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ABSTRACT. We define a de Rham cohomology theory for analytic varieties over a valued field
K[ of equal characteristic p with coefficients in a chosen untilt of the perfection of K[ by means
of the motivic version of Scholze’s tilting equivalence. We show that this definition generalizes
the usual rigid cohomology in case the variety has good reduction. We also prove a conjecture of
Ayoub yielding an equivalence between rigid analytic motives with good reduction and unipotent
algebraic motives over the residue field, also in mixed characteristic.
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1. INTRODUCTION

Rigid cohomology can be considered as a substitute of the pathological (at least for non-proper
varieties) de Rham cohomology over a field k of positive characteristic. Its definition is based
on the idea of associating to a variety X̄/k another variety X over a field K of characteristic 0
and then considering its well-behaved de Rham cohomology.

The classic path to reach this goal, elaborating on the work of Monsky and Washnitzer, is to
find a smooth formal model X of X̄ over a valuation ring K◦ of mixed characteristic, then to
consider its (rigid analytic) generic fiber X .

From Fontaine’s and Scholze’s work in p-adic Hodge theory, we are now accustomed with
another strategy to change characteristic: the so-called tilting equivalence. This equivalence
is built between perfectoid spaces over a perfect, non-archimedean field K[ of characteristic p
and perfectoid spaces over a fixed untilt K of K[ which is a complete non-archimedean field of
mixed characteristic.

An alternative method for making X̄ “change characteristic” is then at reach: we can base
change X̄ to a perfectoid field K[ then we can take its analytification, followed by its perfection.
This defines a perfectoid space X̂[ over K[ that we can finally switch (by Scholze’s equivalence)
to a perfectoid space X̂ over a chosen untilt K of K[ having characteristic 0.

The initial problem, namely the definition of a de Rham cohomology for X̄ , is not yet solved
with the above procedures. Indeed, for rigid analytic varieties as well as for perfectoid spaces, the
de Rham complex is still problematic (its cohomology groups can be oddly infinite-dimensional
for smooth, affinoid rigid analyitic varieties). Nonetheless, the results of [12] and [17] show that
some natural de Rham cohomology groups for both smooth rigid analytic varieties as well as
smooth perfectoid spaces can truly be defined.
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One aim of this paper is that the two recipes mentioned above are actually equivalent. We now
rephrase this statement in terms of motives. This allows for a more precise result, and further
corollaries that we examine afterwards.

Out of the categories of smooth varieties over a field, smooth rigid analytic varieties over
a non-archimedean field, smooth perfectoid spaces over a perfectoid field, or smooth formal
schemes over a valuation ring, one can construct the associated category of motives, written
as DM(K) (or RigDM(K), PerfDM(K) and FormDM(OK) in the various cases). We
consider here derived, effective motives with rational coefficients following Voevodsky. In
particular, these categories are Verdier quotients of the classical derived categories of étale
sheaves with Q-coefficients defined on each big site.

The special fiber and the generic fiber functors on varieties induce some functors also at the
level of motives:

ξ : DM(k)
∼← FormDM(OK)→ RigDM(K)

(the first one has a natural quasi-inverse as proven in [6]). The composition from left to right is
then the motivic version of the first recipe (Monsky-Washnitzer’s) sketched above.

Suppose now K is perfectoid. It is possible to rephrase Scholze’s tilting equivalence in
motivic terms by saying that the categories PerfDA(K) and PerfDA(K[) are equivalent. In
[17] we descended this result to the rigid analytic situation, by proving the following:

Theorem ([17]). Let K be a perfectoid field. There is a canonical monoidal, triangulated
equivalence

G : RigDM(K) ∼= PerfDM(K).

In particular, for any perfectoid field K of mixed characteristic, we obtain a canonical monoidal,
triangulated equivalence

GK,K[ : RigDM(K) ∼= RigDM(K[).

We can then consider the following functors

ξ[ : DM(k)→ DM(K[)
Rig∗→ RigDM(K[) ∼= RigDM(K)

and their composition corresponds to the second recipe that we sketched above. We then prove
(see Theorem 3.2 and Proposition 3.5):

Theorem. Let K be a perfectoid field. The following diagram commutes, up to an invertible
natural transformation.

DM(k)
ξ

xx

ξ[

''

RigDM(K) oo
∼

G
K,K[

// RigDM(K[)

This tells us in particular that the method based on Scholze’s tilting functor is just as good
as Monsky-Washnitzer’s (and Berthelot’s) for defining rigid cohomology, up to enlarging the
coefficient ring to a perfectoid field K (see Corollary 4.12).

Incidentally, we point out that this second method is directly generalizable to (algebraic,
perfectoid or) analytic varieties over K[ giving rise to a cohomology theory “à la de Rham” that
takes values in K-vector spaces (see Section 4). To our knowledge, this is the first time that
such a definition appears in the literature, the ring of coefficients K being “smaller” than the
one used for rigid cohomology over K[ and different from the fields of coefficients considered
by Lazda and Pal [?] (but relations between these approaches are envisaged). This definition
can be applied in particular to families {X̄t} of varieties over a field of characteristic p which
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are generically smooth, and coincides with rigid cohomology of the special fiber X̄0 in case the
family is smooth everywhere. We therefore obtain a generalization of the rigid cohomology of a
log-scheme (in the case of semi-stable reduction) without the need of introducing a log-structure.

The technical difficulty in the proof is the construction of a natural transformation between
the two functors. Due to the intricate definition of G the way we obtain it is indirect, via the
introduction of some auxiliary categories (of semi-perfectoid spaces over K◦ and over k) and
the generalization of some results in [17]. Once the transformation is defined, one can deduce it
is invertible from some explicit computations on very special motives generating DM(k) (see
Theorem 3.6).

Our main theorem has further, non-obvious consequences that are not necessarily correlated
with rigid cohomology. We briefly describe some of them.

(1) In general, there is not an explicit, geometric formula giving the image of the motive of
a variety X by the motivic tilting equivalence GK,K[ : RigDM(K) ∼= RigDM(K[).
From the theorem above, we find such a description for varieties X with good reduction,
i.e. having a smooth model X overOK . Their tilt is simply the motive of (the base change
of the analytification of) their reduction X̄ i.e. the special fiber Xσ (see Proposition
5.18).

(2) Ayoub [6] has proved that in the equal-characteristic zero case, the category RigDM(K)
has a convenient description as a full, triangulated subcategory of motives above Gm,k.
The same is true for the equal-characteristic p case, at the cost of considering only
motives with good reduction, and introducing some technical hypotheses on the field.
The mixed-characteristic counterpart was conjectured in [6] and we are able to prove it
here (see Theorem 5.25).

(3) The weak tannakian formalism [4], [5] allows to use the Betti realization functor
DM(K) → D(Q) to define a motivic Galois group for subfields K of C. More-
over, the equivalence of the previous point also gives rise to a Galois group for a
non-archimedean field of equi-characteristic zero. This induces relations between the
absolute motivic Galois group of a field, the motivic Galois group of its completion
over a non-archimedean place of equal characteristic 0 and the motivic Galois group of
the residue field, mimicking the relations between the absolute Galois groups and the
decomposition group associated to a non-archimedean place. We can use the de Rham
realization to obtain similar statements in any characteristic. This will be studied in
detail in a following paper.

We warn the reader that we mostly use here the variant of motives without transfers, denoted
typically with DA rather than DM. These two approaches are canonically equivalent whenever
the base field is perfect and the ring of coefficients contains Q (see [19]): the one without
transfers has the quality of being more direct for definitions.

This article is organized as follows. In Section 2 we introduce some accessory geometric
categories over a valued field K, its ring of valuation OK as well as its residue field k and we
define the associated categories of motives. In Section 3 we prove our main theorem. In Section
4 we describe how to define a de Rham cohomology over a field of equi-characteristic p while in
Section 5 we solve Ayoub’s conjecture on rigid analytic motives of good reduction in mixed
characteristic.

2. MOTIVES OF SEMI-PERFECTOID SPACES OVER K◦ AND k

In this section we make the following hypotheses.

Assumption 2.1. We let K be a perfectoid field, we denote its tilt by K[ and we fix a pseudo-
uniformizer π ∈ K.
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For the notions of perfectoid fieds, perfectoid spaces over them and their properties we refer
to [16]. We fix here some notations and examples.

Example 2.2. (1) The space B̂1 := Spa(K〈υ1/p∞〉) is perfectoid. The global function υ
induces a map B̂1 → B1 where B1 = SpaK〈υ〉 is the usual closed rigid disc. This map
also induces a map of formal schemes B̂1 := SpfOK〈υ1/p∞〉 → B1 := SpfOK〈υ〉
with special fiber Â1 := Spec k[υ1/p∞ ]→ A1 = Spec k[υ].

