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1 Introdution and main resultsBy downsaling eletronis omponents at nanometer sale, quantum e�ets beome non-negligible.In nanosale semiondutor devies, eletrons might be extremely on�ned in one or several dire-tions due to the length sales. These diretions are referred to as the on�ning diretions. Thisleads to a partial quantization of the energy. The subband deomposition approah [29, 38, 39℄ wasintrodued by several authors in order to take advantage of this redution of dimensionality. Thismethod onsists of a separation of the on�nement and the transport diretions.In the non-on�ned diretion(s), that we shall also refer to as the transport diretion(s), trans-port might have a quantum nature or be purely lassial in the kineti or di�usive regimes. In thiswork, we are interested in the kineti regime (the di�usive regime has been studied in [4, 36℄) andin the onvergene from the kineti model to the di�usive model. One of the most used models todesribe the transport of harged partiles in a kineti approah in several domain suh as plasmasor semiondutors is the Boltzmann transport equation [23, 6, 33, 35℄.1



In the on�ned diretion, eletrons behave like waves. The system is at thermodynamialequilibrium and is desribed by the subband model as a statistial mixture of eigenstates of the 1Dstationary Shrödinger equation.Namely, we onsider a partile system of harged arriers whih is partially quantized in onediretion (denoted by z) and whih, in the transport diretion denoted by x, is in a kineti regime.The oupling ours then in the momentum variable. We will �rst brie�y desribe the model usedand refer the reader to [28℄ for more details. A Vlasov-Shrödinger-Poisson system whih presentsalso a similar quantum-lassial oupling is analyzed in [3℄.1.1 The Shrödinger-Poisson systemIn the transverse diretion (referred by z), eletrons are on�ned in the nanostruture. The de-sription of the system needs the diagonalization of the 1D stationary Shrödinger equation. Wede�ne then on Ω = (a, b) × (0, 1), the set (χk[V ], ǫk[V ])k≥1 as the omplete set of eigenfuntionsand eigenvalues of the Shrödinger operator in the z variable, z ∈ (0, 1) :




−1

2
∂2

zχk[V ] + V χk[V ] = ǫk[V ]χk[V ] (k ≥ 1),

χk[V ](0) = χk[V ](1) = 0,

∫ 1

0

|χk[V ]|2 dz = 1 .
(1.1)The square of the modulus of the wave funtions (χk[V ])k≥1 represents the probability of oupationon the kth subband. If we denote ρk the oupation number of the kth subband, whih is de�nedbelow by ∫ fk dv, the partile density for a partially quantized system an be written

N(t, x, z) =
+∞∑

k=1

ρk(t, x)|χk[V (t, x, ·)](z)|2.The eletrostati potential V generated by the harged arriers is then the solution of the Poissonequation :
−∆x,zV (t, x, z) =

∑

k

ρk(t, x)|χk[V (t, x, ·)](z)|2, (1.2)with the boundary onditions :




dV

dx
(t, a, z) =

dV

dx
(t, b, z) = 0, for z ∈ (0, 1),

V (t, x, 0) = V (t, x, 1) = 0, for x ∈ (a, b).
(1.3)The boundary onditions here are hosen suh in order to simplify the mathematial analysis,moreover ellipti regularity of the Poisson equation (1.2) are needed in our proofs. However, in thespirit of [4℄, we an extend the proofs to the ase where V (t, x, 0) = V 0

b (x) and V (t, x, 1) = V 1
b (x)with d

dx
V 0

b (a) = d
dx
V 1

b (b) = 0. The idea is to introdue the extension V on Ω of the boundary dataand to onsider the quantities V − V instead of V , ǫk[V ] − ǫk[V ] instead of ǫk[V ], ...The Shrödinger-Poisson system was solved in [26, 27℄ by variational methods. Suh tehniquesare used here to obtain existene and uniqueness of solutions of this system for a given ρ = (ρk)k≥1.In the following, when there is no onfusion possible, we will denote ǫk instead of ǫk[V ] and χkinstead of χk[V ]. 2



1.2 The transport equationThe Boltzmann equation is one of the most used equation desribing the transport of hargedarriers in semiondutors in a kineti regime [31, 35℄. Let η > 0 be the saled mean free pathassumed to be small and denote V η the eletrostati potential generated by the harged arriers.We onsider here the saled Boltzmann equation in one dimension for the subband model de�nedon the phase spae (a, b)×R. The position x belongs to (a, b), the veloity v belongs to R and thetime variable t is nonnegative. Then the oupation number ρη
k is de�ned by ρη

k =
∫

R
f η

k dv wherethe distribution funtion f η
k (t, x, v) satis�es
∂tf

η
k +

1

η
(v ∂xf

η
k − ∂xǫk[V

η] ∂vf
η
k ) =

1

η2
Qη(f η)k. (1.4)By using the notation {·, ·} for the Poisson braket : {g, h} = ∂xh ∂vg−∂vh ∂xg, we an rewrite theBoltzmann equation :

∂tf
η
k +

1

η
{Hη

k, f
η
k } =

1

η2
Qη(f η)k ,where Hk denotes the energy of the system in the kth subband whih is the sum of the kinetienergy and the potential energy :

Hη
k(t, x, v) =

1

2
v2 + ǫk[V

η(t, x, ·)].In semiondutors, the main mehanism driving the eletrons towards a di�usive regime is ollisionwith phonons (vibration of the semiondutor rystal lattie). The ollision operator Qη for theeletron-phonon interation in the linear BGK approximation reads in the following form :
Qη(f)k =

∑

k′

∫

R

αk,k′(v, v′)(Mη
k(v)fk′(v′) −Mη

k′(v
′)fk(v)) dv

′, (1.5)where the funtion Mη
k is the normalized Maxwellian

Mη
k(t, x, v) =

1

2πZη
e−Hη

k
(t,x,v) (1.6)and where the repartition funtion Zη is given by

Zη(t, x) =

+∞∑

k=1

e−ǫk[V η(t,x,·)]. (1.7)We refer the reader to [7, 33, 35℄ for a physial bakground on the Boltzmann equation (1.4).The equation is ompleted with the speular re�etion boundary onditions :
f η

k (t, a, v) = f η
k (t, a,−v) , f η

k (t, b, v) = f η
k (t, b,−v), v > 0, t ∈ R

+. (1.8)The surfae density of partiles is de�ned by
Nη

s (t, x) =

∫ 1

0

Nη(t, x, z) dz =
∑

k

∫

R

f η
k (t, x, v) dv =

∑

k

ρη
k(t, x).3



The ross setion α is assumed to be symmetri and bounded from above and below :(A-1) αk,k′(v, v′) = αk′,k(v
′, v) and 0 < α1 ≤ αk,k′(v, v′) ≤ α2, for all (v, v′) ∈ R

2, k, k′ ≥ 1.We onsidered the well-prepared initial ondition assumed to be at the thermal equilibrium :
f η

k (0, x, v) = f in
k (x, v) :=

N in
s (x)

2π
∑

k e
−ǫk[V in]

e−v2/2−ǫk[V in], (x, v) ∈ [a, b] × R, (1.9)where (V in, (ǫk[V
in], χk[V

in])k≥1) is the set of solutions of the Shrödinger-Poisson system at ther-mal equilibrium :




−1

2
∂2

zχk[V
in] + V inχk[V

in] = ǫk[V
in]χk[V

in] (k ≥ 1),

χk[V
in](x, ·) ∈ H1

0 (0, 1),

∫ 1

0

χk[V
in]χℓ[V

in] dz = δkℓ .

−∆x,zV
in =

∑

k

N in
s (x)∑

k e
−ǫk[V in]

|χk[V
in]|2e−ǫk[V in],We assume that we have(A-2) N in

s ≥ 0, N in
s ∈ C0([a, b]).Under this assumption, it has been stated in Proposition 2.1 of [4℄ that the above Shrödinger-Poisson system at thermal equilibrium admits a unique set of solution (V in, (ǫk[V

in], χk[V
in])k≥1)with 0 ≤ V in ∈ C1(Ω), where we reall that Ω = (a, b) × (0, 1).From a mathematial point of view, the di�usive limit is obtained by letting η going to 0 inequation (1.4). It is well-known that in a di�usion approximation the surfae density Ns satis�es atthe limit a drift-di�usion equation [31, 16℄. We propose here to extend these results for the oupledquantum-lassial system presented above.Before stating the results of this paper, let us introdue some notations. An originality of thissystem is the in�nite sequene of solution of kineti equations. Then we denote for any separableBanah spae E by ℓ1(E) the spae of sequenes (hk)k≥1 suh that for all k ≥ 1 we have hk ∈ Eand ∑k≥1 ‖hk‖E < +∞, this last quantity being the norm of (hk)k≥1 in ℓ1(E). Its dual is ℓ∞(E ′)the set of sequenes (uk)k≥1 belonging to the dual E ′ of E suh that supk ‖uk‖E′ is �nite. Wesay that a sequene (hn

k)k≥1 onverges weakly to (hk) in ℓ1(E) if for any (uk)k≥1 ∈ ℓ∞(E ′), wehave ∑k〈hn
k − hk, uk〉E′,E → 0 as n → ∞. We reall that as a onsequene of the Dunford-PettisTheorem and the De La Vallée Poussin Theorem, a sequene (hn)n is relatively weakly ompatin ℓ1(L1(O)) (for O ⊂ R

N ) if there exists a nonnegative funtion G satisfying limt→+∞
G(t)

t
= +∞and suh that sup

∑
k

∫
Ω
G(|fk|) dx < +∞ (see Chapter 2 of [13℄). All along the paper, we willusually shortly denote by ‖hk‖Lp

t,x,v
the Lp((0, T )× [a, b]×R) norm of hk. Finally, we will make useof the spae L logL(O) de�ned as the spae of positive funtion f suh that ψ(f) ∈ L1(O) where

ψ(x) = x log x.1.3 Main resultsWe are interested in this paper in the di�usive limit of the Boltzmann-Shrödinger-Poisson systempresented before :
∂tf

η
k +

1

η
(v.∂xf

η
k − ∂xǫη

k.∂vf
η
k ) =

1

η2
Qη(f η)k, (x, v) ∈ (a, b) × R. (1.10)4







−1

2
∂2

zχ
η
k + V ηχη

k = ǫη
kχ

η
k (k ≥ 1),

χη
k(t, x, ·) ∈ H1

0 (0, 1),

∫ 1

0

χη
k χ

η
ℓ dz = δkℓ ,

(1.11)
−∆x,zV

η =
∑

k

∫

R

f η
k |χη

k|2 dv, (1.12)whih is oupled with the boundary ondition (1.8) and (1.3) and the well-prepared initial boundaryondition (1.9). The aim of this paper is to prove rigorously the limit as η goes to 0 of this systemto the drift-di�usion-Shrödinger-Poisson system studied in [4℄. One partiular relevant motivationof this work is to derive a model for whih numerial simulations are less ostly and simpler thanfor the kineti-quantum model (1.10)�(1.12). Then a numerial simulation of the drift-di�usion-Shrödinger-Poisson system obtained as η goes to 0 is provided in [28℄ to simulate the di�usivetransport of eletrons in a double-gate MOSFET. An interesting ontinuation of this work is toextend to more general ollision operators to derive a hierarhy of lassial-quantum oupled modelin the spirit of [5℄.To establish rigorously the di�usive limit, we will make use of tehniques whih have beendeveloped in the framework of hydrodynamis limits for the Boltzmann equation by several authors(see e.g. [1, 8, 15, 14, 17, 21, 32℄ and see [37℄ for a review). Di�usion limits for paraboli systemshave been presented in [9℄, where linear kineti equations arising in models of plasma or semi-ondutors or rare�ed gases are onsidered, and in [20℄ for generalized two-veloity models.Although the linearity of the ollision operator Q, the oupling is highly non linear and thenwe are not able to onstrut strong solutions for this system. Thus we will work in the frameworkof renormalized solutions [10, 11, 24℄.De�nition 1.1 We say that a nonnegative funtion f η = (f η
k )k∈N∗ is a renormalized solution of(1.10) if ∀ β ∈ C1(R+) with |β(t)| ≤ C(

