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Abstract

A quantum-classical coupled system which models the diffusive transport of electrons par-
tially confined in semiconductors nanostructures was presented in [Proc. Edinb. (2006) 49,
513-5/9]. In this model, electrons are assumed to behave like wave in the confinement direc-
tion and to have a classical behaviour in a diffusive regime in the transport direction parallel
to the electron gas. It was formally derived from a kinetic system for partially quantized
particles thanks to a diffusive limit when the mean free path becomes small with respect to
the macroscopic length scale. This paper is devoted to the rigorous study of this limit for a
transport in one dimension. In the transport direction, the motion of particles is described
by a 1D Boltzmann equation. A Boltzmann-Schrédinger-Poisson system is then considered.
Existence of renormalized solutions relying on the study of a quasistatic Schréodinger-Poisson
system and on an entropy estimate is established. Its diffusive limit is then considered.
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1 Introduction and main results

By downscaling electronics components at nanometer scale, quantum effects become non-negligible.
In nanoscale semiconductor devices, electrons might be extremely confined in one or several direc-
tions due to the length scales. These directions are referred to as the confining directions. This
leads to a partial quantization of the energy. The subband decomposition approach [29, 38, 39| was
introduced by several authors in order to take advantage of this reduction of dimensionality. This
method consists of a separation of the confinement and the transport directions.

In the non-confined direction(s), that we shall also refer to as the transport direction(s), trans-
port might have a quantum nature or be purely classical in the kinetic or diffusive regimes. In this
work, we are interested in the kinetic regime (the diffusive regime has been studied in [4, 36]) and
in the convergence from the kinetic model to the diffusive model. One of the most used models to
describe the transport of charged particles in a kinetic approach in several domain such as plasmas
or semiconductors is the Boltzmann transport equation [23, 6, 33, 35|.



In the confined direction, electrons behave like waves. The system is at thermodynamical
equilibrium and is described by the subband model as a statistical mixture of eigenstates of the 1D
stationary Schrodinger equation.

Namely, we consider a particle system of charged carriers which is partially quantized in one
direction (denoted by z) and which, in the transport direction denoted by z, is in a kinetic regime.
The coupling occurs then in the momentum variable. We will first briefly describe the model used
and refer the reader to [28] for more details. A Vlasov-Schrodinger-Poisson system which presents
also a similar quantum-classical coupling is analyzed in [3].

1.1 The Schrodinger-Poisson system

In the transverse direction (referred by z), electrons are confined in the nanostructure. The de-
scription of the system needs the diagonalization of the 1D stationary Schrodinger equation. We
define then on Q = (a,b) x (0, 1), the set (xx[V], €x[V])k>1 as the complete set of eigenfunctions
and eigenvalues of the Schrédinger operator in the z variable, z € (0,1):

1
—5 OxelVI+ VoV = &V (k> 1),

(1.1)
xe[V](0) = xx[V](1) =0, / Ik[V]?dz=1.

The square of the modulus of the wave functions (yx[V])k>1 represents the probability of occupation
on the kth subband. If we denote p; the occupation number of the kth subband, which is defined
below by f fr dv, the particle density for a partially quantized system can be written

N(t,2,2) Zpkmm )P

The electrostatic potential V' generated by the charged carriers is then the solution of the Poisson
equation :

with the boundary conditions:

dV dV
%(t,a, z) = %(t, b,z) =0, for z € (0, 1), (13)
V(t,z,0) =V(t,z,1) =0, for z € (a,b).

The boundary conditions here are chosen such in order to simplify the mathematical analysis,
moreover elliptic regularity of the Poisson equation (1.2) are needed in our proofs. However, in the
spirit of [4], we can extend the proofs to the case where V (¢, z,0) = V2(z) and V (¢, 2,1) = V! ()
with “£V0(a) = LV;'(b) = 0. The idea is to introduce the extension V on § of the boundary data
and to consider the quantities V' — V instead of V, €,[V] — €,[V] instead of €;[V], ...

The Schrodinger-Poisson system was solved in |26, 27| by variational methods. Such techniques
are used here to obtain existence and uniqueness of solutions of this system for a given p = (pg)r>1.

In the following, when there is no confusion possible, we will denote €, instead of €;[V] and
instead of x.[V].



1.2 The transport equation

The Boltzmann equation is one of the most used equation describing the transport of charged
carriers in semiconductors in a kinetic regime [31, 35]. Let n > 0 be the scaled mean free path
assumed to be small and denote V" the electrostatic potential generated by the charged carriers.
We consider here the scaled Boltzmann equation in one dimension for the subband model defined
on the phase space (a,b) x R. The position x belongs to (a,b), the velocity v belongs to R and the
time variable ¢ is nonnegative. Then the occupation number p/ is defined by p/ = [, f! dv where
the distribution function f/'(¢, z,v) satisfies

auf7 + %(v O, 7 — 0, €[V D, f7) = %Q"(f”)k- (1.4)

By using the notation {-, -} for the Poisson bracket: {g,h} = 0.h 0,9 — 0,h 0,9, we can rewrite the
Boltzmann equation :

1 1
Ofi + ;{Hz, fi}= ?Qn(f")k,
where H, denotes the energy of the system in the kth subband which is the sum of the kinetic
energy and the potential energy :

1
H(t, z,v) = 5?)2 + €[Vt x, )]

In semiconductors, the main mechanism driving the electrons towards a diffusive regime is collision
with phonons (vibration of the semiconductor crystal lattice). The collision operator Q" for the
electron-phonon interaction in the linear BGK approximation reads in the following form :

Qe =3 [ analos ) MUl = ML) fulw)) 15
g YR
where the function M] is the normalized Maxwellian
Mt x,v) = ! e Hi(te) (1.6)
kAT YAl

and where the repartition function Z" is given by
+oo

ZNt,x) = Z e~ CrVte )], (1.7)
k=1

We refer the reader to [7, 33, 35] for a physical background on the Boltzmann equation (1.4).
The equation is completed with the specular reflection boundary conditions :

[t a,v) = fl(t,a,—v), f(tbv)= fl(tb —v), v>0,teR". (1.8)

The surface density of particles is defined by

Ng(t,x):/o N"(t,az,z)dz:Z/Rf,?(t,x,v)dv:ZpZ(t,az).



The cross section « is assumed to be symmetric and bounded from above and below :
(A-1) g (0,0") = ap (v, v) and 0 < ay < agp(v,0") < o, for all (v,0') € R k, k' > 1.
We considered the well-prepared initial condition assumed to be at the thermal equilibrium :

N;n(x) —v?/2— in
10, z,v) = fi"(z,v) == N e~V /Gl (1 0) € [a,b] x R, (1.9)
k

where (V™ (€.[V™], x£[V™"])k>1) is the set of solutions of the Schrédinger-Poisson system at ther-
mal equilibrium :

[V (2, ) € HE(0,1), / AV X[V dz = b

e S

We assume that we have
(A-2) N >0, N e C%a,b]).

Under this assumption, it has been stated in Proposition 2.1 of [4] that the above Schrédinger-
Poisson system at thermal equilibrium admits a unique set of solution (V" (€,[V™], xx[V™])r>1)
with 0 < V™ e C'(Q), where we recall that Q = (a,b) x (0, 1).

From a mathematical point of view, the diffusive limit is obtained by letting n going to 0 in
equation (1.4). Tt is well-known that in a diffusion approximation the surface density N, satisfies at
the limit a drift-diffusion equation [31, 16]. We propose here to extend these results for the coupled
quantum-classical system presented above.

Before stating the results of this paper, let us introduce some notations. An originality of this
system is the infinite sequence of solution of kinetic equations. Then we denote for any separable
Banach space E by (!(E) the space of sequences (hi)g>1 such that for all £ > 1 we have h, € E
and >, -, ||hel|r < +o0, this last quantity being the norm of (hy)g>1 in *(E). Its dual is (>°(E")
the set of sequences (uy)r>1 belonging to the dual E’ of E such that supy |lug| g is finite. We
say that a sequence (h});>; converges weakly to (hy) in ('(E) if for any (uj)g>1 € (®(E'), w
have >, (h}} — hi, up)pr g — 0 as n — oo. We recall that as a consequence of the Dunford- Pett1s
Theorem and the De La Vallée Poussin Theorem, a sequence (h"),, is relatively weakly compact
in ('(L'(0)) (for O C RY) if there exists a nonnegative function G satisfying lim;_. o = €l — oo
and such that sup )", [, G(|fi]) dz < +o0 (see Chapter 2 of [13]). All along the paper we will
usually shortly denote by |||z the LP((0,T) x [a, b] x R) norm of hy,. Finally, we will make use
of the space Llog L(O) defined as the space of positive function f such that ¢(f) € L'(O) where

Y(x) = xlogz.

