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lassi
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t tothe ma
ros
opi
 length s
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ribedby a 1D Boltzmann equation. A Boltzmann-S
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1 Introdu
tion and main resultsBy downs
aling ele
troni
s 
omponents at nanometer s
ale, quantum e�e
ts be
ome non-negligible.In nanos
ale semi
ondu
tor devi
es, ele
trons might be extremely 
on�ned in one or several dire
-tions due to the length s
ales. These dire
tions are referred to as the 
on�ning dire
tions. Thisleads to a partial quantization of the energy. The subband de
omposition approa
h [29, 38, 39℄ wasintrodu
ed by several authors in order to take advantage of this redu
tion of dimensionality. Thismethod 
onsists of a separation of the 
on�nement and the transport dire
tions.In the non-
on�ned dire
tion(s), that we shall also refer to as the transport dire
tion(s), trans-port might have a quantum nature or be purely 
lassi
al in the kineti
 or di�usive regimes. In thiswork, we are interested in the kineti
 regime (the di�usive regime has been studied in [4, 36℄) andin the 
onvergen
e from the kineti
 model to the di�usive model. One of the most used models todes
ribe the transport of 
harged parti
les in a kineti
 approa
h in several domain su
h as plasmasor semi
ondu
tors is the Boltzmann transport equation [23, 6, 33, 35℄.1



In the 
on�ned dire
tion, ele
trons behave like waves. The system is at thermodynami
alequilibrium and is des
ribed by the subband model as a statisti
al mixture of eigenstates of the 1Dstationary S
hrödinger equation.Namely, we 
onsider a parti
le system of 
harged 
arriers whi
h is partially quantized in onedire
tion (denoted by z) and whi
h, in the transport dire
tion denoted by x, is in a kineti
 regime.The 
oupling o

urs then in the momentum variable. We will �rst brie�y des
ribe the model usedand refer the reader to [28℄ for more details. A Vlasov-S
hrödinger-Poisson system whi
h presentsalso a similar quantum-
lassi
al 
oupling is analyzed in [3℄.1.1 The S
hrödinger-Poisson systemIn the transverse dire
tion (referred by z), ele
trons are 
on�ned in the nanostru
ture. The de-s
ription of the system needs the diagonalization of the 1D stationary S
hrödinger equation. Wede�ne then on Ω = (a, b) × (0, 1), the set (χk[V ], ǫk[V ])k≥1 as the 
omplete set of eigenfun
tionsand eigenvalues of the S
hrödinger operator in the z variable, z ∈ (0, 1) :




−1

2
∂2

zχk[V ] + V χk[V ] = ǫk[V ]χk[V ] (k ≥ 1),

χk[V ](0) = χk[V ](1) = 0,

∫ 1

0

|χk[V ]|2 dz = 1 .
(1.1)The square of the modulus of the wave fun
tions (χk[V ])k≥1 represents the probability of o

upationon the kth subband. If we denote ρk the o

upation number of the kth subband, whi
h is de�nedbelow by ∫ fk dv, the parti
le density for a partially quantized system 
an be written

N(t, x, z) =
+∞∑

k=1

ρk(t, x)|χk[V (t, x, ·)](z)|2.The ele
trostati
 potential V generated by the 
harged 
arriers is then the solution of the Poissonequation :
−∆x,zV (t, x, z) =

∑

k

ρk(t, x)|χk[V (t, x, ·)](z)|2, (1.2)with the boundary 
onditions :




dV

dx
(t, a, z) =

dV

dx
(t, b, z) = 0, for z ∈ (0, 1),

V (t, x, 0) = V (t, x, 1) = 0, for x ∈ (a, b).
(1.3)The boundary 
onditions here are 
hosen su
h in order to simplify the mathemati
al analysis,moreover ellipti
 regularity of the Poisson equation (1.2) are needed in our proofs. However, in thespirit of [4℄, we 
an extend the proofs to the 
ase where V (t, x, 0) = V 0

b (x) and V (t, x, 1) = V 1
b (x)with d

dx
V 0

b (a) = d
dx
V 1

b (b) = 0. The idea is to introdu
e the extension V on Ω of the boundary dataand to 
onsider the quantities V − V instead of V , ǫk[V ] − ǫk[V ] instead of ǫk[V ], ...The S
hrödinger-Poisson system was solved in [26, 27℄ by variational methods. Su
h te
hniquesare used here to obtain existen
e and uniqueness of solutions of this system for a given ρ = (ρk)k≥1.In the following, when there is no 
onfusion possible, we will denote ǫk instead of ǫk[V ] and χkinstead of χk[V ]. 2



1.2 The transport equationThe Boltzmann equation is one of the most used equation des
ribing the transport of 
harged
arriers in semi
ondu
tors in a kineti
 regime [31, 35℄. Let η > 0 be the s
aled mean free pathassumed to be small and denote V η the ele
trostati
 potential generated by the 
harged 
arriers.We 
onsider here the s
aled Boltzmann equation in one dimension for the subband model de�nedon the phase spa
e (a, b)×R. The position x belongs to (a, b), the velo
ity v belongs to R and thetime variable t is nonnegative. Then the o

upation number ρη
k is de�ned by ρη

k =
∫

R
f η

k dv wherethe distribution fun
tion f η
k (t, x, v) satis�es
∂tf

η
k +

1

η
(v ∂xf

η
k − ∂xǫk[V

η] ∂vf
η
k ) =

1

η2
Qη(f η)k. (1.4)By using the notation {·, ·} for the Poisson bra
ket : {g, h} = ∂xh ∂vg−∂vh ∂xg, we 
an rewrite theBoltzmann equation :

∂tf
η
k +

1

η
{Hη

k, f
η
k } =

1

η2
Qη(f η)k ,where Hk denotes the energy of the system in the kth subband whi
h is the sum of the kineti
energy and the potential energy :

Hη
k(t, x, v) =

1

2
v2 + ǫk[V

η(t, x, ·)].In semi
ondu
tors, the main me
hanism driving the ele
trons towards a di�usive regime is 
ollisionwith phonons (vibration of the semi
ondu
tor 
rystal latti
e). The 
ollision operator Qη for theele
tron-phonon intera
tion in the linear BGK approximation reads in the following form :
Qη(f)k =

∑

k′

∫

R

αk,k′(v, v′)(Mη
k(v)fk′(v′) −Mη

k′(v
′)fk(v)) dv

′, (1.5)where the fun
tion Mη
k is the normalized Maxwellian

Mη
k(t, x, v) =

1

2πZη
e−Hη

k
(t,x,v) (1.6)and where the repartition fun
tion Zη is given by

Zη(t, x) =

+∞∑

k=1

e−ǫk[V η(t,x,·)]. (1.7)We refer the reader to [7, 33, 35℄ for a physi
al ba
kground on the Boltzmann equation (1.4).The equation is 
ompleted with the spe
ular re�e
tion boundary 
onditions :
f η

k (t, a, v) = f η
k (t, a,−v) , f η

k (t, b, v) = f η
k (t, b,−v), v > 0, t ∈ R

+. (1.8)The surfa
e density of parti
les is de�ned by
Nη

s (t, x) =

∫ 1

0

Nη(t, x, z) dz =
∑

k

∫

R

f η
k (t, x, v) dv =

∑

k

ρη
k(t, x).3



The 
ross se
tion α is assumed to be symmetri
 and bounded from above and below :(A-1) αk,k′(v, v′) = αk′,k(v
′, v) and 0 < α1 ≤ αk,k′(v, v′) ≤ α2, for all (v, v′) ∈ R

2, k, k′ ≥ 1.We 
onsidered the well-prepared initial 
ondition assumed to be at the thermal equilibrium :
f η

k (0, x, v) = f in
k (x, v) :=

N in
s (x)

2π
∑

k e
−ǫk[V in]

e−v2/2−ǫk[V in], (x, v) ∈ [a, b] × R, (1.9)where (V in, (ǫk[V
in], χk[V

in])k≥1) is the set of solutions of the S
hrödinger-Poisson system at ther-mal equilibrium :




−1

2
∂2

zχk[V
in] + V inχk[V

in] = ǫk[V
in]χk[V

in] (k ≥ 1),

χk[V
in](x, ·) ∈ H1

0 (0, 1),

∫ 1

0

χk[V
in]χℓ[V

in] dz = δkℓ .

−∆x,zV
in =

∑

k

N in
s (x)∑

k e
−ǫk[V in]

|χk[V
in]|2e−ǫk[V in],We assume that we have(A-2) N in

s ≥ 0, N in
s ∈ C0([a, b]).Under this assumption, it has been stated in Proposition 2.1 of [4℄ that the above S
hrödinger-Poisson system at thermal equilibrium admits a unique set of solution (V in, (ǫk[V

in], χk[V
in])k≥1)with 0 ≤ V in ∈ C1(Ω), where we re
all that Ω = (a, b) × (0, 1).From a mathemati
al point of view, the di�usive limit is obtained by letting η going to 0 inequation (1.4). It is well-known that in a di�usion approximation the surfa
e density Ns satis�es atthe limit a drift-di�usion equation [31, 16℄. We propose here to extend these results for the 
oupledquantum-
lassi
al system presented above.Before stating the results of this paper, let us introdu
e some notations. An originality of thissystem is the in�nite sequen
e of solution of kineti
 equations. Then we denote for any separableBana
h spa
e E by ℓ1(E) the spa
e of sequen
es (hk)k≥1 su
h that for all k ≥ 1 we have hk ∈ Eand ∑k≥1 ‖hk‖E < +∞, this last quantity being the norm of (hk)k≥1 in ℓ1(E). Its dual is ℓ∞(E ′)the set of sequen
es (uk)k≥1 belonging to the dual E ′ of E su
h that supk ‖uk‖E′ is �nite. Wesay that a sequen
e (hn

k)k≥1 
onverges weakly to (hk) in ℓ1(E) if for any (uk)k≥1 ∈ ℓ∞(E ′), wehave ∑k〈hn
k − hk, uk〉E′,E → 0 as n → ∞. We re
all that as a 
onsequen
e of the Dunford-PettisTheorem and the De La Vallée Poussin Theorem, a sequen
e (hn)n is relatively weakly 
ompa
tin ℓ1(L1(O)) (for O ⊂ R

N ) if there exists a nonnegative fun
tion G satisfying limt→+∞
G(t)

t
= +∞and su
h that sup

∑
k

∫
Ω
G(|fk|) dx < +∞ (see Chapter 2 of [13℄). All along the paper, we willusually shortly denote by ‖hk‖Lp

t,x,v
the Lp((0, T )× [a, b]×R) norm of hk. Finally, we will make useof the spa
e L logL(O) de�ned as the spa
e of positive fun
tion f su
h that ψ(f) ∈ L1(O) where

ψ(x) = x log x.1.3 Main resultsWe are interested in this paper in the di�usive limit of the Boltzmann-S
hrödinger-Poisson systempresented before :
∂tf