(2) The maps above restrict to the rational subspaces defined by the equation |υ| = 1

that is, we have maps T̂1 := SpaK〈υ±1/p∞〉 → T1 := SpaK〈υ±1〉 and T1 :=

SpfOK〈υ±1/p∞〉 → T1 := SpfOK〈υ±1〉 with special fiber Ĝ1
m := Spec k[υ±1/p∞ ] →

Gm = Spec k[υ±1].
(3) For any positive integer N we denote by XN the N -fold product of X therefore defining

the spaces TN , T̂N , TN etc.

In [17] we defined the category of semi-perfectoid spaces over K. These objects form a
convenient category of sheafy adic spaces containing both smooth rigid analytic spaces and
small smooth perfectoid spaces. We recall briefly their definition.

Definition 2.3. The category of smooth semi-perfectoid spaces over K is the full subcategory
of adic spaces formed by spaces which are locally isomorphic to X0 ×TN T̂N for some étale
morphism or rigid analytic varieties X0 → TN × TM . We remark that X0 ×TN T̂N ∼ lim←−Xh

where Xh := X0 ×TN ,ϕh TN and the map ϕh is induced by raising the coordinates υ to the ph-th
power (for the precise meaning of ∼ we refer to [15, Section 2.4]).

If one imposes N = 0 in the definition above, one recovers the usual full subcategory category
RigSm /K of smooth rigid analytic varieties over K while if one imposes M = 0, one defines
the full subcategory PerfSm /K of smooth perfectoid spaces over K.

As remarked in [17], for all the categories above we can define the étale topology by consider-
ing Scholze’s definition (see [16, Definition 7.1]).

We now make the analogous definition in the case of smooth formal schemes over K◦ and of
smooth algebraic varieties over k. Such geometrical categories will only play an accessory role
in our main theorem. On the other hand, we remark that the category PerfSm /K◦ is at the core
of the constructions made in [9].

Definition 2.4. A smooth semi-perfectoid space over k [resp. K◦] is a [formal] scheme which
is Zariski locally isomorphic to X0 ×GNm ĜN

m [resp. X0 ×TN T̂N ] for some [formally] étale
morphism X0 → GN

m × GM
m [resp. X0 → TN × TM ]. The full subcategory of schemes they

form will be denoted by sPerfSm /k [resp. sPerfSm /K◦]. Locally, a smooth semi-perfectoid
space is the inverse limit of the system Xh := X0 ×GNm,ϕh G

N
m [resp. Xh := X0 ×TNm,ϕh

TNm]
where ϕh is induced by raising the coordinates υ to the ph-th power.

If one imposesN = 0 in the definitions above, one recovers the usual full subcategory category
Sm /k of smooth schemes over k [resp. the category FormSm /K◦ of smooth formal schemes
topologically of finite type over K◦]. If one imposes M = 0 in the definitions above, one
defines the full subcategory PerfSm /k of smooth perfectoid spaces over k [resp. PerfSm /K◦

of smooth formal perfectoid spaces over K◦].

For all the categories above, we can define the étale topology by specializing the definition of
étale maps and coverings for schemes and formal schemes.

Proposition 2.5. Let Spf A be étale over T̂N × TM . The generic fiber functor (−)η induced by
Spf A 7→ Spa(A[1/π], A) and the special fiber functor (−)σ induced by Spf A 7→ Spec(A/m)
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define well-defined functors from to the étale topos of sPerfSm /K◦ from the one of sPerfSm /K
and of sPerfSm /k respectively. These functors restrict to functors to the topos of formal schemes
of tft from the one of smooth rigid varieties over K and of smooth schemes over k respectively.
They also restrict to maps on the associated étale topoi of perfectoid spaces.

Proof. All the adic spaces involved in the statement are sheafy, so the claim follows from [15,
Lemma 3.5.1(1)]. �

Out of these geometric categories, we can immediately define the associated motives. We use
here a triangulated, more down-to-earth definition rather the model-categorical one we used in
[17] (recalled in Remark 2.7 and that we will freely use in proofs). Motives will be here defined
as quotients of triangulated categories, namely the derived categories of Λ-sheaves over a site.
The quotient is taken in order to impose homotopy-invariance on the (co-)homological functors,
i.e. invariance with respect to the projections X × I → X induced by a chosen “interval object”
I in the geometric category.

Definition 2.6. Fix a commutative ring Λ. Let κ be in {k,K◦, K} and fix an object I in
sPerfSm /κ.

• We denote by Λ(X) the presheaf with values in Λ-modules represented by X i.e. the
presheaf associating Y to the free Λ-module associated to the set Hom(Y,X).
• We denote by Frobét the topology on sPerfSm /κ generated by étale covers and relative

Frobenius morphisms (in case the base ring has positive characteristic) and let aFrobét be
the associated sheafification functor.
• The category of effective semi-perfectoid motives sPerfDAeff

Frobét,I(κ,Λ) is the Verdier
quotient of the derived category of Frobét-sheaves on smooth semi-perfectoid spaces
with values in Λ-modules D(ShFrobét(sPerfSm /κ,Λ)) over its sub-triangulated category
with small sums generated by the cones of the projection maps aFrobétΛ(X × I) →
aFrobétΛ(X) by letting X vary in sPerfSm /κ.
• We make an analogous definition for small perfectoid spaces over κ in which case the

categories of motives will be denoted by PerfDAeff
Frobét,I(κ,Λ).

• We can also make the analogous definitions for smooth schemes over k, smooth formal
schemes of tft over K◦ and smooth rigid varieties over K and the associated motives
are denoted by DAeff

Frobét,I(k,Λ), FormDAeff
Frobét,I(K

◦,Λ) and RigDAeff
Frobét,I(K,Λ)

respectively.

Remark 2.7. Fix a site (C, τ) and an object I ∈ C (for example, we can take the Frob-étale site
on smooth rigid analytic varieties over K and I to be the ball B1). The category of the associated
motives (in the example, the category RigDAeff(K,Λ)) admits the following presentation as a
homotopy category of a model category structure.

One can first consider the projective model structure on (unbounded) complexes of presheaves
on C with coefficients in Λ. It contains representable presheaves Λ(X) as well as the complexes
Λ(U) associated to any simplicial U of C. Its homotopy category is the (unbounded) derived
category D(Psh(C,Λ)). Let S be the class of maps containing all shifts of the the canonical
arrows Λ(X × I) → Λ(X), Λ(U) → Λ(X) for any object X and any τ -hypercover U of it.
The left Bousfield localisation of the projective model structure over S is well defined, and its
homotopy category coincides with the triangulated category of effective motives over the datum
(C, τ, I). The interested reader can find all the details in [3] (briefly resumed in [17]).

This presentation of motives as homotopy categories of a Quillen model structure equip them
with a natural structure of a tensor DG-category, not merely of a a triangulated category. We
remark that the tensor product Λ(X) ⊗ Λ(Y ) is isomorphic to Λ(X × Y ). The language of
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model categories is also very convenient to define natural adjoint functors of motivic categories
out of functors at the level of the underlying sites (C, τ).

Example 2.8. We now list the objects I that we will consider.
(1) The disc of radius one B1 = SpaK〈υ〉 is an object of RigSm /K. It has a smooth

formal model B1 = Spf K〈υ〉 which is an object of FormSm /K◦. Its special fiber is
the affine line A1

k in Sm /k.
(2) The perfectoid disc of radius one B̂1 = SpaK〈υ1/p∞〉 is an object of PerfSm /K. It

has a smooth formal model B̂1 = Spf K〈υ1/p∞〉 which is an object of PerfSm /K◦

since it is covered by the two subspaces Spf K〈υ±1/p∞〉 and Spf K〈(υ + 1)±1/p∞〉 both
isomorphic to T̂1. Its special fiber is Â1

k := Spec k[υ1/p∞ ] which lies in PerfSm /k.

Remark 2.9. From now on, we adopt the following notations regarding the categories of motives:
(a) In case the characteristic of the base ring is 0 we will drop the pedex Frobét from the

notation.
(b) In case I is A1 resp. B1 resp. B1 for smooth semi-perfectoid spaces over k resp. K◦ resp.

K we will drop the pedex I from the notation.
(c) In case I is A1 resp. B1 resp. B1 for smooth varieties over k resp. smooth formal schemes

of tft over K◦ resp. smooth rigid analytic varieties over K we will drop the pedex I from
the notation.

(d) In case I is Â1 resp. B̂1 resp. B̂1 for perfectoid varieties over k resp. K◦ resp. K we will
drop the pedex I from the notation.

(e) We will assume Q ⊂ Λ and we drop Λ from the notation, if the context allows it.

Remark 2.10. Suppose that charK = p. If one considers the étale topology instead of the finer
Frobét topology, one gets the category of étale motives RigDAeff

ét (K,Λ) and a natural functor
RigDAeff

ét (K,Λ) → RigDAeff
Frobét(K,Λ). This functor coincides with the Verdier quotient

over the subcategory generated by cones of the relative Frobenius maps X → X ×Frob K (see
[19]).

