Feuille de TD 1 : Rappels de calcul intégral

Exercice 1

Existe-t-il une fonction g intégrable sur \mathbb{R} telle que, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, $ne^{-n|x|} \leq g(x)$?

Exercice 2

Soit $f \in L^1(\mathbb{R})$. On considère l'application

$$Tf: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \int_0^1 f(x-y) \mathrm{d}y \end{array}.$$

- 1. Montrer que si f est continue à support compact, Tf est continue.
- **2.** Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues à support compact qui converge vers f dans $L^1(\mathbb{R})$. Montrer que $(Tf_n)_{n\in\mathbb{N}}$ converge vers Tf uniformément sur \mathbb{R} . En déduire que Tf est continue sur \mathbb{R} .
- **3.** En déduire que le produit de convolution sur $L^1(\mathbb{R})$ n'admet pas d'élément unité.

Exercice 3

Soit $h \in \mathbb{R}^n$. On définit l'opérateur de translation par h, noté τ_h , agissant sur une fonction $f : \mathbb{R}^n \to \mathbb{R}$, par : $\forall x \in \mathbb{R}^n$, $(\tau_h f)(x) = f(x - h)$.

Le but de cet exercice est de démontrer le résultat suivant.

Si $f \in L^p(\mathbb{R}^n)$ avec $1 \le p < +\infty$, alors

$$\lim_{h \to 0} \|\tau_h f - f\|_p = 0,$$

i.e. $\tau_h f$ tend vers f dans $L^p(\mathbb{R}^n)$ lorsque h tend vers 0.

Soit $1 \le p < +\infty$.

1. Montrer que, si f est continue à support compact dans la boule B(0,M) centrée en 0 et de rayon M, et si $|h| \leq 1$, alors

$$\forall x \in \mathbb{R}^n, |f(x-h) - f(x)|^p \le \mathbf{1}_{B(0,M+1)}(x)2^p ||f||_{\infty}^p,$$

où B(0, M+1) est la boule centrée en 0 de rayon M+1.

2. En déduire que, pour f continue à support compact, on a

$$\lim_{h \to 0} \|\tau_h f - f\|_p = 0.$$

- **3.** Démontrer le résultat énoncé plus haut pour une fonction quelconque dans $L^p(\mathbb{R}^n)$, $1 \le p < +\infty$.
- **4.** Que se passe-t-il pour $p = \infty$?

Exercice 4

Soient I un intervalle ouvert de \mathbb{R} et $f \in L^1_{loc}(I)$. On suppose que :

$$\forall \varphi \in C_0^{\infty}(I), \ \int_I f(x)\varphi(x) \, \mathrm{d}x = 0.$$

Soit $[a, b] \subset I$ un intervalle.

1. En utilisant un argument de densité, montrer que :

$$\forall g \in C_0(I), \text{ supp } g \subset [a, b], \int_{[a, b]} f(x)g(x) dx = 0.$$

2. Soit $\varepsilon > 0$. Soit $h_{\varepsilon} \in C_0([a,b[)]$ telle que

$$\int_{[a,b]} |f(x) - h_{\varepsilon}(x)| \, \mathrm{d}x \le \varepsilon.$$

Montrer que:

$$\forall g \in C_0(]a, b[), \left| \int_{[a,b]} h_{\varepsilon}(x)g(x) \, \mathrm{d}x \right| \leq \varepsilon ||g||_{\infty}.$$

- **3.** En choisissant bien $g \in C_0(]a, b[)$, montrer que $\int_{[a,b]} |h_{\varepsilon}| dx \leq \varepsilon$.
- **4.** En déduire que f = 0 presque partout sur I.

Exercice 5 - Autour du Dirac

Soit $\varepsilon > 0$. On considère la fonction ϕ_1^{ε} définie sur \mathbb{R} par $\phi_1^{\varepsilon}(x) = 0$ pour $|x| \geq \varepsilon$, et $\phi_1^{\varepsilon}(x) = \frac{1}{\varepsilon^2}(\varepsilon - |x|)$ pour $|x| \leq \varepsilon$.

- 1. Déterminer la limite simple lorsque ε tend vers 0 de $(\phi_1^{\varepsilon})_{\varepsilon}$.
- **2.** Calculer l'intégrale sur \mathbb{R} de ϕ_1^{ε} .
- **3.** On considère $\phi_2^{\varepsilon}(x) = \phi_1^{\varepsilon}(x \varepsilon)$. Déterminer la limite simple lorsque ε tend vers 0 de ϕ_2^{ε} . Calculer son intégrale sur \mathbb{R} .

4. Soient a et b sont deux réels distincts. Déterminer, suivant la position relative de 0 par rapport à a et b, la valeur de la limite, lorsque ε tend vers 0, de l'intégrale $\int_a^b \phi_1^\varepsilon(x) dx$. On note cette limite $I_1(a,b)$. Que mesure cette limite?

On définit

$$I_1^{\varepsilon}(\phi) = \int_{\mathbb{R}} \phi_1^{\varepsilon}(x)\phi(x)dx$$

où ϕ est une fonction continue sur $\mathbb R$ et bornée.

- 5. Déterminer la limite lorsque ε tend vers 0 de $I_1^{\varepsilon}(\phi)$.
- **6.** Vérifier qu'il existe une constante C>0 telle que

$$\forall \varepsilon > 0, \ |I_1^{\varepsilon}(\phi)| \leq C \max_{x \in \mathbb{R}} |\phi(x)|.$$