1.3 Main results

We are interested in this paper in the diffusive limit of the Boltzmann-Schrédinger-Poisson system
presented before :

of + %@.azfg 0,10, f7) — %an)k, (2,v) € (a,b) x R. (1.10)



1
-5 Exi+Vixi=€xi (k>1),

) (1.11)
0

_Ax,zvnzz/mxgmv, (1.12)
k R

which is coupled with the boundary condition (1.8) and (1.3) and the well-prepared initial boundary
condition (1.9). The aim of this paper is to prove rigorously the limit as 1 goes to 0 of this system
to the drift-diffusion-Schrodinger-Poisson system studied in [4]. One particular relevant motivation
of this work is to derive a model for which numerical simulations are less costly and simpler than
for the kinetic-quantum model (1.10)—(1.12). Then a numerical simulation of the drift-diffusion-
Schrodinger-Poisson system obtained as 1 goes to 0 is provided in [28] to simulate the diffusive
transport of electrons in a double-gate MOSFET. An interesting continuation of this work is to
extend to more general collision operators to derive a hierarchy of classical-quantum coupled model
in the spirit of [5].

To establish rigorously the diffusive limit, we will make use of techniques which have been
developed in the framework of hydrodynamics limits for the Boltzmann equation by several authors
(see e.g. [1, 8, 15, 14, 17, 21, 32| and see [37] for a review). Diffusion limits for parabolic systems
have been presented in [9], where linear kinetic equations arising in models of plasma or semi-
conductors or rarefied gases are considered, and in [20] for generalized two-velocity models.

Although the linearity of the collision operator (), the coupling is highly non linear and then
we are not able to construct strong solutions for this system. Thus we will work in the framework
of renormalized solutions [10, 11, 24].

Definition 1.1 We say that a nonnegative function " = (f;)ren+ is a renormalized solution of
(1.10) if V8 € CHR™Y) with |B(t)] < C(Vt+1) and |B'(t)| < C, we have for all k > 1, B(f]!) is a
weak solution of :

QM(f")k

n0B(fi) +v0:B(fy) — 0:€0.6(f}]) =
BN =0) = B(f"),
ﬁ(f,;’)(t,a,v):ﬁ(fg)(t,a,—v), ﬁ(f,?)(t,b,v):ﬁ<f]?)<t,b, —U), v>0,t>0.

The entropy of the system is defined by

_ fi 1 >
W(t) = zk://(a,b)xﬂe (f,;7 logm — 4+ My | dedv + 3 /), V..V dxdz, (1.13)

where M, = Kexp(—3(v? + k?)) with a constant K chosen such that >, [Mydv = 1. The
dissipation rate which measures the distance to the equilibrium is defined by

RI(t) = %§//<G,M (\/7;7 - ,/J\J;U\/lg)2 dudv. (1.14)

Remark : We point out the fact that, looking at the expression of the entropy of the system, we
do not have better estimates in space than L log L for f7 and H* for V7. It is proved in Appendix

/Bl(fg>7



that it implies a bound of 9,€} in L?. Thus the product f; - 9,€; has no meaning even in a weak
sense. The renormalization of the Boltzmann equation allows us to overcome this difficulty.

The following statement establishes existence of a renormalized solution under the assumption
of small initial data :

Theorem 1.2 Let T > 0 and assume that Assumptions (A-1) and (A-2) hold. If we denote :
b .
Ny = / N .
Then, there exists Ny > 0 such that if Ny, < N, the system (1.10)-(1.11)-(1.12) -(1.8)-(1.9)-(1.3)

admits a renormalized solution (V" (€], X1, f)k>1) on [0, T] which satisfies
(i)Y A>0, 00, = (fi + Nexp(—3(v* + k?)))"/? satisfies

OO, + v 0,00, — 0,(0,€] O1,) = % 1 AD,€] %ij) (1.15)
(i) We have the local mass conservation
ON!+0,J" =0, where J" = %;/Rv L dv. (1.16)
(i1i) The entropy inequality holds :
vie [0,T], 0<W(t)+ % /Ot R(s)ds < Ci. (1.17)

If the potential is given in L, Poupaud [31] has proved existence of strong solutions of the
semiconductors Boltzmann transport equation and their convergence as the mean free path n goes
to 0 towards solutions of the drift-diffusion equation. He uses a method based on an asymptotic
expansion of the solution f7 in power of 1 and estimation on the remainder of this expansion.
Ben Abdallah and Tayed [6] have extended this method and established the diffusive limit of the
Boltzmann-Poisson system in one dimension, since in this case they obtain enough regularity on
the potential. However when the dimension is greater than one, Masmoudi and Tayeb [22| need to
renormalize the Boltzmann equation and use compactness method to establish the diffusive limit.
In this paper we adapt the techniques of Masmoudi and Tayeb [22] to prove the following theorem :

Theorem 1.3 Let T > 0 and, for n > 0, (V",(f], €, x])k>1) be a renormalized solution of the
Boltzmann-Schridinger-Poisson system as defined in Theorem 1.2 for Nj,, < Ny. Then asn — 0, if
No is small enough, this solution converges to a solution (V, Ns, (€x, Xx)k>1) of the drift-diffusion-
Schrodinger-Poisson (DDSP) system defined by

0N, + 0,J =0, J = —=D(0,Ns + Ns0,Vs), (1.18)

1
—5 GzzXk +Vxie = €pxk (k>1),

1 (1.19)
xi(t,x,-) € Hy(0,1), / Xk Xe dz = Oxe
0



e~k

—A,.V =N, — el (1.20)
R
where the effective potential Vi is defined by
Vo=—log) e, (1.21)
k

and D is the diffusion coefficient whose expression is given in Corollary 2.2. This system is com-
pleted with the initial condition N4(0,z) = N™(x) and with the following conservative boundary
conditions :

dV av
_ _ av _ o — 1
J(ta) = J(t,5) =0, —=(ta.2) = ——(tb2) =0  forz€(0,1), (1.22)

V(t,z,0) =V (t,z,1) =0 for x € (a,b).
We have up to an extraction of a subsequence, asn — 0,

f = NeMc|lor 1 (jo,71x [a,0) x ) — O and V" =V 20,51 0)) — 0.

We notice the assumption of small initial data in these Theorems which has been already set for
the study of the Vlasov-Schrodinger-Poisson system in [3]. The existence of solutions for (DDSP)
when the z-variable is two dimensional has been established in [4] when the diffusion coefficient D
is assumed to be a constant. In this case we have enough regularity to establish the uniqueness of
solutions. But for a non constant diffusion coefficient, the proof of existence is addressed in [36];
however we do not obtain the uniqueness of solutions.

1.4 Strategy of the proof

As done in [3, 4], the system shall be viewed as a one dimensional Boltzmann equation (1.10)
for the distribution function (f;);>1 coupled to the quasistatic Schrodinger-Poisson system (1.11)-
(1.12) for the potential V. The Schrodinger-Poisson system allows us to compute the potential
as a function of the distribution function, while the Boltzmann equation gives the value of the
distribution function in terms of the electrostatic potential. The arguments used for the proof of
Theorem 1.2 are rather standard (see [24] and reference therein). A first step is to truncate and
to regularize the Boltzmann-Schrédinger-Poisson system. Thanks to a fixed point argument we
can construct strong solutions of the regularized system. Then solutions of the whole system are
obtained by a passage to the limit in the regularization using stability result. These steps are
explained in Section 5.

Theorem 1.3 establishes the diffusive limit of renormalized solutions of Theorem 1.2 as n — 0.
Regarding the techniques used in the classical Boltzmann-Poisson case [22], the proof of Theorem
1.3 relies strongly on the entropy estimate (1.17) which is established in Section 2 and on a rigorous
analysis of the Schrodinger-Poisson system. A priori estimates obtained thanks to the entropy allows
us to fix the functional framework :

(fi)ks1 € Li°(Llog L(dxdv)), ((v*+ k*) fu)ks1 € L (LY (dzdv))), V € L(H(dzdv)).

As recall in the introduction, a consequence of the Dunford-Pettis and the De La Vallée Poussin
Theorem is the relative weak compactness of f7in (1(L'). We recall the following averaging Lemma
whose proof can be found in [22] (see also [8]) :



Lemma 1.4 Assume that h" is bounded in L*((0,T) x (a,b) x R), that h{ and hi are bounded in
LY(0,T) x (a,b) x R), and that

NOT + v Oh" = Bl + O,

Then for all ¢ € C3°(R),

/RW@, T4y, v) — Bt 2, 0))b(v) do

.

Thanks to this averaging lemma we will establish in Section 4.1 the relative strong compactness of
the surface density N7 in ¢*(L') as n goes to 0. Then, with the entropy inequality (1.17), we have :

t 1 t 2
R"(s)ds = = / // ( - Ng/\/l") drdvds < Cpn?. 1.23
| Rty as =3 S ) Wiy o (123)

Letting 7 going to 0 we hope to prove with (1.23) that the distribution function converges to a
Maxwellian. But we need to establish the convergence of the eigenenergies €]. Contrary to the
Boltzmann-Poisson system [22], the dependency of the potential V" with respect to the occupation
factor p" is not obvious but needs the resolution of the Schrodinger-Poisson system in the functional
framework suggested by the a priori estimates.

