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NUMERICAL APPROXIMATION OF KNUDSEN LAYER FOR THEEULER-POISSON SYSTEMFréderique Charles1, Niolas Vauhelet1, Christophe Besse2, 3, ThierryGoudon2,3, Ingrid Laroix�Violet2,3, Jean-Paul Dudon4 and LaurentNavoret5Abstrat. In this work, we onsider the omputation of the boundary onditions for the linearizedEuler�Poisson derived from the BGK kineti model in the small mean free path regime. Boundarylayers are generated from the fat that the inoming kineti �ux might be far from the thermody-namial equilibrium. In [2℄, the authors propose a method to ompute numerially the boundaryonditions in the hydrodynami limit relying on an analysis of the boundary layers. In this paper,we will extend these tehniques in the ase of the oupled Euler-Poisson system.Résumé. Dans e travail, nous nous intéressons à l'évaluation numérique de onditions aux limitespour le système d'Euler�Poisson linéarisé obtenu à partir du modèle inétique BGK dans le régimede petit libre parours moyen. Des ouhes limites peuvent apparaître en raison du fait que les�ux inétiques entrants peuvent di�érer de l'équilibre thermodynamique. La réferene [2℄ introduitune méthode de alul numérique des onditions aux limites dans un tel régime hydrodynamiquebasée sur l'analyse des ouhes limites. Ii, nous étendons es tehniques au as du système oupléd'Euler�Poisson. 1. IntrodutionAt a kineti level, a statistial desription of the dynamis of a plasma subjet to an eletri �eld E(t, x)an be obtained thanks to the Boltzmann equation governing the evolution of the partiles distributionfuntion F (t, x, v). In the one dimensional framework, this equation reads:

∂tF + v∂xF + qE∂vF =
1

τ
Q(F ), (1)where q ∈ {−1, 1} orrespond to the sign of the harge of partiles. Here the time variable t ≥ 0, the positionvariable x belongs to (−ω, ω) ⊂ R and the veloity v ∈ R. The parameter τ is the Knudsen number; it isrelated to the mean free path and is assumed to be small. In this work, we hoose for the ollision operator

Q the BGK ollision operator:
Q(F ) = M(ρ,u,θ) − F,where the Maxwellian

M(ρ,u,θ)(v) =
ρ√
2πθ

exp

(
−|v − u|2

2θ

)
, (2)
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and the marosopi quantities (ρ, u, θ) are de�ned bydensity : ρ(t, x) =

∫

R

F (t, x, v) dv,veloity : ρu =

∫

R

vF (t, x, v) dv,temperature : ρu2 + ρθ =

∫

R

|v|2F (t, x, v) dv.In this paper we restrit to onsider a single speie of harged partiles, the partiles of the opposite hargebeing a given bakground with a �xed and onstant density. The eletri �eld E = −∂xV is self-onsistentlyde�ned through the Poisson equation satis�ed by the potential V :
−∂xxV = q(ρ− 1). (3)We reall that (1, v, |v|2) are ollision invariants:

∫

R




1
v
|v|2


Q(F ) dv = 0. (4)It is well-known that when τ → 0, the distribution funtion F onverges to a Maxwellian, whose maro-sopi parameters ρ, u and θ solves the Euler system. The question raised by this work is the determinationof the boundary onditions on this Euler system orresponding to the ones imposed on the kineti system.Here system (1)�(3) is ompleted with the following boundary onditions:

γincF (t,−ω, v) = R(γoutF (t,−ω, ·))(v) + Φdata,L(t, v), for v > 0, (5)
γincF (t, ω, v) = R(γoutF (t, ω, ·))(v) + Φdata,R(t, v), for v < 0, (6)where Φdata,R and Φdata,L are given funtions, and R is a re�etion operator. For instane assuming R = 0and Φdata = 0 orresponds to a fully absorbing boundary. We onsider here two types of re�etion operator:the speular re�etion operator given by

R(F )(t, x, v) = αF (t, x,−v), (7)where the parameter α ∈ [0, 1] represents the fration of re�eted partiles, and the re�etion operator ofthe Maxwell di�use law given by
R(F )(t,−ω, v) = α

Mw(v)

Zw

∫

v′<0

|v′|F (t,−ω, v′) dv′, for v > 0, (8)where
Mw(v) =

ρw√
2πθw

e−|v|2/(2θw), Zw =

∫

v>0

vMw(v) dv,with θw the temperature of the wall (see e.g. [15℄). Obviously, dealing with the right hand boundary, +ωreplaes −ω and inoming partiles have negative veloities v < 0, we hange the sign of v′ in (8) aordingly.The problem is also ompleted with an initial ondition
F (0, x, v) = F init(x, v).For the Poisson equation, we impose Dirihlet boundary onditions

