
,,ESAIM: PROCEEDINGS, Vol. ?, 2011, 1-10Editors: Will be set by the publisher
NUMERICAL APPROXIMATION OF KNUDSEN LAYER FOR THEEULER-POISSON SYSTEMFréderique Charles1, Ni
olas Vau
helet1, Christophe Besse2, 3, ThierryGoudon2,3, Ingrid La
roix�Violet2,3, Jean-Paul Dudon4 and LaurentNavoret5Abstra
t. In this work, we 
onsider the 
omputation of the boundary 
onditions for the linearizedEuler�Poisson derived from the BGK kineti
 model in the small mean free path regime. Boundarylayers are generated from the fa
t that the in
oming kineti
 �ux might be far from the thermody-nami
al equilibrium. In [2℄, the authors propose a method to 
ompute numeri
ally the boundary
onditions in the hydrodynami
 limit relying on an analysis of the boundary layers. In this paper,we will extend these te
hniques in the 
ase of the 
oupled Euler-Poisson system.Résumé. Dans 
e travail, nous nous intéressons à l'évaluation numérique de 
onditions aux limitespour le système d'Euler�Poisson linéarisé obtenu à partir du modèle 
inétique BGK dans le régimede petit libre par
ours moyen. Des 
ou
hes limites peuvent apparaître en raison du fait que les�ux 
inétiques entrants peuvent di�érer de l'équilibre thermodynamique. La réferen
e [2℄ introduitune méthode de 
al
ul numérique des 
onditions aux limites dans un tel régime hydrodynamiquebasée sur l'analyse des 
ou
hes limites. I
i, nous étendons 
es te
hniques au 
as du système 
oupléd'Euler�Poisson. 1. Introdu
tionAt a kineti
 level, a statisti
al des
ription of the dynami
s of a plasma subje
t to an ele
tri
 �eld E(t, x)
an be obtained thanks to the Boltzmann equation governing the evolution of the parti
les distributionfun
tion F (t, x, v). In the one dimensional framework, this equation reads:

∂tF + v∂xF + qE∂vF =
1

τ
Q(F ), (1)where q ∈ {−1, 1} 
orrespond to the sign of the 
harge of parti
les. Here the time variable t ≥ 0, the positionvariable x belongs to (−ω, ω) ⊂ R and the velo
ity v ∈ R. The parameter τ is the Knudsen number; it isrelated to the mean free path and is assumed to be small. In this work, we 
hoose for the 
ollision operator

Q the BGK 
ollision operator:
Q(F ) = M(ρ,u,θ) − F,where the Maxwellian

M(ρ,u,θ)(v) =
ρ√
2πθ

exp

(
−|v − u|2

2θ

)
, (2)
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and the ma
ros
opi
 quantities (ρ, u, θ) are de�ned bydensity : ρ(t, x) =

∫

R

F (t, x, v) dv,velo
ity : ρu =

∫

R

vF (t, x, v) dv,temperature : ρu2 + ρθ =

∫

R

|v|2F (t, x, v) dv.In this paper we restri
t to 
onsider a single spe
ie of 
harged parti
les, the parti
les of the opposite 
hargebeing a given ba
kground with a �xed and 
onstant density. The ele
tri
 �eld E = −∂xV is self-
onsistentlyde�ned through the Poisson equation satis�ed by the potential V :
−∂xxV = q(ρ− 1). (3)We re
all that (1, v, |v|2) are 
ollision invariants:

∫

R




1
v
|v|2


Q(F ) dv = 0. (4)It is well-known that when τ → 0, the distribution fun
tion F 
onverges to a Maxwellian, whose ma
ro-s
opi
 parameters ρ, u and θ solves the Euler system. The question raised by this work is the determinationof the boundary 
onditions on this Euler system 
orresponding to the ones imposed on the kineti
 system.Here system (1)�(3) is 
ompleted with the following boundary 
onditions:

γincF (t,−ω, v) = R(γoutF (t,−ω, ·))(v) + Φdata,L(t, v), for v > 0, (5)
γincF (t, ω, v) = R(γoutF (t, ω, ·))(v) + Φdata,R(t, v), for v < 0, (6)where Φdata,R and Φdata,L are given fun
tions, and R is a re�e
tion operator. For instan
e assuming R = 0and Φdata = 0 
orresponds to a fully absorbing boundary. We 
onsider here two types of re�e
tion operator:the spe
ular re�e
tion operator given by

R(F )(t, x, v) = αF (t, x,−v), (7)where the parameter α ∈ [0, 1] represents the fra
tion of re�e
ted parti
les, and the re�e
tion operator ofthe Maxwell di�use law given by
R(F )(t,−ω, v) = α

Mw(v)

Zw

∫

v′<0

|v′|F (t,−ω, v′) dv′, for v > 0, (8)where
Mw(v) =

ρw√
2πθw

e−|v|2/(2θw), Zw =

∫

v>0

vMw(v) dv,with θw the temperature of the wall (see e.g. [15℄). Obviously, dealing with the right hand boundary, +ωrepla
es −ω and in
oming parti
les have negative velo
ities v < 0, we 
hange the sign of v′ in (8) a

ordingly.The problem is also 
ompleted with an initial 
ondition
F (0, x, v) = F init(x, v).For the Poisson equation, we impose Diri
hlet boundary 
onditions