Therefore a key point is the study of the Schrodinger-Poisson system (1.1)-(1.2), which is the
object of Section 3. We remark that since we work in one dimension for the transport, we have that
V e H'(Q) implies ||V||120,1) € H'(a,b) which is compactly embedded in L>(a,b). It is proved in
the Appendix, where we recall some spectral properties of the Hamiltonian, that it implies a bound
on xy in L>(Q) (see Lemma A.4). Thus the product of pj with |xx|? in the right hand side of the
Poisson equation (1.2) makes sense. Ben Abdallah and Méhats [3| have established existence and
uniqueness of solutions of this system (1.1)-(1.2) for an occupation number py in L? for p > 1. The
proof is based on an idea of Nier [26, 27] which suggests to minimize the functional

J(V) = %//ﬂWVdedz—Z

k>1

lim | sup

where h' is extended by zero for x & [a,b).

/b,okek[V] dx.

a

A critical point of this functional is a solution of the Schrodinger-Poisson system. But contrary
to [4, 36] where the occupation factors decay with respect to k, this functional is not convex.
Thus we do not have uniqueness of the minimum. However we prove in Proposition 3.4 that if
(pr)r>1 and (pr)k>1 are in L>=((0,7T),¢* (L (a,b))) and if V and V are corresponding solutions of
the Schrodinger-Poisson system (1.1)-(1.2),

IV = Vipqon.a@) < Cillox — Arllaw omxasy + CoNV = Vo110 @), (1.24)

where N = max{|| p || oo (0,7),1 (£ (a,0))) > || Ok || oo ((0,7),01 (L1 (ap))) } @and Cy and C are nonnegative con-
stants depending only on data. We deduce from this inequality that if A/ is small enough, the
solution of the Schrodinger-Poisson system (1.1)-(1.2) is unique. It explains why Theorems 1.2 and
1.3 are proved only under the assumption of small initial data.



Yet we can prove that the strong compactness of N7 in L' implies the strong compactness of V"
in L'((0,T), H(Q)). From spectral properties of the Hamiltonian it implies that €,[V"] — €,[V]
as 1 goes to 0. From (1.23) we deduce that f7 — N, M in ¢*(L(dtdzdv)). Tt remains to show that
the limit function NV is a solution of the drift-diffusion equation (1.18). Passing to the limit in the
local mass conservation, it suffices to study the limit of the current J7 which is done in Section 4.2.

The outline of the paper is as follows. In the second section, after briefly recalling basic prop-
erties of the collision operator, we establish the a priori estimates, which are the natural estimates
for our system. In the third section, we analyze the Schrédinger-Poisson system under physical
assumptions given by the a priori estimates. Section 4 is devoted to the proof of Theorem 1.3
assuming that we have constructed a renormalized solution of the Boltzmann-Schrodinger-Poisson
system. In section 5, the proof of Theorem 1.2 is considered : we give the regularization and
explain the passing to the limit in the regularized system. The Appendix is devoted to some useful
properties on the spectrum of the Schrodinger operator.

2 A priori estimate

2.1 Properties of the collision operator

This section is devoted to the study of the collision operator defined by (1.5). The collision operator
() operates on the v variable only, then we omit in this section the spatial and time dependency,
since these variables are only parameters. We assume that the sequence (€x)r>1 is given and we

1
define Mk('U) = exp(—§1)2 — Ek) for Z = Ze_ek. We introduce the space :

k>1

2nZ

12, = {(fo)eer- sit. Z/ F0)/ My(v) dv < 400}, (2.1)
— JR
with the associated inner product :

Tr g
= E — dv.
<f7.g>./\/1 - RMk v

Then we summarize the main properties of this collision operator in the following proposition.

Proposition 2.1 Let Q be defined by (1.5) with a cross section o symmetric and bounded from
above and below i.e. satisfying (A-1). Then we get:

(i) 2k [ Qf)i(v) dv = 0.

(i) Q is a linear, bounded, selfadjoint and negative operator on L3,.
(iii) The nullspace : Ker Q = {f € L3, s.t. AN € R with f = NyMy, Vk > 1}.
(iv) The equation Q(f) = g admits a solution f € L3, iff

;/ng(v) dv =0,

and this solution is unique if we impose the same relation on f.



Proof. The first point is trivial. Using the symmetry of the cross section, we get the crucial
identity :

26Q(f): g)m =
X [fenett) (J L) (a0 a0 s

Then (ii) and (iii) are easy consequences from this identity. It follows,
(Ker@Q)*: ={f € LA, st. Z/fk(v) dv =
k

Since @ is obviously a closed operator in L3, the equation Q(f) = ¢ admits a solution iff g €
(Ker Q)*. This solution is unique in (Ker Q)*. 0

Corollary 2.2 There exists © € L3, such that for all k > 1,
QO = —v My and Z/ O dv = 0.
= JR

Then we can define the diffusion coefficient as

]D):;/R@k@vdv. (2.2)

Remark 2.3 We recognize in formula (2.2) the classical expression for the diffusion coefficient
in all the problem of approzimation of transport process by diffusion. This formula, known as the
Kubo’s fomula, is still valid in higher dimensions and under Assumption (A-1) on the cross-section
it defines a positive definite matriz [18].

2.2 A priori estimate

A key argument in our study is to obtain uniform estimates on the unknows of the system. We use
the entropy defined in (1.13). All along the paper, we will use the following functional space :

LPLY(Q) = {u € L},,(%) such that [[ul| 2190 (/ (e, M2 e dx) < +oo}.

We recall (see Lemma 2.2 of [3])

Lemma 2.4 Let Q = (a,b) x (0,1) C R%. Then the space H'(Q) is continuously imbedded in
L LA(Q).

We notice that this embedding does not hold if Q = w x (0,1) for w a bounded domain of R?, i.e
if the transport is assumed to take place in a bounded domain of R2.

10



Proposition 2.5 Let T > 0 and let (V7 (f,!, €, x])k>1) be a renormalized solution on the interval
[0,T] of the Boltzmann-Schridinger-Poisson system (1.10)—(1.1)—~(1.2) with boundary conditions
(1.9)—(1.8). We assume that (A-1) and (A-2) hold and that

(1 +v* + €] +log f1) f)k>1 € L°([0, T), ¢* (L' ((a,b) x R)))
and V"€ L*([0,T], H(Q)).

Then, there exists a nonnegative constant C' depending only on initial data such that,
Vte[0,T], 0<W"(t / R"(s)ds < C, (2.3)
where the entropy W7 is defined in (1.13) and the dissipation rate R" is given in (1.14). Moreover,
b b
Vtel0,T], / NI(t,x) = N :/ N'(z) dx. (2.4)

Proof. This result is proved in the case of smooth solutions for which all calculations are justified.
In a general case, we regularize the system to have smooth solutions and pass to the limit in the
estimate obtained for these smooth solutions. These steps are explained in Section 5.2.

It is readily seen that with our assumption on the initial condition (A-2), the initial entropy

is bounded and that with our boundary conditions, the system conserves the mass which implies
2
(2.4). Multiplying (1.10) by (1 + log f! + % + 677), integrating on (a,b) x R and summing over

k, we get

2
| | +€n+1) dxdv =

> JIEY: (log 1t
2
Ezk://fk (logf,? + % + EZ) drdv — zk://fé’@tﬁzdxdv-

Moreover, using the notation ( fo z) dz, we have 9,€] = (|x}]?0;V") (see Lemma A.2 in the
Appendix). Thus we obtain :

Z//fé’@ﬁzdxdv :Z///fg|xz|28tvndxdvdz
k
dtZ//fk IXZPV™) dxdv———//|V“V’7|2dxdz

where we use the Poisson equation (1.2). Therefore,

Z/ o fy) (logfk ‘ ’ +€n+1) th/ |VxZV"|2d:Edz
K (log = v ) dse

And from the Schrodinger equation (1.1) we have :

(2.5)

1
0P + (aPvT) = €.

11



With our boundary condition (1.8) we have after an integration by parts

Z// O fy + 0. €] - 8fk)(lgfk+|—+€n+1)dxdv:
|v[?

[Z/vfk (logfk+—+€") dv

Finally, with (1.5) and since Y, [ Q"(f")xdv =0,

=0.

a

0]

Z/Q"(f")k (logfk + €Lt 1) dv =
33 [ crata ) - M oo | ( Af4<(>)) (/‘Jf<<)>)] dudy

kk’

Using the relation (a1 — a2)log(ai/az) > (/a1 — \/az)?, for all positive a and b, and the Jensen
inequality, we obtain :

Z// Q"(f"k (logfk + |— + €7+ 1) dvdr < —aqR"(1). (2.7)

Finally, (2.5), (2.6) and (2.7) lead to:

dtZ//fk (10gfk +u+ <‘azxk‘ >) dxdv+§£//\vwvn\2da:dz+ 72’7() 0.