η
k +

1

η
(v.∂xf

η
k − ∂xǫη

k.∂vf
η
k ) =

1

η2
Qη(f η)k, (x, v) ∈ (a, b) × R. (1.10)4







−1

2
∂2

zχ
η
k + V ηχη

k = ǫη
kχ

η
k (k ≥ 1),

χη
k(t, x, ·) ∈ H1

0 (0, 1),

∫ 1

0

χη
k χ

η
ℓ dz = δkℓ ,

(1.11)
−∆x,zV

η =
∑

k

∫

R

f η
k |χη

k|2 dv, (1.12)whi
h is 
oupled with the boundary 
ondition (1.8) and (1.3) and the well-prepared initial boundary
ondition (1.9). The aim of this paper is to prove rigorously the limit as η goes to 0 of this systemto the drift-di�usion-S
hrödinger-Poisson system studied in [4℄. One parti
ular relevant motivationof this work is to derive a model for whi
h numeri
al simulations are less 
ostly and simpler thanfor the kineti
-quantum model (1.10)�(1.12). Then a numeri
al simulation of the drift-di�usion-S
hrödinger-Poisson system obtained as η goes to 0 is provided in [28℄ to simulate the di�usivetransport of ele
trons in a double-gate MOSFET. An interesting 
ontinuation of this work is toextend to more general 
ollision operators to derive a hierar
hy of 
lassi
al-quantum 
oupled modelin the spirit of [5℄.To establish rigorously the di�usive limit, we will make use of te
hniques whi
h have beendeveloped in the framework of hydrodynami
s limits for the Boltzmann equation by several authors(see e.g. [1, 8, 15, 14, 17, 21, 32℄ and see [37℄ for a review). Di�usion limits for paraboli
 systemshave been presented in [9℄, where linear kineti
 equations arising in models of plasma or semi-
ondu
tors or rare�ed gases are 
onsidered, and in [20℄ for generalized two-velo
ity models.Although the linearity of the 
ollision operator Q, the 
oupling is highly non linear and thenwe are not able to 
onstru
t strong solutions for this system. Thus we will work in the frameworkof renormalized solutions [10, 11, 24℄.De�nition 1.1 We say that a nonnegative fun
tion f η = (f η
k )k∈N∗ is a renormalized solution of(1.10) if ∀ β ∈ C1(R+) with |β(t)| ≤ C(

√
t+ 1) and |β ′(t)| ≤ C, we have for all k ≥ 1, β(f η

k ) is aweak solution of :




η∂tβ(f η
k ) + v ∂xβ(f η

k ) − ∂xǫη
k ∂vβ(f η

k ) =
Qη(f η)k

η
β ′(f η

k ),

β(f η
k )(t = 0) = β(f in

k ),

β(f η
k )(t, a, v) = β(f η

k )(t, a,−v), β(f η
k )(t, b, v) = β(f η

k )(t, b,−v), v > 0, t > 0.The entropy of the system is de�ned by
W η(t) =

∑

k

∫∫

(a,b)×R

(
f η

k log
f η

k

Mk

− f η
k +Mk

)
dxdv +

1

2

∫∫

Ω

|∇x,zV
η|2 dxdz, (1.13)where Mk = K exp(−1

2
(v2 + k2)) with a 
onstant K 
hosen su
h that ∑k

∫
Mk dv = 1. Thedissipation rate whi
h measures the distan
e to the equilibrium is de�ned by

Rη(t) =
1

2

∑

k

∫∫

(a,b)×R

(√
f η

k −
√
Nη

s Mη
k

)2

dxdv. (1.14)Remark : We point out the fa
t that, looking at the expression of the entropy of the system, wedo not have better estimates in spa
e than L logL for f η and H1 for V η. It is proved in Appendix5



that it implies a bound of ∂xǫη
k in L2. Thus the produ
t f η

k · ∂xǫη
k has no meaning even in a weaksense. The renormalization of the Boltzmann equation allows us to over
ome this di�
ulty.The following statement establishes existen
e of a renormalized solution under the assumptionof small initial data :Theorem 1.2 Let T > 0 and assume that Assumptions (A-1) and (A-2) hold. If we denote :

Nin =

∫ b

a

N in
s dx.Then, there exists N0 > 0 su
h that if Nin ≤ N0, the system (1.10)-(1.11)-(1.12) -(1.8)-(1.9)-(1.3)admits a renormalized solution (V η, (ǫη

k, χ
η
k, f

η
k )k≥1) on [0, T ] whi
h satis�es(i) ∀λ > 0, Θη

k,λ := (f η
k + λ exp(−1

2
(v2 + k2)))1/2 satis�es

η∂tΘ
η
k,λ + v ∂xΘ

η
k,λ − ∂v(∂xǫη

k Θη
k,λ) =

Qη(f η)k

2ηΘη
k,λ

+ λ∂xǫη
k

ve−
1
2
(v2+k2)

2Θη
k,λ

. (1.15)(ii) We have the lo
al mass 
onservation
∂tN

η
s + ∂xJ

η = 0, where Jη =
1

η

∑

k≥1

∫

R

vf η
k dv. (1.16)(iii) The entropy inequality holds :

∀ t ∈ [0, T ], 0 ≤W η(t) +
α1

η2

∫ t

0

Rη(s) ds ≤ CT . (1.17)If the potential is given in L∞, Poupaud [31℄ has proved existen
e of strong solutions of thesemi
ondu
tors Boltzmann transport equation and their 
onvergen
e as the mean free path η goesto 0 towards solutions of the drift-di�usion equation. He uses a method based on an asymptoti
expansion of the solution f η in power of η and estimation on the remainder of this expansion.Ben Abdallah and Tayed [6℄ have extended this method and established the di�usive limit of theBoltzmann-Poisson system in one dimension, sin
e in this 
ase they obtain enough regularity onthe potential. However when the dimension is greater than one, Masmoudi and Tayeb [22℄ need torenormalize the Boltzmann equation and use 
ompa
tness method to establish the di�usive limit.In this paper we adapt the te
hniques of Masmoudi and Tayeb [22℄ to prove the following theorem :Theorem 1.3 Let T > 0 and, for η > 0, (V η, (f η
k ,ǫ

η
k, χ

η
k)k≥1) be a renormalized solution of theBoltzmann-S
hrödinger-Poisson system as de�ned in Theorem 1.2 for Nin ≤ N0. Then as η → 0, if

N0 is small enough, this solution 
onverges to a solution (V,Ns, (ǫk, χk)k≥1) of the drift-di�usion-S
hrödinger-Poisson (DDSP) system de�ned by
∂tNs + ∂xJ = 0, J = −D(∂xNs +Ns∂xVs), (1.18)




−1

2
∂zzχk + V χk = ǫkχk (k ≥ 1),

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0

χk χℓ dz = δkℓ ,
(1.19)

6



−∆x,zV = Ns

∑

k

e−ǫk

∑
ℓ e

−ǫℓ
|χk|2 , (1.20)where the e�e
tive potential Vs is de�ned by

Vs = − log
∑

k

e−ǫk , (1.21)and D is the di�usion 
oe�
ient whose expression is given in Corollary 2.2. This system is 
om-pleted with the initial 
ondition Ns(0, x) = N in
s (x) and with the following 
onservative boundary
onditions :





J(t, a) = J(t, b) = 0,
dV

dx
(t, a, z) =

dV

dx
(t, b, z) = 0 for z ∈ (0, 1),

V (t, x, 0) = V (t, x, 1) = 0 for x ∈ (a, b).

(1.22)We have up to an extra
tion of a subsequen
e, as η → 0,
‖f η

k −NsMk‖ℓ1(L1([0,T ]×[a,b]×R)) → 0 and ‖V η − V ‖L2([0,T ],H1(Ω)) → 0.We noti
e the assumption of small initial data in these Theorems whi
h has been already set forthe study of the Vlasov-S
hrödinger-Poisson system in [3℄. The existen
e of solutions for (DDSP)when the x-variable is two dimensional has been established in [4℄ when the di�usion 
oe�
ient Dis assumed to be a 
onstant. In this 
ase we have enough regularity to establish the uniqueness ofsolutions. But for a non 
onstant di�usion 
oe�
ient, the proof of existen
e is addressed in [36℄;however we do not obtain the uniqueness of solutions.1.4 Strategy of the proofAs done in [3, 4℄, the system shall be viewed as a one dimensional Boltzmann equation (1.10)for the distribution fun
tion (f η
k )k≥1 
oupled to the quasistati
 S
hrödinger-Poisson system (1.11)-(1.12) for the potential V η. The S
hrödinger-Poisson system allows us to 
ompute the potentialas a fun
tion of the distribution fun
tion, while the Boltzmann equation gives the value of thedistribution fun
tion in terms of the ele
trostati
 potential. The arguments used for the proof ofTheorem 1.2 are rather standard (see [24℄ and referen
e therein). A �rst step is to trun
ate andto regularize the Boltzmann-S
hrödinger-Poisson system. Thanks to a �xed point argument we
an 
onstru
t strong solutions of the regularized system. Then solutions of the whole system areobtained by a passage to the limit in the regularization using stability result. These steps areexplained in Se
tion 5.Theorem 1.3 establishes the di�usive limit of renormalized solutions of Theorem 1.2 as η → 0.Regarding the te
hniques used in the 
lassi
al Boltzmann-Poisson 
ase [22℄, the proof of Theorem1.3 relies strongly on the entropy estimate (1.17) whi
h is established in Se
tion 2 and on a rigorousanalysis of the S
hrödinger-Poisson system. A priori estimates obtained thanks to the entropy allowsus to �x the fun
tional framework :

(fk)k≥1 ∈ L∞
t (L logL(dxdv)), ((v2 + k2)fk)k≥1 ∈ L∞

t (ℓ1(L1(dxdv))), V ∈ L∞
t (H1(dxdv)).As re
all in the introdu
tion, a 
onsequen
e of the Dunford-Pettis and the De La Vallée PoussinTheorem is the relative weak 
ompa
tness of f η in ℓ1(L1). We re
all the following averaging Lemmawhose proof 
an be found in [22℄ (see also [8℄) : 7



Lemma 1.4 Assume that hη is bounded in L2((0, T ) × (a, b) × R), that hη
0 and hη

1 are bounded in
L1((0, T ) × (a, b) × R), and that

η∂th
η + v ∂xh

η = hη
0 + ∂vh

η
1.Then for all ψ ∈ C∞

0 (R),
lim
y→0

(
sup
η<1

∥∥∥∥
∫

R

(hη(t, x+ y, v) − hη(t, x, v))ψ(v) dv

∥∥∥∥
L1

t,x

)
= 0,where hη is extended by zero for x 6∈ [a, b].Thanks to this averaging lemma we will establish in Se
tion 4.1 the relative strong 
ompa
tness ofthe surfa
e density Nη

s in ℓ1(L1) as η goes to 0. Then, with the entropy inequality (1.17), we have :
∫ t

0

Rη(s) ds =
1

2

∑

k

∫ t

0

∫∫

(a,b)×R

(√
f η

k −
√
Nη

s Mη
k

)2

dxdvds ≤ CTη
2. (1.23)Letting η going to 0 we hope to prove with (1.23) that the distribution fun
tion 
onverges to aMaxwellian. But we need to establish the 
onvergen
e of the eigenenergies ǫη

k. Contrary to theBoltzmann-Poisson system [22℄, the dependen
y of the potential V η with respe
t to the o

upationfa
tor ρη is not obvious but needs the resolution of the S
hrödinger-Poisson system in the fun
tionalframework suggested by the a priori estimates.Therefore a key point is the study of the S
hrödinger-Poisson system (1.1)-(1.2), whi
h is theobje
t of Se
tion 3. We remark that sin
e we work in one dimension for the transport, we have that
V ∈ H1(Ω) implies ‖V ‖L2

z(0,1) ∈ H1(a, b) whi
h is 
ompa
tly embedded in L∞(a, b). It is proved inthe Appendix, where we re
all some spe
tral properties of the Hamiltonian, that it implies a boundon χk in L∞(Ω) (see Lemma A.4). Thus the produ
t of ρk with |χk|2 in the right hand side of thePoisson equation (1.2) makes sense. Ben Abdallah and Méhats [3℄ have established existen
e anduniqueness of solutions of this system (1.1)-(1.2) for an o

upation number ρk in Lp for p > 1. Theproof is based on an idea of Nier [26, 27℄ whi
h suggests to minimize the fun
tional
Jρ(V ) =

1

2

∫∫

Ω

|∇V |2 dxdz −
∑

k≥1

∫ b

a

ρkǫk[V ] dx.A 
riti
al point of this fun
tional is a solution of the S
hrödinger-Poisson system. But 
ontraryto [4, 36℄ where the o

upation fa
tors de
ay with respe
t to k, this fun
tional is not 
onvex.Thus we do not have uniqueness of the minimum. However we prove in Proposition 3.4 that if
(ρk)k≥1 and (ρ̃k)k≥1 are in L∞((0, T ), ℓ1(L1(a, b))) and if V and Ṽ are 
orresponding solutions ofthe S
hrödinger-Poisson system (1.1)-(1.2),