V (t,−ω) = V L, V (t, ω) = V R.This framework might appear quite 
rude in 
omparison to the 
omplex boundary 
onditions that are usedin plasma physi
s, where the boundary potential depends on the parti
les �uxes, see e. g. [6�8, 17, 20, 23℄2



and the referen
es therein. We restri
t to this simple situation in order to bring out 
learly the ideas and italready make several di�
ulties appear; we shall go ba
k to a more ambitious model elsewhere.As the mean free path goes to 0, the kineti
 model 
an be approa
hed by a system of 
onservation lawsfor whi
h the number of boundary 
onditions that should be �xed depends on the solution itself (see e.g. [9℄).In fa
t the boundary 
onditions for the hyperboli
 system depend on the number of in
oming 
hara
teristi
sat the boundary. The aim of this work is to present numeri
al methods to 
ompute the boundary �uxes forthe hydrodynami
 model, and to 
ompare the results with simulations of the kineti
 equation (1).The paper is organized as follows. In the next Se
tion, we study the simplest 
ase where we linearize theBoltzmann�BGK equation around a Maxwellian steady state. We �rst introdu
e some notations and re
allthe theoreti
al results needed. Then we present some numeri
al simulations. In Se
tion 3, we are 
on
ernedwith the 
oupling with the Poisson equation. We 
onsider both the linearized problem and the non-linear
ase. 2. Analysis for the linearized Euler systemIn this se
tion, we are interested in the numeri
al approximation of the boundary layer for the linearizedEuler system in the 
ase E = 0, i.e. there is no 
oupling with the Poisson equation.2.1. Analysis of the boundary layerWe brie�y re
all here the theori
al results developped in [9℄ (see also [13℄). Let us assume that ρ∗ > 0,
θ∗ > 0 and u∗ ∈ R are given. We verify easily that M∗ := M(ρ∗,u∗,θ∗) is a stationary solution of (1) with
E = 0. Linearizing around the equilibrium M∗ in the form F = M∗(1 + f), (1) leads to the linearizedequation for f :

∂tf + v∂xf =
1

τ
L∗(f), (9)where L∗ is the linearized BGK operator. More pre
isely, for f ∈ L2(M∗ dv) we have L∗(f) = Πf − f , with

Π the orthogonal proje
tion of L2(M∗ dv) to the �nite dimensional set spanned by the 
ollisional invariant
{1, v, |v|2} (see [2℄):

Πf =
ρ̃

ρ∗
+

v − u∗

θ∗
ũ+

( |v − u∗|2
θ∗

− 1

)
θ̃

2θ∗
,where (ρ̃, ũ, θ̃) are su
h that




ρ̃
ρ̃u∗ + ρ∗ũ

ρ̃(u2
∗ + θ∗) + 2ρ∗u∗ũ+ ρ∗θ̃



 =

∫

R




1
v
|v|2



 fM∗ dv.We 
an verify that the following properties1 hold:
• L∗ is self-adjoint for the inner produ
t of L2(M∗ dv),
• Ker(L∗) = Span {1, v, |v|2},
• Ran(L∗) = (Ker(L∗))

⊥ for the inner produ
t of L2(M∗ dv),
• we have the dissipation property

∫

R

L∗ffM∗ dv ≤ 0.Equation (9) is 
ompleted with the boundary 
onditions dedu
ed from (5)�(6)
γinc(M∗f)(t,−ω, v) = R(γout(M∗f)(t,−ω, ·))(v) + φdata,L(t, v), for v > 0, (10)
γinc(M∗f)(t, ω, v) = R(γout(M∗f)(t, ω, ·))(v) + φdata,R(t, v), for v < 0, (11)1These properties obviously hold for the linearized BGK operator be
ause it redu
es to a mere proje
tion; but it is importantto bring out the 
ru
ial analyti
al properties required to extend the dis
ussion to more intri
ate operators3



where for instan
e in the 
ase v > 0, we have
φdata,L = Φdata,L −M∗ +R(M∗),and with the initial data

f(0, x, v) = f init(x, v).Formally, when τ → 0 the fun
tion f belongs to Ker(L∗) and 
an be therefore des
ribed by an in�nitesimalMaxwellian:
m(ρ̃,ũ,θ̃)(t,x)(v) =

ρ̃

ρ∗
+

v − u∗

θ∗
ũ+

( |v − u∗|2
θ∗

− 1

)
θ̃

2θ∗
. (12)>From (9) and the de�nition of Ker(L∗) we dedu
e the moment system:

∂t

∫

R




1
v
|v|2


 fM∗ dv + ∂x

∫

R

v




1
v
|v|2


 fM∗ dv = 0.Substituting f by the in�nitesimal Maxwellian m(ρ̃,ũ,θ̃) leads to the linearized Euler system:

∂t




ρ̃
ũ

θ̃



+




u∗ ρ∗ 0
θ∗
ρ∗

u∗ 1

0 2θ∗ u∗



 ∂x




ρ̃
ũ

θ̃



 = 0. (13)The system (13) writes in matrix form
∂tŨ +A∂xŨ = 0, (14)with

A =



u∗ ρ∗ 0
θ∗
ρ∗

u∗ 1

0 2θ∗ u∗


 .This system is obviously hyperboli
: the spe
trum of the matrix A is {u∗−

√
3θ∗, u∗, u∗+

√
3θ∗}. Therefore,the number of boundary 
onditions that should be �xed at the left (resp. right) boundary depends on thenumber of positive (resp. negative) eigenvalues. Moreover, we 
an de�ne the following quadrati
 form