V (t,−ω) = V L, V (t, ω) = V R.This framework might appear quite rude in omparison to the omplex boundary onditions that are usedin plasma physis, where the boundary potential depends on the partiles �uxes, see e. g. [6�8, 17, 20, 23℄2



and the referenes therein. We restrit to this simple situation in order to bring out learly the ideas and italready make several di�ulties appear; we shall go bak to a more ambitious model elsewhere.As the mean free path goes to 0, the kineti model an be approahed by a system of onservation lawsfor whih the number of boundary onditions that should be �xed depends on the solution itself (see e.g. [9℄).In fat the boundary onditions for the hyperboli system depend on the number of inoming harateristisat the boundary. The aim of this work is to present numerial methods to ompute the boundary �uxes forthe hydrodynami model, and to ompare the results with simulations of the kineti equation (1).The paper is organized as follows. In the next Setion, we study the simplest ase where we linearize theBoltzmann�BGK equation around a Maxwellian steady state. We �rst introdue some notations and reallthe theoretial results needed. Then we present some numerial simulations. In Setion 3, we are onernedwith the oupling with the Poisson equation. We onsider both the linearized problem and the non-linearase. 2. Analysis for the linearized Euler systemIn this setion, we are interested in the numerial approximation of the boundary layer for the linearizedEuler system in the ase E = 0, i.e. there is no oupling with the Poisson equation.2.1. Analysis of the boundary layerWe brie�y reall here the theorial results developped in [9℄ (see also [13℄). Let us assume that ρ∗ > 0,
θ∗ > 0 and u∗ ∈ R are given. We verify easily that M∗ := M(ρ∗,u∗,θ∗) is a stationary solution of (1) with
E = 0. Linearizing around the equilibrium M∗ in the form F = M∗(1 + f), (1) leads to the linearizedequation for f :

∂tf + v∂xf =
1

τ
L∗(f), (9)where L∗ is the linearized BGK operator. More preisely, for f ∈ L2(M∗ dv) we have L∗(f) = Πf − f , with

Π the orthogonal projetion of L2(M∗ dv) to the �nite dimensional set spanned by the ollisional invariant
{1, v, |v|2} (see [2℄):

Πf =
ρ̃

ρ∗
+

v − u∗

θ∗
ũ+

( |v − u∗|2
θ∗

− 1

)
θ̃

2θ∗
,where (ρ̃, ũ, θ̃) are suh that




ρ̃
ρ̃u∗ + ρ∗ũ

ρ̃(u2
∗ + θ∗) + 2ρ∗u∗ũ+ ρ∗θ̃



 =

∫

R




1
v
|v|2



 fM∗ dv.We an verify that the following properties1 hold:
• L∗ is self-adjoint for the inner produt of L2(M∗ dv),
• Ker(L∗) = Span {1, v, |v|2},
• Ran(L∗) = (Ker(L∗))

⊥ for the inner produt of L2(M∗ dv),
• we have the dissipation property

∫

R

L∗ffM∗ dv ≤ 0.Equation (9) is ompleted with the boundary onditions dedued from (5)�(6)
γinc(M∗f)(t,−ω, v) = R(γout(M∗f)(t,−ω, ·))(v) + φdata,L(t, v), for v > 0, (10)
γinc(M∗f)(t, ω, v) = R(γout(M∗f)(t, ω, ·))(v) + φdata,R(t, v), for v < 0, (11)1These properties obviously hold for the linearized BGK operator beause it redues to a mere projetion; but it is importantto bring out the ruial analytial properties required to extend the disussion to more intriate operators3



where for instane in the ase v > 0, we have
φdata,L = Φdata,L −M∗ +R(M∗),and with the initial data

f(0, x, v) = f init(x, v).Formally, when τ → 0 the funtion f belongs to Ker(L∗) and an be therefore desribed by an in�nitesimalMaxwellian:
m(ρ̃,ũ,θ̃)(t,x)(v) =

ρ̃

ρ∗
+

v − u∗

θ∗
ũ+

( |v − u∗|2
θ∗

− 1

)
θ̃

2θ∗
. (12)>From (9) and the de�nition of Ker(L∗) we dedue the moment system:

∂t

∫

R




1
v
|v|2


 fM∗ dv + ∂x

∫

R

v




1
v
|v|2


 fM∗ dv = 0.Substituting f by the in�nitesimal Maxwellian m(ρ̃,ũ,θ̃) leads to the linearized Euler system:

∂t




ρ̃
ũ

θ̃



+




u∗ ρ∗ 0
θ∗
ρ∗

u∗ 1

0 2θ∗ u∗



 ∂x




ρ̃
ũ

θ̃



 = 0. (13)The system (13) writes in matrix form
∂tŨ +A∂xŨ = 0, (14)with

A =



u∗ ρ∗ 0
θ∗
ρ∗

u∗ 1

0 2θ∗ u∗


 .This system is obviously hyperboli: the spetrum of the matrix A is {u∗−

√
3θ∗, u∗, u∗+

√
3θ∗}. Therefore,the number of boundary onditions that should be �xed at the left (resp. right) boundary depends on thenumber of positive (resp. negative) eigenvalues. Moreover, we an de�ne the following quadrati form

Q : Ũ = (ρ̃, ũ, θ̃) 7→
∫

R

v|m(ρ̃,ũ,θ̃)|
2 M∗ dv. (15)Following [2,9℄, we an split the set of in�nitesimal Maxwellians aording to the sign of the quadrati form

Q:
Ker(L∗) = Λ+ ⊕ Λ− ⊕ Λ0,where Λ± orresponds to the eigenspaes assoiated to the positive (resp. negative) eigenvalues of A, and

