD), the difference with
[8] is due to the diffusion matrix D. As a consequence, we do not conserve the L2
estimate on N,. In fact, multiplying the drift-diffusion equation (DD) by N, and
integrating by parts lead to

%%/Nf dx+/(VNS)T]DVNS dx+%/(V(N82))TDVVsd$:0-

w



In the case of a scalar and constant diffusion matrix, the third term of this identity
can be controlled by the first two terms after an integration by parts and a straight-
forward study of the quantity —A,V; (in Section 2.3 of 8] we use strongly the fact
that most of the terms which appear in the expression of this quantity are nonnega-
tive). Otherwise, we have to deal with the quantity —div ,(DV,V;). Therefore, the
space dependence of D and the structure of the matrix (not scalar) involve new terms
which are not nonnegative and can not be controlled. We do not hope to recover a
L? estimate on the surface density. Thus, we work in the framework given by the
entropy estimate : it is proved in Section 2 that under Assumptions 1.1 and 1.2 the
free energy (1.4) is bounded and that this bound furnishes a Llog L born on the
occupation factor (p)g>1-

Then the “quasistatic” Schrodinger-Poisson block (S)-(P) has to be studied in
this new functional framework. Spectral properties of the Hamiltonian (detailed in
Appendix) show that for an electrostatic potential V € H'(Q), we can not hope
to have a better estimate than y, € H'(2). Regarding the right hand side of the
Poisson equation (P), we have to give a sense to the product of p; in Llog L with
|xx|>. When the surface density stays in L% the Cauchy-Schwarz inequality suffices.
Here we need a sharper estimate. An idea to overcome this difficulty is to use
the Trudinger inequality and to improve the estimates on the eigenvectors of the
Hamiltonian (xj ), with respect to V' obtained in the Appendix of [8]. First Lemma
A.2 shows that it suffices to prove that the product N,||V'[|12(0,1) has a sense.

To this aim, we use the Young and Trudinger inequalities. Let a and b be two
real numbers with a > 0, then we have the Young inequality :

ab < aloga —a+ €. (1.5)

If w C R? is a regular bounded domain, the Trudinger inequality [33, 17] insures the
existence of a constant v > 0 depending only on w such that, for all u € H'(w), we

have
/exp( Huﬁzr) ) dx < 0. (1.6)

Thus, applying the Young inequality gives

'Y”VHL(OI
N ||V dr = N Vil g
[V lzonds =2 ([ VA0 ) 1V

7|IV”L§(0,1)
< —HVIIHm) (/(Ns log Ny — Ny) dx—i—/e Wl o) da:) .
Y w

w

Since the entropy estimate gives a bound of V in H'(2) and of N, in Llog L(w), the
fact that ||V||12¢0.1) € H'(w) and the Trudinger inequality (1.6) insure that this last
term is finite. Moreover, it proves too that for Ny € Llog L(w) and for all 0 < § < 2,
there exists a nonnegative constant C' such that

/N IVIZs0m 4 < CIV I (1.7)



This use of the Trudinger inequality appears in some recent works dealing with
systems of gas dynamics too (see e.g. [19, 24]). It allows to deal with the study of
the Schrodinger-Poisson system, presented in Section 3, for a given surface density
Ny in Llog L(w).

Finally with a non-scalar and non-constant diffusion matrix D, we can not use the
fixed point procedure presented in |8] which relies on the L? estimate on N,. Thus
we regularize the (DDSP) system with a linear operator R® for a small parameter
e € (0,1) such that R° — Id as ¢ — 0. Usual techniques [5, 6, 11, 30| consist in
finding solutions of the regularized problem and letting ¢ — 0 in these solutions.
Nevertheless, these techniques does not give uniqueness of solutions.

The outline of the paper is as follows. In section 2, we present the linear regular-
ization operator and a priori estimates obtained for the regularized system. In section
3 we analyze the regularized Schrodinger-Poisson system in the general framework
given by our estimates. And in section 4 we detail the proof of Theorem 1.3 which
is decomposed into several steps : existence of solutions for the regularized system,
using the uniform estimates to pass to the limit ¢ — 0 in the solutions of the regular-
ized system to obtain solutions of the unregularized system. In the last section, we
present the proof of Theorem 1.4. The conservation of the mass allows us to use a
general method based on the logarithmic Sobolev inequalities |2, 3, 10, 14, 21|. This
method consists in proving the exponential decay as t grows to +oo of the relative
entropy.

2 Free energy and a priori estimates

We recall the regularization strategy developed in [6, 7]. For a parameter ¢ € [0, 1],
the linear regularization operator is
R LYQ) — C>(Q)

Vo REV(2,2) = (V4 Eon %2 60| (2.8)

where V is the extension of V' by zero outside 2 and &, , and £, . are C*° nonnegative
compactly supported even approximations of the unity, respectively on R? and R.
We can prove straightforwardly from convolution results the following properties :

Lemma 2.1 (i) R® is a bounded operator on LPLIL(QY) for 1 < p,q < +oo and
satisfies for all V € LLL1(Q), where LLLYQ) = {u € Lio(Q) st llullzzzye) =
(fw HU(ZL’, ')Hiq(o,l) dx>1/l) < +OO},

IR VIllere) < IVerawy and }:11}(1) |RE[V] = Verae = 0.
(11) R° is self-adjoint on L*(Q) and for all V € W12(Q),

VLRV = RIV.V]: lim [ Vo R V] = VoV 120) = 0.