(2.8)
From (2.8) we have after an integration on [0, 77,

Z//fk (logfk +U_+——1) dxd?’*l//lvx,zvnfdxdz
< [ mowz e X [ (5 - o)

Moreover, since the potential V" is nonnegative, we have with the Holder inequality

(2.9)

1
S 10:x01) = €= (V™) = €x[0] = X0 1Vl 220,

An interpolation and Lemma A.4 imply the existence of a nonnegative constant C5 such that

1/2
Xl Zs0n < Clxllzzon Xz < a1+ 1Vl 20 1)

Since €;[0] = $72k?, we deduce that
B2
2
By the Sobolev embedding H'(Q2) — L°L?(Q2), we have

1 1
S0 < 58 = SEH2 4+ Co 4+ VI, ) < Coll+ IV, ). (2.10)

L2(0,1) L2(0,1)

k:2 1
Z / PG = 0% do < Call gl (L4 V1178 ) = CoNan (L4 V735 ).

(2.11)
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This last inequality in (2.9) provides

// Ve V2 dxdz < Cy+ G5V -

Thus using the Poincaré inequality, we deduce that ||V 51(q) is bounded. Then (2.9) and (2.11)
provide the desired estimate. 0

Corollary 2.6 Let T > 0 and (f)k>1 such as in Proposition 2.5, there exists a constant Cp > 0
such that :

Vtel0,T], Z//( ) Rf,?(|logf,?|+|v|2+k‘2+1)d:pdvSCT,
% a,b) X

b T b
/ (N!log N] — N + 1) dz < Cr, / / J(t, z) dedt < Cp
a 0 a

Proof. The second estimate results from the Jensen inequality. The first follows from the remark
yllogy| < ylogy + 2/e for all y > 0. Since the function v — vM] is odd, we have

15 () (/)

Using the Cauchy-Schwarz inequality, we deduce that

/ ’ J(t, ) de < 2 <Z / / V2(f 4+ NIM]) dxdv) " (R7(£))2.
a k

We conclude by using (2.3). 0

Remark 2.7 It could seem more “natural” to consider the relative entropy with respect to the
physical equilibrium M rather than W7 in (1.13). However it this case the time derivative of the
entropy with respect to time will involve terms 0,€; for which we have no estimate. This is the
reason why we choose the time-independent quantity M in (1.13).

3 The Schrodinger-Poisson system

This section is devoted to the study of the “quasi-static” Schrodinger-Poisson system defined by :

1
—3 Xk + Vi = €Erxx (k>1),

1 (3.1)
xe(t,z,) € Hy(0,1), / Xk Xedz = Ope
0

_A:v,zv = Z pk|Xk‘|2 ) (3'2)
k
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where we consider that p = (pg)g>1 is given in L>((0,T), ¢*(L'(a,b))) and satisfies :
(H1) VEk > 1, pr, > 0 and there exists a nonnegative constant Cp such that

Vit el0,T], Z/bpk(l + k¥ dx < Cr. (3.3)
k a

We denote Ny = >, pr. The system is completed by the boundary conditions (1.3). In the
sequel we will use the functional space H&l ={VeHYQ) : V(z,0)=V(x,1) =0}

Proposition 3.1 (Existence and uniqueness) Let us suppose that p = (pg)e>1 1S given in
L>((0,T), (L (a,b))) and satisfies H1. Then the Schridinger-Poisson system (3.1)-(3.2) admits
a solution in Hy,.

Moreover, denoting N = || Ny || oo (0,1),01 (ap)) tf N is small enough, this solution (V, (€, Xk)k>1)
is unique.

This result is obtained thanks to an idea of Nier [26] which has been developed in [3]. The
principle is based on the fact that a weak solution of (3.1)—(3.2) is a critical point of a certain
functional. Namely, we consider the functional defined on Hj; by

J,(V) = // IVV|* dxdz — Z/ pr€elV]de = Jo(V) + Ji(V, p). (3.4)

k>1

It is proved in Lemma 3.2 that this functional admits a minimizer and that this minimizer is a
weak solution of (3.1)—(3.2). Because of the non-convexity of J,, its minimizers are not unique.
Hence the uniqueness is obtained in Lemma 3.3 only under the assumption of smallness for \.

Lemma 3.2 Assume that (pr)k>1 € L=°((0,T),¢*(L'(a,b))) and satisfy H1. Then the functional
J, defined in (3.4) is continuous, locally Lipschitz and weakly lower semicontinuous on Hj,. It is
coercive : there ezist nonnegative constants Cy, Cy and Cs such that for all t € (0,7,

T(V) 2 CuV Iy = CollV Iy = Cs (35)
Thus the system (3.1)~(3.2) admits a solution (V, (€, Xx)k>1) with V € L=((0,T), H},).

Proof. The functional Jy is clearly continuous and strongly convex on Hj;. For the functional
J1, we use the properties of €;[V] summarized in (A.8) to prove

V)~ (7.0 < X [ oV - &Pl e

= (3.6)
1/2 Tnl/2 =
<O [ o+ W1y + V101V~ Plizn
k>1

If we use the Sobolev embedding stated in Lemma 2.4, we obtain

[V, p) = AV, p)| < Co1+ [VIIgtay + IV o) INsl @IV = Vi@ (3.7)

Hence J; (-, p) is Lipschitz and weakly continuous on HZ,. Now if we take V = 0 in (3.7), from H1,
we have that 0 > J;(0, p) > —Cr. Thus,

1
J(V) 2 SI9V 0y = G+ IV ) IV e — Ca

14



We apply the Poincaré inequality in Hg; to find (3.5). Hence the functional J, admits a minimizer
in Hg,. Moreover, from Lemma (A.2), it is clear that J, is Gateaux differentiable on Hg, and the
differential of J, in the direction W € H'(Q) is :

vap(V)-W://QVV-VdedZ—Z/ pel e [V]PW) da.
k‘ a

Thus each minimizer of the functional J, is a weak solution of the Schrédinger-Poisson system
(3.1)—(3.2). O

Lemma 3.3 Let (pg)p>1 given in L=((0,T),¢* (L (a,b))) and satisfying H1. Then, for N =
| Nl oo (0,7, (a,p)) SMall enough, the corresponding solution (V, (€x[V], xx[V])k>1) of the Schrodinger-
Poisson system (3.1)—(3.2) is unique.

Proof. Let (px)r>1 be in L>((0,T), (' (L' (a,b))) satisfying H1. We assume that we can find two
solutions of the Schrodinger—Poisson system denoted V' and V. Multiplying the Poisson equation
(3.2) by (V — V) and integrating provides :

~ b ~ ~
/ / V(T = V) dedz =Y / ol (TP = PV (T — V7)) dae (3.8)
From (A.3), we deduce that we have

b ~
/[) ‘v(v _ V)‘Z dde S Cl/ Ns eCQ(HVHL%(O’I)+||V”Lg(0’l))HV _ V”%g(o&) dx.

Then the Sobolev embedding H'(2) — L>L?(2) and the Poincaré inequality lead to
IV = Vi3 < Coe®™ WMl Wl @) | N[l 110 |V = V3. (3.9)

From Lemma 3.2 we know that V and V are bounded in H'(Q). Thus, there exists a nonnegative
constant C'5 such that B B
IV =Vling < CGNIV = Vil (3.10)

Thus it suffices to chose A" small enough such that CsA” < 1/2 to prove that V =V on [0, 7] x €. m
Proposition 3.4 (Continuity) Let (pg)r>1 and (pr)p>1 in L=((0,T), 01 (L(a,b))) and satisfying
H1. We denote by N := || Ny||r(0,1),01 (ap))s N = | Nslloo(0,1),1(ap)), V' and V' the correspond-

ing solutions of the Schriodinger-Poisson system (3.1)—(3.2). Then there exists Ny such that if
max(N, N) < Ny, then for all p > 1

IV =Vl ooy, ) < Crlloe — prll ogo.ry,e0 (2 a,0)))

where Cr is a nonnegative constant depending only on T
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Proof. Let (pg)r>1 and (pr)x>1 be two sequences in L>((0,T), ¢*(L*(a,b))) satisfying H1. Mul-
tiplying the Poisson equation (3.2) by (V — V') and integrating provides:

Jf =P s = 2 J[ o= mbatVIF( = 7) daa:

b _ _ (3.11)
S / A l(lVIP = bl TIP)(V = 7)) de.
k a
We treat the second term as in the proof of Lemma 3.3 and obtain :
b o~ o~ o~ o~
3 / Al (alVIE = bl = 7)) de < ORIV = V20, (3.12)
k a

where (] is a nonnegative constant. For the first term, we have with Lemma A.1

~ b ~
> / / (o — VIV = V) dedz < G / S 1ok — eIV 2y — 7, de
k Q

@ k>1

And by the Sobolev embedding H(Q) < L*L2(€) and the bound of V and V in H(), we have

b
Z/ (ox = o) X [VIP(V = V) dadz < Cullpr = prll e r@an |V — Vil o) (3.13)

k>174

Therefore if we inject (3.12) and (3.13) in (3.11), we obtain thanks to the Poincaré inequality:
IV =Vl < CNIV = Vi) + Collpe = il 1 @-

The result follows straightforwardly after an integration in time for Ay small enough. n

4 Diffusive limit

In this section we prove Theorem 1.3 assuming that we have constructed a renormalized solution
((fNk=1, V") of the Boltzmann-Schrédinger-Poisson system (1.10)—(1.12) such as in Theorem 1.2.