‖V − Ṽ ‖L1([0,T ],H1(Ω)) ≤ C1‖ρk − ρ̃k‖ℓ1(L1((0,T )×(a,b))) + C2N‖V − Ṽ ‖L1([0,T ],H1(Ω)), (1.24)where N = max{‖ρk‖L∞((0,T ),ℓ1(L1(a,b))), ‖ρ̃k‖L∞((0,T ),ℓ1(L1(a,b)))} and C1 and C2 are nonnegative 
on-stants depending only on data. We dedu
e from this inequality that if N is small enough, thesolution of the S
hrödinger-Poisson system (1.1)-(1.2) is unique. It explains why Theorems 1.2 and1.3 are proved only under the assumption of small initial data.8



Yet we 
an prove that the strong 
ompa
tness of Nη
s in L1 implies the strong 
ompa
tness of V ηin L1((0, T ), H1(Ω)). From spe
tral properties of the Hamiltonian it implies that ǫk[V

η] → ǫk[V ]as η goes to 0. From (1.23) we dedu
e that f η → NsM in ℓ1(L1(dtdxdv)). It remains to show thatthe limit fun
tion Ns is a solution of the drift-di�usion equation (1.18). Passing to the limit in thelo
al mass 
onservation, it su�
es to study the limit of the 
urrent Jη whi
h is done in Se
tion 4.2.The outline of the paper is as follows. In the se
ond se
tion, after brie�y re
alling basi
 prop-erties of the 
ollision operator, we establish the a priori estimates, whi
h are the natural estimatesfor our system. In the third se
tion, we analyze the S
hrödinger-Poisson system under physi
alassumptions given by the a priori estimates. Se
tion 4 is devoted to the proof of Theorem 1.3assuming that we have 
onstru
ted a renormalized solution of the Boltzmann-S
hrödinger-Poissonsystem. In se
tion 5, the proof of Theorem 1.2 is 
onsidered : we give the regularization andexplain the passing to the limit in the regularized system. The Appendix is devoted to some usefulproperties on the spe
trum of the S
hrödinger operator.2 A priori estimate2.1 Properties of the 
ollision operatorThis se
tion is devoted to the study of the 
ollision operator de�ned by (1.5). The 
ollision operator
Q operates on the v variable only, then we omit in this se
tion the spatial and time dependen
y,sin
e these variables are only parameters. We assume that the sequen
e (ǫk)k≥1 is given and wede�ne Mk(v) =

1

2πZ exp(−1

2
v2 − ǫk) for Z =

∑

k≥1

e−ǫk . We introdu
e the spa
e :
L2
M = {(fk)k∈N∗ s.t. ∑

k

∫

R

f(v)2/Mk(v) dv < +∞}, (2.1)with the asso
iated inner produ
t :
〈f, g〉M =

∑

k

∫

R

fkgk

Mk

dv.Then we summarize the main properties of this 
ollision operator in the following proposition.Proposition 2.1 Let Q be de�ned by (1.5) with a 
ross se
tion α symmetri
 and bounded fromabove and below i.e. satisfying (A-1). Then we get :(i) ∑k

∫
Q(f)k(v) dv = 0.(ii) Q is a linear, bounded, selfadjoint and negative operator on L2

M.(iii) The nullspa
e : Ker Q = {f ∈ L2
M s.t. ∃Ns ∈ R with fk = NsMk, ∀k ≥ 1}.(iv) The equation Q(f) = g admits a solution f ∈ L2

M i�
∑

k

∫

R

gk(v) dv = 0,and this solution is unique if we impose the same relation on f .9



Proof. The �rst point is trivial. Using the symmetry of the 
ross se
tion, we get the 
ru
ialidentity :
2〈Q(f), g〉M =

−
∑

k,k′

∫∫
αk,k′Mk(v)Mk′(v′)

(
fk′(v′)

Mk′(v′)
− fk(v)

Mk(v)

)(
gk′(v′)

Mk′(v′)
− gk(v)

Mk(v)

)
dvdv′.Then (ii) and (iii) are easy 
onsequen
es from this identity. It follows,

(KerQ)⊥ = {f ∈ L2
M s.t. ∑

k

∫
fk(v) dv = 0}.Sin
e Q is obviously a 
losed operator in L2

M the equation Q(f) = g admits a solution i� g ∈
(Ker Q)⊥. This solution is unique in (KerQ)⊥.Corollary 2.2 There exists Θ ∈ L2

M su
h that for all k ≥ 1,
Q(Θ)k = −vMk and ∑

k

∫

R

Θk dv = 0.Then we 
an de�ne the di�usion 
oe�
ient as
D =

∑

k

∫

R

Θk ⊗ v dv. (2.2)Remark 2.3 We re
ognize in formula (2.2) the 
lassi
al expression for the di�usion 
oe�
ientin all the problem of approximation of transport pro
ess by di�usion. This formula, known as theKubo's fomula, is still valid in higher dimensions and under Assumption (A-1) on the 
ross-se
tionit de�nes a positive de�nite matrix [18℄.2.2 A priori estimateA key argument in our study is to obtain uniform estimates on the unknows of the system. We usethe entropy de�ned in (1.13). All along the paper, we will use the following fun
tional spa
e :
Lp

xL
q
z(Ω) = {u ∈ L1

loc(Ω) su
h that ‖u‖Lp
xLq

z(Ω) =

(∫ b

a

‖u(x, ·)‖p
Lq

z(0,1)
dx

)1/p

< +∞}.We re
all (see Lemma 2.2 of [3℄)Lemma 2.4 Let Ω = (a, b) × (0, 1) ⊂ R
2. Then the spa
e H1(Ω) is 
ontinuously imbedded in

L∞
x L

2
z(Ω).We noti
e that this embedding does not hold if Ω = ω × (0, 1) for ω a bounded domain of R

2, i.e.if the transport is assumed to take pla
e in a bounded domain of R
2.

10



Proposition 2.5 Let T > 0 and let (V η, (f η
k ,ǫ

η
k, χ

η
k)k≥1) be a renormalized solution on the interval

[0, T ] of the Boltzmann-S
hrödinger-Poisson system (1.10)�(1.1)�(1.2) with boundary 
onditions(1.9)�(1.8). We assume that (A-1) and (A-2) hold and that
((1 + v2 + ǫη

k + log f η
k )f η

k )k≥1 ∈ L∞([0, T ], ℓ1(L1((a, b) × R)))and V η ∈ L∞([0, T ], H1(Ω)).Then, there exists a nonnegative 
onstant C depending only on initial data su
h that,
∀ t ∈ [0, T ], 0 ≤W η(t) +

α1

η2

∫ t

0

Rη(s) ds ≤ C, (2.3)where the entropy W η is de�ned in (1.13) and the dissipation rate Rη is given in (1.14). Moreover,
∀ t ∈ [0, T ],

∫ b

a

Nη
s (t, x) = Nin =

∫ b

a

N in
s (x) dx. (2.4)Proof. This result is proved in the 
ase of smooth solutions for whi
h all 
al
ulations are justi�ed.In a general 
ase, we regularize the system to have smooth solutions and pass to the limit in theestimate obtained for these smooth solutions. These steps are explained in Se
tion 5.2.It is readily seen that with our assumption on the initial 
ondition (A-2), the initial entropyis bounded and that with our boundary 
onditions, the system 
onserves the mass whi
h implies(2.4). Multiplying (1.10) by (1 + log f η

k +
|v|2
2

+ ǫη
k

), integrating on (a, b)× R and summing over
k, we get

∑

k

∫∫
∂tf

η
k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dxdv =

d

dt

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+ ǫη
k

)
dxdv −

∑

k

∫∫
f η

k ∂tǫη
k dxdv.Moreover, using the notation 〈f〉 =

∫ 1

0
f(z) dz, we have ∂tǫη

k = 〈|χη
k|2∂tV

η〉 (see Lemma A.2 in theAppendix). Thus we obtain :
∑

k

∫∫
f η

k ∂tǫη
k dxdv =

∑

k

∫∫∫
f η

k |χη
k|2∂tV

η dxdvdz

=
d

dt

∑

k

∫∫
f η

k 〈|χη
k|2V η〉 dxdv − 1

2

d

dt

∫∫
|∇x,zV

η|2 dxdz,where we use the Poisson equation (1.2). Therefore,
∑

k

∫∫
∂tf

η
k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dxdv =

1

2

d

dt

∫∫
|∇x,zV

η|2 dxdz

+
d

dt

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+ ǫη
k − 〈|χη

k|2V η〉
)
dxdv.

(2.5)And from the S
hrödinger equation (1.1) we have :
1

2
〈|∂zχ

η
k|2〉 + 〈|χη

k|2V η〉 = ǫη
k.11



With our boundary 
ondition (1.8) we have after an integration by parts
∑

k

∫∫
(v · ∂xf

η
k + ∂xǫη

k · ∂vf
η
k )

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dxdv =

[
∑

k

∫

R

vf η
k

(
log f η

k +
|v|2
2

+ ǫη
k

)
dv

]b

a

= 0.

(2.6)Finally, with (1.5) and sin
e ∑k

∫
Qη(f η)k dv = 0,

∑

k

∫
Qη(f η)k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dv =

1

2

∑

k,k′

∫∫
αk,k′(Mη

k(v)f
η
k′(v

′) −Mη
k′(v

′)f η
k (v)) log

[(
f η

k (v)

Mη
k(v)

)(Mη
k′(v′)

f η
k′(v′)

)]
dvdv′.Using the relation (a1 − a2) log(a1/a2) ≥ (

√
a1 −

√
a2)

2, for all positive a and b, and the Jenseninequality, we obtain :
∑

k

∫∫
Qη(f η)k

(
log f η

k +
|v|2
2

+ ǫη
k + 1

)
dvdx ≤ −α1Rη(t). (2.7)Finally, (2.5), (2.6) and (2.7) lead to :

d

dt

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+
1

2
〈|∂zχ

η
k|2〉
)
dxdv +

1

2

d

dt

∫∫
|∇x,zV

η|2 dxdz +
α1

η2
Rη(t) ≤ 0.(2.8)From (2.8) we have after an integration on [0, T ],

∑

k

∫∫
f η

k

(
log f η

k +
|v|2
2

+
k2

2
− 1

)
dxdv +

1

2

∫∫
|∇x,zV

η|2 dxdz

+
α1

η2

∫ T

0

Rη(t) dt ≤ C1 +
∑

k

∫ b

a

ρη
k

(
k2

2
− 1

2
〈|∂zχ

η
k|2〉
)
dx.

