
THE PRO-UNIPOTENT COMPLETION

ALBERTO VEZZANI

The aim of these notes is to give an overview of Quillen’s construction of the pro-unipotent completion of an
abstract group (or a Lie algebra). Some consequences of the formulas and special cases are explained in more detail.

1. INTRODUCTION

We start by presenting the work of Quillen [5, Appendix A], and translating it into the setting of algebraic groups,
following the approach of [2]. We also follow Cartier [1] for specific facts on Hopf algebras. From now on, we work
over the base field Q.

Definition 1. Given an abstract group Γ [resp. a Lie algebra g], the pro-unipotent completion Γun [resp. gun] is the
universal pro-unipotent algebraic group G endowed with a map Γ→ G(Q) [resp. g→ Lie(G)].

Let us focus on the case of groups. The meaning of the definition is that there is a map u : Γ → Γun(Q) such
that for any map f : Γ → G(Q) to the Q-points of a pro-unipotent algebraic group G, there exists a unique map
φ : Γun → G such that f = φ(Q) ◦ u. In other words, we are looking for a left adjoint to the functor G 7→ G(Q)
defined from pro-unipotent algebraic groups to abstract groups. Sadly enough, we anticipate that we will need to
restrict to a subcategory of abstract groups in order to find such a functor.

The category of pro-unipotent algebraic groups is a full subcategory of the category of pro-affine algebraic algebraic
groups (the category of formal filtered limits of affine algebraic groups over quotients). This category is clearly
equivalent to the opposite category of Hopf algebras (not necessarily finitely presented). What we need to do is
therefore to associate to an abstract group a particular commutative Hopf algebra over Q. There are some well-known
examples of adjoint pairs which are close to reaching this aim.

Proposition 2. There is an adjoint pair of functors

Q[·]: Gps � Alg :(·)×

between the category of abstract groups Gps and (not necessarily commutative) Q-algebras Alg. The algebra Q[Γ]
is called the group algebra associated to Γ, it is isomorphic to

⊕
g∈Γ Qg as a vector space and the product is the

Q-bilinear extension of g · h = gh for all g, h ∈ Γ.

Any group algebra Q[Γ] can be endowed with the structure of a Hopf algebra with respect to the maps

∆: g 7→ g ⊗ g S : g 7→ g−1 ε : g 7→ 1

for all g ∈ Γ. Therefore the functor Q[·] factors over HA, the category of Hopf algebras over Q. Also this new functor
has an adjoint:

Proposition 3. There is an adjoint pair of functors

Q[·]: Gps � HA :G

between the category of abstract groups and the category of (not necessarily commutative) Q-Hopf algebras where G
associates to a Hopf algebra R the set of group-like elements:

GR := {x ∈ R : ∆x = x⊗ x, ε(x) = 1}

endowed with the product inherited from R.
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Proof. This comes from the previous proposition. Indeed, given a map Q[Γ] → R induced by f : Γ → R×, the
diagram

Q[Γ] //

��

Q[Γ]⊗Q[Γ]

��
R // R⊗R

commutes if and only if all images of the elements of G satisfy ∆x = x⊗ x. Moreover, since any group-like element
x satisfies ε(x) = 1, also the augmentation is preserved. We are left to prove that all group-like elements are invertible
and that GR is a group. This follows from the following lemma. �

Lemma 4. The set of group-like elements can equivalently be defined in the following way:

GR := {x ∈ R× : ∆x = x⊗ x}.
Moreover, if x ∈ GR then S(x) ∈ GR and S(x)x = xS(x) = 1, where S is the antipode map.

Proof. If x 6= 0 and ∆x = x⊗ x, then x = ∇(ε⊗ id)(∆x) = ε(x)x, hence ε(x) = 1. From the Hopf algebra axioms
∇◦ (S ⊗ id) ◦∆ = 1 = ∇◦ (id⊗S) ◦∆ we conclude S(x)x = 1 = xS(x). Also, from (S ⊗ S) ◦∆ = ∆op ◦ S, we
conclude ∆(S(x)) = S(x)⊗ S(x). �

The situation for Lie algebras is similar: if (g, [·, ·]) is a Lie algebra over Q, then the universal enveloping algebra
Ug is the quotient of the tensor algebra T (g) =

⊕
n∈N g⊗n by the relations x⊗ y − y ⊗ x = [x, y] for all x, y ∈ g. It

satisfies a universal property:

Proposition 5. (i) There is an adjoint pair of functors

U : LA � Alg :for

between the category LA of Lie algebras over Q and (not necessarily commutative) Q-algebras. The functor
for sends a Q-algebra R to the Lie algebra structure over R induced by commutators.