Adapting the arguments in [22], we prove in a first subsection the convergence up to an extraction
of the solution ((f;")k>1, V") as n goes to 0. In a second subsection, we show that the limit is a
solution of the (DDSP) system.

4.1 Convergence of the renormalized solutions

Let f7 be a renormalized solution of the Boltzmann equation. The a priori estimates of Corollary 2.6
imply that f7 is weakly relatively compact in ¢*(L'([0, T] % (a,b) x R)). The two following lemmata
show that we can apply the averaging Lemma 1.4 and that it implies the strong convergence of N.
The convergence of (f", V") is then proved in Proposition 4.3 using the smallness assumption on
initial data.

Let us denote, for § > 0 fixed, 85 an approximation of the identity, namely (5(s) = %ﬁ(és). We
choose 5 a C'*° function satisfying ((s) = s for s < 1, 0 < f'(s) < 1 for all s and ((s) = 2 for
s> 3.

16



Lemma 4.1 Let f7 be a renormalized solution of the Boltzmann equation such as in Theorem 1.2.
Then % is weakly relatively compact in (*(L*((0,T) X (a,b) x R)).

Proof. We define
VI VNQMZ. (4.1)
ny/ M

Thanks to the dissipation rate control (1.17), we have

T
Z/ // 1772 M dedudt < C. (4.2)
— Jo

n_
Tk_

Using " we can rewrite
7= NIM + 20/ NIMIrl 4+ n?(r])2 M},
The result is then obtained thanks to a straightforward adaptation of the proof of Proposition 3.3

in [22].
O

Lemma 4.2 Let N7 =", [ fdv with f" such as in Theorem 1.2. Then N7 is relatively compact
in L*((0,T) x (a,b)).

Proof. We can rewrite the renormalized Boltzmann equation :

where

hZZ%Q”(f")kﬁé(fé’) and gl = 0,€! 55(f1).

With our choice of G5, we have G5(f)) < 2/6 and B5(f)) < f;! then G5(f7) € €>(Lg3,,) N €Y (L, .,)-
It yields that 35(f7) € ¢*(L7,,). Since we have 0 < G5(f;)) < 1 and %Q"(f”) weakly relatively
compact in ¢'(L;, ), we deduce that hj is weakly relatively compact in ¢*(L;, ). The spectral
properties of the Hamiltonian (see Lemma A.2) imply 9,€; = (|x#|?0,V). From Lemma A.4 and

the Cauchy-Schwarz inequality, we deduce

1/2
S [ 10,0l o < (1 1V i) IV o (Z / |ﬁa(f£’)|dwdv> .

k>1

The bound of V" in H'(Q2) and of f" in ¢'(L;, ) implies that g is bounded in ¢!(L{, ).
Thus we can apply the averaging lemma 1.4. We have that for all ¢, € D(R) with (¢;)r>1 all
null except for a finite number of them,

lim | sup
y=0 \ n<1

—0. (4.3)

3 / Bo(I) (b + . 0) — ()t 2, 0) () o
g>1 7R

1
Lt,z
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Next, using the fact that ((1 +v* + k*)55(f})), is bounded in L>(0,T; ¢ (L} ,)), we deduce from
standard argument that we can take 1, (v) to be constant equal to 1 in (4.3). Moreover the definition
of B5 and the equi-integrability of f implies

Sup 18:(f") = f'llazr ) — 0 asd—0. (4.4)
n=

t,x,v

Let ¢ > 0, we have forall 1 >n >0
/|Ng(t,x+y)—Ng<t,x>|dtdxg Z/|f,’g<t,:c+y,v> B (1)t + g, )| didado+
k
N — £ dtdxd ! dv — ! dv| dtdzx.
+§/|@s<m ) dida U+/|;Aﬁs(fk)(ta$+y>v) v ;Aﬁa(fk)(t,$,v) ol did

We fix § such that the first and the second term of the right hand side is < /3. For such a § > 0,
we use (4.3) to bound the third term by €/3 for y small enough. Then

|NJ(t, 2 +y) — NIt 2)|zr — 0 when y — 0 uniformly in .

Therefore the sequence (N7(t,-)), is relatively compact in L} for all ¢ € [0,T]. From the local
mass conservation (1.16), we obtain that d; N7 = —0,.J", which is bounded in L'(0,T; W ~11(a,b))
thanks to Corollary 2.6. We deduce the relative strong compactness of (N7), in L;,. Therefore
we can extract a subsequence such that N7 — N, in L'((0,T) x (a,b)) and a.e. By uniqueness of
the weak limit, there exists p € ¢*(L'((0,T) % (a,b)) such that Ny = >, p and p] — pj, weakly in

"Ly ,). O

Proposition 4.3 Let (f7, V") be a renormalized solution of the coupled Boltzmann-Schridinger-
Poisson system which satisfies (i), (i) and (1ii) of Theorem 1.2. There exist V in L=((0,T), H(Q))
and N, in L>=((0,T), L*(a,b)) such that if Ny, is small enough, then up to an extraction we have

VT —Vin L*((0,T), H(Q)) and f" — N,M in (*(L'((0,T) x (a,b) x R)) and a.e.

Proof. We have proved in Lemma 4.2 the strong and a.e. convergence of N7 towards N;. For this

surface density N, € L®L., we solve the Schrodinger-Poisson system at the equilibrium (1.19)-

(1.20). It is proved in Proposition 3.1 of [36] that there exists a unique V € L*([0,T], H'())
solution of (1.19)-(1.20). We show hereinafter that the strong convergence in L' of the surface
density allows to prove that

||V77 — V||L2([O,T]7H1(Q)) — 0 as 7 — 0. (45)
In fact, we multiply the Poisson equation by (V" — V') and integrate, we have

T
/ / IV(V" = V)2 dedzdt = T + IT + I11,
0 Q

where

=y [ [ = MMl = V) dod
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a=3 [ f[L EMEI = VP - V) dede

m_z/ //b (NTAMD — NoMO) ([VIE(V = V) dedvdt.

We bound the first term thanks to the estimate on the dissipation rate (2.3). Lemma A.4 provides

|I\<Clz/ // = NI Ve | v — V| dadudt.
(a,b)x

Thus Lemma 2.4 implies that

T 1/2
1] <ng/ // £ — N"M"|dxdvdt<403||N"||1/2 (/ R"(t)dt) : (4.6)
(a,b)x 0

where we use the Cauchy-Schwarz inequality. Then Proposition 2.5 implies that |I| < Cyn. For
the second term we use the fact that the maxwellian M}, decays with respect to k. Therefore using
Lemma A.2, we deduce

Mn MZ o o\2
IT = Z =k LG (VT = V)x?)? do dadvdt < 0, (4.7)
where we denote €7 := €x[oV + (1 — o)V and x§ := xx[oV + (1 — 0)V"]. Finally, the bound on
the potential in L>°([0, 7], H'(2)) combined with Lemma A.4 furnishes the estimate

T
11| < Cs / INGM = NIM s [V = V11 _d. (4.8)
0

Moreover, using Lemma A.2, we can derive the function s s e~€[V+H1=sV]/ ZIg) 1 (1 — 5)V7]
and therefore obtain

1 o—v?/2 —€; X; 201 — V))e— € )
wy -y = [ E = (BANEZEIEE e - vy as

where we use the notation f*:= f[sV + (1 — s)V"]. Then by Lemma A.1 we have

M7 — Mol < O LVt g €
— < 2 Lz Lz — 2 .
‘ k k:| ~0h€ ” ”Lz/O IrZs s
Thus the Sobolev embedding H'(Q) < L°L?(Q) provides
> MM = Moy < CIV? = Vil ay. (4.9)
K

This implies that

[NsM = NJM 2 ) < INs = N[y + |[NJM = M) [l ze )

(4.10)
<|INg = N2y 4+ CNin [V = V[ 1)
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where we use (4.9) for the last inequality. Finally, from (4.8) we can bound the term I11 by
(111 < C(INs = NIy, + NaallV? = VL2 (o.11.000 0))- (4.11)
Thus, (4.6), (4.7) and (4.11) provide with the Poincaré inequality
VT — VH%?([O,T],Hl(Q)) < Cn+I[INs = Ny, + N[V = V”%Q([O,T},Hl(ﬂ)))'
Finally, if A}, is small enough, we deduce that V" — V as n — 0 in L2([0,T], H(2)).