(2.9)Moreover, sin
e the potential V η is nonnegative, we have with the Hölder inequality
1

2
〈|∂zχ

η
k|2〉 = ǫη

k − 〈|χη
k|2V η〉 ≥ ǫk[0] − ‖χη

k‖2
L4

z(0,1)‖V η‖L2
z(0,1).An interpolation and Lemma A.4 imply the existen
e of a nonnegative 
onstant C2 su
h that

‖χη
k‖2

L4
z(0,1) ≤ C‖χη

k‖L2
z(0,1)‖χη

k‖L∞

z (0,1) ≤ C2(1 + ‖V η‖1/2
L2

z(0,1))Sin
e ǫk[0] = 1
2
π2k2, we dedu
e that

k2

2
− 1

2
〈|∂zχ

η
k|2〉 ≤

1

2
k2 − 1

2
π2k2 + C2(1 + ‖V η‖1/2

L2
z(0,1)) ≤ C2(1 + ‖V η‖1/2

L2
z(0,1)). (2.10)By the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω), we have

∑

k

∫ b

a

ρη
k(
k2

2
− 1

2
〈|∂zχ

η
k|2〉) dx ≤ C3‖ρη

k‖ℓ1(L1(a,b))(1 + ‖V η‖1/2

H1(Ω)) = C3Nin(1 + ‖V η‖1/2

H1(Ω)).(2.11)12



This last inequality in (2.9) provides
∫∫

|∇x,zV
η|2 dxdz ≤ C4 + C5‖V η‖1/2

H1(Ω).Thus using the Poin
aré inequality, we dedu
e that ‖V η‖H1(Ω) is bounded. Then (2.9) and (2.11)provide the desired estimate.Corollary 2.6 Let T > 0 and (f η
k )k≥1 su
h as in Proposition 2.5, there exists a 
onstant CT > 0su
h that :

∀ t ∈ [0, T ],
∑

k

∫∫

(a,b)×R

f η
k (| log f η

k | + |v|2 + k2 + 1) dxdv ≤ CT ,

∫ b

a

(Nη
s logNη

s −Nη
s + 1) dx ≤ CT ,

∫ T

0

∫ b

a

Jη(t, x) dxdt ≤ CTProof. The se
ond estimate results from the Jensen inequality. The �rst follows from the remark
y| log y| ≤ y log y + 2/e for all y > 0. Sin
e the fun
tion v 7→ vMη

k is odd, we have
Jη =

1

η

∑

k

∫

R

v

(√
f η

k +
√
Nη

s Mη
k

)(√
f η

k −
√
Nη

s Mη
k

)
dv.Using the Cau
hy-S
hwarz inequality, we dedu
e that

∫ b

a

Jη(t, x) dx ≤ 2

(
∑

k

∫∫
v2(f η

k +Nη
s Mη

k) dxdv

)1/2

(Rη(t))1/2 .We 
on
lude by using (2.3).Remark 2.7 It 
ould seem more �natural� to 
onsider the relative entropy with respe
t to thephysi
al equilibrium M rather than W η in (1.13). However it this 
ase the time derivative of theentropy with respe
t to time will involve terms ∂tǫk for whi
h we have no estimate. This is thereason why we 
hoose the time-independent quantity M in (1.13).3 The S
hrödinger-Poisson systemThis se
tion is devoted to the study of the �quasi-stati
� S
hrödinger-Poisson system de�ned by :




−1

2
∂2

zχk + V χk = ǫkχk (k ≥ 1),

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0

χk χℓ dz = δkℓ ,
(3.1)

−∆x,zV =
∑

k

ρk|χk|2 , (3.2)
13



where we 
onsider that ρ = (ρk)k≥1 is given in L∞((0, T ), ℓ1(L1(a, b))) and satis�es :(H1) ∀ k ≥ 1, ρk ≥ 0 and there exists a nonnegative 
onstant CT su
h that
∀ t ∈ [0, T ],

∑

k

∫ b

a

ρk(1 + k2) dx ≤ CT . (3.3)We denote Ns =
∑

k ρk. The system is 
ompleted by the boundary 
onditions (1.3). In thesequel we will use the fun
tional spa
e H1
01 = {V ∈ H1(Ω) : V (x, 0) = V (x, 1) = 0}.Proposition 3.1 (Existen
e and uniqueness) Let us suppose that ρ = (ρk)k≥1 is given in

L∞((0, T ), ℓ1(L1(a, b))) and satis�es H1. Then the S
hrödinger-Poisson system (3.1)�(3.2) admitsa solution in H1
01.Moreover, denoting N = ‖Ns‖L∞((0,T ),L1(a,b)) if N is small enough, this solution (V, (ǫk, χk)k≥1)is unique.This result is obtained thanks to an idea of Nier [26℄ whi
h has been developed in [3℄. Theprin
iple is based on the fa
t that a weak solution of (3.1)�(3.2) is a 
riti
al point of a 
ertainfun
tional. Namely, we 
onsider the fun
tional de�ned on H1

01 by
Jρ(V ) =

1

2

∫∫

Ω

|∇V |2 dxdz −
∑

k≥1

∫ b

a

ρkǫk[V ] dx = J0(V ) + J1(V, ρ). (3.4)It is proved in Lemma 3.2 that this fun
tional admits a minimizer and that this minimizer is aweak solution of (3.1)�(3.2). Be
ause of the non-
onvexity of Jρ, its minimizers are not unique.Hen
e the uniqueness is obtained in Lemma 3.3 only under the assumption of smallness for N .Lemma 3.2 Assume that (ρk)k≥1 ∈ L∞((0, T ), ℓ1(L1(a, b))) and satisfy H1. Then the fun
tional
Jρ de�ned in (3.4) is 
ontinuous, lo
ally Lips
hitz and weakly lower semi
ontinuous on H1

01. It is
oer
ive : there exist nonnegative 
onstants C1, C2 and C3 su
h that for all t ∈ (0, T ),
Jρ(V ) ≥ C1‖V ‖2

H1(Ω) − C2‖V ‖3/2

H1(Ω) − C3. (3.5)Thus the system (3.1)�(3.2) admits a solution (V, (ǫk, χk)k≥1) with V ∈ L∞((0, T ), H1
01).Proof. The fun
tional J0 is 
learly 
ontinuous and strongly 
onvex on H1

01. For the fun
tional
J1, we use the properties of ǫk[V ] summarized in (A.8) to prove

|J1(V, ρ) − J1(Ṽ , ρ)| ≤
∑

k≥1

∫ b

a

ρk|ǫk[V ] − ǫk[Ṽ ]| dx

≤ C1

∑

k≥1

∫ b

a

ρk(1 + ‖V ‖1/2
L2

z(0,1) + ‖Ṽ ‖1/2
L2

z(0,1))‖V − Ṽ ‖L2
z(0,1) dx.

(3.6)If we use the Sobolev embedding stated in Lemma 2.4, we obtain
|J1(V, ρ) − J1(Ṽ , ρ)| ≤ C2(1 + ‖V ‖1/2

H1(Ω) + ‖Ṽ ‖1/2

H1(Ω))‖Ns‖L1(a,b)‖V − Ṽ ‖H1(Ω). (3.7)Hen
e J1(·, ρ) is Lips
hitz and weakly 
ontinuous on H1
01. Now if we take Ṽ = 0 in (3.7), from H1,we have that 0 ≥ J1(0, ρ) ≥ −CT . Thus,

Jρ(V ) ≥ 1

2
‖∇V ‖2

L2(Ω) − C3(1 + ‖V ‖1/2

H1(Ω))‖V ‖H1(Ω) − C4.14



We apply the Poin
aré inequality in H1
01 to �nd (3.5). Hen
e the fun
tional Jρ admits a minimizerin H1

01. Moreover, from Lemma (A.2), it is 
lear that Jρ is Gâteaux di�erentiable on H1
01 and thedi�erential of Jρ in the dire
tion W ∈ H1(Ω) is :

dV Jρ(V ) ·W =

∫∫

Ω

∇V · ∇W dxdz −
∑

k

∫ b

a

ρk〈|χk[V ]|2W 〉 dx.Thus ea
h minimizer of the fun
tional Jρ is a weak solution of the S
hrödinger-Poisson system(3.1)�(3.2).Lemma 3.3 Let (ρk)k≥1 given in L∞((0, T ), ℓ1(L1(a, b))) and satisfying H1. Then, for N :=
‖Ns‖L∞((0,T ),L1(a,b)) small enough, the 
orresponding solution (V, (ǫk[V ], χk[V ])k≥1) of the S
hrödinger-Poisson system (3.1)�(3.2) is unique.Proof. Let (ρk)k≥1 be in L∞((0, T ), ℓ1(L1(a, b))) satisfying H1. We assume that we 
an �nd twosolutions of the S
hrödinger�Poisson system denoted V and Ṽ . Multiplying the Poisson equation(3.2) by (Ṽ − V ) and integrating provides :

∫∫

Ω

|∇(Ṽ − V )|2 dxdz =
∑

k

∫ b

a

ρk〈(|χk[Ṽ ]|2 − |χk[V ]|2)(Ṽ − V )〉 dx. (3.8)From (A.3), we dedu
e that we have
∫∫

Ω

|∇(Ṽ − V )|2 dxdz ≤ C1

∫ b

a

Ns e
C2(‖V ‖

L2
z(0,1)

+‖eV ‖
L2

z(0,1)
)‖V − Ṽ ‖2

L2
z(0,1) dx.Then the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω) and the Poin
aré inequality lead to

‖V − Ṽ ‖2
H1(Ω) ≤ C2e

C4(‖V ‖
H1(Ω)+‖eV ‖

H1(Ω))‖Ns‖L1(a,b)‖V − Ṽ ‖2
H1(Ω). (3.9)From Lemma 3.2 we know that V and Ṽ are bounded in H1(Ω). Thus, there exists a nonnegative
onstant C3 su
h that

‖V − Ṽ ‖2
H1(Ω) ≤ C3N‖V − Ṽ ‖2

H1(Ω). (3.10)Thus it su�
es to 
hose N small enough su
h that C3N ≤ 1/2 to prove that V = Ṽ on [0, T ]×Ω.Proposition 3.4 (Continuity) Let (ρk)k≥1 and (ρ̃k)k≥1 in L∞((0, T ), ℓ1(L1(a, b))) and satisfyingH1. We denote by N := ‖Ns‖L∞((0,T ),L1(a,b)), Ñ := ‖Ñs‖L∞((0,T ),L1(a,b)), V and Ṽ the 
orrespond-ing solutions of the S
hrödinger-Poisson system (3.1)�(3.2). Then there exists N0 su
h that if
max(N , Ñ ) ≤ N0, then for all p ≥ 1

‖V − Ṽ ‖Lp([0,T ],H1(Ω)) ≤ CT‖ρk − ρ̃k‖Lp([0,T ],ℓ1(L1(a,b))),where CT is a nonnegative 
onstant depending only on T .
15



Proof. Let (ρk)k≥1 and (ρ̃k)k≥1 be two sequen
es in L∞((0, T ), ℓ1(L1(a, b))) satisfying H1. Mul-tiplying the Poisson equation (3.2) by (V − Ṽ ) and integrating provides :
∫∫

Ω

|∇(V − Ṽ )|2 dxdz =
∑

k

∫∫

Ω

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dxdz

+
∑

k

∫ b

a

ρ̃k〈(|χk[V ]|2 − |χk[Ṽ ]|2)(V − Ṽ )〉 dx.
(3.11)We treat the se
ond term as in the proof of Lemma 3.3 and obtain :

∑

k

∫ b

a

ρ̃k〈(|χk[V ]|2 − |χk[Ṽ ]|2)(V − Ṽ )〉 dx ≤ C1Ñ ‖V − Ṽ ‖2
H1(Ω) , (3.12)where C1 is a nonnegative 
onstant. For the �rst term, we have with Lemma A.1

∑

k

∫∫

Ω

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dxdz ≤ C2

∫ b

a

∑

k≥1

|ρk − ρ̃k|eC3‖V ‖L2
z‖V − Ṽ ‖L2

z
dx.And by the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω) and the bound of V and Ṽ in H1(Ω), we have

∑

k≥1

∫ b

a

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dxdz ≤ C4‖ρk − ρ̃k‖ℓ1(L1(a,b))‖V − Ṽ ‖H1(Ω). (3.13)Therefore if we inje
t (3.12) and (3.13) in (3.11), we obtain thanks to the Poin
aré inequality:
‖V − Ṽ ‖H1(Ω) ≤ C5N‖V − Ṽ ‖H1(Ω) + C6‖ρk − ρ̃k‖ℓ1(L1(a,b)).The result follows straightforwardly after an integration in time for N0 small enough.4 Di�usive limitIn this se
tion we prove Theorem 1.3 assuming that we have 
onstru
ted a renormalized solution

((f η
k )k≥1, V

η) of the Boltzmann-S
hrödinger-Poisson system (1.10)�(1.12) su
h as in Theorem 1.2.Adapting the arguments in [22℄, we prove in a �rst subse
tion the 
onvergen
e up to an extra
tionof the solution ((f η
k )k≥1, V

