Feuille d'exercices 4 Applications linéaires continues

Exercice 1

Soit $E=\mathcal{C}([0,1])$ muni de la norme de la convergence uniforme. Montrer que l'application $T:E\mapsto\mathbb{R}$ définie par $T(f)=\int_0^1 f(t)dt$ est une application linéaire continue. Calculer sa norme.

Exercice 2

On considère l'espace $E=\mathcal{C}([0,1];\mathbb{R})$ et on définit l'application $u:E\to\mathbb{R}$ par u(f)=f(1).

- 1- On munit E de la norme $||f||_1 = \int_0^1 |f(x)| dx$. Montrer que u n'est pas continue sur E dans \mathbb{R} (on pourra utiliser la suite (f_n) définie par $f_n(x) = \sqrt{n}x^n$).
- 2- On munit maintenant E de la norme $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. L'application u est-elle continue de E dans \mathbb{R} ?

Exercice 3

Soit E l'espace vectoriel sur $\mathbb C$ des polynômes à coefficients complexes muni de la norme définie par : ||P||=

 $\sup_{0 \le k \le p} |a_k|, \text{ pour } P = \sum_{k=0}^p a_k X^k. \text{ Soit } f \text{ l'application de } E$ dans E définie par f(P) = P'. Montrer que f n'est pas continue

Exercice 4

Soit $E=\mathcal{C}([0,1]),$ c'est un espace de Banach pour la norme $||f||_{\infty}=\sup_{0\leq x\leq 1}|f(x)|.$

Soit A l'opérateur linéaire de E défini par

$$Af(x) = \int_0^x tf(t)dt + x \int_x^1 f(t)dt.$$

Vérifier que A est continu, calculer sa norme.

L'équation Af=f a-t-elle des solutions non nulles dans E ?

Exercice 5

Soit $E = \mathcal{C}([a,b])$. Soit p(x) une fonction continue sur

[a,b]. Pour $f \in E$, on pose :

$$[\Phi(f)](x) = \int_a^x f(t)p(t) dt$$
, pour tout $a \le x \le b$.

- 0- Quelle est la norme sur E pour laquelle E est un espace de Banach?
- 1- Montrer que si f est continue, alors $\Phi(f)$ est continue.
- 2- Montrer que l'application Φ qui à f associe $\Phi(f)$ est un endomorphisme continu de E. Montrer que $\|\Phi\|_{\mathcal{L}(E)} \leq f^b$

$$\int_{a}^{b} |p(t)| dt.$$

- 3- On suppose que $p \geq 0$. Par un choix simple de f, montrer que $\|\Phi\|_{\mathcal{L}(E)} = \int_a^b |p(t)| \, dt$.
- 4- (Dans cette question, on ne suppose pas que $p \ge 0$). On pose $f_n(t) = \frac{np(t)}{\sqrt{1 + n^2(p(t))^2}}$. Montrer que $f_n \in E$. Cal-

culer
$$||\Phi(f_n)||$$
. En déduire que $||\Phi||_{\mathcal{L}(E)} = \int_a^b |p(t)| dt$.

Exercice 6

Soit l^{∞} l'espace vectoriel des suites réelles bornées $u=(u_n)_{n\in\mathbb{N}}$ muni de la norme $||u||=\sup_{n\in\mathbb{N}}|u_n|$, et f l'application de l^{∞} dans lui-même définie par f(u)=v où $v=(v_n)_{n\in\mathbb{N}}$ avec $v_n=u_{n+1}-u_n$.

Montrer que f est une application linéaire continue et calculer sa norme.

Exercice 7

Soit $(E, ||\cdot||)$ un espace normé complet et A une application linéaire continue de E dans lui-même, de norme strictement inférieure à 1. Montrer que I+A est inversible et

$$(I+A)^{-1} = \sum_{n=0}^{+\infty} (-1)^n A^n$$

et de plus on a

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}.$$

Exercice 8

Soit E l'espace des fonctions continues sur [0,1] muni de

la topologie de la convergence uniforme, $K \in \mathcal{C}([0,1]^2)$ vérifiant $|K| \leq a < 1$ et l'application de E dans E qui à f associe Kf, définie par

$$(Kf)(x) = \int_0^1 K(x, y) f(y) dy.$$

1) Montrer que pour tout $g \in E$, il existe une unique $f_g \in E$ vérifiant l'équation

$$f_g + K f_g = g.$$

(On pour ra montrer que l'application $T:E\to E,\ T(f)=g-Kf,$ admet un point fixe).

2) Montrer que la solution f_q est donnée par

$$f_g = \sum_{n>0} (-1)^n K^n g.$$

Exercice 9

Soit $X = \mathcal{C}([0,1])$ muni de la norme $||\cdot||_{\infty}$. Soit K l'opérateur de X dans X défini par :

$$\forall f \in X, \ (Kf)(x) = \int_0^x f(t)dt.$$

1- Montrer que K est une application linéaire et continue de X dans X.

2- On pose $K^n=K\circ\cdots\circ K$ composé n fois de K avec lui-même. Montrer par récurrence que K^n est l'application de X dans X qui à f associe la fonction :

$$(K^n f)(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t)dt.$$

3- Montrer que $||K^n||_{\mathcal{L}(X)} = \frac{1}{n!}$.

4- Montrer qu'il existe une application linéaire continue de X dans lui-même notée B telle que B(I-K)=(I-K)B=I.

Exercice 10

Soit $\mathcal{C}(\Delta)$ l'espace des fonctions réelles continues sur un intervalle fermé borné $\Delta = [a,b]$, muni de la distance d de la convergence uniforme $(d(f,g) = \max_{t \in \Delta} |f(t) - g(t)|)$. Soit

 $K: \Delta \times \Delta \to \mathbb{R}$ une application continue. Soit $\varphi \in \mathcal{C}(\Delta)$, et λ une constante réelle.

1- On considère l'équation fonctionnelle, d'inconnue $f \in \mathcal{C}(\Delta)$,

$$f(x) = \lambda \int_{a}^{b} K(x, t) f(t) dt + \varphi(x), \quad a \le x \le b.$$

Montrer que si λ est assez petit (et préciser ce qu'il faut entendre par cela), cette équation admet une solution unique dans $C(\Delta)$.

2- On considère l'équation fonctionnelle d'inconnue $f \in \mathcal{C}(\Delta)$,

$$f(x) = \lambda \int_{a}^{x} K(x,t)f(t)dt + \varphi(x), \quad a \le x \le b.$$

Montrer que pour toute valeur de λ , cette équation admet une solution unique dans $\mathcal{C}(\Delta)$.

Exercice 11

On veut résoudre l'équation différentielle y'-y=f où f est une fonction de $\mathcal{C}([0,1];\mathbb{C})$ donnée. On cherche une solution sous la forme suivante, où k est une fonction \mathcal{C}^1 sur $[0,1]\times[0,1]$,

$$\phi(x) = \int_0^x k(x, y) f(y) dy.$$

- 1) Calculer $\phi'(x)$.
- 2) Donner des conditions sur k qui suffisent pour que ϕ soit solution de l'équation.
- 3) Résoudre l'équation.