Q : Ũ = (ρ̃, ũ, θ̃) 7→
∫

R

v|m(ρ̃,ũ,θ̃)|
2 M∗ dv. (15)Following [2,9℄, we 
an split the set of in�nitesimal Maxwellians a

ording to the sign of the quadrati
 form

Q:
Ker(L∗) = Λ+ ⊕ Λ− ⊕ Λ0,where Λ± 
orresponds to the eigenspa
es asso
iated to the positive (resp. negative) eigenvalues of A, and

Λ0 is the eigenspa
e asso
iated to 0 when it belong to the spe
trum of A. We shall denote I± = dim(Λ±)the number of positive (resp. negative) eigenvalues of A.Then, 
onsidering the left hand boundary x = −ω, it is possible to split m(ρ̃,ũ,θ̃) into m− ∈ Λ− (whi
h
orresponds to the �outgoing part�) and m+ ∈ Λ+ ⊕ Λ0 (whi
h 
orresponds to the �in
oming part� at theboundary x = −ω) :
m(ρ̃,ũ,θ̃) = m− +m+. (16)Dealing with the right hand boundary x = +ω, the role of Λ+ and Λ− is inverted. At ea
h boundary theoutgoing part is given by the �ow, whereas the in
oming part has to be imposed as a boundary 
ondition to
omplete the Euler system.The in
oming �ux at the boundaries are determined thanks to a boundary layer analysis. Let us 
onsiderthe following half spa
e problem

{
v∂zG = L∗G, z > 0, v ∈ R

G(0, v) = Υdata, v > 0
(17)4



where Υdata has to be suitably de�ned. We re
all the following statement (see [9℄):Theorem 1. There exists a linear mapping (that is usually 
alled the generalized Chandrasekhar fun
tional)
C∗ : L2(R, (1 + |v|)M∗(v) dv) → Λ+ ⊕ Λ0

Υdata 7→ m∞,where m∞ is the limit as z → ∞ of the unique solution G of (17). Moreover, G ∈ L∞(0,∞;L2(R,M∗(v) dv)).Let us assume that f expands as follows
f = m(ρ̃,ũ,θ̃) +GL

(
t,
x+ ω

τ
, v

)
+GR

(
t,
ω − x

τ
, v

)
+ o(τ),where GL and GR stand for boundary layers and are de�ned as follows :

• GL(t, z, v) = G(t, z, v) with G the solution of (17) with in
oming data
Υdata(t, v) = γincf(t,−ω, v)−m(ρ̃,ũ,θ̃)(t,−ω, v), (18)and imposing that

lim
z→+∞

G(z, v) = 0, (19)
• GR(t, z, v) = G(t, z,−v) with G the solution of (17) with in
oming data

Υdata(t, v) = γincf(t, ω,−v)−m(ρ̃,ũ,θ̃)(t, ω,−v). (20)and 
ondition (19).Condition (19) expresses that the boundary layer is expe
ted to vanish far from the boundary. Using thede
omposition on Ker(L∗) in (16), it implies that the unknown m+ satis�es
C∗(γincf(t, ω, ·)−m−(t, ω, ·)) = C∗(m+(t, ω, ·)), C∗(γincf(t,−ω, ·)−m−(t,−ω, ·)) = C∗(m+(t,−ω, ·)).(21)The question we address is 
on
erned with the numeri
al approximation of the outgoing state m+, whi
harises in the de�nition of the boundary �uxes.2.2. Numeri
al resolution of the linearized Euler system2.2.1. Numeri
al methodThe matrix A of the system (13) 
an be diagonalized under the form

A =




u∗ ρ∗ 0
θ∗
ρ∗

u∗ 1

0 2θ∗ u∗



 = P




u∗ 0 0
0 u∗ +

√
3θ∗ 0

0 0 u∗ −
√
3θ∗



P−1,with
P =

1

2
√
θ∗




2
√
θ∗ρ∗

√
3ρ∗ −

√
3ρ∗

0 3
√
θ∗ 3

√
θ∗

−2
√
θ∗θ∗ 2θ∗

√
3 −2θ∗

√
3


 , P−1 =

1

3ρ∗
√
3θ∗



2
√
3θ∗ 0 −ρ∗

√
3/

√
θ∗

θ∗ ρ∗
√
3θ∗ ρ∗

−θ∗ ρ∗
√
3θ∗ −ρ∗


 .We set 


ρ̃diag
ũdiag

θ̃diag



 = P−1




ρ̃
ũ

θ̃



5



the variables in the new basis de�ned by the transition matrix P , and we obtain three independant equationson ρ̃diag, ũdiag, θ̃diag :




∂tρ̃diag + u∗∂xρ̃diag = 0, (a)
∂tũdiag + (u∗ +

√
3θ∗)∂xũdiag = 0, (b)