The knowledgeable reader will notice that we use here the version of (effective, derived)
motives without transfers rather than the version with transfers, typically denoted with DMeff

and mentioned in the introduction. We recall here briefly their definition, which makes use of
correspondences. For more properties of such categories, we refer to [6, Chapter 2].

Definition 2.11. Ler K ′ be any complete valued field (eventually trivially valued).
• We define the category RigCor /K ′ as the category whose objects are those of

RigSm /K ′ and whose morphisms Hom(X, Y ) are the free Λ modules generated to
the set of integral, closed subvarieties Z of X × Y which are finite and surjective over
a connected component of X and where composition is induced by the intersection
formula (see [6, Remark 2.2.21]).
• The category Psh(RigCor /K ′) will be denoted by PST(RigSm /K ′). Its full subcat-

egory of those presheaves F that are sheaves when restricted to RigSm /K ′ will be
denoted by Shtr(RigSm /K ′). The sheaf represented by a smooth variety X is denoted
by Λtr(X).
• The category of effective rigid analytic motives with transfers RigDMeff(K ′,Λ) is the

Verdier quotient of the derived category of Shtr(RigSm /K ′) over its sub-triangulated
category with small sums generated by the cones of the projection maps Λtr(X ×B1)→
Λtr(X) by letting X vary in RigSm /K ′. In case K ′ is trivially valued, it will simply be
denoted with DMeff(K ′,Λ)
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Remark 2.12. Also the category RigDMeff(K ′,Λ) admits a presentation as a homotopy category
of a model category structure, analogous to the case of motives without transfers (Remark 2.7).

One can first consider the projective model structure on complexes ChPST(K ′,Λ). Its
homotopy category is the (unbounded) derived category D(Psh(C,Λ). Let S be the class of
maps containing all shifts of the the canonical arrows Λtr(X × I)→ Λtr(X), Λtr(U)→ Λtr(X)
for any smooth variety X and any ét-hypercover U of it. The left Bousfield localisation of the
projective model structure over S is well defined, and its homotopy category coincides with
RigDMeff(K ′,Λ). The interested reader can find all the details in [6].

This presentation of motives as homotopy categories of a Quillen model structure equip them
with a natural structure of a tensor DG-category, not merely of a a triangulated category. We
remark that the tensor product Λtr(X)⊗ Λtr(Y ) is isomorphic to Λtr(X × Y ).

Adding correspondences or not makes no difference in our context aso soon as Q ⊂ Λ thanks
to the following fact (which is classical in a vast list of situations, see [4, Appendix B] and the
other references of [19]).

Theorem 2.13 ([19]). Under Assumption 2.1 and the hypothesis that Λ is a Q-algebra, there
are canonical triangulated, monoidal (Quillen) equivalences

DAeff
Frobét(k,Λ) ∼= DMeff

ét (k,Λ) RigDAeff
Frobét(K,Λ) ∼= RigDMeff

ét (K,Λ)

Remark 2.14. The canonical functor appearing in the theorem above is the derived functor Latr

induced by the canonical inclusion Sm /K → RigCor /K.

We now list the adjoint pairs that link the various categories of motives we introduced above.
They are all defined thanks to the functoriality of the very definition of motives.

Theorem 2.15. (1) The inclusions ι : Sm /k → sPerfSm /k resp. ι : FormSm /K◦ →
sPerfSm /K◦ resp. ι : RigSm /K → sPerfSm /K induce the following (Quillen) trian-
gulated adjunctions, whose left adjoint is monoidal:

Lι∗ : DAeff(k,Λ) � sPerfDAeff(k,Λ) :Rι∗

Lι∗ : FormDAeff(K◦,Λ) � sPerfDAeff(K◦,Λ) :Rι∗
Lι∗ : RigDAeff(K,Λ) � sPerfDAeff(K,Λ) :Rι∗

(2) Let κ be in {k,K◦, K}. We let Î be Â1
k, B̂1 or B̂1 accordingly. The canonical inclusion

j : PerfSm /κ→ sPerfSm /κ induces the following (Quillen) triangulated adjunction,
whose left adjoint is monoidal:

Lj∗ : PerfDAeff(κ,Λ) � sPerfDAeff
Î

(κ,Λ) :Rj∗

Proof. We use the definition of motives as homotopy categories given in Remark 2.7. The fact
that the maps of topoi induce such Quillen adjunctions follows formally from the functoriality
of the construction of motives, and the isomorphisms ιA1 ∼= A1, ιB1 ∼= B1, ιB1 ∼= B1, jÎ ∼= Î .
Monoidality follows from the formulas ι(X × Y ) ∼= ιX × ιY and j(X × Y ) ∼= jX × jY . �

Theorem 2.16. (1) The maps of topoi (−)σ considered in Proposition 2.5 induce the fol-
lowing (Quillen) monoidal, triangulated equivalences:

L(·)∗σ : sPerfDAeff(K◦,Λ) � sPerfDAeff(k,Λ) :R(·)σ∗

L(·)∗σ : PerfDAeff(K◦,Λ) � PerfDAeff(k,Λ) :R(·)σ∗
L(·)∗σ : FormDAeff(K◦,Λ) � DAeff(k,Λ) :R(·)σ∗

7



(2) The map of topoi (−)η induce the following (Quillen) triangulated adjunctions, whose
left adjoint is monoidal:

L(·)∗η : sPerfDAeff(K◦,Λ) � sPerfDAeff(K,Λ) :R(·)η∗

L(·)∗η : PerfDAeff(K◦,Λ) � PerfDAeff(K,Λ) :R(·)η∗

L(·)∗η : FormDAeff(K◦,Λ) � RigDAeff(K,Λ) :R(·)η∗
Proof. We again use the definition of motives as homotopy categories given in Remark 2.7.
The fact that the maps of topoi induce such Quillen adjunctions follows formally from the
functoriality of the construction of motives, and the isomorphisms (B1)η ∼= B1, (B̂1)η ∼= B̂1,
(B1)σ ∼= A1, (B̂1)σ ∼= Â1. Monoidality follows formally from the formulas (X×Y)η ∼= Xη×Yη

and (X×Y)σ ∼= Xσ×Yσ. We are left to prove that the each adjunction of the first set is actually
an equivalence.

To this aim, it suffices to adapt the proof of [6, Proposition 1.4.21(2)] to the (semi-)perfectoid
setting, and then use the argument given in [6, Corollary 1.4.24]. In our situation, following the
notations of [6, Proposition 1.4.21(2)], it is sufficient to consider the case where X = lim←−Xh

is an affinoid semi-perfectoid space over K◦ (see the notations in Definition 2.4) and Z is its
special fiber (when considering a closed immersion Z = Xσ → X′σ = lim←−X′hσ for Step 3 of
the proof of [6, Proposition 1.4.21] we can take the normal bundle of the associated closed
immersion Z0 → X′0σ as each X′h+1σ → X′hσ is a universal homeomorphism). �

Remark 2.17. In particular, we obtain the following monoidal, triangulated left adjoint functors

ξ := L(·)∗ηR(·)σ∗ : sPerfDAeff(k,Λ)−→ sPerfDAeff(K,Λ)

ξ := L(·)∗ηR(·)σ∗ : PerfDAeff(k,Λ)−→PerfDAeff(K,Λ)

ξ := L(·)∗ηR(·)σ∗ : DAeff(k,Λ)−→RigDAeff(K,Λ)

whose right adjoints L(·)∗σR(·)η∗ will be typically denoted by χ.

Corollary 2.18. Let K be a perfectoid field of positive characteristic. The functor R(·)σ∗ is
canonically isomorphic to L(·×̂Spec k Spf K◦). In particular, the motive Λ(X) is canonically
isomorphic to Λ(X̄×̂Spec k Spf K◦).

Proof. Since R(−)σ∗ is an inverse of L(−)∗σ it suffices to prove that for any object X̄ in
sPerfSm /k the motive L(−)∗σΛ(X̄×̂Spec k Spf K◦) is isomorphic to Λ(X̄) which is clear. �

We complete the list of natural functors of motives with the ones induced by the analytification
procedure considered in [6].

Theorem 2.19 ([6, Proposition 1.4.14]). The functor associating to an algebraic varietyX its an-
alytification Xan (see [6, Section 1.1.3]) induces the following (Quillen) monoidal, triangulated
adjunction:

LRig∗ : DAeff(K,Λ) � RigDAeff(K,Λ) :RRig∗

3. THE COMMUTATIVITY

In this section we still assume that K is a perfectoid field with residue k (see Assumpion 2.1).
From now on, we also fix a section k → K[◦ and we assume that Q ⊂ Λ.