(ii) The left adjoint factors over the category of Hopf algebras by endowing the universal enveloping algebra Ug of
a Lie algebra g with the structure of a Hopf algebra with respect to the maps

∆: x 7→ x⊗ 1 + 1⊗ x S : x 7→ −x ε : x 7→ 0

for all x ∈ g.
(iii) There is an adjoint pair of functors

U : LA � HA :P
between the category of Lie algebras and (not necessarily commutative) Q-Hopf algebras where P associates to
a Hopf algebra R the set of primitive elements:

PR := {x ∈ R : ∆x = x⊗ 1 + 1⊗ x}
endowed with the Lie bracket induced by commutators.

Proof. The proof is analogous to the case of groups. We remark that any primitive element x satisfies ε(x) = 0 from
the equality x = ∇(ε⊗ 1)(∆x) = ε(x) + x. �

Note that Q[Γ] and Ug are cocommutative, but not necessarily commutative (this happens iff Γ or g is abelian).
Since our initial aim was to associate to a group (or to a Lie algebra) a commutative, but not necessarily cocommutative
Hopf algebra, the natural idea is now to “take duals”. Taking duals of vector spaces is a delicate operation whenever
the dimension is not finite. Hence, we will need to restrict to a particular case where the situation is self-reflexive as
in the finite-dimensional case.

Definition 6. A topological vector space V is linearly compact if it is homeomorphic to lim←−V/Vi, where V/Vi are
discrete and finite dimensional, and the maps in the diagram are quotients.

We will denote by (·)∨ the dual space and by (·)∗ the topological dual.

Example 7. If V is a discrete vector space, we will always enodow its dual V ∨ with the linearly compact topology
lim←−W

∨
i by letting Wi vary among the subvector spaces of V which are finite dimensional.

Proposition 8. (1) If V is discrete [resp. linearly compact], then (V ∨)∗ ∼= V [resp. (V ∗)∨ ∼= V ].
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(2) If V is discrete [resp. linearly compact], then (V ⊗ V )∨ ∼= V ∨⊗̂V ∨ [resp. (V ⊗̂V )∗ ∼= V ∗ ⊗ V ∗].

In particular, duality defines an equivalence of categories between commutative Hopf algebra and the category of
linearly compact Hopf algebras.

Our attempt is now to use these dualities in order to obtain a commutative and cocommutative Hopf algebra out
of Q[Γ] or Ug. By what just stated, we need to get a complete topological Hopf algebra. Any Hopf algebra R is
augmented by the counit ε. Let I denote the augmentation ideal. We can endow R with the I-adic topology, and
complete it with respect to it.

Definition 9. A complete Hopf algebra is a complete topological augmented algebra ε : R → R/I ∼= Q, homeomor-
phic to lim←−R/I

k and endowed with a map ∆: R→ R⊗̂R that fits in the usual diagrams of Hopf algebras.We denote
the category of complete Hopf algebras by CHA.

We remark that our definition differs slightly from the one of [5] since Quillen introduces also the choice of a
filtration.

Example 10. If R is a Hopf algebra, then its I-adic completion R̂ is a complete Hopf algebra. In particular, Γ 7→ Q̂[Γ]

and g 7→ Ûg define functors to the category CHA.

The following proposition is a formal consequence of the previous ones.

Proposition 11. There are adjoint pairs of functors

Q̂[·]: Gps � CHA :G

Û : LA � CHA :P
where G and P are defined like before.

We remark that if one considers the adjunction Q[·] : Gps � HA :G, then Γ ∼= GQ[Γ] for all abstract groups Γ.
This is no longer true for the above adjunction since, as we will see, GQ̂[Γ] defines the nilpotent, uniquely divisible
closure of Γ. The same holds also in the case of Lie algebras: g ∼= P(Ug) but P(Ûg) is the nilpotent closure of g.

We can now isolate in CHA the full subcategory C of those algebrasRwhich are also linearly compact. SinceR ∼=
lim←−R/I

k, this condition is equivalent to asking that R/Ik is finite dimensional for all k. Since this is obviously true
for k = 1, by induction we conclude that this is equivalent to the finite dimensionality of all Ik/Ik+1. Multiplication
defines a surjection (I/I2)⊗k → Ik/Ik+1, and therefore this is equivalent to imposing I/I2 finite dimensional.

Example 12. (1) Let Γ be an abstract group. Then

IQ̂[Γ]/I
2
Q̂[Γ]
∼= IQ[Γ]/I

2
Q[Γ]
∼= Γab ⊗Z Q

where Γab is the abelianization of Γ, and where the last isomorphism is induced by (g−e) 7→ g. In particular,
if Γ is such that Γab⊗ZQ has finite rank, then Q̂[Γ] is linearly compact. We denote by G̃ps the full subcategory
of Gps of objects satisfying this property.

(2) Let g be a Lie algebra. Then
IÛg/I

2
Ûg
∼= IUg/I

2
Ug
∼= g/[g, g]

where the last isomorphism is induced by x 7→ x. In particular, if g is such that g/[g, g] has finite rank, then
Ûg is linearly compact. We denote by L̃A the full subcategory of LA of objects satisfying this property.

By duality, the category C is equivalent to a full subcategory of HA op, and hence to a subcategory of pro-affine
algebraic groups.