∂tθ̃diag + (u∗ −
√
3θ∗)∂xθ̃diag = 0. (
) (22)Equations (22) should be 
ompleted with boundary 
onditions, whi
h depend on the sign of u∗, u∗ +

√
3θ∗and u∗ −

√
3θ∗. More pre
isely, we denote Ubd,l = (ρbd,l, ubd,l, θbd,l) and Ubd,r = (ρbd,r, ubd,r, θbd,r) thema
ros
opi
 quantities whi
h have to be de�ned at the boundaries x = −ω and x = ω respe
tively, and weset

Ubd,l =




U1
bd,l

U2
bd,l

U3
bd,l


 = P−1Ubd,l, Ubd,r =




U1
bd,r

U2
bd,r

U3
bd,r


 = P−1Ubd,r.Boundary 
onditions of equations (22) are :

ρ̃diag(−ω) = U1
bd,l if u∗ > 0 or ρ̃diag(ω) = U1

bd,r if u∗ < 0, (a)
ũdiag(−ω) = U2

bd,l if u∗ +
√
3θ∗ > 0 or ũdiag(ω) = U2

bd,r if u∗ +
√
3θ∗ < 0, (b)

θ̃diag(−ω) = U3
bd,l if u∗ −

√
3θ∗ > 0 or θ̃diag(ω) = U3

bd,r if u∗ −
√

3θ∗ < 0. (
) (23)We then introdu
e a regular subdivision {x0, . . . , xI+1} of the domain [−ω, ω], with xi = −ω + i∆x and
∆x = 2ω/(I + 1), and a time dis
retisation ∆t. Equations (22) are solved numeri
ally thanks to an upwinds
heme. We obtain for instan
e, thanks to equation (22)-(a) and boundary 
ondition (23)-(a), the followingapproximations ρ̃ndiag,i of ρ̃diag(n∆t, xi):





ρ̃n+1
diag,0 = U1,n+1

bd,l ,

ρ̃n+1
diag,1 = ρ̃ndiag,1 − u∗

∆t

∆x

(
ρ̃ndiag,1 − U1,n

bd,l

)
,

ρ̃n+1
diag,i = ρ̃ndiag,i − u∗

∆t

∆x
(ρ̃ndiag,i − ρ̃ndiag,i−1) for i ∈ {2, I + 1},

if u∗ > 0,and 




ρ̃n+1
diag,i = ρ̃ndiag,i − u∗

∆t

∆x
(ρ̃ndiag,i+1 − ρ̃ndiag,i) for i ∈ {0, I − 1},

ρ̃n+1
diag,I = ρ̃ndiag,I − u∗

∆t

∆x

(
U1,n
bd,r − ρ̃ndiag,I

)
,

ρ̃n+1
diag,I+1 = U1,n+1

bd,r ,

if u∗ < 0,where U1,n
bd,l = U1

bd,l(n∆t) and U1,n
bd,r = U1

bd,r(n∆t). These values are 
omputed by solving (21). The methodto solve these equations is explained in the next subse
tion. We denote in the sequel
Ũn
i =




ρ̃ni
ũn
i

θ̃ni



 = P




ρ̃ndiag,i
ũn
diag,i

θ̃ndiag,i



 . (24)2.2.2. Treatment of the boundary 
onditionsWe explain in this se
tion the method presented in [2℄ to 
ompute, at ea
h time step, the hydrody-nami
 boundary 
onditions Un
bd,l and Un

bd,r from the knowledge of the hydrodynami
 quantity Ũn
i near theboundaries x = ±ω and the knowledge of φdata,L, φdata,R and R in (10).6



We fo
us here the dis
ussion on the boundary x = −ω (the treatment of the boundary x = ω is similar).We introdu
e, at ea
h time tn = n∆t, the in�nitesimal Maxwellian
mn

bd,l(v) =
ρnbd,l
ρ∗

+ un
bd,l

v − u∗

θ∗
+

θnbd,l
2θ∗

(
(v − u∗)

2

θ∗
− 1

)and we asso
iate to mn
bd,l its de
omposition on Ker(L∗) as in (16) :

mn
bd,l = mn

+ +mn
−. (25)The outgoing part mn

− ∈ Λ− is given by the proje
tion of Ũn
0 on Λ− :

mn
−(v) =

∑

k∈I−

αn
kχk(v), αn

k =

∫
R
vmŨn

0

χk(v)Mρ∗,u∗,θ∗(v)dv∫
R
v |χk(v)|2 Mρ∗,u∗,θ∗(v)dv

,where mŨn

0

is de�ned in (12). We denote (χ0, χ1, χ2) an orthogonal basis of Ker(L∗) whi
h is here de�nedby (see [2℄)
χ0(v) =

1√
6

( |v − u∗|2
θ∗

− 3

)
,

χ1(v) =
1√
6

(√
3
v − u∗√

θ∗
+

|v − u∗|2
θ∗

)
,

χ2(v) =
1√
6

(√
3
v − u∗√

θ∗
− |v − u∗|2

θ∗

)
,and

I+ =
{
k ∈ {0, 1, 2}, χk ∈ Λ+

}
, I− =

{
k ∈ {0, 1, 2}, χk ∈ Λ−

}
, I0 =

{
k ∈ {0, 1, 2}, χk ∈ Λ0

}
.Moreover,

Q(χ0) = ρ∗u∗, Q(χ1) = ρ∗(u∗ +
√
3θ∗), Q(χ2) = ρ∗(u∗ −

√
3θ∗),where Q is the quadrati
 form de�ned in (15). Consequently, the sign of the eigenvalues u∗ −