√
t+ 1) and |β ′(t)| ≤ C, we have for all k ≥ 1, β(f η

k ) is aweak solution of :




η∂tβ(f η
k ) + v ∂xβ(f η

k ) − ∂xǫη
k ∂vβ(f η

k ) =
Qη(f η)k

η
β ′(f η

k ),

β(f η
k )(t = 0) = β(f in

k ),

β(f η
k )(t, a, v) = β(f η

k )(t, a,−v), β(f η
k )(t, b, v) = β(f η

k )(t, b,−v), v > 0, t > 0.The entropy of the system is de�ned by
W η(t) =

∑

k

∫∫

(a,b)×R

(
f η

k log
f η

k

Mk

− f η
k +Mk

)
dxdv +

1

2

∫∫

Ω

|∇x,zV
η|2 dxdz, (1.13)where Mk = K exp(−1

2
(v2 + k2)) with a onstant K hosen suh that ∑k

∫
Mk dv = 1. Thedissipation rate whih measures the distane to the equilibrium is de�ned by

Rη(t) =
1

2

∑

k

∫∫

(a,b)×R

(√
f η

k −
√
Nη

s Mη
k

)2

dxdv. (1.14)Remark : We point out the fat that, looking at the expression of the entropy of the system, wedo not have better estimates in spae than L logL for f η and H1 for V η. It is proved in Appendix5



that it implies a bound of ∂xǫη
k in L2. Thus the produt f η

k · ∂xǫη
k has no meaning even in a weaksense. The renormalization of the Boltzmann equation allows us to overome this di�ulty.The following statement establishes existene of a renormalized solution under the assumptionof small initial data :Theorem 1.2 Let T > 0 and assume that Assumptions (A-1) and (A-2) hold. If we denote :

Nin =

∫ b

a

N in
s dx.Then, there exists N0 > 0 suh that if Nin ≤ N0, the system (1.10)-(1.11)-(1.12) -(1.8)-(1.9)-(1.3)admits a renormalized solution (V η, (ǫη

k, χ
η
k, f

η
k )k≥1) on [0, T ] whih satis�es(i) ∀λ > 0, Θη

k,λ := (f η
k + λ exp(−1

2
(v2 + k2)))1/2 satis�es

η∂tΘ
η
k,λ + v ∂xΘ

η
k,λ − ∂v(∂xǫη

k Θη
k,λ) =

Qη(f η)k

2ηΘη
k,λ

+ λ∂xǫη
k

ve−
1
2
(v2+k2)

2Θη
k,λ

. (1.15)(ii) We have the loal mass onservation
∂tN

η
s + ∂xJ

η = 0, where Jη =
1

η

∑

k≥1

∫

R

vf η
k dv. (1.16)(iii) The entropy inequality holds :

∀ t ∈ [0, T ], 0 ≤W η(t) +
α1

η2

∫ t

0

Rη(s) ds ≤ CT . (1.17)If the potential is given in L∞, Poupaud [31℄ has proved existene of strong solutions of thesemiondutors Boltzmann transport equation and their onvergene as the mean free path η goesto 0 towards solutions of the drift-di�usion equation. He uses a method based on an asymptotiexpansion of the solution f η in power of η and estimation on the remainder of this expansion.Ben Abdallah and Tayed [6℄ have extended this method and established the di�usive limit of theBoltzmann-Poisson system in one dimension, sine in this ase they obtain enough regularity onthe potential. However when the dimension is greater than one, Masmoudi and Tayeb [22℄ need torenormalize the Boltzmann equation and use ompatness method to establish the di�usive limit.In this paper we adapt the tehniques of Masmoudi and Tayeb [22℄ to prove the following theorem :Theorem 1.3 Let T > 0 and, for η > 0, (V η, (f η
k ,ǫ

η
k, χ

η
k)k≥1) be a renormalized solution of theBoltzmann-Shrödinger-Poisson system as de�ned in Theorem 1.2 for Nin ≤ N0. Then as η → 0, if

N0 is small enough, this solution onverges to a solution (V,Ns, (ǫk, χk)k≥1) of the drift-di�usion-Shrödinger-Poisson (DDSP) system de�ned by
∂tNs + ∂xJ = 0, J = −D(∂xNs +Ns∂xVs), (1.18)




−1

2
∂zzχk + V χk = ǫkχk (k ≥ 1),

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0

χk χℓ dz = δkℓ ,
(1.19)
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−∆x,zV = Ns

∑

k

e−ǫk

∑
ℓ e

−ǫℓ
|χk|2 , (1.20)where the e�etive potential Vs is de�ned by

Vs = − log
∑

k

e−ǫk , (1.21)and D is the di�usion oe�ient whose expression is given in Corollary 2.2. This system is om-pleted with the initial ondition Ns(0, x) = N in
s (x) and with the following onservative boundaryonditions :





J(t, a) = J(t, b) = 0,
dV

dx
(t, a, z) =

dV

dx
(t, b, z) = 0 for z ∈ (0, 1),

V (t, x, 0) = V (t, x, 1) = 0 for x ∈ (a, b).

(1.22)We have up to an extration of a subsequene, as η → 0,
‖f η

k −NsMk‖ℓ1(L1([0,T ]×[a,b]×R)) → 0 and ‖V η − V ‖L2([0,T ],H1(Ω)) → 0.We notie the assumption of small initial data in these Theorems whih has been already set forthe study of the Vlasov-Shrödinger-Poisson system in [3℄. The existene of solutions for (DDSP)when the x-variable is two dimensional has been established in [4℄ when the di�usion oe�ient Dis assumed to be a onstant. In this ase we have enough regularity to establish the uniqueness ofsolutions. But for a non onstant di�usion oe�ient, the proof of existene is addressed in [36℄;however we do not obtain the uniqueness of solutions.1.4 Strategy of the proofAs done in [3, 4℄, the system shall be viewed as a one dimensional Boltzmann equation (1.10)for the distribution funtion (f η
k )k≥1 oupled to the quasistati Shrödinger-Poisson system (1.11)-(1.12) for the potential V η. The Shrödinger-Poisson system allows us to ompute the potentialas a funtion of the distribution funtion, while the Boltzmann equation gives the value of thedistribution funtion in terms of the eletrostati potential. The arguments used for the proof ofTheorem 1.2 are rather standard (see [24℄ and referene therein). A �rst step is to trunate andto regularize the Boltzmann-Shrödinger-Poisson system. Thanks to a �xed point argument wean onstrut strong solutions of the regularized system. Then solutions of the whole system areobtained by a passage to the limit in the regularization using stability result. These steps areexplained in Setion 5.Theorem 1.3 establishes the di�usive limit of renormalized solutions of Theorem 1.2 as η → 0.Regarding the tehniques used in the lassial Boltzmann-Poisson ase [22℄, the proof of Theorem1.3 relies strongly on the entropy estimate (1.17) whih is established in Setion 2 and on a rigorousanalysis of the Shrödinger-Poisson system. A priori estimates obtained thanks to the entropy allowsus to �x the funtional framework :

(fk)k≥1 ∈ L∞
t (L logL(dxdv)), ((v2 + k2)fk)k≥1 ∈ L∞

t (ℓ1(L1(dxdv))), V ∈ L∞
t (H1(dxdv)).As reall in the introdution, a onsequene of the Dunford-Pettis and the De La Vallée PoussinTheorem is the relative weak ompatness of f η in ℓ1(L1). We reall the following averaging Lemmawhose proof an be found in [22℄ (see also [8℄) : 7



Lemma 1.4 Assume that hη is bounded in L2((0, T ) × (a, b) × R), that hη
0 and hη

1 are bounded in
L1((0, T ) × (a, b) × R), and that

η∂th
η + v ∂xh

η = hη
0 + ∂vh

η
1.Then for all ψ ∈ C∞

0 (R),
lim
y→0

(
sup
η<1

∥∥∥∥
∫

R

(hη(t, x+ y, v) − hη(t, x, v))ψ(v) dv

∥∥∥∥
L1

t,x

)
= 0,where hη is extended by zero for x 6∈ [a, b].Thanks to this averaging lemma we will establish in Setion 4.1 the relative strong ompatness ofthe surfae density Nη

s in ℓ1(L1) as η goes to 0. Then, with the entropy inequality (1.17), we have :
∫ t

0

Rη(s) ds =
1

2

∑

k

∫ t

0

∫∫

(a,b)×R

(√
f η

k −
√
Nη

s Mη
k

)2

dxdvds ≤ CTη
2. (1.23)Letting η going to 0 we hope to prove with (1.23) that the distribution funtion onverges to aMaxwellian. But we need to establish the onvergene of the eigenenergies ǫη

k. Contrary to theBoltzmann-Poisson system [22℄, the dependeny of the potential V η with respet to the oupationfator ρη is not obvious but needs the resolution of the Shrödinger-Poisson system in the funtionalframework suggested by the a priori estimates.Therefore a key point is the study of the Shrödinger-Poisson system (1.1)-(1.2), whih is theobjet of Setion 3. We remark that sine we work in one dimension for the transport, we have that
V ∈ H1(Ω) implies ‖V ‖L2

z(0,1) ∈ H1(a, b) whih is ompatly embedded in L∞(a, b). It is proved inthe Appendix, where we reall some spetral properties of the Hamiltonian, that it implies a boundon χk in L∞(Ω) (see Lemma A.4). Thus the produt of ρk with |χk|2 in the right hand side of thePoisson equation (1.2) makes sense. Ben Abdallah and Méhats [3℄ have established existene anduniqueness of solutions of this system (1.1)-(1.2) for an oupation number ρk in Lp for p > 1. Theproof is based on an idea of Nier [26, 27℄ whih suggests to minimize the funtional
Jρ(V ) =

1

2

∫∫

Ω

|∇V |2 dxdz −
∑

k≥1

∫ b

a

ρkǫk[V ] dx.A ritial point of this funtional is a solution of the Shrödinger-Poisson system. But ontraryto [4, 36℄ where the oupation fators deay with respet to k, this funtional is not onvex.Thus we do not have uniqueness of the minimum. However we prove in Proposition 3.4 that if
(ρk)k≥1 and (ρ̃k)k≥1 are in L∞((0, T ), ℓ1(L1(a, b))) and if V and Ṽ are orresponding solutions ofthe Shrödinger-Poisson system (1.1)-(1.2),