Proposition 13. LetG = SpecR be a pro-affine algebraic group. ThenR∨ ∈ C if and only ifPR is finite dimensional
and the “conilpotency filtration”

(1) 0 ⊂ C0 := AnnR I ⊂ . . . ⊂ Ck := AnnR I
k+1 ⊂ . . .

is exhaustive, i.e. if R =
⋃
Ci, where I is the augmentation ideal of R∨.
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Proof. We know that R∨ lies in C if I/I2 is finite dimensional, and if R∨ ∼= lim←−R
∨/Ik. The dual space (R∨/Ik)∗

coincides with Ck. In particular, C0 = Q and C1 = Q⊕ PR. Indeed, an element x of R lies in Ann I2 if and only if
∆x = y⊗ 1 + 1⊗ z, and by using the axioms of Hopf algebra, this turns out to be equivalent to ∆x = x⊗ 1 + 1⊗ x
if ε(x) = 0.

We then conclude that I/I2 is finite dimensional if and only if (I/I2)∗ = (ker(R/I2 → R/I))∗ = C1/C0 = PR
is finite dimensional, and that R∨ ∼= lim←−R

∨/Ik if and only if R = lim−→(R∨/Ik)∗ = lim−→Ck. �

We remark that the conilpotency filtration {Ci} just defined coincides with the one of Cartier [1, 3.8 (A)]. This is
part of the following proposition, whose proof comes by induction from the previous one.

Proposition 14. Let G = SpecR be a pro-affine algebraic group and let R̄ be its augmentation ideal. The elements
of the filtration (1) can be defined equivalently in the following ways:

(1) Ci = Q ⊕ ker ∆̄n, where ∆̄ : R̄ → R̄ ⊗ R̄ maps x to ∆x − x ⊗ 1 − 1 ⊗ x and ∆̄n : R̄ → R̄⊗n maps x to
(∆̄⊗ id⊗ . . .⊗ id)(∆̄nx).

(2) Ci+1/Ci is the trivial subrepresentation of G inside R/Ci.

Definition 15. A pro-unipotent algebraic group is a pro-affine algebraic group SpecR such that the conilpotency
filtration (1) is exhaustive. A unipotent algebraic group is a pro-unipotent algebraic group SpecR such thatR is finitely
presented. The category defined by [pro-]unipotent algebraic groups will be denoted with UAG [resp. pUAG].

In particular, a unipotent algebraic groupG such that the Lie algebra PO(G) is finite dimensional defines an object
O(G)∨ of C.

Our definition is different from the “standard” one. We now prove the equivalence of the two notions. Recall that
UTn is the subgroup of GLn defined by upper-triangular matrices, which have 1’s on the main diagonal.

Proposition 16. Let G be a pro-affine algebraic group. The following are equivalent:
(i) G is pro-unipotent.

(ii) For every non-zero representation V of G, there exists a non-zero vector v ∈ V such that G · v = v.
In case G is an algebraic group, the previous conditions are equivalent to:

(iii) G is isomorphic to a subgroup of UTn for some n.

Proof. Let G = SpecR. Suppose (i) is satisfied. Then any representation ρ : V → V ⊗ R admits an exhaustive
filtration {Vk} where Vk := {v ∈ V ⊗ Ck}. In particular, V0 is a trivial subrepresentation since if v ∈ V0, then
ρv = v ⊗ 1. We now prove (ii) by showing that Vk = 0 implies Vk+1 = 0.

It can be explicitly seen that ∆Ci ⊂
∑
a+b=i Ca ⊗ Cb. Therefore if x ∈ Vk+1, then (1 ⊗ ∆)(ρx) lies in∑

a+b=k+1 V ⊗ Ca ⊗ Cb. Since a and b can’t be both bigger than k, if follows that Vk+1 is mapped to 0 via the
composite map

V → V ⊗R 1⊗∆→ V ⊗R⊗R π→ V ⊗R/Ck ⊗R/Ck
On the other hand, the previous map coincides (by the axioms of comodules) with

V → V ⊗R ρ⊗1→ V ⊗R⊗R π→ V ⊗R/Ck ⊗R/Ck
which is an injection since Vk = 0. Viceversa, if any representation V has a non-zero trivial subrepresentation, by
induction one can define an ascending filtration {Vi} such that Vi+1/Vi is the trivial subrepresentation of V/Vi. Since
any element of V generates a finite dimensional subrepresentation, it follows that this filtration is exhaustive. The
conilpotency filtration corresponds to the filtration associated to the representation defined on R itself. This proves
(i)⇔ (ii).

If V is finite dimensional, then (by induction on its dimension, since V0 6= 0) it is an extension of trivial repre-
sentations. It follows in particular that, with respect to a suitable basis, ρ : G → GLV factors over UTn. If G is an
algebraic group, one can apply this fact to a faithful finite dimensional representation to prove (iii). �

Being pro-unipotent is closed under quotients (using the condition (ii) for example). Hence, if SpecR is a pro-
unipotent algebraic group, then any sub-Hopf algebra R′ of R defines a pro-unipotent algebraic group. It follows that
the category of pUAG coincides with the pro-objects of UAG and C is a subcategory of it.