√
3θ∗, u∗,

u∗ +
√
3θ∗ allows us to know I− and therefore to 
ompute mn

−.Then we need to 
ompute mn
+. We �rst noti
e that integrating the half spa
e problem (17) over thevelo
ity variable gives
d

dz

∫

R

v




1
v
|v|2


GL(z, v)M∗(v)dv = 0,and then

∫

R

v




1
v
|v|2


GL(0, v)M∗(v)dv =

∫

R

v




1
v
|v|2


GL(∞, v)M∗(v)dv = 0. (26)Moreover, we make an approximation proposed by Maxwell in [19℄ (see also [1, 18℄) : we assume that theoutgoing distribution at the boundary γoutGL(0, ·) 
oin
ides with the distribution at in�nity, that is to say

γoutG(0, v) = lim
z→+∞

G(z, v) = 0, v > 0. (27)Then, using (26), (20) and (27), we obtain
∫

v>0

v




1
v
|v|2


[γinc(f)−mn

bd,l

]
M∗dv = 0. (28)7



Finally, thanks to (10) and (25), we get
∫

v>0

v




1
v
|v|2


[φdata,L(tn, v) +R(M∗m

n
−)(v)−mn

−(v)M∗(v)
]
dv

=

∫

v>0

v




1
v
|v|2



(mn
+(v)M∗(v)−R(M∗m

n
+)(v)

)
dv.

(29)Relation (29) allows us to 
ompute mn
+. We noti
e that we have three equations for mn

+ to be satis�edwhereas dim(Λ+ ⊕ Λ0) ∈ {0, 1, 2, 3}. In the 
ase u∗ = 0 i.e. when the signature of the quadrati
 form Q is
(1, 1), we use the fa
t that we have the additional 
onservation law (see [2, 14℄)

d

dz

∫

R

v2χ0(v)G(z, v)M(ρ∗,0,θ∗)(v) dv = 0.A method to solve this overdeterminated problem is to pi
k the number of equations needed in (29) (see [14℄).Here we will follow instead the method in [2℄ where the determination of mn
+ relies on the resolution of aleast squares problem under 
onstraints. We refer to [2℄ for further details.2.3. Numeri
al 
omparisonsThe equation (9) is solved thanks to a splitting s
heme : we solve su

essively the free transport equa-tion ∂tf + v∂xf = 0 (with upwind s
heme) and the 
ollision part ∂tf = 1
τL∗(f). We noti
e that thislast equation 
an be solved exa
tly sin
e by 
onservation properties, a solution f of this equation satis�es

d
dt

∫
R
(1, v, v2)f(v) dv = 0, and therefore Πf is not modi�ed during this step and 
an be 
onsidered as a givensour
e term. We refer to [2℄ for further details. In the simulation presented below, we take ∆v = 5 ·10−4 and

τ = 10−3, and for both hydrodynami
 and kineti
 simulation ω = 0.5 and ∆x = 1/500 (in 
onvenient units).The �nal time is tf = 0.1 and the time step ∆t is determined by the CFL 
ondition. We then 
ompare thenumeri
al solution of the linearized Boltzmann equation (9) with the numeri
al solution of linearized Eulersystem (14).On Figure 1, we 
onsider the equilibrium state given by
(ρ∗, u∗, θ∗) = (1,−0.1, 1),with spe
ular re�e
tion at boundaries (operator R is given by (7)), a re�e
tion 
oe�
ient of α = 0.1 andno sour
e term (φdata,L = φdata,R = 0). In parti
ular, the signature of Q is (1, 2). In this 
ase, results aresatisfa
tory : the density, ma
ros
opi
 velo
ity and temperature given by the resolution of the linearizedEuler system are very 
lose from those given by the linearized Boltzmann equation.In the se
ond example on Figure 2 we 
onsider the equilibrium state given by
(ρ∗, u∗, θ∗) = (1, 0, 1),with di�use re�e
tion at boundaries (operator R is given by (7)), a re�e
tion 
oe�
ient of α = 0.8 and nosour
e term (φdata,L = φdata,R = 0). This is a degenerate 
ase : the signature of Q is here (1, 1). Thus asnoti
ed in the previous se
tion, we have four 
onservation relations and two 
omponents to be �nd in orderto de�ne mn

+.Finally in the last example on �gure 3 we present the 
ase of no re�e
tion at boundaries with no sour
eterm (φdata,L = φdata,R = 0). We 
hoose the signature (3, 0) for Q. Again in this 
ase the approximationobtained using the Euler system is really 
lose to the results given by the Boltzmann equation.8
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Figure 1. Comparison between the kineti
 simulation and the hydrodynami
 simulationat tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1,−0.1, 1), spe
ular re�e
tion at boundaries and α = 0.1.3. Coupling with the Poisson equation3.1. Analysis of the linearized Vlasov�Poisson systemIn this se
tion, we 
onsider the linearization of the 
oupled Boltzmann�Poisson system (1)�(3). Let usassume that ρ∗ > 0 and θ∗ > 0 are given. We set
M∗(x, v) =