Λ0 is the eigenspae assoiated to 0 when it belong to the spetrum of A. We shall denote I± = dim(Λ±)the number of positive (resp. negative) eigenvalues of A.Then, onsidering the left hand boundary x = −ω, it is possible to split m(ρ̃,ũ,θ̃) into m− ∈ Λ− (whihorresponds to the �outgoing part�) and m+ ∈ Λ+ ⊕ Λ0 (whih orresponds to the �inoming part� at theboundary x = −ω) :
m(ρ̃,ũ,θ̃) = m− +m+. (16)Dealing with the right hand boundary x = +ω, the role of Λ+ and Λ− is inverted. At eah boundary theoutgoing part is given by the �ow, whereas the inoming part has to be imposed as a boundary ondition toomplete the Euler system.The inoming �ux at the boundaries are determined thanks to a boundary layer analysis. Let us onsiderthe following half spae problem

{
v∂zG = L∗G, z > 0, v ∈ R

G(0, v) = Υdata, v > 0
(17)4



where Υdata has to be suitably de�ned. We reall the following statement (see [9℄):Theorem 1. There exists a linear mapping (that is usually alled the generalized Chandrasekhar funtional)
C∗ : L2(R, (1 + |v|)M∗(v) dv) → Λ+ ⊕ Λ0

Υdata 7→ m∞,where m∞ is the limit as z → ∞ of the unique solution G of (17). Moreover, G ∈ L∞(0,∞;L2(R,M∗(v) dv)).Let us assume that f expands as follows
f = m(ρ̃,ũ,θ̃) +GL

(
t,
x+ ω

τ
, v

)
+GR

(
t,
ω − x

τ
, v

)
+ o(τ),where GL and GR stand for boundary layers and are de�ned as follows :

• GL(t, z, v) = G(t, z, v) with G the solution of (17) with inoming data
Υdata(t, v) = γincf(t,−ω, v)−m(ρ̃,ũ,θ̃)(t,−ω, v), (18)and imposing that

lim
z→+∞

G(z, v) = 0, (19)
• GR(t, z, v) = G(t, z,−v) with G the solution of (17) with inoming data

Υdata(t, v) = γincf(t, ω,−v)−m(ρ̃,ũ,θ̃)(t, ω,−v). (20)and ondition (19).Condition (19) expresses that the boundary layer is expeted to vanish far from the boundary. Using thedeomposition on Ker(L∗) in (16), it implies that the unknown m+ satis�es
C∗(γincf(t, ω, ·)−m−(t, ω, ·)) = C∗(m+(t, ω, ·)), C∗(γincf(t,−ω, ·)−m−(t,−ω, ·)) = C∗(m+(t,−ω, ·)).(21)The question we address is onerned with the numerial approximation of the outgoing state m+, whiharises in the de�nition of the boundary �uxes.2.2. Numerial resolution of the linearized Euler system2.2.1. Numerial methodThe matrix A of the system (13) an be diagonalized under the form

A =




u∗ ρ∗ 0
θ∗
ρ∗

u∗ 1

0 2θ∗ u∗



 = P




u∗ 0 0
0 u∗ +

√
3θ∗ 0

0 0 u∗ −
√
3θ∗



P−1,with
P =

1

2
√
θ∗




2
√
θ∗ρ∗

√
3ρ∗ −

√
3ρ∗

0 3
√
θ∗ 3

√
θ∗

−2
√
θ∗θ∗ 2θ∗

√
3 −2θ∗

√
3


 , P−1 =

1

3ρ∗
√
3θ∗



2
√
3θ∗ 0 −ρ∗

√
3/

√
θ∗

θ∗ ρ∗
√
3θ∗ ρ∗

−θ∗ ρ∗
√
3θ∗ −ρ∗


 .We set 


ρ̃diag
ũdiag

θ̃diag



 = P−1




ρ̃
ũ

θ̃



5



the variables in the new basis de�ned by the transition matrix P , and we obtain three independant equationson ρ̃diag, ũdiag, θ̃diag :




∂tρ̃diag + u∗∂xρ̃diag = 0, (a)
∂tũdiag + (u∗ +

√
3θ∗)∂xũdiag = 0, (b)

∂tθ̃diag + (u∗ −
√
3θ∗)∂xθ̃diag = 0. () (22)Equations (22) should be ompleted with boundary onditions, whih depend on the sign of u∗, u∗ +

√
3θ∗and u∗ −

√
3θ∗. More preisely, we denote Ubd,l = (ρbd,l, ubd,l, θbd,l) and Ubd,r = (ρbd,r, ubd,r, θbd,r) themarosopi quantities whih have to be de�ned at the boundaries x = −ω and x = ω respetively, and weset

Ubd,l =




U1
bd,l

U2
bd,l

U3
bd,l


 = P−1Ubd,l, Ubd,r =




U1
bd,r

U2
bd,r

U3
bd,r


 = P−1Ubd,r.Boundary onditions of equations (22) are :

ρ̃diag(−ω) = U1
bd,l if u∗ > 0 or ρ̃diag(ω) = U1

bd,r if u∗ < 0, (a)
ũdiag(−ω) = U2

bd,l if u∗ +
√
3θ∗ > 0 or ũdiag(ω) = U2

bd,r if u∗ +
√
3θ∗ < 0, (b)