‖V − Ṽ ‖L1([0,T ],H1(Ω)) ≤ C1‖ρk − ρ̃k‖ℓ1(L1((0,T )×(a,b))) + C2N‖V − Ṽ ‖L1([0,T ],H1(Ω)), (1.24)where N = max{‖ρk‖L∞((0,T ),ℓ1(L1(a,b))), ‖ρ̃k‖L∞((0,T ),ℓ1(L1(a,b)))} and C1 and C2 are nonnegative on-stants depending only on data. We dedue from this inequality that if N is small enough, thesolution of the Shrödinger-Poisson system (1.1)-(1.2) is unique. It explains why Theorems 1.2 and1.3 are proved only under the assumption of small initial data.8



Yet we an prove that the strong ompatness of Nη
s in L1 implies the strong ompatness of V ηin L1((0, T ), H1(Ω)). From spetral properties of the Hamiltonian it implies that ǫk[V

η] → ǫk[V ]as η goes to 0. From (1.23) we dedue that f η → NsM in ℓ1(L1(dtdxdv)). It remains to show thatthe limit funtion Ns is a solution of the drift-di�usion equation (1.18). Passing to the limit in theloal mass onservation, it su�es to study the limit of the urrent Jη whih is done in Setion 4.2.The outline of the paper is as follows. In the seond setion, after brie�y realling basi prop-erties of the ollision operator, we establish the a priori estimates, whih are the natural estimatesfor our system. In the third setion, we analyze the Shrödinger-Poisson system under physialassumptions given by the a priori estimates. Setion 4 is devoted to the proof of Theorem 1.3assuming that we have onstruted a renormalized solution of the Boltzmann-Shrödinger-Poissonsystem. In setion 5, the proof of Theorem 1.2 is onsidered : we give the regularization andexplain the passing to the limit in the regularized system. The Appendix is devoted to some usefulproperties on the spetrum of the Shrödinger operator.2 A priori estimate2.1 Properties of the ollision operatorThis setion is devoted to the study of the ollision operator de�ned by (1.5). The ollision operator
Q operates on the v variable only, then we omit in this setion the spatial and time dependeny,sine these variables are only parameters. We assume that the sequene (ǫk)k≥1 is given and wede�ne Mk(v) =

1

2πZ exp(−1

2
v2 − ǫk) for Z =

∑

k≥1

e−ǫk . We introdue the spae :
L2
M = {(fk)k∈N∗ s.t. ∑

k

∫

R

f(v)2/Mk(v) dv < +∞}, (2.1)with the assoiated inner produt :
〈f, g〉M =

∑

k

∫

R

fkgk

Mk

dv.Then we summarize the main properties of this ollision operator in the following proposition.Proposition 2.1 Let Q be de�ned by (1.5) with a ross setion α symmetri and bounded fromabove and below i.e. satisfying (A-1). Then we get :(i) ∑k

∫
Q(f)k(v) dv = 0.(ii) Q is a linear, bounded, selfadjoint and negative operator on L2

M.(iii) The nullspae : Ker Q = {f ∈ L2
M s.t. ∃Ns ∈ R with fk = NsMk, ∀k ≥ 1}.(iv) The equation Q(f) = g admits a solution f ∈ L2

M i�
∑

k

∫

R

gk(v) dv = 0,and this solution is unique if we impose the same relation on f .9



Proof. The �rst point is trivial. Using the symmetry of the ross setion, we get the ruialidentity :
2〈Q(f), g〉M =

−
∑

k,k′

∫∫
αk,k′Mk(v)Mk′(v′)

(
fk′(v′)

Mk′(v′)
− fk(v)

Mk(v)

)(
gk′(v′)

Mk′(v′)
− gk(v)

Mk(v)

)
dvdv′.Then (ii) and (iii) are easy onsequenes from this identity. It follows,

(KerQ)⊥ = {f ∈ L2
M s.t. ∑

k

∫
fk(v) dv = 0}.Sine Q is obviously a losed operator in L2

M the equation Q(f) = g admits a solution i� g ∈
(Ker Q)⊥. This solution is unique in (KerQ)⊥.Corollary 2.2 There exists Θ ∈ L2

M suh that for all k ≥ 1,
Q(Θ)k = −vMk and ∑

k

∫

R

Θk dv = 0.Then we an de�ne the di�usion oe�ient as
D =

∑

k

∫

R

Θk ⊗ v dv. (2.2)Remark 2.3 We reognize in formula (2.2) the lassial expression for the di�usion oe�ientin all the problem of approximation of transport proess by di�usion. This formula, known as theKubo's fomula, is still valid in higher dimensions and under Assumption (A-1) on the ross-setionit de�nes a positive de�nite matrix [18℄.2.2 A priori estimateA key argument in our study is to obtain uniform estimates on the unknows of the system. We usethe entropy de�ned in (1.13). All along the paper, we will use the following funtional spae :
Lp

xL
q
z(Ω) = {u ∈ L1

loc(Ω) suh that ‖u‖Lp
xLq

z(Ω) =

(∫ b

a

‖u(x, ·)‖p
Lq

z(0,1)
dx

)1/p

< +∞}.We reall (see Lemma 2.2 of [3℄)Lemma 2.4 Let Ω = (a, b) × (0, 1) ⊂ R
2. Then the spae H1(Ω) is ontinuously imbedded in

L∞
x L

2
z(Ω).We notie that this embedding does not hold if Ω = ω × (0, 1) for ω a bounded domain of R

2, i.e.if the transport is assumed to take plae in a bounded domain of R
2.

10



Proposition 2.5 Let T > 0 and let (V η, (f η
k ,ǫ

η
k, χ

η
k)k≥1) be a renormalized solution on the interval

[0, T ] of the Boltzmann-Shrödinger-Poisson system (1.10)�(1.1)�(1.2) with boundary onditions(1.9)�(1.8). We assume that (A-1) and (A-2) hold and that
((1 + v2 + ǫη

k + log f η
k )f η

k )k≥1 ∈ L∞([0, T ], ℓ1(L1((a, b) × R)))and V η ∈ L∞([0, T ], H1(Ω)).Then, there exists a nonnegative onstant C depending only on initial data suh that,
∀ t ∈ [0, T ], 0 ≤W η(t) +

α1

η2

∫ t

0

Rη(s) ds ≤ C, (2.3)where the entropy W η is de�ned in (1.13) and the dissipation rate Rη is given in (1.14). Moreover,
∀ t ∈ [0, T ],

∫ b

a

Nη
s (t, x) = Nin =

∫ b

a

N in
s (x) dx. (2.4)Proof. This result is proved in the ase of smooth solutions for whih all alulations are justi�ed.In a general ase, we regularize the system to have smooth solutions and pass to the limit in theestimate obtained for these smooth solutions. These steps are explained in Setion 5.2.It is readily seen that with our assumption on the initial ondition (A-2), the initial entropyis bounded and that with our boundary onditions, the system onserves the mass whih implies(2.4). Multiplying (1.10) by (1 + log f η

k +
|v|2
2

+ ǫη
k

), integrating on (a, b)× R and summing over
k, we get

∑

k

∫∫
∂tf

η
k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dxdv =

d

dt

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+ ǫη
k

)
dxdv −

∑

k

∫∫
f η

k ∂tǫη
k dxdv.Moreover, using the notation 〈f〉 =

∫ 1

0
f(z) dz, we have ∂tǫη

k = 〈|χη
k|2∂tV

η〉 (see Lemma A.2 in theAppendix). Thus we obtain :
∑

k

∫∫
f η

k ∂tǫη
k dxdv =

∑

k

∫∫∫
f η

k |χη
k|2∂tV

η dxdvdz

=
d

dt

∑

k

∫∫
f η

k 〈|χη
k|2V η〉 dxdv − 1

2

d

dt

∫∫
|∇x,zV

η|2 dxdz,where we use the Poisson equation (1.2). Therefore,
∑

k

∫∫
∂tf

η
k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dxdv =

1

2

d

dt

∫∫
|∇x,zV

η|2 dxdz

+
d

dt

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+ ǫη
k − 〈|χη

k|2V η〉
)
dxdv.

(2.5)And from the Shrödinger equation (1.1) we have :
1

2
〈|∂zχ

η
k|2〉 + 〈|χη

k|2V η〉 = ǫη
k.11



With our boundary ondition (1.8) we have after an integration by parts
∑

k

∫∫
(v · ∂xf

η
k + ∂xǫη

k · ∂vf
η
k )

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dxdv =

[
∑

k

∫

R

vf η
k

(
log f η

k +
|v|2
2

+ ǫη
k

)
dv

]b

a

= 0.

(2.6)Finally, with (1.5) and sine ∑k

∫
Qη(f η)k dv = 0,

∑

k

∫
Qη(f η)k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dv =

1

2

∑

k,k′

∫∫
αk,k′(Mη

k(v)f
η
k′(v

′) −Mη
k′(v

′)f η
k (v)) log

[(
f η

k (v)

Mη
k(v)

)(Mη
k′(v′)

f η
k′(v′)

)]
dvdv′.Using the relation (a1 − a2) log(a1/a2) ≥ (

√
a1 −

√
a2)

2, for all positive a and b, and the Jenseninequality, we obtain :
∑

k

∫∫
Qη(f η)k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dvdx ≤ −α1Rη(t). (2.7)Finally, (2.5), (2.6) and (2.7) lead to :

d

dt

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+
1

2
〈|∂zχ

η
k|2〉
)
dxdv +

1

2

d

dt

∫∫
|∇x,zV

η|2 dxdz +
α1

η2
Rη(t) ≤ 0.(2.8)From (2.8) we have after an integration on [0, T ],

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+
k2

2
− 1

)
dxdv +

1

2

∫∫
|∇x,zV

η|2 dxdz

+
α1

η2

∫ T

0

Rη(t) dt ≤ C1 +
∑

k

∫ b

a

ρη
k

(
k2

2
− 1

2
〈|∂zχ

η
k|2〉
)
dx.

(2.9)Moreover, sine the potential V η is nonnegative, we have with the Hölder inequality
1

2
〈|∂zχ

η
k|2〉 = ǫη

k − 〈|χη
k|2V η〉 ≥ ǫk[0] − ‖χη

k‖2
L4

z(0,1)‖V η‖L2
z(0,1).An interpolation and Lemma A.4 imply the existene of a nonnegative onstant C2 suh that

‖χη
k‖2

L4
z(0,1) ≤ C‖χη

k‖L2
z(0,1)‖χη

k‖L∞

z (0,1) ≤ C2(1 + ‖V η‖1/2
L2

z(0,1))Sine ǫk[0] = 1
2
π2k2, we dedue that

k2

2
− 1

2
〈|∂zχ

η
k|2〉 ≤

1

2
k2 − 1

2
π2k2 + C2(1 + ‖V η‖1/2

L2
z(0,1)) ≤ C2(1 + ‖V η‖1/2

L2
z(0,1)). (2.10)By the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω), we have

∑

k

∫ b

a

ρη
k(
k2

2
− 1

2
〈|∂zχ

η
k|2〉) dx ≤ C3‖ρη

k‖ℓ1(L1(a,b))(1 + ‖V η‖1/2

H1(Ω)) = C3Nin(1 + ‖V η‖1/2

H1(Ω)).(2.11)12



This last inequality in (2.9) provides
∫∫

|∇x,zV
η|2 dxdz ≤ C4 + C5‖V η‖1/2

H1(Ω).Thus using the Poinaré inequality, we dedue that ‖V η‖H1(Ω) is bounded. Then (2.9) and (2.11)provide the desired estimate.Corollary 2.6 Let T > 0 and (f η
k )k≥1 suh as in Proposition 2.5, there exists a onstant CT > 0suh that :