η) as η goes to 0. In a se
ond subse
tion, we show that the limit is asolution of the (DDSP) system.4.1 Convergen
e of the renormalized solutionsLet f η be a renormalized solution of the Boltzmann equation. The a priori estimates of Corollary 2.6imply that f η is weakly relatively 
ompa
t in ℓ1(L1([0, T ]×(a, b)×R)). The two following lemmatashow that we 
an apply the averaging Lemma 1.4 and that it implies the strong 
onvergen
e of Nη
s .The 
onvergen
e of (f η, V η) is then proved in Proposition 4.3 using the smallness assumption oninitial data.Let us denote, for δ > 0 �xed, βδ an approximation of the identity, namely βδ(s) = 1

δ
β(δs). We
hoose β a C∞ fun
tion satisfying β(s) = s for s ≤ 1, 0 ≤ β ′(s) ≤ 1 for all s and β(s) = 2 for

s ≥ 3. 16



Lemma 4.1 Let f η be a renormalized solution of the Boltzmann equation su
h as in Theorem 1.2.Then Qη(fη)
η

is weakly relatively 
ompa
t in ℓ1(L1((0, T ) × (a, b) × R)).Proof. We de�ne
rη
k =

√
f η

k −
√
Nη

s Mη
k

η
√

Mη
k

. (4.1)Thanks to the dissipation rate 
ontrol (1.17), we have
∑

k

∫ T

0

∫∫
|rη

k|2Mη
k dxdvdt ≤ C. (4.2)Using rη we 
an rewrite

f η
k = Nη

s Mη
k + 2η

√
Nη

s Mη
kr

η
k + η2(rη

k)
2Mη

k.The result is then obtained thanks to a straightforward adaptation of the proof of Proposition 3.3in [22℄.Lemma 4.2 Let Nη
s =

∑
k

∫
f η

k dv with f η su
h as in Theorem 1.2. Then Nη
s is relatively 
ompa
tin L1((0, T ) × (a, b)).Proof. We 
an rewrite the renormalized Boltzmann equation :

η∂tβδ(f
η
k ) + v · ∂xβδ(f

η
k ) = hη

k + ∂vg
η
k ,where

hη
k =

1

η
Qη(f η)kβ

′
δ(f

η
k ) and gη

k = ∂xǫη
k βδ(f

η
k ).With our 
hoi
e of βδ, we have βδ(f

η
k ) ≤ 2/δ and βδ(f

η
k ) ≤ f η

k then βδ(f
η) ∈ ℓ∞(L∞

t,x,v) ∩ ℓ1(L1
t,x,v).It yields that βδ(f

η) ∈ ℓ2(L2
t,x,v). Sin
e we have 0 ≤ β ′

δ(f
η
k ) ≤ 1 and 1

η
Qη(f η) weakly relatively
ompa
t in ℓ1(L1

t,x,v), we dedu
e that hη
k is weakly relatively 
ompa
t in ℓ1(L1

t,x,v). The spe
tralproperties of the Hamiltonian (see Lemma A.2) imply ∂xǫk = 〈|χk|2∂xV 〉. From Lemma A.4 andthe Cau
hy-S
hwarz inequality, we dedu
e
∑

k≥1

∫
|∂xǫη

k βδ(f
η
k )| dxdv ≤ C√

δ
(1 + ‖V η‖H1(Ω))‖V η‖H1(Ω)

(
∑

k

∫
|βδ(f

η
k )| dxdv

)1/2

.The bound of V η in H1(Ω) and of f η in ℓ1(L1
t,x,v) implies that gη

k is bounded in ℓ1(L1
t,x,v).Thus we 
an apply the averaging lemma 1.4. We have that for all ψk ∈ D(R) with (ψk)k≥1 allnull ex
ept for a �nite number of them,

lim
y≥0


sup

η≤1

∥∥∥∥∥
∑

k≥1

∫

R

(βδ(f
η
k )(t, x+ y, v) − βδ(f

η
k )(t, x, v))ψk(v) dv

∥∥∥∥∥
L1

t,x


 = 0. (4.3)

17



Next, using the fa
t that ((1 + v2 + k2)βδ(f
η
k ))η is bounded in L∞(0, T ; ℓ1(L1

x,v)), we dedu
e fromstandard argument that we 
an take ψk(v) to be 
onstant equal to 1 in (4.3). Moreover the de�nitionof βδ and the equi-integrability of f η
k implies

sup
η≤1

‖βδ(f
η) − f η‖ℓ1(L1

t,x,v) → 0 as δ → 0. (4.4)Let ε > 0, we have for all 1 ≥ η > 0

∫
|Nη

s (t, x+ y) −Nη
s (t, x)| dtdx ≤

∑

k

∫
|f η

k (t, x+ y, v) − βδ(f
η
k )(t, x+ y, v)| dtdxdv+

+
∑

k

∫
|βδ(f

η
k ) − f η

k | dtdxdv +

∫
|
∑

k

∫

R

βδ(f
η
k )(t, x+ y, v) dv−

∑

k

∫

R

βδ(f
η
k )(t, x, v) dv| dtdx.We �x δ su
h that the �rst and the se
ond term of the right hand side is < ε/3. For su
h a δ > 0,we use (4.3) to bound the third term by ε/3 for y small enough. Then

‖Nη
s (t, x+ y) −Nη

s (t, x)‖L1
t,x

→ 0 when y → 0 uniformly in η.Therefore the sequen
e (Nη
s (t, ·))η is relatively 
ompa
t in L1

x for all t ∈ [0, T ]. From the lo
almass 
onservation (1.16), we obtain that ∂tN
η
s = −∂xJ

η, whi
h is bounded in L1(0, T ;W−1,1(a, b))thanks to Corollary 2.6. We dedu
e the relative strong 
ompa
tness of (Nη
s )η in L1

t,x. Thereforewe 
an extra
t a subsequen
e su
h that Nη
s → Ns in L1((0, T ) × (a, b)) and a.e. By uniqueness ofthe weak limit, there exists ρ ∈ ℓ1(L1((0, T )× (a, b)) su
h that Ns =

∑
k ρk and ρη

k ⇀ ρk weakly in
ℓ1(L1

t,x).Proposition 4.3 Let (f η, V η) be a renormalized solution of the 
oupled Boltzmann-S
hrödinger-Poisson system whi
h satis�es (i), (ii) and (iii) of Theorem 1.2. There exist V in L∞((0, T ), H1(Ω))and Ns in L∞((0, T ), L1(a, b)) su
h that if Nin is small enough, then up to an extra
tion we have
V η → V in L2((0, T ), H1(Ω)) and f η → NsM in ℓ1(L1((0, T ) × (a, b) × R)) and a.e.Proof. We have proved in Lemma 4.2 the strong and a.e. 
onvergen
e of Nη

s towards Ns. For thissurfa
e density Ns ∈ L∞
t L

1
x, we solve the S
hrödinger-Poisson system at the equilibrium (1.19)�(1.20). It is proved in Proposition 3.1 of [36℄ that there exists a unique V ∈ L∞([0, T ], H1(Ω))solution of (1.19)�(1.20). We show hereinafter that the strong 
onvergen
e in L1 of the surfa
edensity allows to prove that

‖V η − V ‖L2([0,T ],H1(Ω)) → 0 as η → 0. (4.5)In fa
t, we multiply the Poisson equation by (V η − V ) and integrate, we have
∫ T

0

∫∫

Ω

|∇(V η − V )|2 dxdzdt = I + II + III,where
I =

∑

k

∫ T

0

∫∫

(a,b)×R

(f η
k −Nη

s Mη
k)〈|χk[V

η]|2(V η − V )〉 dxdvdt,18



II =
∑

k

∫ T

0

∫∫

(a,b)×R

Nη
s Mη

k〈(|χk[V
η]|2 − |χk[V ]|2)(V η − V )〉 dxdvdt,

III =
∑

k

∫ T

0

∫∫

(a,b)×R

(Nη
s Mη

k −NsMk)〈|χk[V ]|2(V η − V )〉 dxdvdt.We bound the �rst term thanks to the estimate on the dissipation rate (2.3). Lemma A.4 provides
|I| ≤ C1

∑

k

∫ T

0

∫∫

(a,b)×R

|f η
k −Nη

s Mη
k| e

C2‖V η‖
L2

z‖V η − V ‖L2
z
dxdvdt.Thus Lemma 2.4 implies that

|I| ≤ C3

∑

k

∫ T

0

∫∫

(a,b)×R

|f η
k −Nη

s Mη
k| dxdvdt ≤ 4C3‖Nη

s ‖1/2

L1
t,x

(∫ T

0

Rη(t) dt

)1/2

, (4.6)where we use the Cau
hy-S
hwarz inequality. Then Proposition 2.5 implies that |I| ≤ C4η. Forthe se
ond term we use the fa
t that the maxwellian Mk de
ays with respe
t to k. Therefore usingLemma A.2, we dedu
e
II =

∫ T

0

∫∫

(a,b)×R

Nη
s

∫ 1

0

1

2

∑

k,ℓ 6=k

Mη
k −Mη

ℓ

ǫσ
k − ǫσ

ℓ

〈χσ
k(V η − V )χσ

ℓ 〉2 dσ dxdvdt ≤ 0, (4.7)where we denote ǫσ
k := ǫk[σV + (1 − σ)V η] and χσ

k := χk[σV + (1 − σ)V η]. Finally, the bound onthe potential in L∞([0, T ], H1(Ω)) 
ombined with Lemma A.4 furnishes the estimate
|III| ≤ C5

∫ T

0

‖NsM−Nη
s Mη‖ℓ1(L1

x,v)‖V η − V ‖H1
x,z
dt. (4.8)Moreover, using Lemma A.2, we 
an derive the fun
tion s 7→ e−ǫk[sV +(1−s)V η ]/Z[sV + (1 − s)V η]and therefore obtain

Mη
k −Mk =

∫ 1

0

e−v2/2

2π

e−ǫ
s
k

Zs

(∑
ℓ〈|χs

ℓ|2(V η − V )〉e−ǫ
s
k

Zs
− 〈|χs

k|2(V η − V )〉
)
ds,where we use the notation f s := f [sV + (1 − s)V η]. Then by Lemma A.1 we have

|Mη
k −Mk| ≤ C1 e

C2(‖V η‖
L2

z
+‖V ‖

L2
z
)‖V − V η‖L2

z

∫ 1

0

e−v2/2−ǫ
s
k

2πZs
ds.Thus the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω) provides

∑

k

‖Mη
k −Mk‖L∞

x L1
v
≤ C‖V η − V ‖H1(Ω). (4.9)This implies that

‖NsM−Nη
s Mη‖ℓ1(L1

x,v) ≤ ‖Ns −Nη
s ‖L1

x
+ ‖Nη

s (M−Mη)‖ℓ1(L1
x,v)

≤ ‖Ns −Nη
s ‖L1

x
+ CNin‖V η − V ‖H1(Ω),

(4.10)19



where we use (4.9) for the last inequality. Finally, from (4.8) we 
an bound the term III by
|III| ≤ C(‖Ns −Nη

s ‖L1
t,x

+ Nin‖V η − V ‖2
L2([0,T ],H1(Ω))). (4.11)Thus, (4.6), (4.7) and (4.11) provide with the Poin
aré inequality

‖V η − V ‖2
L2([0,T ],H1(Ω)) ≤ C(η + ‖Ns −Nη

s ‖L1
t,x

+ Nin‖V η − V ‖2
L2([0,T ],H1(Ω))).Finally, if Nin is small enough, we dedu
e that V η → V as η → 0 in L2([0, T ], H1(Ω)).The 
onvergen
e of the distribution fun
tion f η is yet obtained thanks to the estimate on thedissipation rate Rη (1.17). Then the properties of the eigenvalues of the Hamiltonian (A.2) andthe embedding of H1(Ω) into L∞

x L
2
z(Ω) (Lemma 2.4) show that

‖ǫk[V
η] − ǫk[V ]‖L2([0,T ],L∞(a,b)) ≤ C‖V η − V ‖L2([0,T ],H1(Ω)) → 0 as η → 0.Moreover, by the Cau
hy-S
hwarz inequality,

‖f η −NsM‖ℓ1(L1
t,x,v) ≤ ‖f η −Nη

s Mη‖ℓ1(L1
t,x,v) + ‖Nη

s Mη −NsM‖ℓ1(L1
t,x,v)

≤ 4‖Nη
s ‖1/2

L1
t,x

(∫ T

0

Rη(t) dt

)1/2

+ ‖Nη
s Mη −NsM‖ℓ1(L1

t,x,v).Thus the entropy inequality (2.3) and (4.10) yield that f η → NsM strongly in ℓ1(L1
t,x,v).