θ̃diag(−ω) = U3
bd,l if u∗ −

√
3θ∗ > 0 or θ̃diag(ω) = U3

bd,r if u∗ −
√

3θ∗ < 0. () (23)We then introdue a regular subdivision {x0, . . . , xI+1} of the domain [−ω, ω], with xi = −ω + i∆x and
∆x = 2ω/(I + 1), and a time disretisation ∆t. Equations (22) are solved numerially thanks to an upwindsheme. We obtain for instane, thanks to equation (22)-(a) and boundary ondition (23)-(a), the followingapproximations ρ̃ndiag,i of ρ̃diag(n∆t, xi):





ρ̃n+1
diag,0 = U1,n+1

bd,l ,

ρ̃n+1
diag,1 = ρ̃ndiag,1 − u∗

∆t

∆x

(
ρ̃ndiag,1 − U1,n

bd,l

)
,

ρ̃n+1
diag,i = ρ̃ndiag,i − u∗

∆t

∆x
(ρ̃ndiag,i − ρ̃ndiag,i−1) for i ∈ {2, I + 1},

if u∗ > 0,and 




ρ̃n+1
diag,i = ρ̃ndiag,i − u∗

∆t

∆x
(ρ̃ndiag,i+1 − ρ̃ndiag,i) for i ∈ {0, I − 1},

ρ̃n+1
diag,I = ρ̃ndiag,I − u∗

∆t

∆x

(
U1,n
bd,r − ρ̃ndiag,I

)
,

ρ̃n+1
diag,I+1 = U1,n+1

bd,r ,

if u∗ < 0,where U1,n
bd,l = U1

bd,l(n∆t) and U1,n
bd,r = U1

bd,r(n∆t). These values are omputed by solving (21). The methodto solve these equations is explained in the next subsetion. We denote in the sequel
Ũn
i =




ρ̃ni
ũn
i

θ̃ni



 = P




ρ̃ndiag,i
ũn
diag,i

θ̃ndiag,i



 . (24)2.2.2. Treatment of the boundary onditionsWe explain in this setion the method presented in [2℄ to ompute, at eah time step, the hydrody-nami boundary onditions Un
bd,l and Un

bd,r from the knowledge of the hydrodynami quantity Ũn
i near theboundaries x = ±ω and the knowledge of φdata,L, φdata,R and R in (10).6



We fous here the disussion on the boundary x = −ω (the treatment of the boundary x = ω is similar).We introdue, at eah time tn = n∆t, the in�nitesimal Maxwellian
mn

bd,l(v) =
ρnbd,l
ρ∗

+ un
bd,l

v − u∗

θ∗
+

θnbd,l
2θ∗

(
(v − u∗)

2

θ∗
− 1

)and we assoiate to mn
bd,l its deomposition on Ker(L∗) as in (16) :

mn
bd,l = mn

+ +mn
−. (25)The outgoing part mn

− ∈ Λ− is given by the projetion of Ũn
0 on Λ− :

mn
−(v) =

∑

k∈I−

αn
kχk(v), αn

k =

∫
R
vmŨn

0

χk(v)Mρ∗,u∗,θ∗(v)dv∫
R
v |χk(v)|2 Mρ∗,u∗,θ∗(v)dv

,where mŨn

0

is de�ned in (12). We denote (χ0, χ1, χ2) an orthogonal basis of Ker(L∗) whih is here de�nedby (see [2℄)
χ0(v) =

1√
6

( |v − u∗|2
θ∗

− 3

)
,

χ1(v) =
1√
6

(√
3
v − u∗√

θ∗
+

|v − u∗|2
θ∗

)
,

χ2(v) =
1√
6

(√
3
v − u∗√

θ∗
− |v − u∗|2

θ∗

)
,and

I+ =
{
k ∈ {0, 1, 2}, χk ∈ Λ+

}
, I− =

{
k ∈ {0, 1, 2}, χk ∈ Λ−

}
, I0 =

{
k ∈ {0, 1, 2}, χk ∈ Λ0

}
.Moreover,

Q(χ0) = ρ∗u∗, Q(χ1) = ρ∗(u∗ +
√
3θ∗), Q(χ2) = ρ∗(u∗ −

√
3θ∗),where Q is the quadrati form de�ned in (15). Consequently, the sign of the eigenvalues u∗ −

√
3θ∗, u∗,

u∗ +
√
3θ∗ allows us to know I− and therefore to ompute mn

−.Then we need to ompute mn
+. We �rst notie that integrating the half spae problem (17) over theveloity variable gives
d

dz

∫

R

v




1
v
|v|2


GL(z, v)M∗(v)dv = 0,and then

∫

R

v




1
v
|v|2


GL(0, v)M∗(v)dv =

∫

R

v




1
v
|v|2


GL(∞, v)M∗(v)dv = 0. (26)Moreover, we make an approximation proposed by Maxwell in [19℄ (see also [1, 18℄) : we assume that theoutgoing distribution at the boundary γoutGL(0, ·) oinides with the distribution at in�nity, that is to say

γoutG(0, v) = lim
z→+∞

G(z, v) = 0, v > 0. (27)Then, using (26), (20) and (27), we obtain
∫

v>0

v




1
v
|v|2


[γinc(f)−mn

bd,l

]
M∗dv = 0. (28)7



Finally, thanks to (10) and (25), we get
∫

v>0

v




1
v
|v|2


[φdata,L(tn, v) +R(M∗m

n
−)(v)−mn

−(v)M∗(v)
]
dv

=

∫

v>0

v




1
v
|v|2



(mn
+(v)M∗(v)−R(M∗m

n
+)(v)

)
dv.