∀ t ∈ [0, T ],
∑

k

∫∫

(a,b)×R

f η
k (| log f η

k | + |v|2 + k2 + 1) dxdv ≤ CT ,

∫ b

a

(Nη
s logNη

s −Nη
s + 1) dx ≤ CT ,

∫ T

0

∫ b

a

Jη(t, x) dxdt ≤ CTProof. The seond estimate results from the Jensen inequality. The �rst follows from the remark
y| log y| ≤ y log y + 2/e for all y > 0. Sine the funtion v 7→ vMη

k is odd, we have
Jη =

1

η

∑

k

∫

R

v

(√
f η

k +
√
Nη

s Mη
k

)(√
f η

k −
√
Nη

s Mη
k

)
dv.Using the Cauhy-Shwarz inequality, we dedue that

∫ b

a

Jη(t, x) dx ≤ 2

(
∑

k

∫∫
v2(f η

k +Nη
s Mη

k) dxdv

)1/2

(Rη(t))1/2 .We onlude by using (2.3).Remark 2.7 It ould seem more �natural� to onsider the relative entropy with respet to thephysial equilibrium M rather than W η in (1.13). However it this ase the time derivative of theentropy with respet to time will involve terms ∂tǫk for whih we have no estimate. This is thereason why we hoose the time-independent quantity M in (1.13).3 The Shrödinger-Poisson systemThis setion is devoted to the study of the �quasi-stati� Shrödinger-Poisson system de�ned by :




−1

2
∂2

zχk + V χk = ǫkχk (k ≥ 1),

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0

χk χℓ dz = δkℓ ,
(3.1)

−∆x,zV =
∑

k

ρk|χk|2 , (3.2)
13



where we onsider that ρ = (ρk)k≥1 is given in L∞((0, T ), ℓ1(L1(a, b))) and satis�es :(H1) ∀ k ≥ 1, ρk ≥ 0 and there exists a nonnegative onstant CT suh that
∀ t ∈ [0, T ],

∑

k

∫ b

a

ρk(1 + k2) dx ≤ CT . (3.3)We denote Ns =
∑

k ρk. The system is ompleted by the boundary onditions (1.3). In thesequel we will use the funtional spae H1
01 = {V ∈ H1(Ω) : V (x, 0) = V (x, 1) = 0}.Proposition 3.1 (Existene and uniqueness) Let us suppose that ρ = (ρk)k≥1 is given in

L∞((0, T ), ℓ1(L1(a, b))) and satis�es H1. Then the Shrödinger-Poisson system (3.1)�(3.2) admitsa solution in H1
01.Moreover, denoting N = ‖Ns‖L∞((0,T ),L1(a,b)) if N is small enough, this solution (V, (ǫk, χk)k≥1)is unique.This result is obtained thanks to an idea of Nier [26℄ whih has been developed in [3℄. Thepriniple is based on the fat that a weak solution of (3.1)�(3.2) is a ritial point of a ertainfuntional. Namely, we onsider the funtional de�ned on H1

01 by
Jρ(V ) =

1

2

∫∫

Ω

|∇V |2 dxdz −
∑

k≥1

∫ b

a

ρkǫk[V ] dx = J0(V ) + J1(V, ρ). (3.4)It is proved in Lemma 3.2 that this funtional admits a minimizer and that this minimizer is aweak solution of (3.1)�(3.2). Beause of the non-onvexity of Jρ, its minimizers are not unique.Hene the uniqueness is obtained in Lemma 3.3 only under the assumption of smallness for N .Lemma 3.2 Assume that (ρk)k≥1 ∈ L∞((0, T ), ℓ1(L1(a, b))) and satisfy H1. Then the funtional
Jρ de�ned in (3.4) is ontinuous, loally Lipshitz and weakly lower semiontinuous on H1

01. It isoerive : there exist nonnegative onstants C1, C2 and C3 suh that for all t ∈ (0, T ),
Jρ(V ) ≥ C1‖V ‖2

H1(Ω) − C2‖V ‖3/2

H1(Ω) − C3. (3.5)Thus the system (3.1)�(3.2) admits a solution (V, (ǫk, χk)k≥1) with V ∈ L∞((0, T ), H1
01).Proof. The funtional J0 is learly ontinuous and strongly onvex on H1

01. For the funtional
J1, we use the properties of ǫk[V ] summarized in (A.8) to prove

|J1(V, ρ) − J1(Ṽ , ρ)| ≤
∑

k≥1

∫ b

a

ρk|ǫk[V ] − ǫk[Ṽ ]| dx

≤ C1

∑

k≥1

∫ b

a

ρk(1 + ‖V ‖1/2
L2

z(0,1) + ‖Ṽ ‖1/2
L2

z(0,1))‖V − Ṽ ‖L2
z(0,1) dx.

(3.6)If we use the Sobolev embedding stated in Lemma 2.4, we obtain
|J1(V, ρ) − J1(Ṽ , ρ)| ≤ C2(1 + ‖V ‖1/2

H1(Ω) + ‖Ṽ ‖1/2

H1(Ω))‖Ns‖L1(a,b)‖V − Ṽ ‖H1(Ω). (3.7)Hene J1(·, ρ) is Lipshitz and weakly ontinuous on H1
01. Now if we take Ṽ = 0 in (3.7), from H1,we have that 0 ≥ J1(0, ρ) ≥ −CT . Thus,

Jρ(V ) ≥ 1

2
‖∇V ‖2

L2(Ω) − C3(1 + ‖V ‖1/2

H1(Ω))‖V ‖H1(Ω) − C4.14



We apply the Poinaré inequality in H1
01 to �nd (3.5). Hene the funtional Jρ admits a minimizerin H1

01. Moreover, from Lemma (A.2), it is lear that Jρ is Gâteaux di�erentiable on H1
01 and thedi�erential of Jρ in the diretion W ∈ H1(Ω) is :

dV Jρ(V ) ·W =

∫∫

Ω

∇V · ∇W dxdz −
∑

k

∫ b

a

ρk〈|χk[V ]|2W 〉 dx.Thus eah minimizer of the funtional Jρ is a weak solution of the Shrödinger-Poisson system(3.1)�(3.2).Lemma 3.3 Let (ρk)k≥1 given in L∞((0, T ), ℓ1(L1(a, b))) and satisfying H1. Then, for N :=
‖Ns‖L∞((0,T ),L1(a,b)) small enough, the orresponding solution (V, (ǫk[V ], χk[V ])k≥1) of the Shrödinger-Poisson system (3.1)�(3.2) is unique.Proof. Let (ρk)k≥1 be in L∞((0, T ), ℓ1(L1(a, b))) satisfying H1. We assume that we an �nd twosolutions of the Shrödinger�Poisson system denoted V and Ṽ . Multiplying the Poisson equation(3.2) by (Ṽ − V ) and integrating provides :

∫∫

Ω

|∇(Ṽ − V )|2 dxdz =
∑

k

∫ b

a

ρk〈(|χk[Ṽ ]|2 − |χk[V ]|2)(Ṽ − V )〉 dx. (3.8)From (A.3), we dedue that we have
∫∫

Ω

|∇(Ṽ − V )|2 dxdz ≤ C1

∫ b

a

Ns e
C2(‖V ‖

L2
z(0,1)

+‖eV ‖
L2

z(0,1)
)‖V − Ṽ ‖2

L2
z(0,1) dx.Then the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω) and the Poinaré inequality lead to

‖V − Ṽ ‖2
H1(Ω) ≤ C2e

C4(‖V ‖
H1(Ω)+‖eV ‖

H1(Ω))‖Ns‖L1(a,b)‖V − Ṽ ‖2
H1(Ω). (3.9)From Lemma 3.2 we know that V and Ṽ are bounded in H1(Ω). Thus, there exists a nonnegativeonstant C3 suh that

‖V − Ṽ ‖2
H1(Ω) ≤ C3N‖V − Ṽ ‖2

H1(Ω). (3.10)Thus it su�es to hose N small enough suh that C3N ≤ 1/2 to prove that V = Ṽ on [0, T ]×Ω.Proposition 3.4 (Continuity) Let (ρk)k≥1 and (ρ̃k)k≥1 in L∞((0, T ), ℓ1(L1(a, b))) and satisfyingH1. We denote by N := ‖Ns‖L∞((0,T ),L1(a,b)), Ñ := ‖Ñs‖L∞((0,T ),L1(a,b)), V and Ṽ the orrespond-ing solutions of the Shrödinger-Poisson system (3.1)�(3.2). Then there exists N0 suh that if
max(N , Ñ ) ≤ N0, then for all p ≥ 1

‖V − Ṽ ‖Lp([0,T ],H1(Ω)) ≤ CT‖ρk − ρ̃k‖Lp([0,T ],ℓ1(L1(a,b))),where CT is a nonnegative onstant depending only on T .
15



Proof. Let (ρk)k≥1 and (ρ̃k)k≥1 be two sequenes in L∞((0, T ), ℓ1(L1(a, b))) satisfying H1. Mul-tiplying the Poisson equation (3.2) by (V − Ṽ ) and integrating provides :
∫∫

Ω

|∇(V − Ṽ )|2 dxdz =
∑

k

∫∫

Ω

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dxdz

+
∑

k

∫ b

a

ρ̃k〈(|χk[V ]|2 − |χk[Ṽ ]|2)(V − Ṽ )〉 dx.
(3.11)We treat the seond term as in the proof of Lemma 3.3 and obtain :

∑

k

∫ b

a

ρ̃k〈(|χk[V ]|2 − |χk[Ṽ ]|2)(V − Ṽ )〉 dx ≤ C1Ñ ‖V − Ṽ ‖2
H1(Ω) , (3.12)where C1 is a nonnegative onstant. For the �rst term, we have with Lemma A.1

∑

k

∫∫

Ω

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dxdz ≤ C2

∫ b

a

∑

k≥1

|ρk − ρ̃k|eC3‖V ‖L2
z‖V − Ṽ ‖L2

z
dx.And by the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω) and the bound of V and Ṽ in H1(Ω), we have

∑

k≥1

∫ b

a

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dxdz ≤ C4‖ρk − ρ̃k‖ℓ1(L1(a,b))‖V − Ṽ ‖H1(Ω). (3.13)Therefore if we injet (3.12) and (3.13) in (3.11), we obtain thanks to the Poinaré inequality:
‖V − Ṽ ‖H1(Ω) ≤ C5N‖V − Ṽ ‖H1(Ω) + C6‖ρk − ρ̃k‖ℓ1(L1(a,b)).The result follows straightforwardly after an integration in time for N0 small enough.4 Di�usive limitIn this setion we prove Theorem 1.3 assuming that we have onstruted a renormalized solution

((f η
k )k≥1, V

η) of the Boltzmann-Shrödinger-Poisson system (1.10)�(1.12) suh as in Theorem 1.2.Adapting the arguments in [22℄, we prove in a �rst subsetion the onvergene up to an extrationof the solution ((f η
k )k≥1, V

η) as η goes to 0. In a seond subsetion, we show that the limit is asolution of the (DDSP) system.4.1 Convergene of the renormalized solutionsLet f η be a renormalized solution of the Boltzmann equation. The a priori estimates of Corollary 2.6imply that f η is weakly relatively ompat in ℓ1(L1([0, T ]×(a, b)×R)). The two following lemmatashow that we an apply the averaging Lemma 1.4 and that it implies the strong onvergene of Nη
s .The onvergene of (f η, V η) is then proved in Proposition 4.3 using the smallness assumption oninitial data.Let us denote, for δ > 0 �xed, βδ an approximation of the identity, namely βδ(s) = 1