The convergence of the distribution function f” is yet obtained thanks to the estimate on the
dissipation rate R" (1.17). Then the properties of the eigenvalues of the Hamiltonian (A.2) and
the embedding of H'(Q) into L L?(Q2) (Lemma 2.4) show that

€[V = €[Vl 20,110y < CIIV" = Vli2gomy sy — 0 asn— 0.
Moreover, by the Cauchy-Schwarz inequality,
17 = NoMlloiz, ) < 17 = N2M aqua .y + INZM? = NoMlry

T 1/2
< 4Ny ( / R’?(t)dt) FINIM? = NoMllaey ).
’ 0

Thus the entropy inequality (2.3) and (4.10) yield that f7 — N, M strongly in ¢'(L;, ).

4.2 The limit equation

To end the proof of Theorem 1.3, we have to prove that the limit N, satisfies the drift-diffusion
equation (1.18). Thanks to the local mass conservation (1.16), it suffices to study the limit of the
current J".

Proposition 4.4 Let (f7, V") be a solution of the renormalized system defined in Theorem 1.2,

then the current J", defined by
1
J = - / vf dv, 4.12
DI R (112)

satisfies

J"— J==D(0,Ns + N0, V) in weak — Lix,
J(t,a) = J(t,b) =0,

where the diffusion matriz D is defined in (2.2) and the autoconsistant potential is denoted

V, = — log(z e~V

k>1

The proof of this result is based on an idea of Masmoudi and Tayeb [22| consisting in using the
point (i) of Theorem 1.2. Because of the dependence on k and of the non linear coupling, the proof
is not straightforward. Then we detail the proof hereinafter.
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Proof. Thanks to Proposition 4.3 we have

(Vi1 — (VNMidiss in P(L2,,).

and the definition of r} (4.1) implies
1
Jh == E / vf dv =2/ N{ E / vrf Mildv +O(n)pr .
n =" Jr2 - JR? b

Besides, we have M < e¢~¥"/2-7¥/2 (see Appendix) and the bound (4.2) show that the sequence
(r"M" /e~ ”2+”2k2)/4) is bounded in ¢*(L7, ). Thus up to an extraction, there is a u in (*(L7, )

t,x,v
such that T"M"/e (W54 y weakly in (2(L2, ). Settmg r=ue TR M we get that

(F M [ e+ R)/1) weakly converges towards (rM /e~ P+ EI/AY in ¢2(12 ). We deduce
nAAT (W2+n2k2)/a TV rp M . 2
Z vrk/\/l dv = Z Ty L dv — Z vrk/\/lk dv  in weak — L.
Moreover, the strong convergence v/ Ni — /N, in L7, implies that
JT— J:=24/N, Z/ vrpgMdv  in weak — Lt{x. (4.13)
K VR

Since we have >, [vMjdv = 0, Proposition 2.1 shows that we can define Q~*(vM) and the
selfadjointness of the operator () leads to

J=2/N,> /]R Q (M) Q(rM)y /?A—Z' (4.14)

Now, we will find an expression of J. Considering again r, we have

LU o /NIQUE M)+ Q7M.

With (4.2), the second term in the right hand side is O(n)s (1 ). For the first one, one can prove
casily that V f € (*(L7, ), we have |Q"(f) — Q(f)llez, ) — 0. The weak convergence of (77 M)
in (*(L7

i) implies then

Q"(r"M") — Q(rM)  weakly in ¢*(L tm)

With the strong convergence in Lfﬂ: of VN, we deduce the weak limit :

w = 2\/]\/;”7-/\/{]9%\//\7/\/;% +O( Kl(Ll N 2\/762 TM in El(Limv) (415)

We recall that for every A > 0, we have defined 0] , = (f + Aexp(—3(v? 4 £?)))"/2. Thus

@k/\ — Oy = (fu + e 20 +k2))1/2 strongly in ¢*(L t”)
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Using Lemmata A.1 and A.2 and the estimate (A.3), we can prove that
10:€ = 0u€rl - < (NG = Ixa) BV + [l 0V = V)
< 0LVl (ecznv"IILg 10V 2V = VL2 + [|0a(V — V")HLﬁ) .

Thus the strong convergence of V" in L(H, ) with the Sobolev embedding H'(Q) — L L%(Q)
imply that
O,€ — 0,€),  strongly in (?(L7,).

Therefore,
8162 @Z,)\ — arék @k,)\ Weakly in Ll

t,x,v*

Thus we can take the weak limit as 7 — 0 in (1.15). For all k£ > 1, we find

VN —3(v*+k?)
v - @@m — 81)(82:6k @k,A) = M + N0, € 1]67
Ok 205

And if we make A — 0 in the resulting equation, we find

(az\/ﬁs + %\/Eaxvs) coMy, = Q(rM)y, (4.16)

where we take V; = —log Y, e~ %. And we verify that the product v/N,0,V, has a meaning in L;I.
Now, with (4.13) and (4.16), we can conclude

J = —-Dy/N, (6$\/N8 + %MN@J@) , (4.17)

where the symmetric positive diffusion matrix, defined in (2.2), is given by

D= —Z/Rv ® Q (v M) dv.
k

Besides, with our choice of boundary conditions (1.8) we have that

Z/vfg(t,a,v)dv:Z/vfg(t,b,v)dvzo
R R

k>1 k>1

Thus as 7 goes to 0, it provides that J(t,a) = 0 and J(¢,b) = 0. Now, if we use Lemma 4.5 com-
bined with (4.16), we can rewrite the current J and the proof of the Proposition 4.4 is complete.

Lemma 4.5 Let N, and V be defined in Proposition 4.3. If we suppose that
1
O:\/ Ns + 5\/N56$V; =G e L*((0,T) x (a,b)), (4.18)

where Vs = — log(z e~y Then we have

k>1

VN, € L*((0,T), H (a,b)) and  +/N,0,V, € L*((0,T) x (a,b)).
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Proof. We have /N, bounded in L7, and V in L7H, then from Lemma A.1, we deduce that
VN0, Vs € Li,. It follows that d./N, € L;,. We consider the approximation of the identity 3

as before. Namely (5(s) = 38(ds) where 3 is a C*°(R™) function satisfying 3(s) = s for 0 < s <1,
B(s) =2 for s >3 and 0 < '(s) < 1. If we denote 1) = /N, we have

0uB5(¥) = 0u1pB5(1).
Hence we can renormalize the equation (4.18):

0.05() + 50LV. () = C

where G = G B5(¢) < G. Multiplying (4.19) by 0,0s5(¢) and integrating provides

/ / 04050 dadt + / 0,V - 0,5(0) WAL drdt = / / G0, 35(4) dedt. (4.19)

By the Cauchy-Schwarz inequality we deduce

// GO,05(v) drdt < %// G? d:cdt+%/ 10.35(¥)|? dxdt.

If we define 3 by ((s) = Jy 73'(s)* dr and Bs(s) = 5%5(55). Then, 35(s) tends to % when 0 goes
to 0 and we have

/ 0y Vs + 0. 05(¢) ¥ 35(¢) da = / 0, Vs - 0035 (0 / DV, G5 (1) (4.20)
Thanks to the Poisson equation (1.20), we have :
eH(€)" | (N +4V2N) e
€x)
RV, = _42 N +2; = ((V +€)loxal)
—Z ZZ - (xixe 0.V )° 4.21
— ( € — € ) (4.21)

e 6k 5 2 e 6k 5 ?
+Z7<‘Xk‘ V) — Z7<‘Xk| RV | .
K k

By the Cauchy-Schwarz inequality, the sum of the last two terms of the right hand side is nonneg-
ative. Moreover, except for the first one, the other terms are obviously nonnegative. Thus we have
with (4.20),

b b —€x 2
[ oveamwyvmwrdn > -4 [ ¥ g an
a a k

Moreover, Lemma A.1 and the Sobolev embedding H'(2) < L°L?(Q) imply that >, © kéek)Q is
bounded in L>(a,b). Thus (4.19) leads to

//|3x55 \thdaz</ Gthdx+4/ Z _ekéEk) Bs() d.
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Passing to the limit 6 — 0, we have

b —€, 2
2 < 2 e (€) .
//\@m\/Ns\ dtdx_//G dtdx+4/a Ek — - N, dx

Thus we deduce that /N, € L?((0,T), H'(a, b)) and with (4.18) we conclude easily that /N,0,V; €
L*((0,T) x (a,b)). O

5 Existence for the overall problem

5.1 The truncated Boltzmann equation

This part deals with well-known existence results and properties for the Boltzmann equation. The
results will be given for the matter of completeness without proof, we refer to [2, 3, 8, 11, 24] for
more details. We shall assume that n > 0 is fixed, for the clarity of the notation we chose n = 1,
and that the force fields Fj := —0,€ is given. We consider the Boltzmann equations indexed in
k -

atfk +uv- a$fk; + Fk : avfk = QR(f)k7 (IL‘,U) € (a’ b) X R? te [O’T]’

fr(t,a,v) = fi(t,a,—v), fi(t,b,v) = fi(t,b,—v) fort € [0,T],v >0, (5.1)

fk(oa x, U) = ]zn($7 U))
with the truncated collision operator :

QR(f)k = Z/R()éﬁk/(v, U')(Mk<v)fk/(q/) _ Mk/(U')fk<U)) dv/’ (52)

where the truncated cross-section is defined for a R > 0 by
aﬁk/(v,v’) = (v, V) Lp<pr joj<r(k, V) Ly < jwi<r (K, V). (5.3)

A simple calculation shows that the regularized collision operator (5.2) is bounded in El(L;x) and

in £>°(Lg%,) and satisfies Y, [p Qr(f)rdv = 0.
We can prove, using the characteristics techniques (see for instance [3, 6, 8|), existence and
uniqueness of weak solutions for each equation of (5.1) :

Lemma 5.1 Let T' > 0 and assume that the initial data satisfy for oll k > 1,
n >0, (1+v)fi"e L'(a,b) xR), fi" € L>®((a,b) x R).