We remark that our definition is slightly different from the one of Cartier [1, end of p. 53], since we do not impose
that R has countable dimension.
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Example 17. (1) Let Γ be an abstract group such that Γab ⊗Z Q has finite rank. Then Q̂[Γ] endowed with the I-
adic topology is linearly compact, since it is homeomorphic to lim←− Q̂[Γ]/Ik and all Ik have finite codimension.
In particular, Spec(Q̂[Γ]∗) is pro-unipotent.

(2) Similarly, if g is a Lie algebra such that g/[g, g] has finite rank, then Spec(Ûg∗) is pro-unipotent.
(3) Consider G = Ga. The Hopf algebra is R = Q[t], its dual vector space is

∏
Qεk where εk(ti) = δk,i. By

duality, the augmentation ideal is I = ker((Q → R)∨) = {φ : R → Q : φ(1) = 0} = 〈εk〉k>0. The product
is defined via duality from the coproduct of R which sends t to t⊗ 1 + 1⊗ t, so that

(εh · εk)(ti) = (εh ⊗ εk)(∆ti) = (εh ⊗ εk)(
∑

α+β=i

tα ⊗ tβ) = δh+k,i

and hence εh · εk = εh+k.
Therefore, I is generated as an ideal by ε := ε1. In particular, R∨ ∼= Q[[ε]], which is I-adically complete.

We conclude that Ga is unipotent.
(4) Consider G = Gm. In this case, the coproduct on R = Q[t, t−1] sends t to t⊗ t. Therefore

(εh · εk)(ti) = (εh ⊗ εk)(∆ti) = (εh ⊗ εk)(ti ⊗ ti) = δh,k,i

We conclude in particular that I2 = I , and hence Gm is not unipotent.

Let’s now consider the functors we have obtained from pUAG to Gps and to LA.

Proposition 18. Let G = SpecR be a pro-affine algebraic group. Then G(R∨) ∼= G(Q) and P(R∨) ∼= LieG.

Proof. The unit of R∨ is the counit ε of R and the counit ε of R∨ is φ 7→ φ(1). Also, for any φ ∈ R∨ and any
x, y ∈ R, (∆φ)(x⊗ y) = φ(xy). Therefore

∆φ = φ⊗ φ⇔ φ(xy) = φ(x)φ(y) ε(φ) = 1⇔ φ(1) = 1

and
∆φ = φ⊗ 1 + 1⊗ φ⇔ φ(xy) = φ(x)ε(y) + ε(x)φ(y)⇔ φ(I2) = φ(R/I) = 0

so that GR∨ ∼= G(Q) and PR∨ ∼= (I/I2)∨ ∼= LieG. �

The previous proposition can be slightly generalized.

Proposition 19. Let G = SpecR be a pro-affine algebraic group. For any Q-algebra S, we consider the natural
structure of S-coalgebra with counit on R∨ ⊗ S and denote with G(R∨ ⊗ S) the group-like elements with respect to
it (i.e. elements x such that ∆x = x⊗ x, ε(φ) = 1). Then G(R∨ ⊗ S) ∼= G(S).

Proof. We have R∨ ⊗ S ∼= HomQ(R,S) and (R∨ ⊗ S) ⊗S (R∨ ⊗ S) ∼= HomQ(R ⊗ R,S). With respect to these
identifications, the comultiplication sends a Q-linear map φ to ∆φ : x⊗ y 7→ φ(xy) and the counit ε sends φ to φ(1).
Therefore, φ is group-like if and only if it is a ring homomorphism, as claimed. �

Proposition 20. If G is a unipotent algebraic group, then G(Q)ab ⊗Z Q and LieG have finite rank.

Proof. This is true for UTn, hence for any unipotent algebraic group. �

Recall that we have denoted by G̃ps [resp. by L̃A] the subcategory of Gps [resp. of LA] constituted by groups
Γ such that Γab ⊗Z Q has finite rank [resp. by Lie algebras g such that g/[g, g] has finite rank]. Let p G̃ps [resp.
p L̃A] denote the associated category of pro-objects. It is equivalent to the category of topological groups Γ which
are homeomorphic to lim←−Γ/Γi, with Γ/Γi discrete and lying in G̃ps [resp. topological Lie algebras g which are

homeomorphic to lim←− g/gi, with g/gi discrete and lying in L̃A].
By our construction, we have therefore obtained adjunction pairs

(2)
Spec((Q̂[·])∗): p G̃ps � pUAG :(Q)

Spec(Û(·)∗): p L̃A � pUAG :Lie

which are actually what we were looking for from the very beginning!