δ
β(δs). Wehoose β a C∞ funtion satisfying β(s) = s for s ≤ 1, 0 ≤ β ′(s) ≤ 1 for all s and β(s) = 2 for

s ≥ 3. 16



Lemma 4.1 Let f η be a renormalized solution of the Boltzmann equation suh as in Theorem 1.2.Then Qη(fη)
η

is weakly relatively ompat in ℓ1(L1((0, T ) × (a, b) × R)).Proof. We de�ne
rη
k =

√
f η

k −
√
Nη

s Mη
k

η
√

Mη
k

. (4.1)Thanks to the dissipation rate ontrol (1.17), we have
∑

k

∫ T

0

∫∫
|rη

k|2Mη
k dxdvdt ≤ C. (4.2)Using rη we an rewrite

f η
k = Nη

s Mη
k + 2η

√
Nη

s Mη
kr

η
k + η2(rη

k)
2Mη

k.The result is then obtained thanks to a straightforward adaptation of the proof of Proposition 3.3in [22℄.Lemma 4.2 Let Nη
s =

∑
k

∫
f η

k dv with f η suh as in Theorem 1.2. Then Nη
s is relatively ompatin L1((0, T ) × (a, b)).Proof. We an rewrite the renormalized Boltzmann equation :

η∂tβδ(f
η
k ) + v · ∂xβδ(f

η
k ) = hη

k + ∂vg
η
k ,where

hη
k =

1

η
Qη(f η)kβ

′
δ(f

η
k ) and gη

k = ∂xǫη
k βδ(f

η
k ).With our hoie of βδ, we have βδ(f

η
k ) ≤ 2/δ and βδ(f

η
k ) ≤ f η

k then βδ(f
η) ∈ ℓ∞(L∞

t,x,v) ∩ ℓ1(L1
t,x,v).It yields that βδ(f

η) ∈ ℓ2(L2
t,x,v). Sine we have 0 ≤ β ′

δ(f
η
k ) ≤ 1 and 1

η
Qη(f η) weakly relativelyompat in ℓ1(L1

t,x,v), we dedue that hη
k is weakly relatively ompat in ℓ1(L1

t,x,v). The spetralproperties of the Hamiltonian (see Lemma A.2) imply ∂xǫk = 〈|χk|2∂xV 〉. From Lemma A.4 andthe Cauhy-Shwarz inequality, we dedue
∑

k≥1

∫
|∂xǫη

k βδ(f
η
k )| dxdv ≤ C√

δ
(1 + ‖V η‖H1(Ω))‖V η‖H1(Ω)

(
∑

k

∫
|βδ(f

η
k )| dxdv

)1/2

.The bound of V η in H1(Ω) and of f η in ℓ1(L1
t,x,v) implies that gη

k is bounded in ℓ1(L1
t,x,v).Thus we an apply the averaging lemma 1.4. We have that for all ψk ∈ D(R) with (ψk)k≥1 allnull exept for a �nite number of them,

lim
y≥0


sup

η≤1

∥∥∥∥∥
∑

k≥1

∫

R

(βδ(f
η
k )(t, x+ y, v) − βδ(f

η
k )(t, x, v))ψk(v) dv

∥∥∥∥∥
L1

t,x


 = 0. (4.3)
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Next, using the fat that ((1 + v2 + k2)βδ(f
η
k ))η is bounded in L∞(0, T ; ℓ1(L1

x,v)), we dedue fromstandard argument that we an take ψk(v) to be onstant equal to 1 in (4.3). Moreover the de�nitionof βδ and the equi-integrability of f η
k implies

sup
η≤1

‖βδ(f
η) − f η‖ℓ1(L1

t,x,v) → 0 as δ → 0. (4.4)Let ε > 0, we have for all 1 ≥ η > 0

∫
|Nη

s (t, x+ y) −Nη
s (t, x)| dtdx ≤

∑

k

∫
|f η

k (t, x+ y, v) − βδ(f
η
k )(t, x+ y, v)| dtdxdv+

+
∑

k

∫
|βδ(f

η
k ) − f η

k | dtdxdv +

∫
|
∑

k

∫

R

βδ(f
η
k )(t, x+ y, v) dv−

∑

k

∫

R

βδ(f
η
k )(t, x, v) dv| dtdx.We �x δ suh that the �rst and the seond term of the right hand side is < ε/3. For suh a δ > 0,we use (4.3) to bound the third term by ε/3 for y small enough. Then

‖Nη
s (t, x+ y) −Nη

s (t, x)‖L1
t,x

→ 0 when y → 0 uniformly in η.Therefore the sequene (Nη
s (t, ·))η is relatively ompat in L1

x for all t ∈ [0, T ]. From the loalmass onservation (1.16), we obtain that ∂tN
η
s = −∂xJ

η, whih is bounded in L1(0, T ;W−1,1(a, b))thanks to Corollary 2.6. We dedue the relative strong ompatness of (Nη
s )η in L1

t,x. Thereforewe an extrat a subsequene suh that Nη
s → Ns in L1((0, T ) × (a, b)) and a.e. By uniqueness ofthe weak limit, there exists ρ ∈ ℓ1(L1((0, T )× (a, b)) suh that Ns =

∑
k ρk and ρη

k ⇀ ρk weakly in
ℓ1(L1

t,x).Proposition 4.3 Let (f η, V η) be a renormalized solution of the oupled Boltzmann-Shrödinger-Poisson system whih satis�es (i), (ii) and (iii) of Theorem 1.2. There exist V in L∞((0, T ), H1(Ω))and Ns in L∞((0, T ), L1(a, b)) suh that if Nin is small enough, then up to an extration we have
V η → V in L2((0, T ), H1(Ω)) and f η → NsM in ℓ1(L1((0, T ) × (a, b) × R)) and a.e.Proof. We have proved in Lemma 4.2 the strong and a.e. onvergene of Nη

s towards Ns. For thissurfae density Ns ∈ L∞
t L

1
x, we solve the Shrödinger-Poisson system at the equilibrium (1.19)�(1.20). It is proved in Proposition 3.1 of [36℄ that there exists a unique V ∈ L∞([0, T ], H1(Ω))solution of (1.19)�(1.20). We show hereinafter that the strong onvergene in L1 of the surfaedensity allows to prove that

‖V η − V ‖L2([0,T ],H1(Ω)) → 0 as η → 0. (4.5)In fat, we multiply the Poisson equation by (V η − V ) and integrate, we have
∫ T

0

∫∫

Ω

|∇(V η − V )|2 dxdzdt = I + II + III,where
I =

∑

k

∫ T

0

∫∫

(a,b)×R

(f η
k −Nη

s Mη
k)〈|χk[V

η]|2(V η − V )〉 dxdvdt,18



II =
∑

k

∫ T

0

∫∫

(a,b)×R

Nη
s Mη

k〈(|χk[V
η]|2 − |χk[V ]|2)(V η − V )〉 dxdvdt,

III =
∑

k

∫ T

0

∫∫

(a,b)×R

(Nη
s Mη

k −NsMk)〈|χk[V ]|2(V η − V )〉 dxdvdt.We bound the �rst term thanks to the estimate on the dissipation rate (2.3). Lemma A.4 provides
|I| ≤ C1

∑

k

∫ T

0

∫∫

(a,b)×R

|f η
k −Nη

s Mη
k| e

C2‖V η‖
L2

z‖V η − V ‖L2
z
dxdvdt.Thus Lemma 2.4 implies that

|I| ≤ C3

∑

k

∫ T

0

∫∫

(a,b)×R

|f η
k −Nη

s Mη
k| dxdvdt ≤ 4C3‖Nη

s ‖1/2

L1
t,x

(∫ T

0

Rη(t) dt

)1/2

, (4.6)where we use the Cauhy-Shwarz inequality. Then Proposition 2.5 implies that |I| ≤ C4η. Forthe seond term we use the fat that the maxwellian Mk deays with respet to k. Therefore usingLemma A.2, we dedue
II =

∫ T

0

∫∫

(a,b)×R

Nη
s

∫ 1

0

1

2

∑

k,ℓ 6=k

Mη
k −Mη

ℓ

ǫσ
k − ǫσ

ℓ

〈χσ
k(V η − V )χσ

ℓ 〉2 dσ dxdvdt ≤ 0, (4.7)where we denote ǫσ
k := ǫk[σV + (1 − σ)V η] and χσ

k := χk[σV + (1 − σ)V η]. Finally, the bound onthe potential in L∞([0, T ], H1(Ω)) ombined with Lemma A.4 furnishes the estimate
|III| ≤ C5

∫ T

0

‖NsM−Nη
s Mη‖ℓ1(L1

x,v)‖V η − V ‖H1
x,z
dt. (4.8)Moreover, using Lemma A.2, we an derive the funtion s 7→ e−ǫk[sV +(1−s)V η ]/Z[sV + (1 − s)V η]and therefore obtain

Mη
k −Mk =

∫ 1

0

e−v2/2

2π

e−ǫ
s
k

Zs

(∑
ℓ〈|χs

ℓ|2(V η − V )〉e−ǫ
s
k

Zs
− 〈|χs

k|2(V η − V )〉
)
ds,where we use the notation f s := f [sV + (1 − s)V η]. Then by Lemma A.1 we have

|Mη
k −Mk| ≤ C1 e

C2(‖V η‖
L2

z
+‖V ‖

L2
z
)‖V − V η‖L2

z

∫ 1

0

e−v2/2−ǫ
s
k

2πZs
ds.Thus the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω) provides

∑

k

‖Mη
k −Mk‖L∞

x L1
v
≤ C‖V η − V ‖H1(Ω). (4.9)This implies that

‖NsM−Nη
s Mη‖ℓ1(L1

x,v) ≤ ‖Ns −Nη
s ‖L1

x
+ ‖Nη

s (M−Mη)‖ℓ1(L1
x,v)

≤ ‖Ns −Nη
s ‖L1

x
+ CNin‖V η − V ‖H1(Ω),

(4.10)19



where we use (4.9) for the last inequality. Finally, from (4.8) we an bound the term III by
|III| ≤ C(‖Ns −Nη

s ‖L1
t,x

+ Nin‖V η − V ‖2
L2([0,T ],H1(Ω))). (4.11)Thus, (4.6), (4.7) and (4.11) provide with the Poinaré inequality

‖V η − V ‖2
L2([0,T ],H1(Ω)) ≤ C(η + ‖Ns −Nη

s ‖L1
t,x

+ Nin‖V η − V ‖2
L2([0,T ],H1(Ω))).Finally, if Nin is small enough, we dedue that V η → V as η → 0 in L2([0, T ], H1(Ω)).The onvergene of the distribution funtion f η is yet obtained thanks to the estimate on thedissipation rate Rη (1.17). Then the properties of the eigenvalues of the Hamiltonian (A.2) andthe embedding of H1(Ω) into L∞

x L
2
z(Ω) (Lemma 2.4) show that

‖ǫk[V
η] − ǫk[V ]‖L2([0,T ],L∞(a,b)) ≤ C‖V η − V ‖L2([0,T ],H1(Ω)) → 0 as η → 0.Moreover, by the Cauhy-Shwarz inequality,

‖f η −NsM‖ℓ1(L1
t,x,v) ≤ ‖f η −Nη

s Mη‖ℓ1(L1
t,x,v) + ‖Nη

s Mη −NsM‖ℓ1(L1
t,x,v)

≤ 4‖Nη
s ‖1/2

L1
t,x

(∫ T

0

Rη(t) dt

)1/2

+ ‖Nη
s Mη −NsM‖ℓ1(L1

t,x,v).Thus the entropy inequality (2.3) and (4.10) yield that f η → NsM strongly in ℓ1(L1
t,x,v).