4.2 The limit equationTo end the proof of Theorem 1.3, we have to prove that the limit Ns satis�es the drift-di�usionequation (1.18). Thanks to the lo
al mass 
onservation (1.16), it su�
es to study the limit of the
urrent Jη.Proposition 4.4 Let (f η, V η) be a solution of the renormalized system de�ned in Theorem 1.2,then the 
urrent Jη, de�ned by
Jη :=

1

η

∑

k

∫

R2

vf η
k dv, (4.12)satis�es {

Jη ⇀ J = −D(∂xNs +Ns∂xVs) in weak − L1
t,x,

J(t, a) = J(t, b) = 0,where the di�usion matrix D is de�ned in (2.2) and the auto
onsistant potential is denoted
Vs = − log(

∑

k≥1

e−ǫk[V ]).The proof of this result is based on an idea of Masmoudi and Tayeb [22℄ 
onsisting in using thepoint (i) of Theorem 1.2. Be
ause of the dependen
e on k and of the non linear 
oupling, the proofis not straightforward. Then we detail the proof hereinafter.20



Proof. Thanks to Proposition 4.3 we have
(
√
f η

k )k≥1 → (
√
NsMk)k≥1 in ℓ2(L2

t,x,v),and the de�nition of rη
k (4.1) implies

Jη =
1

η

∑

k

∫

R2

vf η
k dv = 2

√
Nη

s

∑

k

∫

R2

vrη
kMη

k dv + O(η)ℓ1(L1
t,x,v).Besides, we have Mη

k ≤ e−v2/2−π2k2/2 (see Appendix) and the bound (4.2) show that the sequen
e
(rηMη/e−(v2+π2k2)/4)η is bounded in ℓ2(L2

t,x,v). Thus up to an extra
tion, there is a u in ℓ2(L2
t,x,v)su
h that rηMη/e−(v2+π2k2)/4 ⇀ u weakly in ℓ2(L2

t,x,v). Setting r = u e−(v2+π2k2)/4/M, we get that
(rηMη/e−(v2+π2k2)/4) weakly 
onverges towards (rM/e−(v2+π2k2)/4) in ℓ2(L2

t,x,v). We dedu
e
∑

k

∫

R2

vrη
kMη

k dv =
∑

k

∫

R2

ve−(v2+π2k2)/4 rη
kMη

k

e−(v2+π2k2)/4
dv ⇀

∑

k

∫

R2

vrkMk dv in weak − L2
t,x.Moreover, the strong 
onvergen
e √

Nη
s → √

Ns in L2
t,x implies that

Jη ⇀ J := 2
√
Ns

∑

k

∫

R2

vrkMk dv in weak − L1
t,x. (4.13)Sin
e we have ∑k

∫
vMk dv = 0, Proposition 2.1 shows that we 
an de�ne Q−1(vM) and theselfadjointness of the operator Q leads to

J = 2
√
Ns

∑

k

∫

R2

Q−1(vM)kQ(rM)k
dv

Mk

. (4.14)Now, we will �nd an expression of J . Considering again rη
k , we have

Qη(f η)k

η
= 2
√
Nη

sQ
η(rηMη)k + ηQη((rη)2Mη)k.With (4.2), the se
ond term in the right hand side is O(η)ℓ1(L1

t,x,v). For the �rst one, one 
an proveeasily that ∀ f ∈ ℓ2(L2
t,x,v), we have ‖Qη(f)−Q(f)‖ℓ2(L2

t,x,v) → 0. The weak 
onvergen
e of (rηMη)in ℓ2(L2
t,x,v) implies then

Qη(rηMη) ⇀ Q(rM) weakly in ℓ2(L2
t,x,v).With the strong 
onvergen
e in L2

t,x of √Nη
s , we dedu
e the weak limit :

Qη(f η)k

η
= 2
√
Nη

s Mk
Qη(rηMη)k√Mk

+ O(η)ℓ1(L1
t,x,v) ⇀ 2

√
NsQ(rM)k in ℓ1(L1

t,x,v). (4.15)We re
all that for every λ > 0, we have de�ned Θη
k,λ = (f η

k + λ exp(−1
2
(v2 + k2)))1/2. Thus

Θη
k,λ → Θk,λ = (fk + λe−

1
2
(v2+k2))1/2 strongly in ℓ2(L2

t,x,v).21



Using Lemmata A.1 and A.2 and the estimate (A.3), we 
an prove that
|∂xǫη

k − ∂xǫk| ≤ |〈(|χη
k|2 − |χk|2)∂xV

η〉| + |〈|χk|2∂x(V
η − V )〉|

≤ C1e
C2‖V ‖

L2
z

(
e

C2‖V η‖
L2

z‖∂xV
η‖L2

z
‖V − V η‖L2

z
+ ‖∂x(V − V η)‖L2

z

)
.Thus the strong 
onvergen
e of V η in L2

t (H
1
x,z) with the Sobolev embedding H1(Ω) →֒ L∞

x L
2
z(Ω)imply that

∂xǫη
k → ∂xǫk strongly in ℓ2(L2

t,x).Therefore,
∂xǫη

k Θη
k,λ ⇀ ∂xǫk Θk,λ weakly in L1

t,x,v.Thus we 
an take the weak limit as η → 0 in (1.15). For all k ≥ 1, we �nd
v · ∂xΘk,λ − ∂v(∂xǫk Θk,λ) =

√
NsQ(rM)k

Θk,λ
+ λ∂xǫk

ve−
1
2
(v2+k2)

2Θk,λ
.And if we make λ→ 0 in the resulting equation, we �nd

(
∂x

√
Ns +

1

2

√
Ns∂xVs

)
· vMk = Q(rM)k, (4.16)where we take Vs = − log

∑
k e

−ǫk . And we verify that the produ
t √Ns∂xVs has a meaning in L1
t,x.Now, with (4.13) and (4.16), we 
an 
on
lude

J = −D

√
Ns

(
∂x

√
Ns +

1

2

√
Ns∂xVs

)
, (4.17)where the symmetri
 positive di�usion matrix, de�ned in (2.2), is given by

D = −
∑

k

∫

R

v ⊗Q−1(vM)k dv.Besides, with our 
hoi
e of boundary 
onditions (1.8) we have that
∑

k≥1

∫

R

vf η
k (t, a, v) dv =

∑

k≥1

∫

R

vf η
k (t, b, v) dv = 0Thus as η goes to 0, it provides that J(t, a) = 0 and J(t, b) = 0. Now, if we use Lemma 4.5 
om-bined with (4.16), we 
an rewrite the 
urrent J and the proof of the Proposition 4.4 is 
omplete.Lemma 4.5 Let Ns and V be de�ned in Proposition 4.3. If we suppose that

∂x

√
Ns +

1

2

√
Ns∂xVs = G ∈ L2((0, T ) × (a, b)), (4.18)where Vs = − log(

∑

k≥1

e−ǫk[V ]). Then we have
√
Ns ∈ L2((0, T ), H1(a, b)) and √

Ns∂xVs ∈ L2((0, T ) × (a, b)).22



Proof. We have √
Ns bounded in L2

t,x and V in L2
tH

1
x, then from Lemma A.1, we dedu
e that√

Ns∂xVs ∈ L1
t,x. It follows that ∂x

√
Ns ∈ L1

t,x. We 
onsider the approximation of the identity βδas before. Namely βδ(s) = 1
δ
β(δs) where β is a C∞(R+) fun
tion satisfying β(s) = s for 0 ≤ s ≤ 1,

β(s) = 2 for s ≥ 3 and 0 ≤ β ′(s) ≤ 1. If we denote ψ =
√
Ns, we have

∂xβδ(ψ) = ∂xψβ
′
δ(ψ).Hen
e we 
an renormalize the equation (4.18) :

∂xβδ(ψ) +
1

2
∂xVs β

′
δ(ψ)ψ = G̃where G̃ = Gβ ′

δ(ψ) ≤ G. Multiplying (4.19) by ∂xβδ(ψ) and integrating provides
∫∫

|∂xβδ(ψ)|2 dxdt+
1

2

∫∫
∂xVs · ∂xβδ(ψ)ψβ ′

δ(ψ) dxdt =

∫∫
G̃∂xβδ(ψ) dxdt. (4.19)By the Cau
hy-S
hwarz inequality we dedu
e

∫∫
G̃∂xβδ(ψ) dxdt ≤ 1

2

∫∫
G̃2 dxdt+

1

2

∫∫
|∂xβδ(ψ)|2 dxdt.If we de�ne β̃ by β̃(s) =

∫ s

0
τβ ′(s)2 dτ and β̃δ(s) = 1

δ2 β̃(δs). Then, β̃δ(s) tends to s2

2
when δ goesto 0 and we have

∫ b

a

∂xVs · ∂xβδ(ψ)ψβ ′
δ(ψ) dx =

∫ b

a

∂xVs · ∂xβ̃δ(ψ) dx = −
∫ b

a

∂2
xVs β̃δ(ψ) dx. (4.20)Thanks to the Poisson equation (1.20), we have :

−∂2
xVs = −4

∑

k

e−ǫk(ǫk)
2

Z +
〈N2 + 4V 2N〉

Ns
+ 2

∑

k

e−ǫk

Z
〈
(V + ǫk)|∂zχk|2

〉

− 1

Z
∑

k

∑

ℓ 6=k

(
e−ǫk − e−ǫℓ

ǫk − ǫℓ

)
〈χkχℓ ∂xV 〉2

+
∑

k

e−ǫk

Z
〈
|χk|2 ∂xV

〉2 −
(
∑

k

e−ǫk

Z
〈
|χk|2 ∂xV

〉
)2

.