(29)Relation (29) allows us to ompute mn
+. We notie that we have three equations for mn

+ to be satis�edwhereas dim(Λ+ ⊕ Λ0) ∈ {0, 1, 2, 3}. In the ase u∗ = 0 i.e. when the signature of the quadrati form Q is
(1, 1), we use the fat that we have the additional onservation law (see [2, 14℄)

d

dz

∫

R

v2χ0(v)G(z, v)M(ρ∗,0,θ∗)(v) dv = 0.A method to solve this overdeterminated problem is to pik the number of equations needed in (29) (see [14℄).Here we will follow instead the method in [2℄ where the determination of mn
+ relies on the resolution of aleast squares problem under onstraints. We refer to [2℄ for further details.2.3. Numerial omparisonsThe equation (9) is solved thanks to a splitting sheme : we solve suessively the free transport equa-tion ∂tf + v∂xf = 0 (with upwind sheme) and the ollision part ∂tf = 1
τL∗(f). We notie that thislast equation an be solved exatly sine by onservation properties, a solution f of this equation satis�es

d
dt

∫
R
(1, v, v2)f(v) dv = 0, and therefore Πf is not modi�ed during this step and an be onsidered as a givensoure term. We refer to [2℄ for further details. In the simulation presented below, we take ∆v = 5 ·10−4 and

τ = 10−3, and for both hydrodynami and kineti simulation ω = 0.5 and ∆x = 1/500 (in onvenient units).The �nal time is tf = 0.1 and the time step ∆t is determined by the CFL ondition. We then ompare thenumerial solution of the linearized Boltzmann equation (9) with the numerial solution of linearized Eulersystem (14).On Figure 1, we onsider the equilibrium state given by
(ρ∗, u∗, θ∗) = (1,−0.1, 1),with speular re�etion at boundaries (operator R is given by (7)), a re�etion oe�ient of α = 0.1 andno soure term (φdata,L = φdata,R = 0). In partiular, the signature of Q is (1, 2). In this ase, results aresatisfatory : the density, marosopi veloity and temperature given by the resolution of the linearizedEuler system are very lose from those given by the linearized Boltzmann equation.In the seond example on Figure 2 we onsider the equilibrium state given by
(ρ∗, u∗, θ∗) = (1, 0, 1),with di�use re�etion at boundaries (operator R is given by (7)), a re�etion oe�ient of α = 0.8 and nosoure term (φdata,L = φdata,R = 0). This is a degenerate ase : the signature of Q is here (1, 1). Thus asnotied in the previous setion, we have four onservation relations and two omponents to be �nd in orderto de�ne mn

+.Finally in the last example on �gure 3 we present the ase of no re�etion at boundaries with no soureterm (φdata,L = φdata,R = 0). We hoose the signature (3, 0) for Q. Again in this ase the approximationobtained using the Euler system is really lose to the results given by the Boltzmann equation.8
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Figure 1. Comparison between the kineti simulation and the hydrodynami simulationat tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1,−0.1, 1), speular re�etion at boundaries and α = 0.1.3. Coupling with the Poisson equation3.1. Analysis of the linearized Vlasov�Poisson systemIn this setion, we onsider the linearization of the oupled Boltzmann�Poisson system (1)�(3). Let usassume that ρ∗ > 0 and θ∗ > 0 are given. We set
M∗(x, v) =

ρ∗e
− v

2

2θ∗

√
2πθ∗

e−qV∗(x)/θ∗

∫ ω

−ω
e−qV∗(y)/θ∗ dy

= M(ρ∗,0,θ∗)(v)
e−qV∗(x)/θ∗

∫ ω

−ω
e−qV∗(y)/θ∗ dy

. (30)We verify easily that for suh a Maxwellian, we have
v∂xM∗ − q∂xV∗∂vM∗ = 0. (31)We hoose for V∗ the solution of the problem





−∂xxV∗ = q

(
ρ∗

e−qV∗(x)/θ∗

∫ ω

−ω e−qV∗(y)/θ∗ dy
− 1

)
,

V∗(−ω) = V L, V∗(ω) = V R.