4.2 The limit equationTo end the proof of Theorem 1.3, we have to prove that the limit Ns satis�es the drift-di�usionequation (1.18). Thanks to the loal mass onservation (1.16), it su�es to study the limit of theurrent Jη.Proposition 4.4 Let (f η, V η) be a solution of the renormalized system de�ned in Theorem 1.2,then the urrent Jη, de�ned by
Jη :=

1

η

∑

k

∫

R2

vf η
k dv, (4.12)satis�es {

Jη ⇀ J = −D(∂xNs +Ns∂xVs) in weak − L1
t,x,

J(t, a) = J(t, b) = 0,where the di�usion matrix D is de�ned in (2.2) and the autoonsistant potential is denoted
Vs = − log(

∑

k≥1

e−ǫk[V ]).The proof of this result is based on an idea of Masmoudi and Tayeb [22℄ onsisting in using thepoint (i) of Theorem 1.2. Beause of the dependene on k and of the non linear oupling, the proofis not straightforward. Then we detail the proof hereinafter.20



Proof. Thanks to Proposition 4.3 we have
(
√
f η

k )k≥1 → (
√
NsMk)k≥1 in ℓ2(L2

t,x,v),and the de�nition of rη
k (4.1) implies

Jη =
1

η

∑

k

∫

R2

vf η
k dv = 2

√
Nη

s

∑

k

∫

R2

vrη
kMη

k dv + O(η)ℓ1(L1
t,x,v).Besides, we have Mη

k ≤ e−v2/2−π2k2/2 (see Appendix) and the bound (4.2) show that the sequene
(rηMη/e−(v2+π2k2)/4)η is bounded in ℓ2(L2

t,x,v). Thus up to an extration, there is a u in ℓ2(L2
t,x,v)suh that rηMη/e−(v2+π2k2)/4 ⇀ u weakly in ℓ2(L2

t,x,v). Setting r = u e−(v2+π2k2)/4/M, we get that
(rηMη/e−(v2+π2k2)/4) weakly onverges towards (rM/e−(v2+π2k2)/4) in ℓ2(L2

t,x,v). We dedue
∑

k

∫

R2

vrη
kMη

k dv =
∑

k

∫

R2

ve−(v2+π2k2)/4 rη
kMη

k

e−(v2+π2k2)/4
dv ⇀

∑

k

∫

R2

vrkMk dv in weak − L2
t,x.Moreover, the strong onvergene √

Nη
s → √

Ns in L2
t,x implies that

Jη ⇀ J := 2
√
Ns

∑

k

∫

R2

vrkMk dv in weak − L1
t,x. (4.13)Sine we have ∑k

∫
vMk dv = 0, Proposition 2.1 shows that we an de�ne Q−1(vM) and theselfadjointness of the operator Q leads to

J = 2
√
Ns

∑

k

∫

R2

Q−1(vM)kQ(rM)k
dv

Mk

. (4.14)Now, we will �nd an expression of J . Considering again rη
k , we have

Qη(f η)k

η
= 2
√
Nη

sQ
η(rηMη)k + ηQη((rη)2Mη)k.With (4.2), the seond term in the right hand side is O(η)ℓ1(L1

t,x,v). For the �rst one, one an proveeasily that ∀ f ∈ ℓ2(L2
t,x,v), we have ‖Qη(f)−Q(f)‖ℓ2(L2

t,x,v) → 0. The weak onvergene of (rηMη)in ℓ2(L2
t,x,v) implies then

Qη(rηMη) ⇀ Q(rM) weakly in ℓ2(L2
t,x,v).With the strong onvergene in L2

t,x of √Nη
s , we dedue the weak limit :

Qη(f η)k

η
= 2
√
Nη

s Mk
Qη(rηMη)k√Mk

+ O(η)ℓ1(L1
t,x,v) ⇀ 2

√
NsQ(rM)k in ℓ1(L1

t,x,v). (4.15)We reall that for every λ > 0, we have de�ned Θη
k,λ = (f η

k + λ exp(−1
2
(v2 + k2)))1/2. Thus

Θη
k,λ → Θk,λ = (fk + λe−

1
2
(v2+k2))1/2 strongly in ℓ2(L2

t,x,v).21



Using Lemmata A.1 and A.2 and the estimate (A.3), we an prove that
|∂xǫη

k − ∂xǫk| ≤ |〈(|χη
k|2 − |χk|2)∂xV

η〉| + |〈|χk|2∂x(V
η − V )〉|

≤ C1e
C2‖V ‖

L2
z

(
e

C2‖V η‖
L2

z‖∂xV
η‖L2

z
‖V − V η‖L2

z
+ ‖∂x(V − V η)‖L2

z

)
.Thus the strong onvergene of V η in L2

t (H
1
x,z) with the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω)imply that

∂xǫη
k → ∂xǫk strongly in ℓ2(L2

t,x).Therefore,
∂xǫη

k Θη
k,λ ⇀ ∂xǫk Θk,λ weakly in L1

t,x,v.Thus we an take the weak limit as η → 0 in (1.15). For all k ≥ 1, we �nd
v · ∂xΘk,λ − ∂v(∂xǫk Θk,λ) =

√
NsQ(rM)k

Θk,λ
+ λ∂xǫk

ve−
1
2
(v2+k2)

2Θk,λ
.And if we make λ→ 0 in the resulting equation, we �nd

(
∂x

√
Ns +

1

2

√
Ns∂xVs

)
· vMk = Q(rM)k, (4.16)where we take Vs = − log

∑
k e

−ǫk . And we verify that the produt √Ns∂xVs has a meaning in L1
t,x.Now, with (4.13) and (4.16), we an onlude

J = −D

√
Ns

(
∂x

√
Ns +

1

2

√
Ns∂xVs

)
, (4.17)where the symmetri positive di�usion matrix, de�ned in (2.2), is given by

D = −
∑

k

∫

R

v ⊗Q−1(vM)k dv.Besides, with our hoie of boundary onditions (1.8) we have that
∑

k≥1

∫

R

vf η
k (t, a, v) dv =

∑

k≥1

∫

R

vf η
k (t, b, v) dv = 0Thus as η goes to 0, it provides that J(t, a) = 0 and J(t, b) = 0. Now, if we use Lemma 4.5 om-bined with (4.16), we an rewrite the urrent J and the proof of the Proposition 4.4 is omplete.Lemma 4.5 Let Ns and V be de�ned in Proposition 4.3. If we suppose that

∂x

√
Ns +

1

2

√
Ns∂xVs = G ∈ L2((0, T ) × (a, b)), (4.18)where Vs = − log(

∑

k≥1

e−ǫk[V ]). Then we have
√
Ns ∈ L2((0, T ), H1(a, b)) and √

Ns∂xVs ∈ L2((0, T ) × (a, b)).22



Proof. We have √
Ns bounded in L2

t,x and V in L2
tH

1
x, then from Lemma A.1, we dedue that√

Ns∂xVs ∈ L1
t,x. It follows that ∂x

√
Ns ∈ L1

t,x. We onsider the approximation of the identity βδas before. Namely βδ(s) = 1
δ
β(δs) where β is a C∞(R+) funtion satisfying β(s) = s for 0 ≤ s ≤ 1,

β(s) = 2 for s ≥ 3 and 0 ≤ β ′(s) ≤ 1. If we denote ψ =
√
Ns, we have

∂xβδ(ψ) = ∂xψβ
′
δ(ψ).Hene we an renormalize the equation (4.18) :

∂xβδ(ψ) +
1

2
∂xVs β

′
δ(ψ)ψ = G̃where G̃ = Gβ ′

δ(ψ) ≤ G. Multiplying (4.19) by ∂xβδ(ψ) and integrating provides
∫∫

|∂xβδ(ψ)|2 dxdt+
1

2

∫∫
∂xVs · ∂xβδ(ψ)ψβ ′

δ(ψ) dxdt =

∫∫
G̃∂xβδ(ψ) dxdt. (4.19)By the Cauhy-Shwarz inequality we dedue

∫∫
G̃∂xβδ(ψ) dxdt ≤ 1

2

∫∫
G̃2 dxdt+

1

2

∫∫
|∂xβδ(ψ)|2 dxdt.If we de�ne β̃ by β̃(s) =

∫ s

0
τβ ′(s)2 dτ and β̃δ(s) = 1

δ2 β̃(δs). Then, β̃δ(s) tends to s2

2
when δ goesto 0 and we have

∫ b

a

∂xVs · ∂xβδ(ψ)ψβ ′
δ(ψ) dx =

∫ b

a

∂xVs · ∂xβ̃δ(ψ) dx = −
∫ b

a

∂2
xVs β̃δ(ψ) dx. (4.20)Thanks to the Poisson equation (1.20), we have :

−∂2
xVs = −4

∑

k

e−ǫk(ǫk)
2

Z +
〈N2 + 4V 2N〉

Ns
+ 2

∑

k

e−ǫk

Z
〈
(V + ǫk)|∂zχk|2

〉

− 1

Z
∑

k

∑

ℓ 6=k

(
e−ǫk − e−ǫℓ

ǫk − ǫℓ

)
〈χkχℓ ∂xV 〉2

+
∑

k

e−ǫk

Z
〈
|χk|2 ∂xV

〉2 −
(
∑

k

e−ǫk

Z
〈
|χk|2 ∂xV

〉
)2

.