Corollary 21 (Quillen’s formula). (1) Let Γ be an object of G̃ps (e.g. if Γ is finitely generated). Then Spec((Q̂[Γ])∗) ∼=
Γun.
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(2) Let g be an object of L̃A (e.g. if g is finite dimensional). Then Spec((Ûg)∗) ∼= gun.

Proof. This follows formally from the previous adjunctions. We focus on the case of groups. Suppose that G =
Spec(O(G)) is in pUAG. ThenG is a filtered limit of unipotent algebraic groupsGi withPO(Gi) finite-dimensional.
In particular, O(Gi)

∨ as well as Q̂[Γ] lie in C and therefore:

Hom(Γ, G(Q)) = lim←−
i

Hom(Γ, Gi(Q)) = lim←−
i

Hom(Γ,GO(Gi)
∨) = lim←−

i

Hom(Q̂[Γ],O(Gi)
∨) =

= lim←−
i

Hom(Spec((Q̂[Γ])∗), Gi) = Hom(Spec((Q̂[Γ])∗), G).

�

We conclude our panorama on adjunctions by the following remark. There are well known adjunctions from Set
to Gps and from Set to LA. We wonder whether they are compatible with the rest of the diagram. In what follows
we are crucially using the fact that we are working in characteristic 0.

Let R be in CHA. Suppose that x lies in the augmentation ideal. Then the series
∑

xk

k! has a limit which we
denote by expx.

Proposition 22. The adjunction diagram

Set

vvnnnnnnnnnnnnnn

((PPPPPPPPPPPPPP

Gps

66nnnnnnnnnnnnnn
//
CHA

//oo LA

hhPPPPPPPPPPPPPP
oo

commutes up to an equivalence of functors induced by the exponential map.

Proof. It suffices to prove that the two right adjoints are equivalent. The claim then follows from the following
lemma. �

Lemma 23. Let R be an object of CHA. Then x ∈ PR⇔ expx ∈ GR.

Proof. This follows from the equalities

∆x = x⊗ 1 + 1⊗ x⇔ ∆ expx = exp(∆x) = exp(x⊗ 1 + 1⊗ x) = exp(x)⊗ exp(x)

which come from the definition of the exponential. �

2. QUILLEN’S THEOREM AND COROLLARIES

Theorem 24 (Quillen). Let MGps [resp. MLA] be the subcategory of G̃ps [resp. L̃A] constituted by nilpotent,
uniquely divisible groups [resp. nilpotent algebras]. Then the adjunctions (2) induce equivalence of categories:

pMGps ∼
// pUAGoo ∼

// pMLAoo

We devote the rest of the section to sktching the proof of this theorem.
We begin with a useful fact from category theory. It is a generalization of well-known cases (Galois correspon-

dences, closures of subsets, algebraic sets etc.) which usually involve ordered sets rather than general categories.

Proposition 25. Let F : C � D :U be an adjunction. The following are equivalent
(1) FUF → F is an isomorphism of functors.
(2) U → UFU is an isomorphism of functors.

Moreover, if the previous conditions are satisfied, then the adjoint pair decomposes into three adjoint pairs

C
UF //

CUFoo
F
∼

//
DFU

U
oo //

D
FU

oo

where CUF [resp. DFU ] is the full subcategory of C [resp. D] constituted by the objects X such that X → UFX
is an isomorphism [resp. FUX → X is an isomorphism], and where the pair in the center is an equivalence of
categories.

Proof. The first part is standard category theory (e.g. [3, Lemma 4.3]), the second is a straightforward exercise. �
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In particular, in order to prove the theorem we are left to prove the following facts:
(i) FU ∼= id.

(ii) Γ ∈ pMGps⇔ Γ ∈ p G̃ps
UF

.

(iii) g ∈ pMLA⇔ g ∈ p L̃A
UF

.
where U is either (Q) or Lie and F is its respective left adjoint.

Corollary 26. In order to prove the theorem, it suffices to prove
(I) If G ∈ pUAG, then G(Q) ∈ pMGps and LieG ∈ pMLA.

(II) Γ ∈ pMGps⇒ Γ ∈ p G̃ps
UF

.

(III) g ∈ pMLA⇒ g ∈ p L̃A
UF

.
(IV) (Q) and Lie reflect isomorphisms.

Proof. The only non-trivial fact is the proof of condition (i). Let X be in pUAG. Then by (I) and (II), UX →
UFUX is an isomorphism. Because the compostion UX → UFUX → UX is the identity, we also conclude that
UFUX → UX is an isomorphism. By (IV ), we conclude FUX ∼= X , as wanted. �

Sketch of the proof of Quillen’s theorem. Conditions (II), (III), (IV ) are proved by Quillen at the level of Gps �
CHA � LA (see [5, Theorem A.3.3]). Condition (I) comes from the fact that if G is unipotent then LieG and
G(Q) are nilpotent (it suffices to check this for UTn), LieG is finite dimensional and G(Q)ab ⊗Z Q has finite rank
(already remarked), and G(Q) is uniquely divisible (it is isomorphic to exp LieG by Proposition 22). �

Corollary 27. (1) Let Γ be in G̃ps. Then Γun is characterized by the fact that it is pro-unipotent and Γun(Q) is
the universal pro-nilpotent uniquely divisible group associated to Γ.