(32)Lemma 1. Assume V L and V R are given in R and ρ∗ > 0, θ∗ > 0. Then there exists a unique solution
V∗ ∈ C2(−ω, ω) of the problem (32). 9
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Figure 2. Comparison between the kineti simulation and the hydrodynami simulationat tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1, 0, 1), di�use re�etion at boundaries and α = 0.8.Proof. Let us de�ne Vb ∈ C2([−ω, ω]) an extension of the boundary ondition: Vb(−ω) = V L and Vb(ω) =
V R. This results relies on the remark that a weak solution of (32) is a ritial point in the a�ne spae
Vb +H1

0 (−ω, ω) of the funtional
J(V ) =

1

2

∫ ω

−ω

|∂xV |2 dx− ρ∗θ∗ ln

(∫ ω

−ω

e−qV/θ∗ dx

)
−
∫ ω

−ω

qV dx.Therefore, it remains to prove that this funtional admits a unique minimizer. In fat, J is learly ontinuousand onvex on H1(−ω, ω) and we have the inequality
ln

(∫ ω

−ω

e−qV/θ∗ dx

)
≤ ‖V ‖∞

θ∗
+ ln(2ω) ≤ C‖V ‖H1 + ln(2ω).Hene, applying the Poinaré inequality, we get

J(V ) ≥ ‖V ‖2H1 − C0ρ∗‖V ‖H1 − C1.Then J is oerive and bounded from below on H1(−ω, ω). It admits a unique minimizer V∗. Applyingstandard tehniques, we an show that V∗ ∈ C2(−ω, ω). �Thus, the pair (M∗, V∗) is a stationary solution of the Boltzmann-Poisson problem (1)�(3). We linearizearound this solution by setting F = M∗ +M∗f and V = V∗ + Ṽ where f and Ṽ are assumed to be smallperturbations. Keeping only the �rst order term, we are led to the following linearized Boltzmann-Poisson10
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Figure 3. Comparison between the kineti simulation and the hydrodynami simulationat tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1, 1, 0.25), with no re�etion and no soure term at bound-aries.problem:
∂tf + v∂xf − q∂xV∗∂vf + q

v

θ∗
∂xṼ =

1

τ
L∗f. (33)The linearized ollision operator L∗ has been de�ned in the previous setion. Equation (33) is oupled tothe Poisson equation

−∂xxṼ = q

∫

R

fM∗ dv, Ṽ (−ω) = Ṽ (ω) = 0. (34)Thus, as τ goes to 0 the funtion f looks like an in�nitesimal Maxwellian m(ρ̃,ũ,θ̃). The properties of L∗desribed above yield
∫

R

L∗f




1
v
|v|2



M(ρ∗,0,θ∗) dv = 0.Therefore taking the moments of (33), we are led to the following system:
∂t

∫

R




1
v

|v|2



 fM(ρ∗,0,θ∗) dv + ∂x

∫

R

v




1
v
|v|2



 fM(ρ∗,0,θ∗) dv − q∂xV∗

∫

R




1
v
|v|2



 ∂vfM(ρ∗,0,θ∗) dv

+q
∂xṼ

θ∗

∫

R

v




1
v

|v|2


M(ρ∗,0,θ∗) dv = 0.11



Integrating by parts, we dedue
∫

R




1
v

|v|2



 ∂vfM(ρ∗,0,θ∗) dv =

∫

R

v

θ∗




1
v

|v|2



 fM(ρ∗,0,θ∗) dv −
∫

R




0
1
2v



 fM(ρ∗,0,θ∗) dvSubstituting f by m(ρ̃,ũ,θ̃), we use the identities
∫

R

m(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = ρ̃,

∫

R

vm(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = ρ∗ũ;
∫

R

v2m(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = ρ∗θ̃ + ρ̃θ∗,

∫

R

v3m(ρ̃,ũ,θ̃)M(ρ∗,0,θ∗) dv = 3ρ∗θ∗ũ.We dedue that
∂t



ρ̃
ũ

θ̃


+




0 ρ∗ 0
θ∗
ρ∗

0 1

0 2θ∗ 0


 ∂x



ρ̃
ũ

θ̃


 = q∂xV∗




ρ∗ũ
θ∗
θ̃
θ∗
0


 − q∂xṼ



0
1
0


 (35)holds. >From (34), this system is oupled with the linearized Poisson equation

−∂xxṼ = q ρ̃
e−qV∗(x)/θ∗

∫ ω

−ω
e−qV∗(y)/θ∗ dy

, Ṽ (−ω) = Ṽ (ω) = 0. (36)Like for the free problem, we assume that f admits an expansion of the form
f = m(ρ̃,ũ,θ̃) +GL(t,

x+ ω

τ
, v) +GR(t,

ω − x

τ
, v) + o(τ).Then the boundary layersGL and GR satis�es the same half spae problem (17). Therefore the determinationof the boundary ondition that we have to impose to solve (35) follows the treatment presented in the previoussetion. We notie moreover that we are neessary in the degenerate ase where the quadrati form assoiatedto the matrix of the hyperboli equation has the signature (1, 1), i.e. u∗ = 0. In fat, if we hoose non-zero

u∗, the relation (31) is not satis�ed and thereforeM∗ is not a stationary solution of the Boltzmann equation.We present some omparisons between the simulation of the linearized Boltzmann-Poisson equation andthe linearized Euler-Poisson system. In the numerial proedures we use, system (32) is solved thanks to a�xed point iterative proedure. Sine ρ∗ and θ∗ are �xed, the potential V∗ is omputed only one for all atthe beginning of the simulation. The linearized Boltzmann equation (33) is solved with the same idea thanin the previous setion : we split by solving �rst the transport equation on one time step
∂tf + v∂xf − q∂xV∗∂vf + q

v

θ∗
∂xṼ = 0,with an upwind sheme, then we solve on one time step

∂tf =
1

τ
L∗(f).The linearized Euler system (35) is disretized by a splitting method: �rst we solve (35) with zero at theright hand side as desribed in subsetion 2.2.1 and then we solve impliitely