We can rephrase Scholze’s tilting equivalence in motivic terms by saying that the categories
PerfDAeff(K,Λ) and PerfDAeff(K[,Λ) are equivalent. In [17] we descended this result to
the rigid analytic situation, by proving the following:
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Theorem 3.1 ([17]). Let K be a perfectoid field. There is a canonical monoidal, triangulated
equivalence

G = Rj∗ ◦ Lι∗ : RigDAeff
Frobét(K,Λ) ∼= PerfDAeff(K,Λ).

In particular, for any perfectoid field K of mixed characteristic, we obtain a canonical monoidal,
triangulated equivalence

GK,K[ : RigDAeff(K,Λ) ∼= RigDAeff
Frobét(K

[,Λ).

Since the residue field k of K coincides with the one of K[ we get by Remark 2.17 two
functors

ξ : DAeff(k,Λ)
R(·)σ∗−→
∼

FormDAeff(K◦,Λ)
L(·)∗η−→ RigDAeff(K,Λ)

ξ[ : DAeff(k,Λ)
R(·)σ∗−→
∼

FormDAeff(K[◦,Λ)
L(·)∗η−→ RigDAeff(K[,Λ)

whose right adjoints will be denoted by χ and χ[ respectively.
The aim of this section is to prove that they are compatible with the tilting equivalence. In

other words, we want to prove the following result.

Theorem 3.2. The following diagram is commutative, up to an invertible natural transformation.

DMeff(k,Λ)
ξ

vv

ξ[

((

RigDMeff(K,Λ) oo
∼

G
K,K[

// RigDMeff(K[,Λ)

Remark 3.3. The theorem is equivalent to the commutation of the adjoint diagram, whose sides
are χ and χ[. It is also equivalent to the version with the categories without transfers (see Theo-
rem 2.13). We will then consider the analogous diagram with DAeff

Frobét(k,Λ), RigDAeff(K,Λ)
and RigDAeff

Frobét(K
[,Λ) in the proof.

We point out that the functor ξ[ : DAeff(k,Λ) → RigDAeff(K[,Λ) takes a particularly
explicit form. Recall that we have chosen a section k → K[◦

Definition 3.4 ([6, Section 2.5]). Let X̄ = Spec Ā be a smooth affine scheme over k. We let
Qrig(X̄) be the rigid variety Xη where X is the formal scheme associated to the completion of
Ā×k K[◦.

Proposition 3.5. The functor ξ[ : DAeff(k,Λ)→ RigDAeff(K[,Λ) is canonically isomorphic
to the functor L(Rig ◦(· ×K[))∗ and to the (Quillen) functor induced by Qrig(·).

Proof. The two last functors are canonically equivalent, as shown in [6, Lemma 2.5.59].
From the canonical isomorphism (X̄ ×k K[◦)σ ∼= X̄ we deduce that L(· ×k K[◦) is a right

inverse for L(·)∗σ and therefore coincides canonically with R(·)σ∗ by Theorem 2.16, and we
obtain the claim. �

The commutativity stated in Theorem 3.2 will be reached by combining the two following
propositions.

Theorem 3.6. Let K be a perfectoid field. The functors ι and j induce a commutative diagram
of left adjoint functors

DAeff
Frobét(k,Λ)

ξ
��

Lι∗
// sPerfDAeff

Â1(k,Λ)

ξ
��

PerfDAeff(k,Λ)
Lj∗
oo

ξ
��

RigDAeff
Frobét(K,Λ)

Lι∗
// sPerfDAeff

B̂1(K,Λ) PerfDAeff(K,Λ)
Lj∗
oo
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which has the following extra properties:

(1) The compositions Rj∗Lι∗ defined on the two lines are monoidal, triangulated equiv-
alences of categories. On the first line, the functor Rj∗Lι∗ is canonically isomorphic
to LPerf∗. If charK = p the functor G = Rj∗Lι∗ on the second line is canonically
isomorphic to LPerf∗ as well.

(2) There is a natural transformation ξ ◦ Rj∗ ⇒ Rj∗ ◦ ξ and an invertible transformation
ξ ◦ Lι∗ ∼⇒ Lι∗ ◦ ξ.

(3) The natural transformation ξ ◦ LPerf∗ ∼= ξ ◦ Rj∗ ◦ Lι∗ ⇒ Rj∗ ◦ Lι∗ ◦ ξ is invertible.

Proof. We can reproduce the proofs of [17, Proposition 6.8 and Theorem 6.9] for the case of a
trivial valuation (in which case the proofs are simplified) in order to obtain the following facts:

(i) The functor Lι∗ restricts to a functor DAeff
Frobét(k,Λ)→ sPerfDAeff

Â1(k,Λ).
(ii) The composition Rj∗Lι∗ is canonically equivalent to LPerf∗ and restricts to a monoidal,

triangulated equivalence of categories DAFrobét(k,Λ) ∼= PerfDA(k,Λ).

The facts above prove the first claim. The commutativity of the diagram in the statement follows
easily from the following commutative diagram, where we omit Λ for brevity.

DAeff
ét (k)

Lι∗
// sPerfDAeff(k) // sPerfDAeff

Â1(k) PerfDAeff(k)oo
Lj∗
oo

FormDAeff
ét (K◦)

Lι∗
//

��

∼

OO

sPerfDAeff(K◦)

��

∼

OO

// sPerfDAeff
B̂1(K

◦)

��

∼
OO

PerfDAeff(K◦)oo
Lj∗
oo

��

∼

OO

RigDAeff
ét (K)

Lι∗
// sPerfDAeff(K) // sPerfDAeff

B̂1(K) PerfDAeff(K)
Lj∗
oo

From the diagram above, we also deduce that for the second claim, it is sufficient to pro-
vide a natural transformation L(·)∗ηRj∗ ⇒ Rj∗L(·)∗η and an invertible natural transformation
L(·)∗ηLι∗ ∼= Lι∗L(·)∗η . The latter follows from the commutation between the functors (·)η and ι.
The former can be obtained by adjunction from the transformation:

Lj∗ ◦ L(·)∗η ◦ Rj∗ ∼= L(·)∗η ◦ Lj∗ ◦ Rj∗ ⇒ L(·)∗η.

We now prove the last point. In case charK = p it boils down to the commutation between
Perf and the base change thanks to assertion in (1).

We then assume charK = 0. In order to prove that a natural transformation is invertible, it
suffices to test it on a specific set of generators of the category DAeff

Frobét(k,Λ) such as motives
M = Λ(Xσ) associated to special fibers of formal schemes X endowed with an étale map over
TN . We now fix such an X.

By means of Theorem 2.16 we have that R(·)σ∗M ∼= Λ(X). Similarly, since (X×TN T̂N)σ ∼=
XPerf
σ we deduce that R(·)σ∗Λ(XPerf

σ ) ∼= Λ(X ×TN T̂N)). We then conclude the following
sequence of isomorphisms:

ξ∗LPerf∗M ∼= L(·)∗ηR(·)σ∗Λ(XPerf
σ ) ∼= L(·)∗ηΛ(X×TN T̂N)) ∼= Λ(Xη ×TN T̂N).

This object is isomorphic, by means of the transformation above, to

Rj∗Lι∗ξM ∼= Rj∗Lι∗L(·)∗ηR(·)σ∗M ∼= GΛ(Xη)

as shown in [17, Proposition 5.4 and Corollary 7.15]. �
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Proposition 3.7. The following diagram is commutative, up to a canonical transformation.

PerfDAeff(k,Λ)
ξ

uu

ξ[

))

PerfDAeff(K,Λ) oo
∼

// PerfDAeff(K[,Λ)

Proof. We consider the following diagram

PerfDAeff(k,Λ)

PerfDAeff(K◦,Λ)

L(·)∗η
��

∼
L(·)∗σ

55

[
// PerfDAeff(K[◦,Λ)

∼
L(·)∗σ

ii

L(·)∗η
��

PerfDAeff(K,Λ) oo
∼

// PerfDAeff(K[,Λ)

where the functor [ is induced by A 7→ A[ = lim←−A/p. It sends smooth perfectoid formal
affinoid spaces over K◦ to the same objects over K[◦ and preserves the étale topology.

By definition, this functor makes the triangle as well as the rectangle of the diagram commute.
On the other hand, since the two sides of the triangle are equivalences, we deduce that it also is.

We conclude that there is an invertible natural transformation from ξ to ξ[ as wanted. �

Proof of Theorem 3.2. We combine the diagrams of Theorem 3.6 forK andK[ with the diagram
of Proposition 3.7 obtaining the following (we can assume charK = 0 and we omit Λ):

DAeff
Frobét(k)

��

LPerf∗

∼
//

id

))

PerfDAeff(k)

��

PerfDAeff(k)

��

DAeff
Frobét(k)

��

LPerf∗

∼
oo

RigDAeff(K)
∼
//

G
K,K[

55
PerfDAeff(K) PerfDAeff(K[)//

∼
oo RigDAeff

Frobét(K
[)

∼
oo

�

As stated in the introduction, this commutativity gives an explicit formula for tilting motives
of varieties of good reduction.