Then the regularized system (DDSP.) is defined for € € [0, 1] by
NG — div o(D(Vo N + NJV, V) =0, >0,
(DD.){ N:2(0,7) = N°(z) :=min{N? 7'}, zcw
0, Ns(t,z) =0 on Ow x (0,1),
1
S G RV DG =€6x (k=21
1
Xi(twrv) € H3(071)7 / XiX?dZ:(Skh
0
e~ 6k
N°© €12
Zk: 5 Ze ‘Xk| ] ’
L 0,V (t,z,2z) =0o0n dw x (0,1), V(t,x,0)=V(t,xz,1) =0 for z € w.

(

(SP.) {
A, VE=F°

Remark 2.2 When € = 0, we have R® = Id and the regularized problem reduces to
the unregularized system.

Therefore the solutions of the overall problem are obtained by the passage to the
limit & — 0 on solutions of the regularized problem (DDSP.). The key points for
the passage at the limit is then to establish uniform estimates independents of . For
the sake of clarity we skip all exponents ¢ in the following.

Lemma 2.3 Let ¢ € [0,1]. Consider any weak solution (Ns,V') of the regularized
system (DDSP.) such that Nylog Ny € L¥(RT, LY (w)), V € L*(RT, H(Q)) and
VN, € L*(RY, H'(w)). Then the total free energy of the system defined in (1.4)

satisfies :
d (Vu) DV, u
-D(t)=— | Z———du.
dtW( ) = (t) /w ” dx

Proof. First, we notice that our boundary condition (1.3) implies the conservation
of the total mass of the system. Since the regularization operator R° is linear we
obtain, thanks to the drift-diffusion equation (DD,), the identity

pn Z/ prlog pp — pr)dx = / div , (]D (Z e‘ekvzu>) log u dx

k>1 k

+Z// Pl xk| R [0,V] dadz — —Z/Pkekdx
— JJao

(2.9)
Moreover, the selfadjointness of R° on L?(f2) and the Poisson equation imply

d
2 pe 2 e
Ek //ka‘XIJ R [dV]da:dz——t gk /wpk<\Xk| RV dx——2—t//|vxZV| dzdz.



Hence, after an integration by parts on the first term of the right hand side of (2.9),
we obtain

dtz/ prlog pr — pr) dx—l-?%//\vm‘/\ dxdz
)' DV,
r 3 [ e PR /(Z)—“d

To conclude the proof it suffices to notice that, from the Schrédinger equation, we
have

€ — (ulPRIV) = 500l

O

The coercivity of the matrix D insures the non-negativity of the dissipation rate
D and therefore the decay of the free energy. This allows us to prove some a priori es-
timates stated in the following Corollary whose proof is postponed in the Appendix :

Corollary 2.4 Let € € [0,1] and (Ns, V) such as in Lemma 2.3 and satisfying As-
sumptions 1.1 and 1.2. Then the following estimates holds :
(i) mass :

VteR+,/Nsd£E=NI

(i) entropy : there exist nonnegative constants C1, Cy and C3 independent of ¢,
such that

VieR", Z/pk (14 2 + | log pu|) d < Co, (2.10)
k>1
VieRT, /Ns| log N,| dx < Oy, (2.11)
Vi e R, / V..V dzdz < Cs. (2.12)
Q

(#3) dissipation : there exist nonnegative constants Cy and Cs independent of e

such that .
Vi eRY, / / |Vo/ No|? dads < C, (2.13)
0 w

t
vt e R, Vp e [1,+00) / /||N5HLP(M)(3) ds < Cs. (2.14)
0 w

Remark 2.5 By considering the relative entropy of (px, V') with respect to the ex-
tensions on w of the boundary data (pr, V) (see [8]), we can obtain similar a priori
estimates for Dirichlet boundary conditions. In fact the entropy estimate furnishes a
bound on the distance between (py, V') and (py, V). Then for regular enough boundary
data, the a priori estimates announced in Corollary 2.4 still remain the same with
constants C; depending on boundary data too.



3 The regularized Schrodinger-Poisson system

In this section the surface density NV is assumed to be given and we only consider
the resolution of the “quasi-static” regularized Schrédinger-Poisson system (S P.) for
e € [0,1]. We will solve this system in the framework given by the a priori estimates
of Corollary 2.4. We assume then that N; satisfies the following assumption :

H1 : N, > 0 a.e. and there exists a nonnegative constant C such that:

Vi e 0,7, /(Ns| log N,| + 1) dz < C., (3.15)

In the sequel we will use the functional space H}, = {V € L>((0,T), H(Q)) :
V(t,xz,0) =V(t,z,1) = 0}.