(4.21)
By the Cau
hy-S
hwarz inequality, the sum of the last two terms of the right hand side is nonneg-ative. Moreover, ex
ept for the �rst one, the other terms are obviously nonnegative. Thus we havewith (4.20), ∫ b

a

∂xVs · ∂xβδ(ψ)ψβ ′
δ(ψ) dx ≥ −4

∫ b

a

∑

k

e−ǫk(ǫk)
2

Z β̃δ(ψ) dx.Moreover, Lemma A.1 and the Sobolev embedding H1(Ω) →֒ L∞
x L

2
z(Ω) imply that ∑k

e−ǫk (ǫk)2

Z
isbounded in L∞(a, b). Thus (4.19) leads to

∫∫
|∂xβδ(ψ)|2 dtdx ≤

∫∫
G2 dtdx+ 4

∫ b

a

∑

k

e−ǫk(ǫk)
2

Z β̃δ(ψ) dx.23



Passing to the limit δ → 0, we have
∫∫

|∂x

√
Ns|2 dtdx ≤

∫∫
G2 dtdx+ 4

∫ b

a

∑

k

e−ǫk(ǫk)
2

Z Ns dx.Thus we dedu
e that√Ns ∈ L2((0, T ), H1(a, b)) and with (4.18) we 
on
lude easily that√Ns∂xVs ∈
L2((0, T ) × (a, b)).5 Existen
e for the overall problem5.1 The trun
ated Boltzmann equationThis part deals with well-known existen
e results and properties for the Boltzmann equation. Theresults will be given for the matter of 
ompleteness without proof, we refer to [2, 3, 8, 11, 24℄ formore details. We shall assume that η > 0 is �xed, for the 
larity of the notation we 
hose η = 1,and that the for
e �elds Fk := −∂xǫk is given. We 
onsider the Boltzmann equations indexed in
k : 




∂tfk + v · ∂xfk + Fk · ∂vfk = QR(f)k, (x, v) ∈ (a, b) × R, t ∈ [0, T ],

fk(t, a, v) = fk(t, a,−v), fk(t, b, v) = fk(t, b,−v) for t ∈ [0, T ], v > 0,

fk(0, x, v) = f in
k (x, v),

(5.1)with the trun
ated 
ollision operator :
QR(f)k =

∑

k′

∫

R

αR
k,k′(v, v′)(Mk(v)fk′(v′) −Mk′(v′)fk(v)) dv

′, (5.2)where the trun
ated 
ross-se
tion is de�ned for a R > 0 by
αR

k,k′(v, v′) = αk,k′(v, v′)1k≤R,|v|≤R(k, v)1k′≤R,|v′|≤R(k′, v′). (5.3)A simple 
al
ulation shows that the regularized 
ollision operator (5.2) is bounded in ℓ1(L1
t,x) andin ℓ∞(L∞

t,x) and satis�es ∑k

∫
R
QR(f)k dv = 0.We 
an prove, using the 
hara
teristi
s te
hniques (see for instan
e [3, 6, 8℄), existen
e anduniqueness of weak solutions for ea
h equation of (5.1) :Lemma 5.1 Let T > 0 and assume that the initial data satisfy for all k ≥ 1,

f in
k ≥ 0, (1 + v2)f in

k ∈ L1((a, b) × R), f in
k ∈ L∞((a, b) × R).Assume that Fk ∈ L1((0, T ),W 1,1(a, b)∩L∞(a, b)) and that ǫk ≥ 1

2
π2k2. Then (5.1) admits a uniqueweak solution fk ∈ L∞((0, T ), L1 ∩ L∞((a, b) × R)), fk ≥ 0 and

∀ t ∈ [0, T ],
∑

k≥1

∫

R

fk(t, x, v) dv =
∑

k≥1

∫

R

f in
k (x, v) dv (5.4)Moreover if there exists δ > 2 su
h that (vδ + k2)f in

k ∈ ℓ∞(L∞
x,v) then ∀ t ∈ [0, T ],

∑

k≥1

‖fk(t, ·, ·)‖L∞((a,b)×R) ≤ C

(
1 +

(∫ t

0

sup
k≥1

‖Fk(s, ·)‖L∞

x
ds

)2
)
, (5.5)where C is a 
onstant depending only on T and the data.24



5.2 Proof of Theorem 1.2In this se
tion we give the sket
h of the proof of Theorem 1.2. The stru
ture of the 
oupling inviteus to use a �xed-point argument for the proof. However to de�ne this �xed-point, the uniqueness ofa solution of the S
hrödinger�Poisson system is needed. Thus we are not able to prove the existen
efor every kind of initial 
ondition but only for small initial data.The main steps for the proof, des
ribed hereinafter, follow the idea of [2, 3, 22℄ : we regularizethe system thanks to a small parameter ε > 0, we 
onstru
t solution of the regularized system andwe left go the parameter ε to 0 to re
over solutions of the unregularized system.First, let us de�ne the linear regularization operator by
Rε : L1(Ω) → C∞(Ω)

V → Rε[V ](x, z) = (V ∗x ξε,x ∗z ξε,z)|Ω
(5.6)where V is the extension of V by zero outside Ω and ξε,x and ξε,z are C∞ nonnegative 
ompa
tlysupported even approximations of the unity on R. Moreover, we 
an prove straightforwardly from
onvolution results that the regularization operator Rε satis�es the following properties :Lemma 5.2 (i) Rε is a bounded operator on Lp

xL
q
z(Ω) for 1 ≤ p, q ≤ +∞ and satis�es for all

V ∈ Lp
xL

q
z(Ω),

‖Rε[V ]‖Lp
xLq

z(Ω) ≤ ‖V ‖Lp
xLq

z(Ω) and lim
ε→0

‖Rε[V ] − V ‖Lp
xLq

z(Ω) = 0.(ii) Rε is self-adjoint on L2(Ω) and for all V ∈ W 1,2(Ω),
∇xR

ε[V ] = Rε[∇xV ] ; lim
ε→0

‖∇xR
ε[V ] −∇xV ‖L2(Ω) = 0.We introdu
e then the regularized system :





∂tf
ε
k,R +

1

η
(v · ∂xf

ε
k,R − ∂xǫε

k,R · ∂vf
ε
k,R) =

1

η2
Qε

R(f ε
R)k, (x, v) ∈ (a, b) × R,

f ε
k,R(t, a, v) = f ε

k,R(t, a,−v), f ε
k,R(t, b, v) = f ε

k,R(t, b,−v), v > 0,

f ε
k,R(0, x, v) = f in

k (x, v),

(5.7)




−1

2
∂2

zχ
ε
k,R +Rε[V ε

R]χε
k,R = ǫε

k,R χ
ε
k,R (k ≥ 1),

χε
k,R(t, x, ·) ∈ H1

0 (0, 1),

∫ 1

0

χε
k,R χ

ε
ℓ,R dz = δkℓ ,

(5.8)




−∆x,zV
ε
R = Rε

[
∑

k

∫

R

f ε
k,R|χε

k,R|2 dv
]
,

dV ε
R

dx
(t, a, z) =

dV ε
R

dx
(t, b, z) = 0, for z ∈ (0, 1),

V ε
R(t, x, 0) = V ε

R(t, x, 1) = 0, for x ∈ (a, b).

(5.9)We use the regularization of the 
ollision operator :
Qε

R(f)k =
∑

k′

∫

R

αR
k,k′(v, v′)(Mε

k(v)fk′(v′) −Mε
k′(v′)fk(v)) dv

′, (5.10)25



where the trun
ated 
ross-se
tion is de�ned for R > 0 in (5.3). We use the notations of Se
tion 1 :
N ε

s =
∑

k≥1

∫

R

f ε
k dv and Mε

k =
1

2πZε
exp(−1

2
v2 − ǫε

k) for Zε =
∑

k≥1

e−ǫ
ε
k .Sin
e for ε = 0 we have R0 = Id, we will obtain a solution of the unregularized system bypassing to the limits ε → 0 and R → +∞ in the regularized one (5.7)�(5.9). Therefore the proofof Theorem 1.2 
an be split in the three followings steps :Step 1 : Existen
e for the regularized problemIn the �rst step we prove that the regularized problem admits a solution. We verify easilythat the regularized 
ollision operator (5.2) is bounded in ℓ1(L1

t,x) and in ℓ∞(L∞
t,x) and satis�es∑

k

∫
R
Qε

R(f ε)k dv = 0 and
∑

k≥1

∫

R

Qε
R(f ε)k log

f ε
k

Mε
k

dv ≤ −α1

2

∑

k≥1

∫

R

(
√
f ε

k −
√
N ε

sMε
k)

2 dv.Following the ideas of the proof of Proposition 4.8 of [3℄ we establish :Proposition 5.3 Let T > 0 and let assume that Assumption (A-1) holds and that the initial
ondition is at the thermal equilibrium, i.e. verify (A-2) and is given by (1.9). Then, there exists
ε0 > 0 and δ > 0 su
h that, if ∑

k≥1

‖f in
k ‖L1

x,v
< δ, (5.11)and ε ∈ (0, ε0) then the regularized problem (5.7)�(5.9) admits a global weak solution (V ε

R, (f
ε
k,R)k≥1)on the interval [0, T ] whi
h satis�es the entropy estimate :

∀ t ∈ [0, T ], 0 ≤W ε
R(t) +

α1

η2

∫ T

0

Rε
R(t) dt ≤ CT , (5.12)with

W ε
R(t) =

∑

k≥1

(
f ε

k,R log
f ε

k,R

Mk

− f ε
k,R +Mk

)
dxdv +

1

2

∫∫
|∇x,zV

ε
R|2 dxdzand

Rε
R(t) =

1

2

∑

k≥1

∫∫ (√
f ε

k,R −
√
N ε

s,RMε
k,R

)2

dxdv.Step 2 : Passing to the limit R → +∞For ε > 0 �xed, one 
an pass to the limit as R → +∞. We obtainProposition 5.4 Let T > 0 and let assume that (A-1) and (A-2) are satis�ed. Let ε > 0be �xed (ε < ε0) and (V ε
R, (f

ε
k,R, χ

ε
k,R,ǫε

k,R)k≥1) be a weak solution of the regularized Boltzmann-S
hrödinger-Poisson system (5.7)�(5.9). Then as R → +∞ this solution 
onverges to a weaksolution (V ε, (f ε
k , χ

ε
k,ǫε

k)k≥1) of the regularized Boltzmann-S
hrödinger-Poisson system (5.7)�(5.9)with Qε
R is substituted by Qε

R in the Boltzmann equation (5.7).Moreover it satis�es the entropy estimate (5.12) with f ε
k instead of f ε

k,R.26



Proof. We skip all the index ε in the notation. With our regularization (5.6) we have a boundon V in L∞
t (W 1,∞

x,z ) depending only on ε but not on R. It provides thanks to (5.5) a bound on
(fk,R)k≥1 in ℓ∞(L∞

t,x,v) depending only on ε and on the data. And with (5.4), we have a bound on
(fk,R)k≥1 in ℓ1(L1

t,x,v) depending only on the data. Thus we 
an extra
t a subsequen
e 
onvergingas R→ +∞ towards a fun
tion f in ℓ2(L2
t,x,v)−weak. Using the standard mean 
ompa
tness result(see Theorem 1.8 of [8℄, see also [15℄), we dedu
e the relative strong 
ompa
tness of the sequen
eindexed by R ∫

R

fk,Rψk dvin L2
loc([0, T ] × (a, b)) for all ψk ∈ D(R) all null ex
ept for a �nite number of them. Using the fa
tthat the quantity (1 + k2)fk,R is bounded in L∞

t (ℓ1(L1
x,v)) we 
an 
hoose ψk = 1. Thus one obtainthat ρR := (

∫
fk,R dv)k≥1 → ρ := (

∫
fk dv)k≥1 in L2

t,x − strong.The 
onservation of the mass implies that for all t ∈ [0, T ] we have ‖f‖ℓ1(L1
t,x,v) = ‖f in‖ℓ1(L1

t,x,v) =

Nin. Then we 
an solve the regularized S
hrödinger-Poisson system (5.8)-(5.9) with the given
ρ :=

∫
f dv and 
onstru
t a unique solution V ∈ L∞

t (H1
x,z). Using the fa
t that the sequen
e (fR)Rsatis�es (5.12), we 
an use the 
ontinuity property of the solution of the S
hrödinger-Poisson system(
f Proposition 3.4) to prove that the sequen
e (VR)R is Cau
hy and therefore 
onverges towards

V in L2
t (H

1
x,z). Properties of the eigenvalues of the Hamiltonian show that ǫk[R

ε[VR]] → ǫk[R
ε[V ]]in L2

t (W
2,∞
x,z ).Furthermore, we have for all k ≥ 1

‖QR(fR)k‖L∞

x,v
≤ α2(‖fR‖ℓ1(L1

x,v) + ‖fR‖ℓ∞(L∞

x,v)) ≤ CT,ε,where CT,ε is a nonnegative 
onstant depending only on T and ε and on the data. We dedu
e thatwe 
an extra
t a subsequen
e (QR(fR)k)R 
onverging as R → +∞ in L∞ − weak∗. Then from thede�nition of QR (5.2), we dedu
e that
∀φ ∈ L1((a, b) × R),

∫∫
(Q(f)k −QR(fR)k)φ dxdv → 0 as R → +∞Thus one 
an pass to the limit in the weak formulation of the Boltzmann-S
hrödinger-Poissonsystem (5.7)�(5.9) and prove straightforwardly that (V, (fk,ǫk, χk)k≥1) is a solution of (5.7)�(5.9)with Q instead of QR. Finally we re
over the entropy estimate by passing to the limit R→ +∞ in(5.12).Step 3 : Passing to the limit ε→ 0In the last step we prove Theorem 1.2 by taking the limit ε→ 0.Sin
e the solution satis�es the entropy estimate, we dedu
e that