Corollary 3.8. Let M be in FormDAeff(K◦,Λ). The tilt of the motive L(·)∗ηM is the motive
L(·×̂Spec k SpaK[)L(·)∗σM . In particular, the tilt of the motive Λ(Xη) of a rigid analytic variety
of good reduction is the motive associated to Xσ ×k SpaK[ that is, the analytification of the
special fiber base-changed to K[. It is also isomorphic to the motive of Qrig(Xσ).

Proof. By Theorem 2.16 the motive L(·)∗ηM is canonically isomorphic to ξL(·)∗σM and hence
its tilt is isomorphic to ξ[L(·)∗σM by Theorem 3.2. The statement follows from the explicit
description of ξ[ given in Proposition 3.5. �

We conclude this section by mentioning the stable version of Theorem 3.2. By formally
inverting the Tate shift Λ(1) it is possible to define the categories DM(k,Λ) and RigDM(K,Λ).
We refer to [6, Definition 2.5.27] for their formal definition. Under the assumption Q ⊂ Λ
these categories fully faithfully contain the effective categories of motives DMeff(k,Λ) and

11



RigDMeff(K,Λ) (see [6, 2.5.49]) and are generated (as triangulated categories with small
sums) by the Tate twists of effective motives.

Also in the stable setting, adding transfers or not makes no difference [1, Appendix B] as long
as we consider the Frobét-topology and the ring of coefficients Λ contains Q in the rigid setting
[19]. We can therefore write alternatively DA(K,Λ) or DM(K,Λ), RigDAFrobét(K,Λ) or
RigDM(K,Λ).

Corollary 3.9. The following diagram is commutative, up to a natural transformation, and
extends the triangle of Theorem 3.2.

DM(k,Λ)
ξ

vv

ξ[

((

RigDM(K,Λ) oo
∼
G′

// RigDM(K[,Λ)

Proof. The diagrams and the natural transformations of Theorems 3.6 and 3.7 can be constructed
also for stable motives, since the left Quillen functors which appear there preserve the Tate shift.
We can then adopt the same strategy as in the proof of Theorem 3.2: in order to prove that a
natural transformation of functors between stable motives is invertible, it is sufficient to test it on
Tate twists of effective ones. As the functors involved preserve the Tate twist, the result follows
from the check made in Theorem 3.2. �

4. DE RHAM COHOMOLOGY OVER LOCAL FIELDS OF POSITIVE CHARACTERISTIC

Suppose that K is a complete non-archimedean field of characteristic 0. In [18] we proved
that the overconvergent de Rham cohomology of rigid analytic varieties over K is represented
by a motive of RigDAeff(K,Λ). We briefly recall here its construction. We can consider the
complex of overconvergent differential forms Ω† which is a complex of presheaves on smooth
dagger varieties. It induces an object of the category of dagger motives RigDA† eff(K,Λ) when
K ⊂ Λ and hence a motive of RigDMeff(K,Λ) by means of the canonical equivalence

Ll∗ : RigDA† eff(K,Λ) ∼= RigDAeff(K,Λ) ∼= RigDMeff(K,Λ).

By abuse of notation, we will still denote the motive Ll∗Ω† by Ω†.

Remark 4.1. We show in [18] that the induced cohomology theory defined on DM(k,Λ) via the
functor ξ : DM(k,Λ) → RigDM(K,Λ) and the complex Ω† is the usual rigid cohomology.
We remark that by functoriality of this construction and the fact that the relative Frobenius is
invertible in DM(k,Λ) (see [19] for example) this cohomology theory gains automatically a
canonical action of Frobenius in case k is a finite field. The same fact holds for formal motives,
and formal perfectoid motives, beacuse of the equivalences FormDA(K◦,Λ) ∼= DA(k,Λ) ∼=
PerfDA(K◦,Λ).

We now suppose that K is perfectoid. By using the rigid analytic tilting equivalence, the
motive Ω† represents a cohomology theory also on rigid analytic varieties over K[ as well as on
(locally small) smooth perfectoid spaces over K (or K[). We now list the formal properties of
such cohomology theories, and their relationship with rigid cohomology of the special fibers, in
light of the results of Section 3.

Definition 4.2. Let K ′ be a perfectoid field of any characteristic, and let K be an untilt of K ′[

of mixed characteristic. Put Λ = K. Let

GK′,K : RigDMeff(K ′,Λ)
∼→ RigDMeff(K ′[,Λ)

∼← RigDMeff(K,Λ)
12



be the canonical motivic tilting equivalence from rigid motives over K ′ to the ones over K. The
K-de Rham (overconvergent) cohomology H i

dR(M,K) of a rigid analytic motive M over K ′ is
the overconvergent de Rham cohomology of the motive GK′,KM .

Let now M be an algebraic motive in DMeff(K ′,Λ). The K-de Rham (overconvergent)
cohomology H i

dR(M,K) of M is the K-de Rham cohomology of the motive LRig∗M .

Remark 4.3. The above definition specializes obviously to the following objects:
(1) Smooth rigid analytic varietiesX over (any valued subfield of)K ′[: it suffices to consider

M = Λ(X).
(2) Arbitrary quasi-projective algebraic varieties X over (any subfield of) K ′[: it suffices to

consider M = LRig∗ Λ(X). If X is smooth, this motive is Λ(Xan).

Remark 4.4. If K has mixed characteristic, the K-de Rham cohomology over RigDMeff(K,Λ)
coincides with the usual overconvergent de Rham cohomology, and hence the the K-de Rham
cohomology over DMeff(K,Λ) is the usual algebraic de Rham cohomology with coefficients in
K.

Remark 4.5. In general, the K-de Rham overconvergent cohomology of algebraic varieties over
K[ does not coincide with rigid cohomology: indeed, its coefficients lie in K which is way
“smaller” than a non-archimedean field with residue K[. We also point out that the topology of
K[ plays a crucial role in this definition, as it is not considered merely as an abstract field (the
tilting equivalence is used crucially in the construction).

Definition 4.6. An object X of a triangulated category with small sums T is compact if for any
small collection {Yi} of objects in T one has

Hom(X,
⊕

Yi) ∼=
⊕

Hom(X, Yi).

Example 4.7. The motive Λ(X) of a quasi-compact smooth variety X over K is compact in
RigDAeff(K,Λ) (see [6, Proposition 1.2.34]).

Proposition 4.8. The K-de Rham cohomology H i
dR(M,K) satisfies the following properties:

(1) It is represented by the motive GK,K′Ω
† i.e. H i

dR(M,K) ∼= Hi Hom•(M,GK.K′Ω
†).

(2) If M is compact, then it is finite dimensional and equal to 0 for |i| � 0.
(3) It satisfies étale descent.
(4) It is homotopy-invariant.
(5) It is compatible with field extensions L′/K ′.
(6) It satisfies the Künneth formula on compact motives i.e.

Hn
dR(M ⊗N,K) ∼=

⊕
i+j=n

H i
dR(M,K)⊗Hj

dR(N,K)

for M,N compact.

Proof. By construction, it suffices to prove the statement for the K-de Rham cohomology of
analytic K-varieties, that is the overconvergent de Rham cohomology with coefficients in K.
All the properties above are proved in [18, Section 5]. �

Remark 4.9. By means of the equivalence PerfDA(K,Λ) ∼= RigDA(K,Λ) we can define a
K ′-de Rham cohomology for locally small perfectoid spaces (that is, perfectoid spaces which
are locally étale over the perfectoid ball) enjoying all the properties liste in Proposition 4.8.

The following corollary specifies how this cohomology theory is an extension of rigid
cohomology.
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Corollary 4.10. The K-de Rham cohomology of a rigid analytic variety X over K[ with good
reduction coincides with the rigid cohomology of its reduction X̄ with coefficients in K.

Proof. Let X be a smooth formal model of X . From Theorems 2.16 and 3.2 we obtain the
following isomrophisms:

GK[,KΛ(X) ∼= GK[,KL(·)∗ηΛ(X) ∼= GK[,KξL(·)∗σΛ(X) ∼= ξΛ(Xσ).

We already showed in [18] that the overconvergent de Rham cohomology of a motive of the
form ξM coincides with the rigid cohomology of M hence the claim. �

Remark 4.11. More generally, we proved that the K-de Rham cohomology of a rigid analytic
motive over K[ of the form L(·)∗ηM coincides with the rigid cohomology of its reduction
L(·)∗σM with coefficients in K.

The following corollary provides an alternative method to define and compute rigid cohomol-
ogy. In order to pass from the characteristic p side to the characteristic 0 side, we can either find
a formal model over a valuation ring of mixed characteristic and then consider its rigid analytic
generic fiber (this is the classic recipe of Monsky and Washnitzer) we can alternatively take the
perfection, and then use Scholze’s tilting, at the cost of enlarging the ring of coefficients. We
recall that the chosen section k → K[◦ induces a map k → K◦/p and hence a map W (k)→ K◦.