Following an idea of Nier [27] which has been developed in [6, 8], we can establish
the following existence and uniqueness result in this new framework.

Proposition 3.1 (Existence and uniqueness) Let ¢ € [0,1] and T > 0 and as-
sume Ny € L>(0,T; L' (w)) satisfy H1.

Then the regularized Schrédinger-Poisson system (SP.) admits a unique solution
(Ve (€x[VE], xk[V?])) such that VE € H}, with a bound independent of «.

Proof. This existence result is obtained like in [8] thanks to a minimization of a
convex functional. This functional is defined on Hg, by

1 .
J(V) = 5//Q \VV\2dxdz+/N8 log » e WVl gy = Jo(V) + Ji(V, N,). (3.16)
w k

We have proved (see Section 2.4 of [8]) that this functional is strongly convex on
H}, and that each minimizer defines a solution of (SP.). The relevant point here
compared to [8] resides in the proof of the continuity and the coercivity of the
functional. In fact, due to the only Llog L estimate on the surface density, we
need to use the Trudinger inequality (1.6) and sharper estimates on the eigenvalues
of the Schrédinger operator €;[V] stated in (A.1). Then

|1V, Ny) = i(V, N)| < / Na(@) sup(|€x[FE[V]} = €[RV]|(2)) do

<C / N1+ BV o + IRV b0 IEELV = V]lz20) .

L2(0,1
(3.17)
In the following C' and C7 will stand for nonnegative constants depending only on
the data and not on . We have seen in (1.7) that the Trudinger inequality and H1
imply

/ NJIRE[V = V|l2000) do < C| RV = V[l < CrllV = Vg, (3.18)



thanks to the properties of the regularization R® (Lemma 2.1). Doing the same for
the others term, we have

/ NIV R = Pz do < CIVIE g IV = Pl x

. 1/2 ~
Y[R RV — VU,
/(NslogNs—N8+exp ” [ ]||f/2201H [ ]HL (0,1) d%
¢ IRV 1BV = V]l

where v is the constant defined in the Trudinger inequality (1.6). Applying the
Cauchy-Schwarz inequality, we obtain

YRV o I BV = Vllz20)
ex - /2 — dx
o RV IR = Ve

. 1/2
< (/exp VHRE[ Nzz0) dw)l/Q /e Y V]HLQ(Ol dr| <C
= 1BV ][0 o RV = V]2 T

thanks to the Trudinger inequality (1.6). Thus, with H1, we have

/ﬁWW 2o | BTV = 7 VIV =Vl (3.19)

Obviously we have the same estimate (3.19) by exchanging the role of V' and V.
Thus (3.18) and (3.19) injected in (3.17) prove

|1V, N = Ju(V N < Cr(L+ Vg2 + IV @)V = Vi@ (3:20)

Hence J; (-, N,) is Lipschitz continuous on HY,. Now if we take VV = 0 in (3.20), from
H1 we have that 0 > J;(0, Ny) > —C'r. Thus, there exist two nonnegative constants
(1 and C45 such that

1
JV) 2 SIVV [0 = Cr(L+ VIV i) — Co.

If we apply the Poincaré inequality in H};, we find

J(V) = Csl[V 3 — CallVIEE g — Cs

which proves the coercivity of J. O

It is important yet to study the behaviour of the obtained solution V' with respect
to the given N,. The following result establishes a Lipschitz dependence. Despite
this result is not new compared to [8], the proof is new. In fact in Proposition 2.1 of
[8] the elliptic regularity on the Poisson equation is needed and allows to obtain the
Lipschitz dependence of V in H?({2) with respect to N, in L?*({2). Here the result is
stated in H'(Q).

10



Proposition 3.2 (Continuity) Let ¢ € [0,1] and T > 0. Assume N and N, are
giwen in L>=(0,T; L' (w)) and satisfy H1.

Then the corresponding solutions V¢ and Ve of the Schrodinger-Poisson system
(SP.) verify

Ve 0,T], [[VE=V e < CrlNe — NJIE (3.21)

LY (w)’

for a nonnegative constant Cr depending only on the data and not on e.

Moreover, as € — 0, the solution V¢ of the regularized problem (SP.) converges
to the solution V of the unregularized problem (S)—(P) in L*°(0,T; H'(Q)) and uni-
formly with respect to Ny € L>(0,T; L*(w)) and satisfying H1.