Assume that Fy, € L*((0,T), W' (a,b)NL>®(a,b)) and that €, > 7°k*. Then (5.1) admits a unique
weak solution fi, € L>((0,T),L* N L>((a,b) x R)), fi >0 and

vt e 0,7, Z/Rfk(t,az,v)dv:Z/Rf,i"(:c,v)dv (5.4)

k>1 k>1

Moreover if there exists § > 2 such that (v° + k?) fi* € (>°(LY,) then ¥Vt € [0,T],

Z I futs s ) e (apyxr) < C (1 + (/0 sup || Fi(s, )| oo ds) ) , (5.5)

o1 k>1

where C' is a constant depending only on T and the data.
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5.2 Proof of Theorem 1.2

In this section we give the sketch of the proof of Theorem 1.2. The structure of the coupling invite
us to use a fixed-point argument for the proof. However to define this fixed-point, the uniqueness of
a solution of the Schrédinger—Poisson system is needed. Thus we are not able to prove the existence
for every kind of initial condition but only for small initial data.

The main steps for the proof, described hereinafter, follow the idea of |2, 3, 22| : we regularize
the system thanks to a small parameter € > 0, we construct solution of the regularized system and
we left go the parameter € to 0 to recover solutions of the unregularized system.

First, let us define the linear regularization operator by

RLNQ) — 02(Q)

Voo RV](52) = (Ve o %2 £l (5:6)

where V is the extension of V by zero outside 2 and £, , and &, are C*° nonnegative compactly
supported even approximations of the unity on R. Moreover, we can prove straightforwardly from
convolution results that the regularization operator R° satisfies the following properties :

Lemma 5.2 (i) R® is a bounded operator on LPL1() for 1 < p,q < +o0 and satisfies for all
Ve LPLI(Q),

IRV era) < IV eeryy —and ilf% |RE[V] = Vlzra) = 0.
(ii) R is self-adjoint on L*(Q) and for all V € W12(Q),
V.R°[V] =RV, V]; lin(l) |V R [V] — VoVl L2y = 0.

We introduce then the regularized system :

;

1 1
Ohfir+ 5(?} Oufir = O€i g Oufir) = ?Q’}é(ﬁ%)k, (z,v) € (a,0) xR,
fli,R(tv a, U) = fli,R(tv a, _U>7 fli,R(tv b7 U) = fli,R(tv b7 _U>7 v > 07 (57)

\ fli,R(vavU) = Iin('rvv)v

1
D) 8§X2,R + RS[VE] Xi,R = Ei,R Xi,R (k > 1),

1 (5.8)
Xi,R(ta z, ) € H(%<O7 1)7 / Xi,R XZR dz = 514357
\ 0
(
A Vi= RS / f;,R|x;R\2dv] ,
k
. . (5.9)
dd‘;R(t,a, z) = %(t,b, z) =0, for z € (0, 1),
[ Vi(t,z,0) =Vg(t,z,1) =0, for z € (a,b).
We use the regularization of the collision operator :
Q=Y [ alfulw ) ME) fle') = ME ()0 d0' (5.10)
ko R
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where the truncated cross-section is defined for R > 0 in (5.3). We use the notations of Section 1 :

1 c
exp(— 51)2 —€;) for Z2° = Z e .

k>1

frdv and M; =
k>1 / 2mZe

Since for ¢ = 0 we have R® = Id, we will obtain a solution of the unregularized system by
passing to the limits ¢ — 0 and R — o0 in the regularized one (5.7)—(5.9). Therefore the proof
of Theorem 1.2 can be split in the three followings steps :

Step 1 : Emxistence for the reqularized problem
In the first step we prove that the regularized problem admits a solution. We verify easily
that the regularized collision operator (5.2) is bounded in ¢'(L{,) and in £>°(L{%,) and satisfies

Zk fR Q%(f%)rdv =0 and
Z/Q€ )k logfk alv<——Z/\/fTLC VNEME)2d

k>1 k>1

Following the ideas of the proof of Proposition 4.8 of [3] we establish:

Proposition 5.3 Let T > 0 and let assume that Assumption (A-1) holds and that the initial
condition is at the thermal equilibrium, i.e. verify (A-2) and is given by (1.9). Then, there exists
go >0 and 6 > 0 such that, if

SOIfM e, (5.11)

k>1

and ¢ € (0, o) then the regularized problem (5.7)~(5.9) admits a global weak solution (Vg, (fi g)k>1)
on the interval [0, T] which satisfies the entropy estimate :

Vtel0,T], 0<Wg(t) / R%(t) dt < Cr, (5.12)
with s
Wg(t) = Z (f/i,Rl % — Jer T Mk) drdv + = / V... VEI? dadz
k>1
and

Z// \/fkR \/NsR ;R)zdmv.

k>1

Step 2 : Passing to the limit R — +o00
For € > 0 fixed, one can pass to the limit as R — +o00. We obtain

Proposition 5.4 Let T > 0 and let assume that (A-1) and (A-2) are satisfied. Let ¢ > 0
be fired (¢ < o) and (Vi (fi > Xi.gs €i.g)i=1) be a weak solution of the regularized Boltzmann-
Schridinger-Poisson system (5.7)—(5.9). Then as R — 400 this solution converges to a weak
solution (V& (f5, X%, €5)k>1) of the regularized Boltzmann-Schrodinger-Poisson system (5.7)—(5.9)
with Q% is substituted by Q% in the Boltzmann equation (5.7).

Moreover it satisfies the entropy estimate (5.12) with ff instead of Jir:
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Proof. We skip all the index ¢ in the notation. With our regularization (5.6) we have a bound
on V in L*(W}2°) depending only on € but not on R. It provides thanks to (5.5) a bound on
(fr,r)k>1 in £2°(Lg, ) depending only on € and on the data. And with (5.4), we have a bound on
(fr.r)k>1 in £1(L tm) depending only on the data. Thus we can extract a subsequence converging
as R — +o0 towards a function f in ¢?(L? #20) —weak. Using the standard mean compactness result
(see Theorem 1.8 of [8], see also [15]), we deduce the relative strong compactness of the sequence
indexed by R

/fk,ka dv
R
in I?

2.([0,T] x (a,b)) for all ¢, € D(R) all null except for a finite number of them. Using the fact
that the quantity (1 + &?) fx r is bounded in L;® (ﬁl(Lglw)) we can choose 1, = 1. Thus one obtain

that pg == ([ ferdv)ez1 — p = (] fr dv)r>1 in L], — strong.
The conservation of the mass implies that for all £ € [0, 7] we have || f|| 11

tz'u

=1f"™ew,.,) =
Nin. Then we can solve the regularized Schrodinger-Poisson system (5.8)-(5.9) with the given
p = [ fdv and construct a unique solution V' € L*(H, ). Using the fact that the sequence (fz)r
satisfies (5.12), we can use the continuity property of the solution of the Schrodinger-Poisson system
(cf Proposition 3.4) to prove that the sequence (Vg)g is Cauchy and therefore converges towards
Vin L7(H, ). Properties of the eigenvalues of the Hamiltonian show that €,[R*[Vz]] — €;[R°[V]]
in L7(1V22%).
Furthermore, we have for all £k > 1

1Qr(fr)kllLee, < ol frllerws,) + 1 frlleews,) < Cre,

where Cr. is a nonnegative constant depending only on 7" and € and on the data. We deduce that
we can extract a subsequence (Qgr(fr)k)r converging as R — +oo in L™ — weak*. Then from the
definition of Qg (5.2), we deduce that

V¢ e L'((a,b) x R), // e — Qr(fr)r)¢dxdv — 0 as R — +oo

Thus one can pass to the limit in the weak formulation of the Boltzmann-Schrodinger-Poisson
system (5.7)—(5.9) and prove straightforwardly that (V, (fx, €k, xx)k>1) is a solution of (5.7)—(5.9)
with @ instead of Q. Finally we recover the entropy estimate by passing to the limit R — +o00 in

(5.12). -

Step 3 : Passing to the limit ¢ — 0
In the last step we prove Theorem 1.2 by taking the limit ¢ — 0.
Since the solution satisfies the entropy estimate, we deduce that

Z/// fi(+ v + & + [log fi]) dwdvdt < Cr.
E>1 (0,7)x (a,b)xR

Thus the Dunford-Pettis Theorem and the De La Vallée Poussin Theorem implies that (ff)k>1
and is weakly relatively compact respectively in ¢*(L*((0,T) x (a,b) x R)). Using standard mean
compactness result (see e.g. Theorem 1.8 of [8]), we deduce the strong relative compactness of the
sequence (p5). in L'([0,T] x (a,b)). Therefore, up to an extraction, we have

p5. — pi strongly in £'(L*((0,T) x (a,b))). (5.13)
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Moreover p satisfies the estimate

Z//pk (1+ k?)dxdt < Cr (5.14)

k>1

and the conservation of the mass implies
b b
Vtel0,T],Ve >0, / N dx :/ N:dx = Ny,.