Corollary 4.12. Let k be the residue field of a perfectoid field K. Up to a base change along
W (k)[1/p]→ K, we can compute the rigid cohomology of a smooth variety X̄ over k as the
K-de Rham cohomology of X̄K[ .

Proof. It suffices to read the equivalence of Remark 4.11 backwards. �

Remark 4.13. In the above definition of a de Rham cohomology for X/K[ a choice of an untilt
of K[ is necessary. It is expected to “globalize” this definition and to associate to a variety
X/K[ a vector bundle over the Fargues-Fontaine curve related to K[ such that its stalk at a point
xK corresponding to an untilt K of K[ coincides with H i

dR(X,K).

5. ON A CONJECTURE OF AYOUB

Along this section, we make the following hypotheses. In particular, we no longer require K
to be perfectoid.

Assumption 5.1. We letK be a complete valued field with respect to a non-archimedean valuation
of rank 1. We let K◦ be its ring of integers and k its residue field, which we assume to have
characteristic p > 0. We also suppose that Λ is a Q-algebra.

In the final sections of [6] Ayoub proves a series of results on the relations between the cate-
gories of rigid motives RigDM(K,Λ) and some categories of motives defined over the residue
field k. The most striking result holds for K ∼= C((t)) where RigDM(K,Λ) is shown to embed
in DM(Gm,C,Λ). This fact allowed Ayoub to define a motivic version of the decomposition
Galois group as well as some important non-obvious applications ([5], [7] and [8]).

The case of positive residue characteristic is more delicate. An analogous, yet weaker,
statement for fields of the form k((t)) with char k = p is still proved in [6] and deals with rigid
analytic motives of good reduction. We now recall it, and prove its analogue in the mixed
characteristic case, which was conjectured by Ayoub. It is surely hoped to adapt the motivic
Galois group-theoretical machinery to this situation in order to produce some generalizations of
the consequences obtained in the equal characteristic 0 case.

Remark 5.2. In this section, we will consider complete valued fields which may not be perfect.
Therefore, we can not refer to Theorem 2.13. All our statements will be given in terms of
motives with transfers, even though in proofs, motives without transfers will also be used.
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Definition 5.3. We denote by RigDMeff,gr(K,Λ) [resp. RigDMgr(K,Λ)] the triangulated
subcategory of RigDMeff(K,Λ) [resp. RigDM(K,Λ)] closed by small sums generated by
[Tate twists of] motives of the form Λtr(Xη) with X a smooth affine formal scheme, topologically
of finite type over K◦. Their elements are called motives of good reduction.

Remark 5.4. Since the motives of the form Λtr(X) with X affine and smooth generate
FormDAeff(K◦,Λ) as a triangulated category with small sums, we deduce that the cate-
gory RigDMeff,gr(K,Λ) [resp. RigDMgr(K,Λ)] is equally generated by the motives of
the form Latr ◦ L(·)ηM with M in FormDAeff(K◦,Λ) [resp. in FormDA(K◦,Λ)] where
Latr : RigDAeff(K,Λ)→ RigDMeff(K,Λ) is the “adding transfers” functor, that is the (left
Quillen derived) functor induced by the inclusion RigSm /K → RigCor /K.

Remark 5.5. The category RigDMgr(K,Λ) is denoted by RigDMbr(K,Λ) in [6] according
to the French terminology bonne reduction.

Remark 5.6. Having a description of the category RigDMeff,gr(K,Λ) has important conse-
quences also for arbitrary compact motives in RigDMeff(K,Λ). Indeed, as shown in [6,
Theorem 2.5.34] any compact motive M is of good reduction, up to a finite extension K ′/K of
the base field.

Proposition 5.7. An object M of RigDMeff,gr(K,Λ) [resp. RigDMgr(K,Λ)] is compact if
and only if it is compact in the bigger category RigDMeff(K,Λ) [resp. RigDM(K,Λ)].

Proof. By [2, Theorem 2.1.24] we obtain that the triangulated subcategory of compact objects
in RigDMeff,gr(K,Λ) [resp. RigDMgr(K,Λ)] is generated by the [twists of] direct factors of
motives of the form Λtr(Xη) with X an affine smooth formal scheme. Such motives are also
compact in RigDMeff(K,Λ) hence the claim. �

Remark 5.8. Thanks to the previous proposition, the class of compact motives of RigDM(K,Λ)
which are also of good reduction coincide with the class of compact objects in the subcategory
RigDMgr(K,Λ) of motives of good reduction. We can then unambiguously refer to them as
“compact motives of good reduction”.

The following theorem by Ayoub amounts to a description of rigid motives of good reduction
in terms of algebraic motives over the residue field. We recall that Λ is supposed to be a
Q-algebra.

Definition 5.9. Let S be an algebraic variety over a field k and let Λ be a ring. We denote by
DM(S,Λ) [resp. DMeff(S,Λ)] the category of [effective] motives over S following Voevodsky.
We denote by UnDM(k,Λ) [resp. UnDMeff(k,Λ)] the triangulated subcategory with small
sums of DM(Gn

m,k,Λ) [resp. DMeff(Gn
m,k,Λ)] generated by [twists of] motives of the varieties

of the form Gn
m,X with X smooth over k.

Theorem 5.10 ([6, Theorem 2.5.57]). Let K be a complete valued field of equal characteristic,
with residue field k and a value group which is free of rank n over Z. Fix a section k → K◦ of the
reduction and some elements π1, . . . , πn of K◦ whose values generate |K×|. If the characteristic
of K is positive, we also suppose that k[π±1

1 , . . . , π±1
n ] is dense in K. The composite functors

UnDMeff(k,Λ) �
�

// DMeff(Gn
m,k,Λ)

(π1,...,πn)∗
// DMeff(K,Λ)

Rig∗
// RigDMeff(K,Λ)

UnDM(k,Λ) �
�

// DM(Gn
m,k,Λ)

(π1,...,πn)∗
// DM(K,Λ)

Rig∗
// RigDM(K,Λ)

take values in the subcategories of motives of good reduction, and induce monoidal, triangulated
equivalences

UnDMeff(k,Λ) ∼= RigDMeff,gr(K,Λ) UnDM(k,Λ) ∼= RigDMgr(K,Λ)
15



Remark 5.11. We point out that the fact above has important applications also for arbitrary
compact motives (not necessarily of good reduction). Indeed, following Remark 5.6 we deduce
that for any pair of compact motives M,M ′ we can calculate HomRigDM(K,Λ)(M,M ′) in terms
of the Galois-invariants in a Hom-group of DM(Gn

m,k′ ,Λ) for some finite Galois extension
K ′/K (here k′ is the residue field of K ′) see [6, Remark 2.5.71].

Remark 5.12. The previous result allows to compute the functor χ : RigDM(K,Λ) →
DM(k,Λ) on motives of good resuction in an alternative way, as the following composition:

RigDMgr(K,Λ) ∼= UnDM(k,Λ) ⊂ DM(Gm,k,Λ)
P∗→ DM(k,Λ)

with P : Gm,k → Spec k being the structure morphism. In particular χΛ ∼= Λ⊕ Λ(−1)[−2].

Ayoub conjectured that the last two equivalences of the theorem above still hold true in the
mixed characteristic case, under some technical hypotheses on K (see Assumption 5.14).

Our strategy is simple, and we first sketch it for the case of Qp (the general case will be proved
in Corollary 5.25). In this case, the conjecture takes the following form.

Theorem 5.13. There are triangulated, monoidal equivalences of categories

U1DMeff(Fp,Λ) ∼= RigDMeff,gr(Qp,Λ) U1DA(Fp,Λ) ∼= RigDMgr(Qp,Λ)

Let K̂ be the completion of the field Qp(µp∞). It is a perfectoid field with tilt K̂[ isomorphic
to the completion of Fp((t))(t1/p

∞
). This field is the perfection of K[ := Fp((t)) which is a field

that satisfies the assumptions of Theorem 5.10 and has the same residue field Fp as Qp. The
analogue of the theorem above for K = Qp will then be reached via the following diagram of
equivalences:

(1) RigDMgr(K,Λ)

∼
��

RigDMgr(K[,Λ)

∼
��

RigDMgr(K̂,Λ) oo
∼
// RigDMgr(K̂[,Λ)

We now introduce Ayoub’s conjecture for a general field K of mixed characteristic (not just
Qp). We recall that in the case of equal characteristic p we assumed that k[π±1

1 , . . . , π±1
n ] is

dense in K. Similarly, in the case of a mixed characteristic field we need to consider some
special assumptions on the valuation, that we list below:

Assumption 5.14. From now on, we fix a complete, non-archimedean field K over Qp with the
following extra properties:

(i) There are n elements π1, . . . , πn of K◦ with π1 algebraic over Qp such that the group |K×|
is free of rank n generated by the valuations of πi.