Proof. In the proof all the constants are nonnegative and depend only on the data
and not on e. If we multiply the Poisson equation by (V¢ — V¢) and integrate :

~ — ¢ €& ~
/ TV V)P dadz = // (N, — N 2REVE — V4] dade
Q . Q zZe

+Z// A Tl ) S S PN
- 0 s Ze k Z["}E] k )

(3.22)

where we use the selfadjointness of the linear operator R on L?(2).
We use the notation of the Appendix : € = €;[sR*[V¢] + (1 — s)R°[V*]] and
Xi = Xk[sR[VE] + (1 — s)R°[V¢]]. Then we have,

e~V e~ Ld (e
4 2 T2 B 512 d
bl P - SRR = [ (Sl ds
The expressions of the derivatives of the eigenfunctions and eigenvalues, given in
Lemma A.1, allow us to write

Z/l i 6_EZ| 3‘2 Rs[ve o ‘N/s] dz — _Z e € <| 3‘2 Re[ve o ‘7€]>2+

P ds Zs Xk == - Zs Xk
Zke_ei<|xz‘2R€[V5—~ Ek_e € 5.8 DE[T/E 17¢ 2
(el 2 EY e - 7Y

k 64k

Thanks to the Cauchy-Schwarz inequality, this last term is non-positive. Thus the
second term of the right hand side of (3.22) is non-positive.

For the first term of the right hand side of (3.22), we use the bound of || x| e
given in Lemma A.2. We deduce

—~ _68 ~
Z/ (N — Ns)ez—:\xiPRE[Vg — Vel dzdz <
— JJa

R (3.23)
<c / IN, = N+ [ BV IRV = V2 e

11



By the Hélder inequality,

[N = RO+ IRV ARDIRY — V)l o <
— _ 3/4
< [N, = NIl ( / (N + N (L + | RVIEOIR [V = VI dx)
- (3.24)
The assumption H1 implies a bound in L log L of the densities Ny and N,. Thus we

can follow the idea of the proof of Proposition 3.1 and prove after straightforward
calculations using the Young inequality (1.5) and the Trudinger inequality (1.6), that

~ e 117271112/3V (| pe e1114/3 1(2/3 e Tre|4/3
/<N8+Ns><1+nR VARV =V de < G+ VEE o) IVE= Vel .
which is bounded since V¢ and V¢ are bounded in H'() with Proposition 3.1. Thus
looking at (3.23), we have proved that there exists a nonnegative constant C3 such
that
€ 3 1 4
Ve =Vl < CallNe = Nallg,

This leads to (3.21).
For the convergence as ¢ — 0, we consider V¢ and V' the solutions of the unregu-
larized and respectively regularized problem for N, € L>(0,T; L'(w)) satisfying H1.

We have
—€,
ez € 2

Multiplying by (V¢ — V') and integrate, we obtain after an integration by parts and
thanks to the selfadjointness of R® in L*(Q)) that

€ _ 5 6_62 £12 6_65

/ \V(VE = V)|?dedz =T+ 11+ 111, (3.25)

[
1://N5
N
I //NZ(e_EZ\fIQ iy |2)<V€ RE[V?)) dad
= s Xil? = —=—1Ix - wdz,
o T\ ze z M
11 //NZ(e_GZ\EIQ iy |2)<RE[VE] V) ded
— s X ——X — Traz.
o T\ ze z M

For the first two terms, we can obtain with the Trudinger inequality (1.6) and Lemma
A.2 that

where
“I2(RF — Id)[VE — V] dwdz,

(| < CLl[ (B = Id)[VE = V||

12



and
] < Co(1+ [Vl vy + IV @) (B = I)[VE] | (0,

From the properties of the regularization R° (see Lemma 2.1), we deduce easily
that, since V¢ is bounded in H'(Q) independently of ¢, we have lim._|I| = 0 =
lim._,o|/I|. Finally, as we have shown for the second term of the right hand side
of (3.22), the term 711 is non-positive. Thus a Poincaré inequality in (3.25) implies
that

l% |VE = V|00 (02)) = 0.

4 Existence of solutions

4.1 Existence of solutions for the regularized system

Proposition 4.1 Let T > 0 and € € (0,1) be fizred. Then the reqularized problem
(DDSP;) with the boundary condition (1.2)—(1.3) admits a unique solution (NZ,V*)
with N¢ € C(0,T; L*(R?)) N L*(0,T; H'(w)).

Proof. We do not give in detail the proof which can be straightforwardly adapted
from the proof of the existence result in [8]. The proof relies on a fixed point argument

on the map F': Ny — N, defined on the set

T
Sr—{n: (max e+ [ o0l dt) < fo0}

0<t<T
by

1. For a given N; > 0, we solve the regularized Schrédinger-Poisson system (SP.)

and obtained V' € L*(0,T;C>(2)).

2. We construct V; = —log ), eVl From the spectral properties of the Hamil-
tonian, we have V; € L>(0,T; C*>(w)).

3. For this effective potential Vi, we solve the following parabolic equation for the

unknown Nj : A —_ ~
Ny — div . (D(V,N, + N,V,V;)) =0,

with the initial condition N? and the boundary condition 9, N, = 0 for z € Jw.