ρ∗e
− v

2

2θ∗

√
2πθ∗

e−qV∗(x)/θ∗

∫ ω

−ω
e−qV∗(y)/θ∗ dy

= M(ρ∗,0,θ∗)(v)
e−qV∗(x)/θ∗

∫ ω

−ω
e−qV∗(y)/θ∗ dy

. (30)We verify easily that for su
h a Maxwellian, we have
v∂xM∗ − q∂xV∗∂vM∗ = 0. (31)We 
hoose for V∗ the solution of the problem





−∂xxV∗ = q

(
ρ∗

e−qV∗(x)/θ∗

∫ ω

−ω e−qV∗(y)/θ∗ dy
− 1

)
,

V∗(−ω) = V L, V∗(ω) = V R.

(32)Lemma 1. Assume V L and V R are given in R and ρ∗ > 0, θ∗ > 0. Then there exists a unique solution
V∗ ∈ C2(−ω, ω) of the problem (32). 9
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Figure 2. Comparison between the kineti
 simulation and the hydrodynami
 simulationat tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1, 0, 1), di�use re�e
tion at boundaries and α = 0.8.Proof. Let us de�ne Vb ∈ C2([−ω, ω]) an extension of the boundary 
ondition: Vb(−ω) = V L and Vb(ω) =
V R. This results relies on the remark that a weak solution of (32) is a 
riti
al point in the a�ne spa
e
Vb +H1

0 (−ω, ω) of the fun
tional
J(V ) =

1

2

∫ ω

−ω

|∂xV |2 dx− ρ∗θ∗ ln

(∫ ω

−ω

e−qV/θ∗ dx

)
−
∫ ω

−ω

qV dx.Therefore, it remains to prove that this fun
tional admits a unique minimizer. In fa
t, J is 
learly 
ontinuousand 
onvex on H1(−ω, ω) and we have the inequality
ln

(∫ ω

−ω

e−qV/θ∗ dx

)
≤ ‖V ‖∞

θ∗
+ ln(2ω) ≤ C‖V ‖H1 + ln(2ω).Hen
e, applying the Poin
aré inequality, we get

J(V ) ≥ ‖V ‖2H1 − C0ρ∗‖V ‖H1 − C1.Then J is 
oer
ive and bounded from below on H1(−ω, ω). It admits a unique minimizer V∗. Applyingstandard te
hniques, we 
an show that V∗ ∈ C2(−ω, ω). �Thus, the pair (M∗, V∗) is a stationary solution of the Boltzmann-Poisson problem (1)�(3). We linearizearound this solution by setting F = M∗ +M∗f and V = V∗ + Ṽ where f and Ṽ are assumed to be smallperturbations. Keeping only the �rst order term, we are led to the following linearized Boltzmann-Poisson10
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Figure 3. Comparison between the kineti
 simulation and the hydrodynami
 simulationat tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1, 1, 0.25), with no re�e
tion and no sour
e term at bound-aries.problem:
∂tf + v∂xf − q∂xV∗∂vf + q

v

θ∗
∂xṼ =

1

τ
L∗f. (33)The linearized 
ollision operator L∗ has been de�ned in the previous se
tion. Equation (33) is 
oupled tothe Poisson equation

−∂xxṼ = q

∫

R

fM∗ dv, Ṽ (−ω) = Ṽ (ω) = 0. (34)Thus, as τ goes to 0 the fun
tion f looks like an in�nitesimal Maxwellian m(ρ̃,ũ,θ̃). The properties of L∗des
ribed above yield
∫

R

L∗f




1
v
|v|2



M(ρ∗,0,θ∗) dv = 0.Therefore taking the moments of (33), we are led to the following system:
∂t

∫

R




1
v

|v|2



 fM(ρ∗,0,θ∗) dv + ∂x

∫

R

v




1
v
|v|2



 fM(ρ∗,0,θ∗) dv − q∂xV∗

∫

R




1
v
|v|2



 ∂vfM(ρ∗,0,θ∗) dv

+q
∂xṼ

θ∗

∫

R

v




1
v

|v|2


M(ρ∗,0,θ∗) dv = 0.11



Integrating by parts, we dedu
e
∫

R




1
v

|v|2



 ∂vfM(ρ∗,0,θ∗) dv =

∫

R

v

θ∗




1
v

|v|2



 fM(ρ∗,0,θ∗) dv −
∫

R




0
1
2v



 fM(ρ∗,0,θ∗) dvSubstituting f by m(ρ̃,ũ,θ̃), we use the identities
∫

R

m(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = ρ̃,

∫

R

vm(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = ρ∗ũ;
∫

R

v2m(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = ρ∗θ̃ + ρ̃θ∗,

∫

R

v3m(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = 3ρ∗θ∗ũ.We dedu
e that
∂t



ρ̃
ũ

θ̃


+




0 ρ∗ 0
θ∗
ρ∗

0 1

0 2θ∗ 0


 ∂x



ρ̃
ũ

θ̃


 = q∂xV∗




ρ∗ũ
θ∗
θ̃
θ∗
0


 − q∂xṼ



0
1
0


 (35)holds. >From (34), this system is 
oupled with the linearized Poisson equation