(4.21)
By the Cauhy-Shwarz inequality, the sum of the last two terms of the right hand side is nonneg-ative. Moreover, exept for the �rst one, the other terms are obviously nonnegative. Thus we havewith (4.20), ∫ b

a

∂xVs · ∂xβδ(ψ)ψβ ′
δ(ψ) dx ≥ −4

∫ b

a

∑

k

e−ǫk(ǫk)
2

Z β̃δ(ψ) dx.Moreover, Lemma A.1 and the Sobolev embedding H1(Ω) →֒ L∞
x L

2
z(Ω) imply that ∑k

e−ǫk (ǫk)2

Z
isbounded in L∞(a, b). Thus (4.19) leads to

∫∫
|∂xβδ(ψ)|2 dtdx ≤

∫∫
G2 dtdx+ 4

∫ b

a

∑

k

e−ǫk(ǫk)
2

Z β̃δ(ψ) dx.23



Passing to the limit δ → 0, we have
∫∫

|∂x

√
Ns|2 dtdx ≤

∫∫
G2 dtdx+ 4

∫ b

a

∑

k

e−ǫk(ǫk)
2

Z Ns dx.Thus we dedue that√Ns ∈ L2((0, T ), H1(a, b)) and with (4.18) we onlude easily that√Ns∂xVs ∈
L2((0, T ) × (a, b)).5 Existene for the overall problem5.1 The trunated Boltzmann equationThis part deals with well-known existene results and properties for the Boltzmann equation. Theresults will be given for the matter of ompleteness without proof, we refer to [2, 3, 8, 11, 24℄ formore details. We shall assume that η > 0 is �xed, for the larity of the notation we hose η = 1,and that the fore �elds Fk := −∂xǫk is given. We onsider the Boltzmann equations indexed in
k : 




∂tfk + v · ∂xfk + Fk · ∂vfk = QR(f)k, (x, v) ∈ (a, b) × R, t ∈ [0, T ],

fk(t, a, v) = fk(t, a,−v), fk(t, b, v) = fk(t, b,−v) for t ∈ [0, T ], v > 0,

fk(0, x, v) = f in
k (x, v),

(5.1)with the trunated ollision operator :
QR(f)k =

∑

k′

∫

R

αR
k,k′(v, v′)(Mk(v)fk′(v′) −Mk′(v′)fk(v)) dv

′, (5.2)where the trunated ross-setion is de�ned for a R > 0 by
αR

k,k′(v, v′) = αk,k′(v, v′)1k≤R,|v|≤R(k, v)1k′≤R,|v′|≤R(k′, v′). (5.3)A simple alulation shows that the regularized ollision operator (5.2) is bounded in ℓ1(L1
t,x) andin ℓ∞(L∞

t,x) and satis�es ∑k

∫
R
QR(f)k dv = 0.We an prove, using the harateristis tehniques (see for instane [3, 6, 8℄), existene anduniqueness of weak solutions for eah equation of (5.1) :Lemma 5.1 Let T > 0 and assume that the initial data satisfy for all k ≥ 1,

f in
k ≥ 0, (1 + v2)f in

k ∈ L1((a, b) × R), f in
k ∈ L∞((a, b) × R).Assume that Fk ∈ L1((0, T ),W 1,1(a, b)∩L∞(a, b)) and that ǫk ≥ 1

2
π2k2. Then (5.1) admits a uniqueweak solution fk ∈ L∞((0, T ), L1 ∩ L∞((a, b) × R)), fk ≥ 0 and

∀ t ∈ [0, T ],
∑

k≥1

∫

R

fk(t, x, v) dv =
∑

k≥1

∫

R

f in
k (x, v) dv (5.4)Moreover if there exists δ > 2 suh that (vδ + k2)f in

k ∈ ℓ∞(L∞
x,v) then ∀ t ∈ [0, T ],

∑

k≥1

‖fk(t, ·, ·)‖L∞((a,b)×R) ≤ C

(
1 +

(∫ t

0

sup
k≥1

‖Fk(s, ·)‖L∞

x
ds

)2
)
, (5.5)where C is a onstant depending only on T and the data.24



5.2 Proof of Theorem 1.2In this setion we give the sketh of the proof of Theorem 1.2. The struture of the oupling inviteus to use a �xed-point argument for the proof. However to de�ne this �xed-point, the uniqueness ofa solution of the Shrödinger�Poisson system is needed. Thus we are not able to prove the existenefor every kind of initial ondition but only for small initial data.The main steps for the proof, desribed hereinafter, follow the idea of [2, 3, 22℄ : we regularizethe system thanks to a small parameter ε > 0, we onstrut solution of the regularized system andwe left go the parameter ε to 0 to reover solutions of the unregularized system.First, let us de�ne the linear regularization operator by
Rε : L1(Ω) → C∞(Ω)

V → Rε[V ](x, z) = (V ∗x ξε,x ∗z ξε,z)|Ω
(5.6)where V is the extension of V by zero outside Ω and ξε,x and ξε,z are C∞ nonnegative ompatlysupported even approximations of the unity on R. Moreover, we an prove straightforwardly fromonvolution results that the regularization operator Rε satis�es the following properties :Lemma 5.2 (i) Rε is a bounded operator on Lp

xL
q
z(Ω) for 1 ≤ p, q ≤ +∞ and satis�es for all

V ∈ Lp
xL

q
z(Ω),

‖Rε[V ]‖Lp
xLq

z(Ω) ≤ ‖V ‖Lp
xLq

z(Ω) and lim
ε→0

‖Rε[V ] − V ‖Lp
xLq

z(Ω) = 0.(ii) Rε is self-adjoint on L2(Ω) and for all V ∈ W 1,2(Ω),
∇xR

ε[V ] = Rε[∇xV ] ; lim
ε→0

‖∇xR
ε[V ] −∇xV ‖L2(Ω) = 0.We introdue then the regularized system :





∂tf
ε
k,R +

1

η
(v · ∂xf

ε
k,R − ∂xǫε

k,R · ∂vf
ε
k,R) =

1

η2
Qε

R(f ε
R)k, (x, v) ∈ (a, b) × R,

f ε
k,R(t, a, v) = f ε

k,R(t, a,−v), f ε
k,R(t, b, v) = f ε

k,R(t, b,−v), v > 0,

f ε
k,R(0, x, v) = f in

k (x, v),

(5.7)




−1

2
∂2

zχ
ε
k,R +Rε[V ε

R]χε
k,R = ǫε

k,R χ
ε
k,R (k ≥ 1),

χε
k,R(t, x, ·) ∈ H1

0 (0, 1),

∫ 1

0

χε
k,R χ

ε
ℓ,R dz = δkℓ ,

(5.8)




−∆x,zV
ε
R = Rε

[
∑

k

∫

R

f ε
k,R|χε

k,R|2 dv
]
,

dV ε
R

dx
(t, a, z) =

dV ε
R

dx
(t, b, z) = 0, for z ∈ (0, 1),

V ε
R(t, x, 0) = V ε

R(t, x, 1) = 0, for x ∈ (a, b).

(5.9)We use the regularization of the ollision operator :
Qε

R(f)k =
∑

k′

∫

R

αR
k,k′(v, v′)(Mε

k(v)fk′(v′) −Mε
k′(v′)fk(v)) dv

′, (5.10)25



where the trunated ross-setion is de�ned for R > 0 in (5.3). We use the notations of Setion 1 :
N ε

s =
∑

k≥1

∫

R

f ε
k dv and Mε

k =
1

2πZε
exp(−1

2
v2 − ǫε

k) for Zε =
∑

k≥1

e−ǫ
ε
k .Sine for ε = 0 we have R0 = Id, we will obtain a solution of the unregularized system bypassing to the limits ε → 0 and R → +∞ in the regularized one (5.7)�(5.9). Therefore the proofof Theorem 1.2 an be split in the three followings steps :Step 1 : Existene for the regularized problemIn the �rst step we prove that the regularized problem admits a solution. We verify easilythat the regularized ollision operator (5.2) is bounded in ℓ1(L1

t,x) and in ℓ∞(L∞
t,x) and satis�es∑

k

∫
R
Qε

R(f ε)k dv = 0 and
∑

k≥1

∫

R

Qε
R(f ε)k log

f ε
k

Mε
k

dv ≤ −α1

2

∑

k≥1

∫

R

(
√
f ε

k −
√
N ε

sMε
k)

2 dv.Following the ideas of the proof of Proposition 4.8 of [3℄ we establish :Proposition 5.3 Let T > 0 and let assume that Assumption (A-1) holds and that the initialondition is at the thermal equilibrium, i.e. verify (A-2) and is given by (1.9). Then, there exists
ε0 > 0 and δ > 0 suh that, if ∑

k≥1

‖f in
k ‖L1

x,v
< δ, (5.11)and ε ∈ (0, ε0) then the regularized problem (5.7)�(5.9) admits a global weak solution (V ε

R, (f
ε
k,R)k≥1)on the interval [0, T ] whih satis�es the entropy estimate :

∀ t ∈ [0, T ], 0 ≤W ε
R(t) +

α1

η2

∫ T

0

Rε
R(t) dt ≤ CT , (5.12)with

W ε
R(t) =

∑

k≥1

(
f ε

k,R log
f ε

k,R

Mk

− f ε
k,R +Mk

)
dxdv +

1

2

∫∫
|∇x,zV

ε
R|2 dxdzand

Rε
R(t) =

1

2

∑

k≥1

∫∫ (√
f ε

k,R −
√
N ε

s,RMε
k,R

)2

dxdv.Step 2 : Passing to the limit R → +∞For ε > 0 �xed, one an pass to the limit as R → +∞. We obtainProposition 5.4 Let T > 0 and let assume that (A-1) and (A-2) are satis�ed. Let ε > 0be �xed (ε < ε0) and (V ε
R, (f

ε
k,R, χ

ε
k,R,ǫε

k,R)k≥1) be a weak solution of the regularized Boltzmann-Shrödinger-Poisson system (5.7)�(5.9). Then as R → +∞ this solution onverges to a weaksolution (V ε, (f ε
k , χ

ε
k,ǫε

k)k≥1) of the regularized Boltzmann-Shrödinger-Poisson system (5.7)�(5.9)with Qε
R is substituted by Qε

R in the Boltzmann equation (5.7).Moreover it satis�es the entropy estimate (5.12) with f ε
k instead of f ε

k,R.26



Proof. We skip all the index ε in the notation. With our regularization (5.6) we have a boundon V in L∞
t (W 1,∞

x,z ) depending only on ε but not on R. It provides thanks to (5.5) a bound on
(fk,R)k≥1 in ℓ∞(L∞

t,x,v) depending only on ε and on the data. And with (5.4), we have a bound on
(fk,R)k≥1 in ℓ1(L1

t,x,v) depending only on the data. Thus we an extrat a subsequene onvergingas R→ +∞ towards a funtion f in ℓ2(L2
t,x,v)−weak. Using the standard mean ompatness result(see Theorem 1.8 of [8℄, see also [15℄), we dedue the relative strong ompatness of the sequeneindexed by R ∫

R

fk,Rψk dvin L2
loc([0, T ] × (a, b)) for all ψk ∈ D(R) all null exept for a �nite number of them. Using the fatthat the quantity (1 + k2)fk,R is bounded in L∞

t (ℓ1(L1
x,v)) we an hoose ψk = 1. Thus one obtainthat ρR := (

∫
fk,R dv)k≥1 → ρ := (

∫
fk dv)k≥1 in L2

t,x − strong.The onservation of the mass implies that for all t ∈ [0, T ] we have ‖f‖ℓ1(L1
t,x,v) = ‖f in‖ℓ1(L1

t,x,v) =

Nin. Then we an solve the regularized Shrödinger-Poisson system (5.8)-(5.9) with the given
ρ :=

∫
f dv and onstrut a unique solution V ∈ L∞

t (H1
x,z). Using the fat that the sequene (fR)Rsatis�es (5.12), we an use the ontinuity property of the solution of the Shrödinger-Poisson system(f Proposition 3.4) to prove that the sequene (VR)R is Cauhy and therefore onverges towards

V in L2
t (H

1
x,z). Properties of the eigenvalues of the Hamiltonian show that ǫk[R

ε[VR]] → ǫk[R
ε[V ]]in L2

t (W
2,∞
x,z ).Furthermore, we have for all k ≥ 1

‖QR(fR)k‖L∞

x,v
≤ α2(‖fR‖ℓ1(L1

x,v) + ‖fR‖ℓ∞(L∞

x,v)) ≤ CT,ε,where CT,ε is a nonnegative onstant depending only on T and ε and on the data. We dedue thatwe an extrat a subsequene (QR(fR)k)R onverging as R → +∞ in L∞ − weak∗. Then from thede�nition of QR (5.2), we dedue that
∀φ ∈ L1((a, b) × R),