We can prove as in [8] that F' is a contraction on the set Sr, for Ty small enough.
Thus we have a solution on [0, 7] that we can extend to [0, T7. m
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4.2 Passing to the limit ¢ — 0

We have now all matters to construct solutions of the unregularized problem and to
prove Theorem 1.3. We will use the Aubin-Lions compactness method to show that
the solution of the regularized system converges when the parameter of regularization
goes to 0 towards solutions of the unregularized system, up to an extraction of a
subsequence. However this method does not give any uniqueness result. We first
recall a simple statement of an Aubin-Lions lemma [4, 23] :

Lemma 4.2 (Aubin Lemma) Take T" > 0, ¢ € (1,400) and let (f,)nen be a
bounded sequence of functions in LY(0,T; H) where H is a Banach space. If (fn)nen
is bounded in L1(0,T; V') where V is compactly embedded in H and 0f, /0t is bounded
in L9(0,T; V') uniformly with respect to n € N, then (f,)nen @S relatively compact in
L9(0,T; H).

Proof of Theorem 1.3. We fix T>0. From Proposition 4.1, there exist V]
and V¢ solution of the regularized problem (DDSP.) with the initial data N2<.
Assertion (iii) of Corollary 2.4 proves that we have \/Ng € L*(0,T; H'(w)) and with
(i), /N2 € L=(0,T; L*(w)). Thus since we have V,N: = 2,/N:V,/N¢, we deduce
that N2 € L*(0,T; W!(w)) with a uniform bound with respect to . Moreover, we
have after a Cauchy-Schwarz inequality :

T 2 T 15 € €|2
/ ( / \VIN§+N§VIV;EICZ:E) dt <N / / WINSHZSVM' dxdt
0 w 0 w

N
T
<M / DF(t) dt,
@ Jy

where D¢ is defined in Lemma 2.3 and is bounded in L' (0, T") uniformly with respect
to . Therefore we conclude with (DD,) that 9, N¢ is bounded in L(0, T; W ~11(w))
uniformly with respect to e.

Hence we can apply Lemma 4.2 for ¢ = 2, H = L'(w) and V = W'!(w). There
exists a subsequence (still denoted abusively N¢) such that N — N; strongly in
L*(0,T; L'(w)). From the weak continuity we have that for a.e. t € [0, 7],

/Ns(l +|log N,|) dz < Cr,

for a nonnegative constant C'r. For this function Ny, we can solve the unreg-
ularized Schrodinger-Poisson system (S)-(P) and construct (V, (€, xx)r>1) with
V € L>*(0,T; H'(Q)) as proved in Proposition 3.1. Thanks to Proposition 3.2,
we have that

HVE — V||L2(O7T;H1(Q)) — 0 as ¢ — 0.

14



We want now to pass to the limit ¢ — 0 in the drift-diffusion equation. Thanks to
Lemma A.2, we have

e 6k
NV, VEdrdt = / / N¢E X5 |*V. Ve dadt
/. e 2 T T

// NE(L+ RV I,V 52 dadt
[0,T]xw

By the Cauchy-Schwarz inequality and the Sobolev embedding H'(Q) — LPL?(2)
for all p € [1,+00), we deduce :

// NV Vi drdt < COr||VE|| pooo,r:m () (1| V| zoo 0.:m1 ) | VS | 21 (0,754 (w) -
[0,T]xw

But assertion (iii) of Corollary 2.4 shows that || NZ||11(0,r;L4(w)) is bounded indepen-
dently of €. Thus there exists a nonnegative constant C'r independent of £ such

that :
/ / NeV,VE dadt < C.
(0,7 xw

Hence we can give a sense to the drift-diffusion equation as ¢ — 0. From Lemma
A1, we have
Vo6V = (INGIPVa V).

The convergence of V< in L?(0,T; H'(€2)) and the local Lipschitz dependence of the
eigenvectors of the Hamiltonian with respect to the potential (see Lemma A.4 of
Appendix of [8]) allow us to conclude that V,€5[Ve] — V., €,[V] in LP((0,T) x w)
for all p € [1,2). From Corollary A.3, we deduce that for all ¢ € [1,+00), we can
extract a subsequence such that €[V¢] — €,[V] in L*(0,T; L9(w)). Thus, since we

have
"GV — ema V] < o™ €5 [VE] — €[V,

we deduce that for any r € [1,p)

Zk 5 —68
V. V=
s ZE

converges in L"((0,7) x w). This is enough to prove
NV, VE = N,V,V, in D/([0,T] x w).

Thus up to an extraction, (N, V') is a solution of (DDSP) in the distribution sense.
By the weak semi-continuity we get moreover

// NV, V dxdt < hmlnf // N:V,V: dzdt.
[0,T]xw 0,T]x

The semi-continuity of the L? norm gives

// |Vo/ N |? dadt <hm1nf / |V o/ NE|? dadt.
[0,T)xw

[0,T]xw
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And for a.e. t € [0,T],

t
—l—/ D(s) ds<hm1nf /D‘E )ds).
0

5 Long time behaviour

This section is devoted to the proof of Theorem 1.4. We use an entropy method
relying on the Logarithmic Sobolev inequalities and on the Csiszar-Kullback in-
equalities. This method has been widely used by several authors (see for instance
[2, 3, 10, 12, 14]). We introduce the relative entropy of (px, V') with respect to the
stationary solutions (pp°, V>°) :