−∂xxṼ = q ρ̃
e−qV∗(x)/θ∗

∫ ω

−ω
e−qV∗(y)/θ∗ dy

, Ṽ (−ω) = Ṽ (ω) = 0. (36)Like for the free problem, we assume that f admits an expansion of the form
f = m(ρ̃,ũ,θ̃) +GL(t,

x+ ω

τ
, v) +GR(t,

ω − x

τ
, v) + o(τ).Then the boundary layersGL and GR satis�es the same half spa
e problem (17). Therefore the determinationof the boundary 
ondition that we have to impose to solve (35) follows the treatment presented in the previousse
tion. We noti
e moreover that we are ne
essary in the degenerate 
ase where the quadrati
 form asso
iatedto the matrix of the hyperboli
 equation has the signature (1, 1), i.e. u∗ = 0. In fa
t, if we 
hoose non-zero

u∗, the relation (31) is not satis�ed and thereforeM∗ is not a stationary solution of the Boltzmann equation.We present some 
omparisons between the simulation of the linearized Boltzmann-Poisson equation andthe linearized Euler-Poisson system. In the numeri
al pro
edures we use, system (32) is solved thanks to a�xed point iterative pro
edure. Sin
e ρ∗ and θ∗ are �xed, the potential V∗ is 
omputed only on
e for all atthe beginning of the simulation. The linearized Boltzmann equation (33) is solved with the same idea thanin the previous se
tion : we split by solving �rst the transport equation on one time step
∂tf + v∂xf − q∂xV∗∂vf + q

v

θ∗
∂xṼ = 0,with an upwind s
heme, then we solve on one time step

∂tf =
1

τ
L∗(f).The linearized Euler system (35) is dis
retized by a splitting method: �rst we solve (35) with zero at theright hand side as des
ribed in subse
tion 2.2.1 and then we solve impli
itely

∂t



ρ̃
ũ

θ̃


 = q∂xV∗




ρ∗ũ
θ∗
θ̃
θ∗
0


− q∂xṼ



0
1
0


 .The Poisson equation is dis
retized thanks to a �nite di�eren
e method. Figures 4 and 5 present the resultsfor a linearization around the equilibrium state given by (ρ∗, u∗, θ∗) = (1, 0, 0.5), with a sour
e term at theboundaries in Figure 4 and in the 
ase of spe
ular re�e
tion in Figure 5.12
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Figure 4. Comparison between the kineti
 simulation and the hydrodynami
 simulationfor the 
oupled problem with (ρ∗, u∗, θ∗) = (1, 0, 0.5), no re�e
tion at boundaries (R = 0),
φdata,L = m(2/1.2,0,1.2/2), φdata,R = m(ρ∗,0,θ∗), q = −1, V L = V R = 1 at tf = 0.1.3.2. The non-linear Euler�Poisson systemFinally, we 
ome ba
k to the non-linear problem (1)�(3) presented in the introdu
tion. As the mean freepath goes to 0, we get the Euler-Poisson system:






∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + ρθ) = −qρ∂xV,

∂t

(ρθ + ρu2

2

)
+ ∂x

(3
2
ρuθ +

1

2
ρu3
)
= −qρu∂xV,

(37)
oupled to
−∂xxV = q(ρ− 1). (38)We present a �rst attempt to treat numeri
ally the initial-boundary-value problem, in
orporating the 
ompu-tation of relevant boundary 
onditions for the hydrodynami
s, designed following the approa
h used for theneutral problem and the linearized equation. Clearly nonlinearities and 
oupling give rise to new di�
ultiesand this work has to be 
onsidered as a preliminary step towards the simulation of physi
ally relevant 
ases.13
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Figure 5. Comparison between the kineti
 simulation and the hydrodynami
 simulationfor the Poisson problem with (ρ∗, u∗, θ∗) = (1, 0, 0.5), spe
ular re�e
tion at boundaries with
α = 0.4, φdata,L = φdata,R = 0, q = 1, V L = 1, V R = 0 at tf = 0.1.Here the hydrodynami
 problem is not linear and we will use a �nite volume s
heme to dis
retize (37).As above, we �x a regular subdivision {x0, . . . , xI+1} of the domain [−ω, ω], with xi = −ω + i∆x and

∆x = 2ω/(I+1), and denote Ci = (−ω+(i−1/2)∆x,−ω+(i+1/2)∆x) the 
ell 
entered in xi for i = 1, . . . , I.Let us denote U the ve
tor (ρ, ρu, 12 (ρθ + ρu2)). Then Un
i is an approximation of 1