(ii) There is a complete discrete valued subfield K0 having π1 as uniformizer and the same
residue field k as K.

(iii) The ring K0[π±1
1 , . . . , π±1

n ] is dense in K.

Remark 5.15. Any finite field extension of Qp obviously satisfies Assumption 5.14.

In the case of Qp we introduced the intermediate, auxiliary fields Qp(p
1/p∞) and Fp((t)). We

now try to generalize this situation.

Definition 5.16. If charK = 0 we say K̂ is a [Galois] completed perfection of K if it is a
perfectoid field obtained as the completion of a [Galois] algebraic extension of K inducing
purely inseparable extensions of residue fields.
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Proposition 5.17. Let K satisfy Assumption 5.14. There exists a Galois completed perfection
K̂ of K and a complete valued field K[ of positive characteristic with the following properties:

(i) K̂ has a value group which is a free module over Z[1/p] of rank n.
(ii) K̂[ is the completed perfection of K[.

(iii) K[ has a free value group of rank n over Z and residue field k.
(iv) We can choose some elements π[1, . . . , π

[
n in K[ such that their values |π[i | generate the

value group, and such that the ring k[(π[i)
±1] is dense in K[.

Proof. Choose some representatives of a finite subset of k = K◦0/π1 in K0 and some p-th roots
of them in a complete algebraic closure C of K. The extensions of K and K0 generated by
these elements satisfy Assumption 5.14 with respect to the same elements πi and the same
value group, and they induce a finite purely inseparable map on the residue fields. With a direct
limit process, we obtain a pair (F, F0) which is algebraic over (K,K0) and whose completion
satisfies Assumption 5.14 with the same value group of K and residue field isomorphic to kPerf .

We now take L to be the completion of F (µp∞). It is the completion of a Galois extension
over K and its subfield L0 := K0(µp∞)∧ is perfectoid, with tilt isomorphic to kperf((t))(t1/p

∞
)∧

and value group isomorphic to Z[1/p] generated by the valuation of π̃1 := t].
We finally consider K̂ to be the completion of L(π

1/p∞

2 . . . , π
1/p∞
n ) for a choice of compatible

p-th roots of each πi with i > 1. Its value group is free over Z[1/p] generated by the values
of π̃1 and the πi’s with i > 1. In order to prove that it is perfectoid, it suffices to show that
the Frobenius is surjective on the ring K̂◦/π1 which by density coincides with L0[π

±1/p∞

i ]◦/π̃1.
This follows from the fact that L◦0/π̃1 is perfect, and any element of the ring L0[π

±1/p∞

i ]◦ is a
sum of terms of the form uπ̃q11 π

q2
2 · . . . · πqnn with u ∈ L◦×0 and qi ∈ Z[1/p]. Also the field K̂ is

the completion of a Galois extension over K.
We now put K[ to be the completion of the subfield k(π[1, . . . , π

[
n) of K̂[ where π[1 = t and

the other elements π[i are chosen to satisfy |π[]i | = |πi|. In particular, the values |π[i | generate the
value group of K[ which is a free Z-module of rank n and the residue field of K[ is k.

In order to see that the completed perfection of K[ coincides with K̂[ it suffices to show that
kPerf [(π[i)

±1/p∞ ]◦ is dense in K̂[◦ i.e. that for any n and any λ ∈ K̂[◦ there exists an element
ξ ∈ kPerf [(π[i)

±1/p∞ ]◦ such that λ − ξ ∈ π[n1 K̂[◦. By induction on n it suffices to prove this
statement for n = 1. We obtain the following isomorphisms:

kPerf [(π[i)
±1/p∞ ]◦i≥1/π

[
1
∼= L0[π

±1/p∞

i ]◦i≥2/π̃1
∼= K̂◦/π̃1

∼= K̂[◦/π[1

proving our claim. �

We start by proving that the tilting equivalence respect motives of good reduction: that is,
we prove the bottom horizontal equivalence of the diagram (1). In order to do this, we use the
results of the previous sections.

Proposition 5.18. Let K̂ be a perfectoid field. The motivic tilting equivalence of Theorem 3.1
restricts to equivalences

RigDMeff,gr(K̂,Λ) ∼= RigDMeff,gr(K̂[,Λ) RigDMgr(K̂,Λ) ∼= RigDMgr(K̂[,Λ)

Proof. It suffices to show that motives of the form L(·)ηM are sent by G to motives of the same
form, in the two directions.
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This follows from the following commutative diagram (up to a natural transformation) which
appears in Theorem 3.2.

DAeff(k,Λ) FormDAeff(K◦,Λ)
∼
oo

L(·)η
// RigDAeff(K,Λ) ∼= RigDMeff(K,Λ)

∼
��

DAeff(k,Λ) FormDAeff(K[◦,Λ)
∼
oo

L(·)η
// RigDAeff

Frobét(K
[,Λ) ∼= RigDMeff(K[,Λ)

�

We now show how to obtain the right vertical equivalence of the diagram (1).

Proposition 5.19. Suppose charK = p and let K̂ be its completed perfection. The base-change
functor (K̂/K)∗ induces triangulated, monoidal equivalences:

RigDMeff(K,Λ) ∼= RigDMeff(K̂,Λ) RigDM(K,Λ) ∼= RigDM(K̂,Λ).

These equivalences restrict to the subcategories of motives of good reduction.

Proof. Write K̂ as a completion of the direct limit of some finite, purely inseparable extensions
of K. It suffices to show the equivalence for compact motives, which follows from Lemmas
5.21 and 5.23 and the remark that any finite, purely inseparable extension K ′/K induces
an equivalence RigDMeff(K ′,Λ) ∼= RigDMeff(K,Λ) (see [6, Proposition 2.2.22]). This
equivalence preserves motives of good reduction as one can see from the following commutative
diagram, where we set k′ to be the residue field of K ′ which is totally unramified over k.

(2) DM(k) ∼= DA(k)

∼
��

FormDA(K◦)
∼

oo
L(·)η

//

(K′◦/K◦)∗

��

RigDA(K)
Latr

// RigDM(K)

(K′/K)∗

��

DM(k′) ∼= DA(k′) FormDA(K ′◦)
∼
oo

L(·)η
// RigDA(K ′)

Latr
// RigDM(K ′)

�

Remark 5.20. We point out that Proposition 5.19 is the motivic version of the well known
isomorphism between the absolute Galois group of a field of characteristic p and the one of its
completed perfection.

The lemmas below were used in the previous proof.

Lemma 5.21. If charK = p we let K̂ be its completed perfection obtained by completing the
directed set of Frobenius maps Ki ⊂ Ki+1. If charK = 0 we fix a completion C of some
algebraic closure of K and we let K̂ ⊂ C be the completion of the union lim−→Kh of a small
directed system of inclusions Kh ⊂ Kh′ of complete subfields.

We obtain the following canonical triangulated, monoidal equivalences:

RigDMeff(K̂,Λ) ∼= RigDMeff(2− lim−→
i

RigSm /Ki,Λ)

RigDM(K̂,Λ) ∼= RigDM(2− lim−→
i

RigSm /Ki,Λ)

where the categories on the right are constructed by (ét,B1)-localization out of the étale site on
the limit category defined by the base change functors RigSm /Ki → RigSm /Ki+1.
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Proof. We only prove the statement for the effective category, for brevity. First, we remark that
motives Λ(X) associated to varieties defined over some Kh form a set of compact generators
of RigDMeff(K̂,Λ). Indeed, every smooth variety X is locally étale over the ball Bn

K̂
and

therefore it locally admits a model over some Kh by density and [6, Lemma 1.1.52].
For the same reason, any ét-covering of such an X can be refined with a covering coming

from 2 − lim−→RigSm /Kh. We deduce that the functor ι∗ coming from the following Quillen
adjunction

ι∗ : ChPshét,B1(2− lim−→RigSm /Ki,Λ) � ChPshét,B1(RigSm /K̂,Λ): ι∗

commutes with ét-sheafification and hence preserves τét-weak equivalences. Since it also
commutes with SingB1

we deduce it derives trivially.
We now prove that Lι∗ is fully faithful on a set of generators, say varieties X with an étale

map over a poly-disc Bn defined over some Kh. From Lemma 5.22 and following exactly the
same proof as [17, Proposition 4.2] or [18, Proposition 4.22] we obtain that for any smooth
affinoid varieties X, Y which are étale over some poly-discs over K the canonical map

NΛ Hom2−lim−→RigSm /Ki(YKi ×�•Ki , XKi)→ NΛ HomRigSm /K̂(YK̂ ×�•
K̂
, XK̂)

is a quasi-isomorphism. In other words, we obtain an isomorphism in the derived cate-
gory SingB1

ι∗Lι∗Λ(X) ∼= SingB1

Λ(X) which implies ι∗Lι∗Λ(X) ∼= Λ(X). It follows
that (ι∗, ι∗) is a Quillen equivalence. We conclude that RigDAeff

ét (2 − lim−→RigSm /Ki,Λ) ∼=
RigDAeff

ét (K̂,Λ).
To promote the equivalence to motives with transfers RigDM we use the adjunctions

Latr : RigDA(K,Λ) � RigDM(K,Λ): Rotr

Latr : RigDA(2− lim−→RigSm /Ki,Λ) � RigDM(2− lim−→RigSm /Ki,Λ): Rotr

induced by the “adding transfers” operation. By the results of [19] these adjunctions can also be
interpreted as Bousfield localizations over the relative Frobenius maps, and therefore preserve
the Quillen equivalence of the statement ([14, Proposition 2.3]). �

Lemma 5.22. Under the same hypotheses of Lemma 5.21, we let X = SpaR be a smooth
affinoid variety overK and we denoteRh := R⊗Kh. Any element ξ ofR⊗̂K̂ which is algebraic
separable over each generic point of Spec lim−→Rh lies in lim−→Rh.