Wee(t Z/pklogpk/pk) pr+ pp)de + = / Voo (V = V)| dadz

+Z/pk (EkV — €[V —/ Ixe|? V—Voo)dz) dx.
k w 0
(5.26)

We recall that the decay of pp with respect to k insures that the last term is non-
negative. We can prove with the same calculations as in Lemma 2.3 that

d
£W°° /N]D)Md < a/N|V (logu)|? dz,
u?

where we use Assumption 1.1 for the last inequality. We denote @ = N;/ [ Z(x)dz.
Therefore we have g

SW(1) < —a/sz\vx log% 2 dz. (5.27)
We recall the Gross logarithmic Sobolev inequality |2, 14, 21| : for two nonnegative
functions f and g such that fw fdx = fw g dx then there exists a nonnegative constant
A such that

/flog— /f\Vlog (/)2 dz.

Hence if we apply this inequality in (5.26) with f = N, and g = uZ, we obtain

d u
— T < — — .
dtw (t) oz)\/szlongx

We can then decompose

log— log——i—Ek—Ek +log pk :logp—i—l—ék—ezo%—loguf.
pk k Pk u
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Moreover, the Slotboom variable for the stationary problem u* is a constant. Thus

ﬁ — ) —Gk s
U <N1 / dx) Z/
Therefore with the identity u™ = p°e~, by a Jensen inequality, we have
logf :logZ/pioeek_ >Z/ €° —Ek pk dx
u — Ju
(We recall that Y-, [ pp® = N7). Finally we have obtained
d
W0 < XY [ s edo+ 3 [ e - ) o)
koY k kY@
—ax(} / prlog L2 da: + / (N — N®Y(V — V™) dadz
3 w P Q
+3 [ mlee— € =l - v do
k w
w3 [ e - = (P - v)) da).
k w

IN

The last term of the right hand side which is similar to the last term of W is
nonnegative. According to the Poisson equation, the second term of the right hand

side is equal to
// Voo (V — V)2 dudz.

d
Il ¥ 74 < _ 0
W) < —aAW=(t),

Thus, we have shown that

and a Gronwall type argument yields the exponential convergence of the relative
entropy : W>(t) < W>(0) e~**. Next we shall use the Csiszar-Kullback inequality
[1] : for all f and g in L} (w) with [ fdz = | gdx = Ny, we have

1 = gl < 2N1/flog§dx.

Therefore we deduce that

o
=t

loe — oi o () 2NTW>=(0) e

Appendix
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1 Sharp estimates on the spectrum of the Hamilto-
nian

The aim of this Appendix is to present sharp estimates on the eigenvalues and eigen-
functions of the one-dimensional Schrodinger operator, needed in the framework of
this paper. For a given real valued function V in L?(0,1), the Schrédinger operator
1 d?
H[V]:= 5157 +V(z)

defined on H?(0,1)NHZ(0, 1) admits a strictly increasing sequence of real eigenvalues
(€Ex[V])k>1 going to +00. The corresponding eigenvectors, denoted by (xx[V](2))k>1
(chosen such that x}.(0) > 0 and fo Ixx[V]|?dz = 1), form an orthonormal basis of
L?(0,1) and are in Hj(0,1). For V = 0, we have €,[0] = 27?k* and x,[0](z) =
V2 sin(rkz).

In the sequel we will use the standard notation ( fo z) dz and when there
is no confusion possible €; will stand for €;[V] and Xk for Xk[V]

By adapting the proofs of [28], we can prove :

Lemma A.1 Let V =V (), 2) € L2(0,A; L2(0,1)) with A € (0, A) (typically A =t
or \=ux;). If O,V € L}, .(\,L?(0,1)), then Ox€;, € L., Oxxx € Lloc()\, L°(0,1)) and

we have

loc’

%
OrEr = (xx*0AV) and Ok =) %Xﬂ-
2k

Thanks to this Lemma, we can improve the L* estimate on the eigenvectors
presented in Lemmata A.2 and A4 of [8].

Lemma A.2 Let V € L*0,1) such that V > 0, then the eigenvectors of the
Schadinger operator satisfy

1/2
Ik [V o) < OO+ VI Eo)-

Corollary A.3 Let V and V be two given nonnegative potentials in L*(0,1). Then
there exists a nonnegative constant C' such that

€x[V] = €V < CA+ IVIIaon + VI )V = Viizzow- (A1)

Remark A.4 Compared with the Appendiz of [8], the dependence of the eigenfunc-
tions on the potential is sub-linear whereas we had an exponential dependence in the
previous work.