∆x

∫
Ci

U(n∆t, x) dx; it is
omputed thanks to a dis
retization of (37) (see e.g. [4, 11, 16, 21℄):
Un+1
i − Un

i = −∆t

∆x
(Fn

i+1/2 −Fn
i−1/2),where Fn

i+1/2 is an approximation of the �ux at the interfa
e between Ci and Ci+1. In this work, we usethe Godounov �uxes to approximate this quantity (see e.g. [11, 12℄); it is then determined by the 
omputedquantities in the two neighboring 
ells : Fn
i+1/2 = F (Un

i ,Un
i+1). Therefore the ma
ros
opi
 quantities at time

(n+1)∆t are entirely determined, provided we 
ompute the �uxes at the boundary of the domain. The ideato raise this question is to linearize around a steady state. Then we get the linearized problem presented inthe previous subse
tion and 
an 
ompute as previously the boundary 
onditions. The Poisson equation (38)is then dis
retized thanks to the �nite di�eren
e method.The �rst di�
ulty is to determine a steady state around whi
h we linearize. As already noti
ed in [2℄, weneed to update this state at ea
h time step and to linearize lo
ally. More pre
isely, let us assume that thestate Un at time tn = n∆t is known. Therefore, we know an approximation of ρ and θ in the 
ells C1 and CIat time tn. We will use these values to linearize the Boltzmann-Poisson system. Let us detail for instan
ethe treatment of the left boundary x = −ω. We take ρ∗ and θ∗ to be respe
tively equal to the 
omputed14



values of ρ and θ in the 
ells C1 at time tn. Then, solving system (32), we dedu
e V∗ and linearize thenaround the state M∗ de�ned thanks to ρ∗, θ∗ and V∗. We have therefore F = M∗(1+m(ρ̃,ũ,θ̃) +GL+ o(τ)).The �uxes are given by



ρu

ρu2 + ρθ
(ρu2 + 3ρθ)u



 =

∫

R

v




1
v
|v|2



F (v) dv =

∫

R

v




1
v

|v|2



M∗(v)(1 +m(ρ̃,ũ,θ̃)) dv,where we use the 
onservation identity
∫

R

v




1
v

|v|2


GL(z, v)M∗(v) dv = 0,for all z ≥ 0. It follows that




ρu
ρu2 + ρθ

(ρu2 + 3ρθ)u


 =

e−qV∗(x)/θ∗

∫ ω

−ω e−qV∗(y)/θ∗ dy




ρ∗ũ

ρ∗θ∗ + ρ̃θ∗ + ρ∗θ̃
3ρ∗θ∗ũ


 .Thus we dedu
e the boundary �uxes provided we know the boundary values of the linearized quantities

(ρ̃, ũ, θ̃). These values are 
omputed using the method des
ribed in the previous subse
tion for the linearizedBoltzmann-Poisson system.Numeri
al results are presented in Figures 6, 7 and 8 in the 
ase of a population of ele
trons (i.e. q = −1).In Figures 6 and 7 we 
hoose an initial value su
h that (ρ, u, θ) = (0.5, 0, 1) therefore we take F init =
M(0.5,0,0,1) in the kineti
 model. In Figure 8 the initial data is 
hosen su
h that (ρ, u, θ) = (1, 0, 1). Figure 6displays the result obtained in the 
ase of spe
ular re�e
tion with α = 0.5. In Figures 7 and 8 we present the
ase of a sour
e term at the boundaries. In �gure 7 we 
onsider Φdata,L = M(1.2,0,1.2/2), Φ

data,R = M(1,0,0.5),and in �gure 8 Φdata,L = M(1.2/1.1,0,1.1/2), Φ
data,R = M(1,0,1).Con
lusions and perspe
tivesIn this work, a

ording to [2℄ we present a numeri
al method for de�ning the boundary 
onditions of thelinearized Euler system a

ounting from the formation of Knudsen boundary layers. The boundary 
onditionsare based on the Maxwell approximation of the �uxes of the underlying kineti
 half�spa
e problem. Thisapproa
h is extended to treat the Euler�Poisson system both in the linearized and non�linear versions. Wedetail how we 
an bypass the di�
ulties indu
ed by the 
oupling with the ele
tri
 �eld.However, this work is a preliminary attempt and the s
hemes 
an be improved in several ways. First ofall, the splitting s
heme we are using for solving the Euler�Poisson system is not very elaborate, espe
iallyfor the the non�linear model whi
h would deserve a deeper analysis. Furthermore, with this s
heme steadystates solutions are not preserved numeri
ally. De�nitely, the design of a spe
i�
 Well�Balan
ed s
heme looksappropriate for this problem, see [5℄. Se
ond of all, the Maxwell approximation is simple but 
ertainly toorough. Improving the evaluation of the asymptoti
 state and outgoing distribution of the half�spa
e problemis a 
ru
ial issue to redu
e the dis
repan
ies observed between the hydrodynami
 and kineti
 simulations.A possible path for this purpose 
an be inspired by the approximations designed in [14℄. Finally, for mostappli
ations in plasma physi
s the intera
tions between ele
trons and positive 
harges have a 
ru
ial role.It implies to deal with 
oupled systems of kineti
 or hydrodynami
 equations, instead of des
ribing a singlespe
ie. Moreover, boundary 
onditions for the potential are also driven by intri
ate 
harge phenomena,whi
h involve the �uxes of 
harged parti
les. Details on the modeling issues in the 
ontext of spa
e
raftengineering 
an be found in [6�8, 17, 20, 23℄. Depending on the physi
al 
hara
teristi
s of the plasma, it
an be relevant to use hydrodynami
 systems instead of kineti
 models, see [3℄. At least, redu
ing thevariables dimension and getting rid of sti� terms allow a substantial gain in terms of 
omputational 
ost.However it left open the question of the boundary 
onditions to be used for the hydrodynami
 �uxes, whi
h15
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Figure 6. Comparison between the kineti
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Figure 8. Comparison between the kineti
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