∫∫
(Q(f)k −QR(fR)k)φ dxdv → 0 as R → +∞Thus one an pass to the limit in the weak formulation of the Boltzmann-Shrödinger-Poissonsystem (5.7)�(5.9) and prove straightforwardly that (V, (fk,ǫk, χk)k≥1) is a solution of (5.7)�(5.9)with Q instead of QR. Finally we reover the entropy estimate by passing to the limit R→ +∞ in(5.12).Step 3 : Passing to the limit ε→ 0In the last step we prove Theorem 1.2 by taking the limit ε→ 0.Sine the solution satis�es the entropy estimate, we dedue that

∑

k≥1

∫∫∫

(0,T )×(a,b)×R

f ε
k(1 + v2 + k2 + | log f ε

k |) dxdvdt ≤ CT .Thus the Dunford-Pettis Theorem and the De La Vallée Poussin Theorem implies that (f ε
k)k≥1and is weakly relatively ompat respetively in ℓ1(L1((0, T ) × (a, b) × R)). Using standard meanompatness result (see e.g. Theorem 1.8 of [8℄), we dedue the strong relative ompatness of thesequene (ρε

k)ε in L1([0, T ] × (a, b)). Therefore, up to an extration, we have
ρε

k → ρk strongly in ℓ1(L1((0, T ) × (a, b))). (5.13)27



Moreover ρ satis�es the estimate
∑

k≥1

∫∫
ρk(1 + k2) dxdt ≤ CT (5.14)and the onservation of the mass implies

∀ t ∈ [0, T ], ∀ ε > 0,

∫ b

a

Ns dx =

∫ b

a

N ε
s dx = Nin.We an then apply Lemma 3.2 to solve the unregularized Shrödinger-Poisson system (3.1)�(3.2) forthe density ρ and onstrut V ∈ L∞([0, T ], H1(Ω)) whih is unique thanks to Lemma 3.3. Moreovermultiplying the two Poisson equations by (V ε − V ) and integrating lead to

∫∫

Ω

|∇(V ε − V )|2 dxdz =

∫∫

Ω

Rε

[
∑

k

(ρε
k|χε

k|2 − ρk|χk|2)
]

(V ε − V ) dxdz+

∫∫
(Rε − Id)

[
∑

k

ρk|χk|2
]

(V ε − V ) dxdz.

(5.15)Using the fat that with Lemma 5.2, ‖Rε − Id‖2 → 0 as ε → 0, where
‖Rε − Id‖2 := sup

{V ∈L2(Ω),V 6=0}

‖(Rε − Id)V ‖L2(Ω)

‖V ‖L2(Ω)

,then we an prove, adapting the tehniques of Proposition 3.4 that
∫∫

Ω

|∇(V ε − V )|2 dxdz ≤ C1‖Rε − Id‖2 ‖V ε − V ‖H1(Ω)+

+C2‖ρε
k − ρk‖ℓ1(L1

x) ‖V ε − V ‖H1(Ω) + C3Nin‖V ε − V ‖2
H1(Ω).With the Poinaré inequality, we have for Nin small enough,

‖V ε − V ‖H1(Ω) ≤ C(‖Rε − Id‖2 + ‖ρε
k − ρk‖ℓ1(L1

x)).Thus there exists N0 > 0 suh that, for all 0 < Nin ≤ N0, there exists V ∈ L∞([0, T ], H1(Ω))weak solution of the unregularized Shrödinger-Poisson system (3.1)�(3.2) and suh that the po-tential V ε, weak solution of the regularized system, onverges towards V in L2([0, T ], H1(Ω)). Theproperties of the eigenvetors imply (see proof of Proposition 4.3) that ǫε
k → ǫk in L2

t (L
∞
x ).The end of the proof of Theorem 1.2 is standard (see [19, 24, 22℄) and is based on a doublerenormalization. We �rst write the equation satis�ed by βδ(f

ε) with the funtion βδ de�ned inSetion 4.1 and weakly pass to the limit ε → 0. Then we renormalize the resulting limit equationby β and let �nally δ going to 0.Remark 5.5 The onvergene of the potential V ε is a key point in this proof of existene. We notiethat the tehnique used here relies strongly on the embedding H1(Ω) →֒ L∞
x L

2
z(Ω) whih is not truewhen the x-variable is two dimensional. Then in this latter ase we are not able to prove uniquenessof solutions of the Shrödinger-Poisson system for (ρk)k given and therefore the �xed point proeduredoes not onverge. Thus the tehniques used here do not allow us to prove the existene of solution28



of the oupled kineti-quantum model for a two dimensional transport diretion. However in thedi�usive regime, the oupation fator ρk deays with respet to k and it has been proved in [36℄that this allows us to reover uniqueness of solutions of the Shrödinger-Poisson system (in fat wean show in this ase that the last term in (3.11) is nonpositive). Using the Trudinger estimatefor the entropy funtional furnishes existene of solutions of the drift-di�usion-Shrödinger-Poissonsystem (see [36℄).

29



AppendixSpetral properties of the HamiltonianIn this appendix, we list some basi properties of eigenfuntions and eigenvalues of the Shrödingeroperator in the z variable. For a given real valued funtion V in L2(0, 1), letH [V ] be the Shrödingeroperator
H [V ] := −1

2

d2

dz2
+ V (z)de�ned on the domain D(H [V ]) = H2(0, 1) ∩ H1

0 (0, 1). This operator admits a stritly inreasingsequene of real eigenvalues (ǫk[V ])k≥1 going to +∞. The orresponding eigenvetors, denoted by
(χk[V ](z))k≥1 (hosen suh that χ′

k(0) > 0 and ∫ 1

0
|χk[V ]|2 dz = 1), form an orthonormal basis of

L2(0, 1). They satisfy of ourse
−1

2

d2

dz2
χk + V χk = ǫkχk , χk ∈ H1

0 (0, 1), ∀ k ≥ 1. (A.1)Obviously, for V = 0, we have ǫk[0] = 1
2
π2k2 and χk[0](z) =

√
2 sin(πkz). Andif U ≤ V a.e. in (0, 1) then ∀ k ≥ 1, ǫk[U ] ≤ ǫk[V ].In the sequel we will use the standard notation 〈f〉 =

∫ 1

0
f(z) dz and when there is no onfusionpossible ǫk will stand for ǫk[V ] and χk for χk[V ]. Following the study of the spetral properties of

H [V ] in Chapter 2 of [30℄, we have :Lemma A.1 There exists a positive onstant CV depending only on ‖V ‖L2(0,1) suh that
|ǫk[V ] − 1

2
π2k2| ≤ CV ; ‖χk[V ] −

√
2 sin(πkz)‖L∞(0,1) ≤ CV .Moreover the onstant CV an be hosen suh that CV ≤ C1 exp(C2‖V ‖L2(0,1)), where the onstants

C1 and C2 are independent of V and k.Lemma A.2 Let V = V (λ, z) ∈ L∞
loc(0,Λ;L2

z(0, 1)) with λ ∈ (0,Λ) (typially λ = t or λ = xi). If
∂λV ∈ L1

loc(λ, L
2
z(0, 1)), then ∂λǫk ∈ L1

loc, ∂λχk ∈ L1
loc(λ, L

∞
z (0, 1)) and we have

∂λǫk = 〈|χk|2∂λV 〉 and ∂λχk =
∑

ℓ 6=k

〈χk χℓ ∂λV 〉
ǫk − ǫℓ

χℓ.Using these last two lemmata we an prove (see Appendix of [4℄) :Lemma A.3 Let V and Ṽ be two real-valued funtions in L2(0, 1). Then there exist two positiveonstants C1 and C2 independent of k, V and Ṽ suh that
|ǫk[V ] − ǫk[Ṽ ]| ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) . (A.2)And,

‖χk[V ] − χk[Ṽ ]‖L∞(0,1) ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) . (A.3)30



Lemma A.4 Let V ∈ L2(0, 1) suh that V ≥ 0, then the eigenvetors of the Shrödinger operatorsatisfy
‖χk[V ]‖L∞(0,1) ≤ C(1 + ‖V ‖1/2

L2(0,1)).Proof. The result of Lemma 1 Chapter 1 of [30℄ provides :
χk(z) = Ak sin(

√
2ǫkz) + 2

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dt, (A.4)where Ak is a nonnegative onstant to be determined. Thanks to the Cauhy-Shwarz inequality,we dedued
∣∣∣∣
∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dt

∣∣∣∣ ≤
∫ 1

0
V (t)|χk(t)| dt√

2ǫk

≤ 〈|χk|2V 〉1/2

√
2ǫk

‖V ‖1/2
L2(0,1).Moreover, from (A.1),

ǫk =
1

2
〈|∂zχk|2〉 + 〈|χk|2V 〉 ≥ 〈|χk|2V 〉Thus, ∣∣∣∣

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dt

∣∣∣∣ ≤
1√
2
‖V ‖1/2

L2(0,1). (A.5)Thus from (A.4) we have for all z ∈ [0, 1]

|χk(z)| ≤ Ak +
√

2 ‖V ‖1/2
L2(0,1). (A.6)Now, we will use the ondition ‖χk‖L2(0,1) = 1 to bound Ak. If we use the expression of χk (A.4)in the identity ∫ 1

0
χ2

k dz = 1, we obtain
1 ≥ A2

k

∫ 1

0

sin(
√

2ǫkz)
2 dz + 4Ak

∫ 1

0

sin(
√

2ǫkz)

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dtdz. (A.7)For the seond term we have from (A.5)
∣∣∣∣
∫ 1

0

sin(
√

2ǫkz)

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dtdz

∣∣∣∣ ≤
1√
2
‖V ‖1/2

L2(0,1).And we an alulate ∫ 1

0

[sin(
√

2ǫkz)]
2 dz =

1

2
− sin(2

√
2ǫk)

4
√

2ǫk

.We have assumed that V ≥ 0. It implies ǫk[V ] ≥ ǫ[0] = 1
2
π2k2, for all k ≥ 1. Thus we an injetthese remarks in (A.7), it leads to

1 ≥ A2
k

(
1

2
− 1

4π

)
− 2

√
2Ak‖V ‖1/2

L2(0,1).This implies that there exists a nonnegative ontant C suh that
Ak ≤ C(1 + ‖V ‖1/2

L2(0,1)), ∀ k ≥ 1.It remains to injet this last estimate in (A.6) to onlude the proof.31



Lemma A.5 Let V and Ṽ be two given nonnegative potentials in L2(0, 1). Then there exists anonnegative onstant C suh that
|ǫk[V ] − ǫk[Ṽ ]| ≤ C(1 + ‖V ‖1/2

L2
z(0,1) + ‖Ṽ ‖1/2

L2
z(0,1))‖V − Ṽ ‖L2

z(0,1). (A.8)Proof. This is an easy onsequene of Lemma A.4 and A.2. Indeed, if we denote for λ ∈ [0, 1],
W (λ, z) = Ṽ + λ(V − Ṽ ) and ǫk(λ) = ǫk[W (λ, ·)], we have

ǫk[V ] − ǫk[Ṽ ] =

∫ 1

0

∂λǫk(λ) dλ =

∫ 1

0

〈|χk[W (λ, ·)](z)|2(V − Ṽ )〉 dλ.Thus, we have
|ǫk[V ] − ǫk[Ṽ ]| ≤ ‖V − Ṽ ‖L2(0,1)

∫ 1

0

‖χk[W (λ, ·)]‖2
L4(0,1) dλ.The estimate (A.8) follows then from Lemma A.4 and the interpolation :

‖χk[W (λ, ·)]‖2
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