(2) Let g be in L̃A. Then gun is characterized by the fact that it is pro-unipotent and Lie gun is the universal
pro-nilpotent Lie algebra associated to Γ.

Proof. This comes from Quillen’s theorem and the lateral adjunctions of Proposition 25. �

Corollary 28. The category of unipotent algebraic group is equivalent to the category of finite dimensional nilpotent
Lie algebras.

Proof. The functor from UAG to nilpotent Lie algebras is fully faithful by Quillen’s theorem. It is essentially surjec-
tive by [4, Theorem 3.27]. �

From the previous corollary and Proposition 22, we can deduce a similar equivalence between unipotent algebraic
groups and abstract groups which are exponentials of nilpotent, finite dimensional Lie algebras.

3. THE FREE CASE

We now consider the free pro-unipotent groupGS associated to a finite set S = {e1, . . . , en}. By the commutativity
of the adjunction of Proposition 22, it is isomorphic to the pro-unipotent completion of the free group ΓS over S, and
of the free Lie algebra LS over S. For its construction, we choose this second option.

By what we already proved, GS ∼= Spec(((ULS)∧)∗), where L is the free Lie algebra functor. The functor UL
from Set to Alg is left adjoint to the forgetful functor, and therefore ULS ∼= Q 〈e1, . . . , en〉, the algebra of non-
commutative polynomials in n variables. It is straightforward to check that (ULS)∧ ∼= Q 〈〈e1, . . . , en〉〉, the formal
non-commutative power series in n variables. Its coproduct is defined via the relations ei 7→ ei ⊗ 1 + 1 ⊗ ei. If I =
(i1, . . . , ik) is a multi-index, we indicate with eI the product e1 · . . . ·ek. By induction, it follows ∆eI =

∑
σ eJ ⊗eK ,

where I, J vary among multi-indices and σ varies among the permutations Sym(|J |, |K|) such that σ(J,K) = I . We
clarify this with an example.

Example 29.

∆(e2
1e2) = e2

1e2 ⊗ 1 + e2
1 ⊗ e2 + 2e1e2 ⊗ e1 + 2e1 ⊗ e1e2 + e2 ⊗ e2

1 + 1⊗ e2
1e2.

This algebra is graded with respect to the degree, isomorphic to
∏
V ⊗k, where V is the free vector space generated

by S. It follows that ((ULS)∧)∗ ∼=
⊕

(V ⊗k)∨ ∼=
⊕

(V ∨)⊗k ∼= T (V ∨). We now investigate its Hopf operations. We
denote by εI the dual of eI .
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From the formulas

(εI · εJ)(eK) = (εI ⊗ εJ)(∆eK) = (εI ⊗ εJ)

(∑
σ

eM ⊗ eN

)
we deduce that (εI · εJ)(eK) = 1 if there is a way to shuffle I and J to form K and is 0 otherwise. Hence, the product
of T (V ∨) is the shuffle product.

From the formula
(∆εI)(eJ ⊗ eK) = εI(eJK)

we deduce that (∆εI)(eJ ⊗ eK) = 1 if JK = I and is 0 otherwise. Therefore, ∆εI =
∑
JK=I εJ ⊗ εK , the so-called

deconcatenation coproduct.
We recap the results we have proved about the free case in the following proposition.

Proposition 30. Let ΓS be the free abstract group generated by the finite set S = {e1, . . . , en} and let ΓunS be its
pro-unipotent completion.

(1) The exponential map defines an isomorphism O(ΓunS )∨ = lim←−Q[ΓS ]/In ∼= Q〈〈e1, . . . , en〉〉, and hence an
isomorphism O(ΓunS ) ∼= T (V ∨), where V is the vector space generated by S.

(2) Lie(ΓunS ) is canonically isomorphic to the universal pro-nilpotent algebra associated to the free Lie algebra
LS associated to S, i.e. to the completion of LS by the lower central series.

(3) For any Q-algebra T , ΓunS (T ) is isomorphic to the group-like elements of the coalgebra T 〈〈e1, . . . , en〉〉.

Proof. As noted at the beginning of this section, the exponential map induces an isomorphism from ΓunS to GS , the
pro-unipotent completion of LS. The first two points then follow from our previous calculations and Corollary 27.
The last point follows from Proposition 19. �

4. MALCEV ORIGINAL CONSTRUCTION

We now give an explicit description of another special case, originally studied by Malcev. We refer to [6] for the
group theory facts we need here. Suppose Γ is nilpotent and finitely generated. In this case, the torsion elements
constitute a subgroup H . Since any uniquely divisible group has no torsion, by Corollary 22 we conclude that Γun ∼=
(Γ/H)un. We can therefore suppose that Γ has no torsion.