Proof. The result of Lemma 1 Chapter 1 of [28] provides :

Xk(2) = Agsin(v/2€x2) + 2 /Oz sin(\/f/%(j —t))

V(t)xk(t) dt, (A.2)
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where A is a nonnegative constant to be determined. Thanks to a Cauchy-Schwarz
inequality, we deduced

* sin(v/2€5(z — t)) Jy V() Oldt _ (PalVIV2 e
/0 NoT V(t)xk(t)d ‘ \/f =T 6, HV”L/201

Moreover, from the Schrodinger equation we obtain

1
€ = 103" + (V) = (xelV)

Thus,
“sin(v/2€x(z — 1)) 1/2
V(t t)dt| < V A3
| = n @) < VI, (A3)
Thus from (A.2) we have for all z € [0, 1]
k()] < Ax+ V2V G- (A4)

Now, we will use the condition ||xx|/z2(01) = 1 to bound Aj. If we use the expression
of xx (A.2) in the identity fol X2 dz = 1, we obtain

| > A2 /0 Gn(VIE ) dr + 44, /0 ' in(v/2652) /0 ) Sin(% =)y (1) yut) dtd.
(A5)

For the second term we have from (A.3)

/Osin(mz)/oz Sin(%_mw) W(8) dtdz| <

1/2

\/—HV”L2(01

And we can calculate

' » 1 sin(2y/2€)
/0 [sin(v/2€2)] dz-§—47\/m.

Since V > 0, the Min-Max formula [22] implies €;[V] > €[0] = $n2k?, for all k& > 1.
Thus we can inject these remarks in (A.5), it leads to
1
1> A} <— — E) — 2V2 AV [l oo 1)

This implies that there exists a nonnegative constant C' such that

A, <CA+ VM2 L), VE>1.

£2(0,1)/>

It remains to inject this last estimate in (A.4) to prove Lemma A.2.
Corollary A.3 is an easy consequence of the Holder estimates and Lemma A.2
with the remark that

€lV] - &7 / OAEx(N) A = / DXV LRV = 7)) dA,

where we denote for A € [0,1], W(\, 2) =V + AV = V) and €,()) = €,[W(X, ). g
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2 Proof of Corollary 2.4

The first point is an easy consequence of our choice of boundary conditions. From
Lemma 2.3 we deduce after an integration in time that

VieRY, W(t)=W(0) - /tp(s) ds < W(0). (A.6)

Assumption 1.2 on initial data insures that 1//(0) is bounded independently on . In
fact, solving the Schrédinger-Poisson system for a given N? in Llog L(w) furnishes
V(t =0,--) € H(Q) (see Proposition 3.1) and the Trudinger inequality implies
that the product of a Llog L(w) term with the square of a H'(w) term is bounded
in L'(w).

We have proved in Section 2.2.1 of |8 that the decay of p, with respect to k
implies

> (€ — €J0] = {[xi*B[V])) = 0. (A7)

And €;[0] = 7?k?/2. Thus (A.6) implies that

w2k? 1 5
> / pr(—y— +logpr)dr+ o [ | VeV dudz < W(0). (A.8)
k w Q

2
Taking K =), e‘kQ, by the Jensen inequality we have
wW(0) > Z/pk(k2 +logp)dx = KZ/ P (log P ) . dx
e ~ ) e—k? ek K

> / N, log(N,/K) da.

Thus from (A.8),
Vi e R, /NslogNsdeW(O)—i—./\/}logK.

Then estimate (2.11) is a direct consequence of the remark that Va > 0, a|loga| <
aloga+2/e. In fact,

> [mllogalds <3 [ oulogton/e )| + 1) da
kv kv

2

<X [ pullogtone ) + 1o+ 2 [
(&

kv E ¥
2
< 1 2k%) d —|w|K
<3 [ tompec+ 28y - Sl
where |w| denotes the Lebesgue measure of w. Thus, we deduce from (A.8) that

2
VieR", Z/pk|logpk\dxSW(O)+g|w\K. (A.9)
k w
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Hence from (A.8), we obtain

1 2
Z/pkk2 dr + 5// V.. V[>dedz < 2W(0) + CILS
k w Q

For the point (iii), we have obtained in the proof of Proposition 3.1 of [8] the
estimate

Vie R / V. /No2dz < C(1+ D)),

for a nonnegative constant C. Since we have from Lemma 2.3 that f(f D(s)ds < W(0),
for all t € RT, we obtain (2.13) and from the Gagliardo-Nirenberg inequality we have

(2.14). -

References

[1] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On generalized Csiszdr-
Kullback inequalities, Monatsh. Math. 131 (2000), no. 3, 235-253.

[2] A. Arnold, P. A. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev
inequalities and the rate of convergence to equilibrium for Fokker-Planck type
equations, Comm. Partial Differential Equations 26 (2001), no. 1-2, 43-100.

[3] A. Arnold, P. Markowich, G. Toscani, On Large Time Asymptotics for Drift-
Diffusion-Poisson Systems, Transport Theory Statist. Phys. 29 (2000), no. 3-5,
571-581.

[4] J.-P. Aubin, Un théoréme de compacité, C. R. Acad. Sci. Paris, 256 (1963),
5042-5044.

[5] N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the
Viasov-Poisson system, Math. Methods Appl. Sci. 17 (6), (1994), 451-476.