∂t



ρ̃
ũ

θ̃


 = q∂xV∗




ρ∗ũ
θ∗
θ̃
θ∗
0


− q∂xṼ



0
1
0


 .The Poisson equation is disretized thanks to a �nite di�erene method. Figures 4 and 5 present the resultsfor a linearization around the equilibrium state given by (ρ∗, u∗, θ∗) = (1, 0, 0.5), with a soure term at theboundaries in Figure 4 and in the ase of speular re�etion in Figure 5.12
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Figure 4. Comparison between the kineti simulation and the hydrodynami simulationfor the oupled problem with (ρ∗, u∗, θ∗) = (1, 0, 0.5), no re�etion at boundaries (R = 0),
φdata,L = m(2/1.2,0,1.2/2), φdata,R = m(ρ∗,0,θ∗), q = −1, V L = V R = 1 at tf = 0.1.3.2. The non-linear Euler�Poisson systemFinally, we ome bak to the non-linear problem (1)�(3) presented in the introdution. As the mean freepath goes to 0, we get the Euler-Poisson system:






∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + ρθ) = −qρ∂xV,

∂t

(ρθ + ρu2

2

)
+ ∂x

(3
2
ρuθ +

1

2
ρu3
)
= −qρu∂xV,

(37)oupled to
−∂xxV = q(ρ− 1). (38)We present a �rst attempt to treat numerially the initial-boundary-value problem, inorporating the ompu-tation of relevant boundary onditions for the hydrodynamis, designed following the approah used for theneutral problem and the linearized equation. Clearly nonlinearities and oupling give rise to new di�ultiesand this work has to be onsidered as a preliminary step towards the simulation of physially relevant ases.13
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Figure 5. Comparison between the kineti simulation and the hydrodynami simulationfor the Poisson problem with (ρ∗, u∗, θ∗) = (1, 0, 0.5), speular re�etion at boundaries with
α = 0.4, φdata,L = φdata,R = 0, q = 1, V L = 1, V R = 0 at tf = 0.1.Here the hydrodynami problem is not linear and we will use a �nite volume sheme to disretize (37).As above, we �x a regular subdivision {x0, . . . , xI+1} of the domain [−ω, ω], with xi = −ω + i∆x and

∆x = 2ω/(I+1), and denote Ci = (−ω+(i−1/2)∆x,−ω+(i+1/2)∆x) the ell entered in xi for i = 1, . . . , I.Let us denote U the vetor (ρ, ρu, 12 (ρθ + ρu2)). Then Un
i is an approximation of 1

∆x

∫
Ci

U(n∆t, x) dx; it isomputed thanks to a disretization of (37) (see e.g. [4, 11, 16, 21℄):
Un+1
i − Un

i = −∆t

∆x
(Fn

i+1/2 −Fn
i−1/2),where Fn

i+1/2 is an approximation of the �ux at the interfae between Ci and Ci+1. In this work, we usethe Godounov �uxes to approximate this quantity (see e.g. [11, 12℄); it is then determined by the omputedquantities in the two neighboring ells : Fn
i+1/2 = F (Un

i ,Un
i+1). Therefore the marosopi quantities at time

(n+1)∆t are entirely determined, provided we ompute the �uxes at the boundary of the domain. The ideato raise this question is to linearize around a steady state. Then we get the linearized problem presented inthe previous subsetion and an ompute as previously the boundary onditions. The Poisson equation (38)is then disretized thanks to the �nite di�erene method.The �rst di�ulty is to determine a steady state around whih we linearize. As already notied in [2℄, weneed to update this state at eah time step and to linearize loally. More preisely, let us assume that thestate Un at time tn = n∆t is known. Therefore, we know an approximation of ρ and θ in the ells C1 and CIat time tn. We will use these values to linearize the Boltzmann-Poisson system. Let us detail for instanethe treatment of the left boundary x = −ω. We take ρ∗ and θ∗ to be respetively equal to the omputed14



values of ρ and θ in the ells C1 at time tn. Then, solving system (32), we dedue V∗ and linearize thenaround the state M∗ de�ned thanks to ρ∗, θ∗ and V∗. We have therefore F = M∗(1+m(ρ̃,ũ,θ̃) +GL+ o(τ)).The �uxes are given by



ρu

ρu2 + ρθ
(ρu2 + 3ρθ)u



 =

∫

R

v




1
v
|v|2



F (v) dv =

∫

R

v




1
v

|v|2



M∗(v)(1 +m(ρ̃,ũ,θ̃)) dv,where we use the onservation identity
∫

R

v




1
v

|v|2


GL(z, v)M∗(v) dv = 0,for all z ≥ 0. It follows that




ρu
ρu2 + ρθ

(ρu2 + 3ρθ)u


 =

e−qV∗(x)/θ∗

∫ ω

−ω e−qV∗(y)/θ∗ dy




ρ∗ũ

ρ∗θ∗ + ρ̃θ∗ + ρ∗θ̃
3ρ∗θ∗ũ


 .Thus we dedue the boundary �uxes provided we know the boundary values of the linearized quantities