We can then apply Lemma 3.2 to solve the unregularized Schrodinger-Poisson system (3.1)—(3.2) for
the density p and construct V e L>®([0,T], H'(Q)) which is unique thanks to Lemma 3.3. Moreover
multiplying the two Poisson equations by (V¢ — V') and integrating lead to

/Q|V(V€—V)\2d:cdz: //QRe k
// — 1d) [ZPk|Xk|

Using the fact that with Lemma 5.2, [|R® — Id||; — 0 as € — 0, where

Z(pﬂ?@‘? — pelxal®) | (VE = V) dadz+

(5.15)
V) dxdz.

|R° — Id]|s := sup | (R* — Id)v||L2(Q)
{VeL2(Q),V#£0} ||V||L2(Q) ’

then we can prove, adapting the techniques of Proposition 3.4 that

+C2Hpk = peleawy IVF = Vil + CaNanllVE = Vi g

With the Poincaré inequality, we have for N, small enough,
IV =Vime < CUIR = Idlla + |0k — prllerw)-

Thus there exists Ny > 0 such that, for all 0 < A, < N, there exists V € L>([0,T], H(Q))
weak solution of the unregularized Schrédinger-Poisson system (3.1)—(3.2) and such that the po-
tential V¢, weak solution of the regularized system, converges towards V in L([0,T], H'(Q2)). The
properties of the eigenvectors imply (see proof of Proposition 4.3) that €5 — €, in L?(L°).

The end of the proof of Theorem 1.2 is standard (see [19, 24, 22|) and is based on a double
renormalization. We first write the equation satisfied by [5(f¢) with the function (5 defined in
Section 4.1 and weakly pass to the limit ¢ — 0. Then we renormalize the resulting limit equation
by 3 and let finally ¢ going to 0.

Remark 5.5 The convergence of the potential V¢ is a key point in this proof of existence. We notice
that the technique used here relies strongly on the embedding H'(2) — L°L2(Q2) which is not true
when the x-variable is two dimensional. Then in this latter case we are not able to prove uniqueness
of solutions of the Schridinger-Poisson system for (px)r given and therefore the fized point procedure
does not converge. Thus the techniques used here do not allow us to prove the existence of solution
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of the coupled kinetic-quantum model for a two dimensional transport direction. However in the
diffusive regime, the occupation factor py decays with respect to k and it has been proved in [36]
that this allows us to recover uniqueness of solutions of the Schrodinger-Poisson system (in fact we
can show in this case that the last term in (3.11) is nonpositive). Using the Trudinger estimate
for the entropy functional furnishes existence of solutions of the drift-diffusion-Schridinger-Poisson
system (see [36]).
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Appendix

Spectral properties of the Hamiltonian

In this appendix, we list some basic properties of eigenfunctions and eigenvalues of the Schrodinger
operator in the z variable. For a given real valued function V in L?(0, 1), let H[V] be the Schrodinger
operator

defined on the domain D(H[V]) = H?(0,1) N H}(0,1). This operator admits a strictly increasing
sequence of real eigenvalues (€x[V])g>1 going to +o0o0. The corresponding eigenvectors, denoted by

(X&[V](2))k>1 (chosen such that x},(0) > 0 and fol Ixx[V]|?dz = 1), form an orthonormal basis of
L*(0,1). They satisfy of course

1 d?
gt Ve =€, k€ Hy(0,1),  Vk>1 (A1)

Obviously, for V' = 0, we have €;[0] = 17%k? and x4[0](z) = v2sin(7kz). And
if U <Vae in(0,1) then Vk>1, €[U]<E[V].

In the sequel we will use the standard notation (f) = fol f(2) dz and when there is no confusion
possible €, will stand for €,[V] and yy for xx[V]. Following the study of the spectral properties of
H[V] in Chapter 2 of [30], we have :

Lemma A.1 There exists a positive constant Cy depending only on ||V ||20,1) such that
1 .
|€[V] — §W2k2| <Cy ; |xklV] = V2 sin(rk2)| =01y < Cy.

Moreover the constant Cy can be chosen such that Cy < C1exp(Ca||V||12(0,1)), where the constants
C1 and Cy are independent of V and k.

Lemma A.2 Let V =V (A 2) € L (0,A; L*(0,1)) with X € (0,A) (typically X =1t or A = x;). If

loc

oV € L} (N L?(0,1)), then Ox€; € Li,., Oxxx € L}, (N, L2(0,1)) and we have

N
N ARND: and k=Y %X@-
ok

Using these last two lemmata we can prove (see Appendix of [4]) :

Lemma A.3 Let V and V be two real-valued functions in L*(0,1). Then there exist two positive
constants Cy and Cy independent of k, V and V' such that

€[V] - €[V] <Oy exp(Co([[V]| 220,y + ||‘7||L2(071)))||V — ‘7||L1(071) : (A.2)

And,
D lVT = Xk lVIllze0,1) < Crexp(Co([[V |20y + V2D IV = VLo - (A.3)
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Lemma A.4 Let V € L?(0,1) such that V > 0, then the eigenvectors of the Schridinger operator
satisfy
1/2
IV llz) < OO+ VI )

Proof. The result of Lemma 1 Chapter 1 of [30] provides:

Xe(2) = Ay sin(v/2€r2) + 2 /0 ) Sin(\/z’“_g =Dy )xlt) dt, (A.4)

where Aj is a nonnegative constant to be determined. Thanks to the Cauchy-Schwarz inequality,
we deduced

fol V(1) |xk(t)| dt - (x| V)12

“sin(/2€x(z — 1)) 1/2
Vi(t t)dt| < Vil 2
/0 \/E ( )Xk< ) = \/E = \/E ” ”L (0,1)"
Moreover, from (A.1),
1
€ = 512" + (V) = (el*V)
Thus,
“sin(v/2€,(z — 1)) 1/2
V(t dt V A5
[ Ry ] < S VI (A5)
Thus from (A.4) we have for all z € [0, 1]
Xe(2)] < Ai+ V2V - (A.6)

Now, we will use the condition ||x||z2¢0,1) = 1 to bound Ay. If we use the expression of x; (A.4)
in the identity fol X: dz = 1, we obtain

* sin(y/2€x(z — 1))
V26

1 1
1> A2 / sin(v/2€52)? d= + 44, / sin(v/2€52) / Viye(t) didzs. (A7)
0 0 0

For the second term we have from (A.5)

[ sntvaes [FYZIE =Dy 0y ) duts| < VI,

And we can calculate .
1 24/2€,,
/ [sin(v/2€,2)]? dz = = _ Sin(2v26,) )
0 2 4+/2€;,

We have assumed that V' > 0. It implies €,[V] > €[0] = 17%k?, for all k > 1. Thus we can inject
these remarks in (A.7), it leads to

1 1 1/2
1> Ai (5 - E) - 2fAk|’V|’Lé(o1

This implies that there exists a nonnegative contant C' such that
Ay <CO+ Vo, YE>1.

L2(0,1)

It remains to inject this last estimate in (A.6) to conclude the proof. m
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Lemma A.5 Let V and V be two given nonnegative potentials in L*(0,1). Then there exists a
nonnegative constant C' such that

€x[V] = €V < CA+ VI o + VI ) IV = Vilzzea)- (A.8)

Proof. This is an easy consequence of Lemma A.4 and A.2. Indeed, if we denote for A € [0, 1],
WA 2) =V 4+ AV = V) and €,(\) = €;[W(X,-)], we have

EV] — €V /aAek ) dx = /<|Xk[W()\,-)](z)\2(V—17))d)\.

Thus, we have
1
\@M—QWWNV—meAHMWMMMmmM

The estimate (A.8) follows then from Lemma A.4 and the interpolation :
[V O a0,y < D6V O )l z2o, [V N, o,
o
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