∑

k≥1

∫∫∫

(0,T )×(a,b)×R

f ε
k(1 + v2 + k2 + | log f ε

k |) dxdvdt ≤ CT .Thus the Dunford-Pettis Theorem and the De La Vallée Poussin Theorem implies that (f ε
k)k≥1and is weakly relatively 
ompa
t respe
tively in ℓ1(L1((0, T ) × (a, b) × R)). Using standard mean
ompa
tness result (see e.g. Theorem 1.8 of [8℄), we dedu
e the strong relative 
ompa
tness of thesequen
e (ρε

k)ε in L1([0, T ] × (a, b)). Therefore, up to an extra
tion, we have
ρε

k → ρk strongly in ℓ1(L1((0, T ) × (a, b))). (5.13)27



Moreover ρ satis�es the estimate
∑

k≥1

∫∫
ρk(1 + k2) dxdt ≤ CT (5.14)and the 
onservation of the mass implies

∀ t ∈ [0, T ], ∀ ε > 0,

∫ b

a

Ns dx =

∫ b

a

N ε
s dx = Nin.We 
an then apply Lemma 3.2 to solve the unregularized S
hrödinger-Poisson system (3.1)�(3.2) forthe density ρ and 
onstru
t V ∈ L∞([0, T ], H1(Ω)) whi
h is unique thanks to Lemma 3.3. Moreovermultiplying the two Poisson equations by (V ε − V ) and integrating lead to

∫∫

Ω

|∇(V ε − V )|2 dxdz =

∫∫

Ω

Rε

[
∑

k

(ρε
k|χε

k|2 − ρk|χk|2)
]

(V ε − V ) dxdz+

∫∫
(Rε − Id)

[
∑

k

ρk|χk|2
]

(V ε − V ) dxdz.

(5.15)Using the fa
t that with Lemma 5.2, ‖Rε − Id‖2 → 0 as ε → 0, where
‖Rε − Id‖2 := sup

{V ∈L2(Ω),V 6=0}

‖(Rε − Id)V ‖L2(Ω)

‖V ‖L2(Ω)

,then we 
an prove, adapting the te
hniques of Proposition 3.4 that
∫∫

Ω

|∇(V ε − V )|2 dxdz ≤ C1‖Rε − Id‖2 ‖V ε − V ‖H1(Ω)+

+C2‖ρε
k − ρk‖ℓ1(L1

x) ‖V ε − V ‖H1(Ω) + C3Nin‖V ε − V ‖2
H1(Ω).With the Poin
aré inequality, we have for Nin small enough,

‖V ε − V ‖H1(Ω) ≤ C(‖Rε − Id‖2 + ‖ρε
k − ρk‖ℓ1(L1

x)).Thus there exists N0 > 0 su
h that, for all 0 < Nin ≤ N0, there exists V ∈ L∞([0, T ], H1(Ω))weak solution of the unregularized S
hrödinger-Poisson system (3.1)�(3.2) and su
h that the po-tential V ε, weak solution of the regularized system, 
onverges towards V in L2([0, T ], H1(Ω)). Theproperties of the eigenve
tors imply (see proof of Proposition 4.3) that ǫε
k → ǫk in L2

t (L
∞
x ).The end of the proof of Theorem 1.2 is standard (see [19, 24, 22℄) and is based on a doublerenormalization. We �rst write the equation satis�ed by βδ(f

ε) with the fun
tion βδ de�ned inSe
tion 4.1 and weakly pass to the limit ε → 0. Then we renormalize the resulting limit equationby β and let �nally δ going to 0.Remark 5.5 The 
onvergen
e of the potential V ε is a key point in this proof of existen
e. We noti
ethat the te
hnique used here relies strongly on the embedding H1(Ω) →֒ L∞
x L

2
z(Ω) whi
h is not truewhen the x-variable is two dimensional. Then in this latter 
ase we are not able to prove uniquenessof solutions of the S
hrödinger-Poisson system for (ρk)k given and therefore the �xed point pro
eduredoes not 
onverge. Thus the te
hniques used here do not allow us to prove the existen
e of solution28



of the 
oupled kineti
-quantum model for a two dimensional transport dire
tion. However in thedi�usive regime, the o

upation fa
tor ρk de
ays with respe
t to k and it has been proved in [36℄that this allows us to re
over uniqueness of solutions of the S
hrödinger-Poisson system (in fa
t we
an show in this 
ase that the last term in (3.11) is nonpositive). Using the Trudinger estimatefor the entropy fun
tional furnishes existen
e of solutions of the drift-di�usion-S
hrödinger-Poissonsystem (see [36℄).

29



AppendixSpe
tral properties of the HamiltonianIn this appendix, we list some basi
 properties of eigenfun
tions and eigenvalues of the S
hrödingeroperator in the z variable. For a given real valued fun
tion V in L2(0, 1), letH [V ] be the S
hrödingeroperator
H [V ] := −1

2

d2

dz2
+ V (z)de�ned on the domain D(H [V ]) = H2(0, 1) ∩ H1

0 (0, 1). This operator admits a stri
tly in
reasingsequen
e of real eigenvalues (ǫk[V ])k≥1 going to +∞. The 
orresponding eigenve
tors, denoted by
(χk[V ](z))k≥1 (
hosen su
h that χ′

k(0) > 0 and ∫ 1

0
|χk[V ]|2 dz = 1), form an orthonormal basis of

L2(0, 1). They satisfy of 
ourse
−1

2

d2

dz2
χk + V χk = ǫkχk , χk ∈ H1

0 (0, 1), ∀ k ≥ 1. (A.1)Obviously, for V = 0, we have ǫk[0] = 1
2
π2k2 and χk[0](z) =

√
2 sin(πkz). Andif U ≤ V a.e. in (0, 1) then ∀ k ≥ 1, ǫk[U ] ≤ ǫk[V ].In the sequel we will use the standard notation 〈f〉 =

∫ 1

0
f(z) dz and when there is no 
onfusionpossible ǫk will stand for ǫk[V ] and χk for χk[V ]. Following the study of the spe
tral properties of

H [V ] in Chapter 2 of [30℄, we have :Lemma A.1 There exists a positive 
onstant CV depending only on ‖V ‖L2(0,1) su
h that
|ǫk[V ] − 1

2
π2k2| ≤ CV ; ‖χk[V ] −

√
2 sin(πkz)‖L∞(0,1) ≤ CV .Moreover the 
onstant CV 
an be 
hosen su
h that CV ≤ C1 exp(C2‖V ‖L2(0,1)), where the 
onstants

C1 and C2 are independent of V and k.Lemma A.2 Let V = V (λ, z) ∈ L∞
loc(0,Λ;L2

z(0, 1)) with λ ∈ (0,Λ) (typi
ally λ = t or λ = xi). If
∂λV ∈ L1

loc(λ, L
2
z(0, 1)), then ∂λǫk ∈ L1

loc, ∂λχk ∈ L1
loc(λ, L

∞
z (0, 1)) and we have

∂λǫk = 〈|χk|2∂λV 〉 and ∂λχk =
∑

ℓ 6=k

〈χk χℓ ∂λV 〉
ǫk − ǫℓ

χℓ.Using these last two lemmata we 
an prove (see Appendix of [4℄) :Lemma A.3 Let V and Ṽ be two real-valued fun
tions in L2(0, 1). Then there exist two positive
onstants C1 and C2 independent of k, V and Ṽ su
h that
|ǫk[V ] − ǫk[Ṽ ]| ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) . (A.2)And,

‖χk[V ] − χk[Ṽ ]‖L∞(0,1) ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) . (A.3)30



Lemma A.4 Let V ∈ L2(0, 1) su
h that V ≥ 0, then the eigenve
tors of the S
hrödinger operatorsatisfy
‖χk[V ]‖L∞(0,1) ≤ C(1 + ‖V ‖1/2

L2(0,1)).Proof. The result of Lemma 1 Chapter 1 of [30℄ provides :
χk(z) = Ak sin(

√
2ǫkz) + 2

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dt, (A.4)where Ak is a nonnegative 
onstant to be determined. Thanks to the Cau
hy-S
hwarz inequality,we dedu
ed
∣∣∣∣
∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dt

∣∣∣∣ ≤
∫ 1

0
V (t)|χk(t)| dt√

2ǫk

≤ 〈|χk|2V 〉1/2

√
2ǫk

‖V ‖1/2
L2(0,1).Moreover, from (A.1),

ǫk =
1

2
〈|∂zχk|2〉 + 〈|χk|2V 〉 ≥ 〈|χk|2V 〉Thus, ∣∣∣∣

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dt

∣∣∣∣ ≤
1√
2
‖V ‖1/2

L2(0,1). (A.5)Thus from (A.4) we have for all z ∈ [0, 1]

|χk(z)| ≤ Ak +
√

2 ‖V ‖1/2
L2(0,1). (A.6)Now, we will use the 
ondition ‖χk‖L2(0,1) = 1 to bound Ak. If we use the expression of χk (A.4)in the identity ∫ 1

0
χ2

k dz = 1, we obtain
1 ≥ A2

k

∫ 1

0

sin(
√

2ǫkz)
2 dz + 4Ak

∫ 1

0

sin(
√

2ǫkz)

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dtdz. (A.7)For the se
ond term we have from (A.5)
∣∣∣∣
∫ 1

0

sin(
√

2ǫkz)

∫ z

0

sin(
√

2ǫk(z − t))√
2ǫk

V (t)χk(t) dtdz

∣∣∣∣ ≤
1√
2
‖V ‖1/2

L2(0,1).And we 
an 
al
ulate ∫ 1

0

[sin(
√

2ǫkz)]
2 dz =

1

2
− sin(2

√
2ǫk)

4
√

2ǫk

.We have assumed that V ≥ 0. It implies ǫk[V ] ≥ ǫ[0] = 1
2
π2k2, for all k ≥ 1. Thus we 
an inje
tthese remarks in (A.7), it leads to

1 ≥ A2
k

(
1

2
− 1

4π

)
− 2

√
2Ak‖V ‖1/2

L2(0,1).This implies that there exists a nonnegative 
ontant C su
h that
Ak ≤ C(1 + ‖V ‖1/2

L2(0,1)), ∀ k ≥ 1.It remains to inje
t this last estimate in (A.6) to 
on
lude the proof.31



Lemma A.5 Let V and Ṽ be two given nonnegative potentials in L2(0, 1). Then there exists anonnegative 
onstant C su
h that
|ǫk[V ] − ǫk[Ṽ ]| ≤ C(1 + ‖V ‖1/2

L2
z(0,1) + ‖Ṽ ‖1/2

L2
z(0,1))‖V − Ṽ ‖L2

z(0,1). (A.8)Proof. This is an easy 
onsequen
e of Lemma A.4 and A.2. Indeed, if we denote for λ ∈ [0, 1],
W (λ, z) = Ṽ + λ(V − Ṽ ) and ǫk(λ) = ǫk[W (λ, ·)], we have

ǫk[V ] − ǫk[Ṽ ] =

∫ 1

0

∂λǫk(λ) dλ =

∫ 1

0

〈|χk[W (λ, ·)](z)|2(V − Ṽ )〉 dλ.Thus, we have
|ǫk[V ] − ǫk[Ṽ ]| ≤ ‖V − Ṽ ‖L2(0,1)

∫ 1

0

‖χk[W (λ, ·)]‖2
L4(0,1) dλ.The estimate (A.8) follows then from Lemma A.4 and the interpolation :

‖χk[W (λ, ·)]‖2
L4(0,1) ≤ ‖χk[W (λ, ·)]‖L2(0,1)‖χk[W (λ, ·)]‖L∞(0,1).A
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