(ρ̃, ũ, θ̃). These values are omputed using the method desribed in the previous subsetion for the linearizedBoltzmann-Poisson system.Numerial results are presented in Figures 6, 7 and 8 in the ase of a population of eletrons (i.e. q = −1).In Figures 6 and 7 we hoose an initial value suh that (ρ, u, θ) = (0.5, 0, 1) therefore we take F init =
M(0.5,0,0,1) in the kineti model. In Figure 8 the initial data is hosen suh that (ρ, u, θ) = (1, 0, 1). Figure 6displays the result obtained in the ase of speular re�etion with α = 0.5. In Figures 7 and 8 we present thease of a soure term at the boundaries. In �gure 7 we onsider Φdata,L = M(1.2,0,1.2/2), Φ

data,R = M(1,0,0.5),and in �gure 8 Φdata,L = M(1.2/1.1,0,1.1/2), Φ
data,R = M(1,0,1).Conlusions and perspetivesIn this work, aording to [2℄ we present a numerial method for de�ning the boundary onditions of thelinearized Euler system aounting from the formation of Knudsen boundary layers. The boundary onditionsare based on the Maxwell approximation of the �uxes of the underlying kineti half�spae problem. Thisapproah is extended to treat the Euler�Poisson system both in the linearized and non�linear versions. Wedetail how we an bypass the di�ulties indued by the oupling with the eletri �eld.However, this work is a preliminary attempt and the shemes an be improved in several ways. First ofall, the splitting sheme we are using for solving the Euler�Poisson system is not very elaborate, espeiallyfor the the non�linear model whih would deserve a deeper analysis. Furthermore, with this sheme steadystates solutions are not preserved numerially. De�nitely, the design of a spei� Well�Balaned sheme looksappropriate for this problem, see [5℄. Seond of all, the Maxwell approximation is simple but ertainly toorough. Improving the evaluation of the asymptoti state and outgoing distribution of the half�spae problemis a ruial issue to redue the disrepanies observed between the hydrodynami and kineti simulations.A possible path for this purpose an be inspired by the approximations designed in [14℄. Finally, for mostappliations in plasma physis the interations between eletrons and positive harges have a ruial role.It implies to deal with oupled systems of kineti or hydrodynami equations, instead of desribing a singlespeie. Moreover, boundary onditions for the potential are also driven by intriate harge phenomena,whih involve the �uxes of harged partiles. Details on the modeling issues in the ontext of spaeraftengineering an be found in [6�8, 17, 20, 23℄. Depending on the physial harateristis of the plasma, itan be relevant to use hydrodynami systems instead of kineti models, see [3℄. At least, reduing thevariables dimension and getting rid of sti� terms allow a substantial gain in terms of omputational ost.However it left open the question of the boundary onditions to be used for the hydrodynami �uxes, whih15
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Figure 6. Comparison between the kineti simulation and the hydrodynami simulationfor the Poisson problem with speular re�etion at boundaries with α = 0.5 and no soureterm, q = −1, V L = V R = 1 at �nal time tf = 0.1.motivates the present work. It is likely however, for suh appliations, that the main di�ulty is relatedto the treatment of the boundary onditions for the potential. This question is beyond the sope of thispaper and we expet the numerial strategy we have introdued will be a useful ontribution towards thesimulation of these phenomena. Referenes[1℄ A. Arnold and U. Giering, An analysis of the Marshak onditions for mathing Boltzmann and Euler equations, Math.Models Methods Appl. Si., 7(4), 557�577, 1997.[2℄ C. Besse, S. Borghol, T. Goudon, I. Laroix-Violet, J.-P. Dudon, Hydrodynami regimes, Knudsen layer, numerialshemes: de�nition of boundary �uxes, to appear in Adv. Appl. Math. Meh.[3℄ S. Borghol, Modélisation mathématique de la harge de surfae des satellites en orbite basse, PhD Thesis, UniversitéLille 1, 2010.[4℄ F. Bouhut, Nonlinear stability of �nite volume methods for hyperboli onservation laws and well-balaned shemes forsoures, Frontiers in Mathematis. Birkhauser Verlag, Basel, 2004.[5℄ F. Bouhut, T. Morales, A subsoni-well-balaned reonstrution sheme for shallow water �ows, SIAM J. Numer. Anal.,48, 1733�1758, 2010.[6℄ O. Chanrion, Simulation de l'in�uene de la propulsion plasmique sur la harge életrostatique dÕun satellite en milieumagnétosphérique, PhD Thesis, Eole Nationale des Ponts et Chaussées, 2001.[7℄ M. Chane-Yook, S. Cler, S. Piperno, Spae harge and potential distribution around a spaeraft in a isotropi plasma,J. Geophys. Res. - Spae Physis 111, 2006.[8℄ S. Cler, S. Brosse, M. Chane-Yook, Spars: an advaned software for spaeraft harging analysis, 8th Spaeraft ChargingTeh. Conf., Huntsville, Alabama, 2003. 16
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Figure 7. Comparison between the kineti simulation and the hydrodynami simulationfor the Poisson problem with soure term Φdata,L = M(1.2,0,1.2/2), Φ
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Figure 8. Comparison between the kineti simulation and the hydrodynami simulationfor the Poisson problem with soure term Φdata,L = M(1.2/1.1,0,1.1/2), Φ
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