[6] N. Ben Abdallah, F. Méhats, On a Viasov-Schridinger-Poisson model, Comm.
Partial Differential Equations 29 (2004), no. 1-2, 173-206.

[7] N. Ben Abdallah, F. Méhats, G. Quinio, Global existence of classical solutions
for a Vlasov-Schridinger-Poisson system, Indiana Univ. Math. J. 55 (2006), no
4, 1423-1448.

|8] N.Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quan-
tized particles : existence, uniqueness and long time behaviour, Proc. Edinb.
Math. Soc. (2006) 49, 513-549.

[9] N. Ben Abdallah, F. Méhats, N. Vauchelet, Analysis of a Drift-Diffusion-
Schrodinger-Poisson model, C. R. Acad. Sci. Paris, Ser I 335 (2002), 1007-1012.

21



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

P. Biler, J. Dolbeault, P. A. Markowich, Large time asymptotics of nonlinear
drift-diffusion systems with Poisson coupling, Transport Theory Statist. Phys.
30 (2001), no. 4-6, 521-536.

A. Blanchet, J Dolbeault, B. Perthame, Two-dimensional Keller-Segel model
: Optimal critical mass and qualitative properties of the solutions, Electron. J.
Differential Equations 2006, no 44, 32 pp.

J. A. Carrillo, G. Toscani, Asymptotic L'-decay of solutions of the porous
medium equation to self-similarity, Indiana Univ. Math. J. 49 (2000), no. 1,
113-142.

P. Degond, K. Zhang, Diffusion approrimation of a scattering matriz model of
a semiconductor superlattice, STAM J. Appl. Math. 63 (2002), no. 1, 279-298.

M. Del Pino, J. Dolbeault, Generalized Sobolev inequalities and asymtotic be-
haviour in fast diffusion and porous medium problems, preprint ceremade, 1999,
no 9905.

J. Dolbeault, Stationary states in plasma physics: Mazwellian solutions of the
Viasov-Poisson system, Math. Models Methods Appl. Sci. 1 (1991), no. 2, 183—
208.

H. Gajewski, On ezistence, uniqueness and asymptotic behavior of solutions of

the basic equations for carrier transport in semiconductors, Z. Angew. Math.
Mech. 65 (1985), no. 2, 101-108.

D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, Springer-Verlag, 1977.

F. Golse, F. Poupaud, Limite fluide des équations de Boltzmann des semicon-
ducteurs pour une statistique de Fermi-Dirac, Asymptotic Analysis 6 (1992),
135-169.

T. Goudon, P.-E. Jabin, A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-
Stokes equations. I. Light particles regime, Indiana Univ. Math. J. 53 (2004),
no. 6, 1495-1515.

T. Goudon, O. Sanchez, J. Soler, L. Bonilla, Low-field limit for a nonlinear dis-
crete drift-diffusion model arising in semiconductor superlattices theory, SIAM
J. Appl. Math. 64 (2004), no 5, 1526-1549.

L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semi-
groups, Lecture Notes in Mathematics 1563, E. Fabes et al. (Eds.) “Dirichlet
Forms”, Springer Berlin-Heidelberg, 1993.

T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin Hei-
delberg, 1966.

22



[23| J.-L. Lions, Equations différentielles opérationnelles et problemes aux limites,
Die Grundlehren der mathematischen Wissenschafter, Bd. 111, Springer-Verlag,
Berlin, 1961.

[24] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford University
Press, New York, 1998.

[25] P. A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor equations,
Springer-Verlag, Vienna, 1990.

[26] M. S. Mock, Analysis of mathematical models of semiconductor devices, Ad-
vances in Numerical Computation Series 3, Boole Press, 1983.

[27] F. Nier, A stationary Schrodinger-Poisson system from the modelling of elec-
tronic devices, Forum Math. 2 (5), (1990), 489-510.

[28] J. Poschel, E. Trubowitz, Inverse spectral theory, Academic Press, 1987.

|29] F. Poupaud, Diffusion approzimation of the linear semiconductor Boltzmann
equation : analysis of boundary layers, Asymptotic Analysis 4 (1991), 293-317.

[30] F. Poupaud, Boundary value problems for the stationary Viasov-Mazwell sys-
tems, Forum Math. 4 (1992), 499-527.

[31] K. Seeger, Semiconductor Physics. An Introduction, 6th edition, Springer,
Berlin, 1997.

[32] S. M. Sze, Physics of semiconductor devices, Second edition, John Wiley & Sons,
New York (1981).

[33] M.E. Taylor, Partial Differential Equation III : Nonlinear equations, Springer-
Verlag, New York, 1997.

[34] N. Vauchelet, Diffusive limit of a kinetic system of partially quantized particles
in two dimensions, submitted.

[35] S. Wang, Quasineutral limit of the multi-dimensional drift-diffusion-Poisson
models for semiconductors with p-n-junctions, Math. Models Methods Appl.
Sci. 16 (2006), no. 4, 537-557.

23