Let
Γ = Γ1 ≥ Γ2 ≥ . . . ≥ Γk = 1

be the lower central series (Γi = [Γi−1,Γ]). Each factor Γi/Γi+1 is abelian and finitely generated since [Γi,Γi] ≤
[Γi,Γ] = Γi+1. We can then refine the lower central series to obtain another central series with cyclic quotients. A
group with such a central series is called polycyclic. Quotients and subgroup of polycyclic ones are again polycyclic
(by studying the induced filtrations). In particular, the quotients of the upper central series (Zi/Zi+1 = Z(G/Zi+1))

Γ = Z1 ≥ Z2 ≥ . . . ≥ Zk = 1

are polycyclic. They are also without torsion by the next lemma.

Lemma 31. If Γ is nilpotent and without torsion, then all quotients Γ/Zi are without torsion.

Proof. Since Γ/Zi+1
∼= (G/Zi)/(Zi+1/Zi) ∼= (G/Zi)/(Z(Γ/Zi)), it suffices to prove that if Γ is nilpotent and

without torsion, then Γ/Z(Γ) is without torsion.
Suppose xm is central. We need to prove that also x is. If xm is central, then for any y we have (y−1xy)m = xm.

It suffices to prove uniqueness of roots in a torsion-free nilpotent group. We make induction on the nilpotency class,
being the case of an abelian group trivial.

Let am = bm in a torsion-free nilpotent group Γ. In order to prove a = b, it suffices to prove [a, b] = 1 since Γ is
torsion-free. Since b−1ab = a[a, b], both b−1ab and a lie in the subgroup H = 〈[Γ,Γ], a〉, which has a stricly lower
nilpotency class (see [6, Proposition 2.5.5]). By induction, from the equality (b−1ab)m = b−1amb = bm = am, we
conclude [a, b] = 1 as wanted. �

In conclusion, the upper central series can be enriched into a filtration

Γ = Γ1 ≥ Γ2 ≥ . . .Γs+1 = 1

such that Γi/Γi+1 ∼= 〈ei〉 ∼= Z. The set {e1, . . . , es} is called a Malcev basis for Γ. We can associate to any
element g ∈ Γ a unique set of s coordinates ti(g) ∈ Z such that g =

∏
e
ti(g)
i , and Γi coincides with the subset
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{g ∈ Γ: tj(g) = 0, j < i}. This defines a bijection from Γ to Zs. We now recover also the product in terms of the
coordinates.

Proposition 32. Let Γ be finitely generated, nilpotent and without torsion. Let {e1, . . . , es} be a Malcev basis for Γ
and ti(g) the Malcev coordinates of an element g.

(1) The product is polynomial in the coordinates, i.e. there exist polynomials Pi with rational coefficients such
that

ti(gh) = ti(g) + ti(h) + Pi(tj(g), tj(h)).

Moreover, the polynomial Pi depends only on tj’s with j < i.
(2) The inverse is polynomial in the coordinates, i.e. there exist polynomials Qi,k with rational coefficients such

that
ti(g

k) = kti(g) +Qi,k(tj(g)).

Moreover, the polynomial Qi,k depends only on tj’s with j < i.

Proof. Make induction on the cardianlity of the Malcev basis. Details in [6, Propriété 3.1.5]. �

Since the polynomials Pi andQi,k have rational coefficients, they define an algebraic groupG : R 7→ (Rs, ·) where
· is the product defined using the above formulas.

Proposition 33. The group G is unipotent.

Proof. Since O(G) is a polynomial ring, G(Q) is dense in G. Therefore, if we prove that there is a faithful finite
dimensional representation of G such thatG(Q)→ GLV (Q) is made of unipotent morphisms (i.e. , for all g ∈ G(Q),
(g−id)n = 0 for n� 0), we conclude that, with respect to a suitable basis,G(Q) factors through UTn(Q). By density,
we can isomorphically embed G in UTn, as wanted. Because the regular representation contains all representation,
we can equivalently prove that all endomorphisms of G(Q) are unipotent with respect to it (i.e. (g − id)n = 0 for
n� 0 when restricted to any subrepresentation of finite dimension).

This representation sends g to the endomorphism Ti 7→ ti(g) + Ti + Pi(tj , Tj). By the formulas above, it follows
that (g − id) it sends a monomial T I = T i11 · . . . T iss to a linear combination of monomials which are stricly smaller
with respect to the lexicographic order. In particular, for any multi-index I , (g − id)n(T I) = 0 for n� 0. �

We remark that the map Γ→ G(Q) is induced by the inclusion Zs → Qs. It satisfies a universal property:

Proposition 34. The abstract group G(Q) is the nilpotent, uniquely divisible closure of Γ.

Proof. Using the formulas and induction on i, it is straightforward to see that G(Q) is uniquely divisible and if
x ∈ G(Q), then xn ∈ Γ for n� 1. �

Corollary 35. Γun ∼= G.

Proof. This comes from the previous propositions and Corollary 27. �

5. TORSORS

Let Γ be an abstract group. We remark that the functors we used to define Γun make sense more generally for
Γ-sets:

Γ -Set
Q[·]→ Q[Γ] -Mod

∧

→ Q̂[Γ] -Mod
Spec((·)∗)→ Γun -Var

and we denote again their composition with S 7→ Sun. Moreover, all these functors are tensorial with respect to the
tensors defined in each category. The first and the last one are tensorial with respect to the cartesian product. It follows
that if S ∈ Γ -Set is a torsor, i.e. if

Γ× S → S × S (g, s) 7→ (g · s, s)
is an isomorphism, then also

Γun × Sun ∼= (Γ× S)un → (S × S)un ∼= Sun × Sun

is an isomorphism. Therefore, S 7→ Sun maps torsors to torsors.
We recall that one of the forms of Chen’s theorem states that the maps

cn : Q[π1(M ; a, b)]/In+1 ∼→ Qa,b ⊕Hn(Mn, Zna,b)
9



define an isomorphism of directed systems (see the notations and the details in ??). We can then deduce, by passing
to the dual and the direct limit over n, the following fact.

Corollary 36. The isomorphisms cn induce an isomorphism of vector spaces

c∨ : Qa,b ⊕ lim−→
n

Hn(Mn, Zna,b)
∼→ O(π1(M ; a, b)un).

6. THE TANNAKIAN APPROACH

Proposition 37. Let Γ be an abstract group such that Γun il well defined. Then Γun is the pro-affine algebraic group
associated to the Tannakian category of unipotent representations of Γ.

Proof. The functor Γun -Rep → Γ -Rep sending Γun → GLV to Γ → Γun(Q) → GLV (Q) factors over unipotent
representations of Γ since Γun is pro-unipotent. Viceversa, if Γ → GLV (Q) is unipotent then, with respect to a
suitable basis, it factors over UTn. It follows that the subgroup H of GLV generated by Γ is isomorphic to a subgroup
of UTn, hence unipotent. By the universal property, the map Γ → H(Q) then induces a map Γun → H → GLV , as
wanted. �

Since we have proved the existence (and Quillen’s construction) of Γun only for groups Γ with nice properties (i.e.
Γab ⊗Z Q has finite dimension), we wonder if this proposition gives a more general construction of Γun, i.e. if the
Tannaka dual of unipotent representations of Γ satisfies the universal property of the pro-unipotent completion.

7. MORE ON THE CONILPOTENCY FILTRATION

We now present a last corollary of the first section and Quillen’s paper. Suppose G is unipotent, and let g be its Lie
algebra. We have g ∼= PO(G)∨, and it inherits the I-adic filtration from O(G)∨:

PO(G)∨ = PO(G)∨ ∩ I ⊃ PO(G)∨ ∩ I2 ⊃ . . .

On the other hand, we can consider the graded Hopf algebra gr•O(G)∨, obtained via the I-adic filtration. Its
primitive elements constitute a graded subset P gr•O(G)∨.

Proposition 38. [5, Proposition A.2.14] The natural map gr• PO(G)∨ → P gr•O(G)∨ is an isomorphism.

In particular, we deduce gr1 g ∼= I/I2 ∼= g/[g, g]. This abelian Lie algebra has a natural map to gr• PO(G)∨ ∼=
P gr•O(G)∨. It is a quotient of the free Lie algebra LS generated by a chosen basis S of g/[g, g]. By adjunction,
we obtain a map ÛLS → gr•O(G)∨, and by duality a map (gr•O(G)∨)∗ → (̂ULS)∗, and a map Spec((ÛLS)∗)→
Spec((gr•O(G)∨)∗).

We recall that the conilpotency filtration on O(G)

0 ⊂ C1 ⊂ C2 ⊂ . . .

is dual to the I-adic filtration on O(G)∨

O(G)∨ ⊃ I ⊃ I2 ⊃ . . .

in the sense that (griO(G)∨)∗ ∼= griO(G). Hence in particular, g/[g, g]∗ ∼= (I/I2)∗ ∼= (gr1O(G)) and (gr•O(G)∨)∗ ∼=
gr•O(G).

We remark that Spec((ÛLS)∗) is a free pro-unipotent group generated by S. By what we proved in Section 3,
(̂ULS)∗ ∼= T (g/[g, g]∨) ∼= T (gr1O(G)).

Proposition 39. The map gr•O(G)→ T (gr1O(G)) is injective.

Proof. We prove that the dual is surjective. It is the map ÛLS → gr•O(G)∨ ∼= gr• Ûg, where the last equality
follows from the unipotency of G.

The graded algebra gr• Ûg is generated by its first graded piece gr1 Ûg = P gr1 Û ∼= gr1 PÛ ∼= g/[g, g], hence
ÛLS → gr• Ûg is surjective, as claimed. �
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