Proof. The proof is a simplified version of [17, Proposition A.3] which we reproduce here
briefly for the convenience of the reader.
Step 1. We prove that we can restrict to an arbitrary non-empty rational subset U(fi|g) of SpaR.
Fix a countable set I of linearly independent elements in R generating a dense subset, and
complete it to a countable set ItJ of linearly independent elements inR〈fi|g〉 generating a dense
subset. By [10, Proposition 2.7.1/3] we can choose I and J in a way that the projection maps
induce K-linear homeomorphisms R ∼=

⊕̂
IK and R〈fi|g〉 ∼=

⊕̂
ItJK. Suppose now that ξ lies

in the intersection ofR〈fi|g〉 ∼=
⊕̂

ItJK andR⊗̂K̂ ∼=
⊕̂

IK̂ insideR〈fi|g〉⊗̂K̂ ∼=
⊕̂

ItJK̂. By
the explicit description of the complete direct sum in terms of the direct product [10, Proposition
2.1.5/7] we deduce that ξ lies in

⊕̂
IK
∼= R as wanted.

Step 2. By the previous step we can make the following assumptions. The details are made
explicit in [17].

(1) ξ is algebraic over R.
(2) The sup-norm is multiplicative on R, lim−→Rh, R⊗̂K̂, R[ξ].
(3) The sup-norm on R[ξ] coincides with the norm induced by its inclusion in R⊗̂K̂.
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Step 3. Let {ξi} be the conjugates of ξ different from ξ in the separable closure S of the
completion of FracR⊗̂K̂ with respect to the sup-norm. We want to prove that this set is empty
and we argue by contradiction. By a density argument and by the identity of norms of the
previous step, we can fix an element β in lim−→Rh such that |ξ − β| < ε := min{|ξi − ξ|} where
we consider the sup-norm in S. It restricts to the sup-norm on R by [10, Lemma 3.8.1/6]. Up
to rescaling indexes, we can assume β ∈ R. Any choice of an element ξi induces a R-linear
isomorphism τi : R[ξ] ∼= R[ξi] which is an isometry with respect to the sup-norm. Therefore
one has

|ξ − ξi| ≤ max{|ξ − β|, |ξi − β|} = max{|ξ − β|, |τi(ξ − β)|} = |ξ − β| < ε

leading to a contradiction. �

Lemma 5.23. Fix a directed system of strict inclusions of complete valued fields Ki. The
canonical functors induce equivalences

RigDMeff,cp(2− lim−→RigSm /Ki,Λ) ∼= 2− lim−→RigDMeff,cp(Ki,Λ)

RigDMcp(2− lim−→RigSm /Ki,Λ) ∼= 2− lim−→RigDMcp(Ki,Λ)

Proof. We let ιij be the base change functors RigSm /Ki → RigSm /Kj induced by the arrows
of the directed system, and ιi be the one induced by RigSm /Ki → lim−→RigSm /Ki.

Fix an index 0 of the directed system. It suffices to prove that for any two motives M,N in a
set of generators for RigDM(K0,Λ) the following isomorphism holds

lim−→HomRigDM(Ki,Λ)(Lι∗0iM,Lι∗0iN) ∼= HomRigDM(lim−→RigSm /Ki,Λ)(Lι∗0M,Lι∗0N).

We can finally conclude by means of [6, Proposition 1.A.1] to be adapted to the rigid analytic
setting with transfers (see [6, Proof of Proposition 2.5.52]). �

We finally show how to obtain the left vertical equivalence of the diagram (1). We will again
use the main result of the previous sections.

Proposition 5.24. Suppose K satisfies Assumption 5.14 and let K̂ be a Galois completed
perfection of K constructed in Proposition 5.17. The base-change functor (K̂/K)∗ induces
triangulated, monoidal equivalences:

RigDMeff,gr(K,Λ) ∼= RigDMeff,gr(K̂,Λ) RigDMgr(K,Λ) ∼= RigDMgr(K̂,Λ).

Proof. We only prove the stable version of the statement for brevity. The category
RigDMgr(K,Λ) is generated, as a triangulated category with small sums, by the mo-
tives associated to smooth affinoid varieties of good reduction, which are compact. In particular,
we deduce that it suffices to show that the subcategories of compact objects (see Proposition
5.7) RigDMcp,gr(K̂,Λ) and RigDMcp,gr(K,Λ) are equivalent.

Suppose that K̂ is the completion of a Galois extension L/K inducing a purely inseparable
extension of residue fields. We can write L as a union lim−→Kh of finite algebraic extensions
Kh/K in a fixed algebraic closure containing K̂. We denote by k̂ the residue field of K̂ which
is the union of the residue fields kh of each Kh.

Let X be a formal scheme over K̂◦ which is étale over Bn. From [13, Theorem 18.1.2] and
the equality k̂ ∼= lim−→ kh we deduce the following equivalences of categories:

Et Aff /Bn
K̂◦
∼= Et Aff /An

k̂
∼= 2− lim−→

h

Et Aff /An
kh
∼= 2− lim−→

h

Et Aff /Bn
K◦h

so that X has a model over some K◦h. In particular, we obtain that Λ(Xη)(n) lies in the
triangulated category generated by the image of 2 − lim−→h

RigDMcp,gr(Kh,Λ). On the other
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hand, the set of motives of the form Λ(Xη)(n) generate the category RigDMcp,gr(K̂,Λ). We
then deduce from Lemmas 5.21 and 5.23 the following equivalence:

2− lim−→
h

RigDMcp,gr(Kh,Λ) ∼= RigDMcp,gr(K̂,Λ).

From the diagram (2) we deduce that each functor RigDMcp,gr(K,Λ)→ RigDMcp,gr(Kh,Λ)
sends a set of generators to a set of generators. From the previous equivalence, we then conclude
that the functor RigDMcp,gr(K,Λ)→ RigDMcp,gr(K̂,Λ) also sends a set of generators to a
set of generators. We now prove it is also fully faithful. To this aim, since all compact objects in
RigDMgr(K,Λ) are dualizable, it suffices to prove that

HomRigDM(K)(L(·)∗ηM,Λ) ∼= HomRigDM(K̂)(L(·)∗ηMK̂◦ ,Λ)

for each M in FormDAcp(K◦). From Lemma 5.21 the right hand side can be computed in the
category RigDM(lim−→RigSm /Kh) and by Galois descent we deduce

HomRigDM(K)(L(·)∗ηM,Λ) ∼= HomRigDM(K̂)(L(·)∗ηMK̂◦ ,Λ)Gal(K̂/K).

We now prove that Gal(K̂/K) acts trivially on

HomRigDM(K̂)(L(·)∗ηMK̂◦ ,Λ) ∼= HomDM(k̂)(L(·)∗σMK̂◦ , χΛ).

Let K[ be the field constructed in Proposition 5.17. By Propositions 5.18 and Remarks 3.3
and 5.12 we deduce that χΛ ∼= Λ⊕ Λ(−1)[−2] so that

HomDM(k̂)(L(·)∗σMK̂ , χΛ) ∼= HomDM(k̂)(Mk̂,Λ⊕ Λ(−1)[−2])

with Galois action induced by the action on Mk̂. Since the extension k̂/k is unseparable, we
have DM(k) ∼= DM(k̂) and the Galois action is therefore trivial, proving our claim. �

We can then finally state and prove Ayoub’s conjecture in the following form.

Theorem 5.25. Let K be a field satisfying Assumption 5.14 and Λ be a Q-algebra.

(1) Let K̂ and K[ be as in the statement of Proposition 5.17. The canonical functors induce
triangulated, monoidal equivalences:

RigDMeff,gr(K,Λ) ∼= RigDMeff,gr(K̂,Λ) ∼= RigDMeff,gr(K[,Λ)

RigDMgr(K,Λ) ∼= RigDMgr(K̂,Λ) ∼= RigDMgr(K[,Λ)

(2) Let k be the residue field of K. There are equivalences of categories:

UnDMeff(k,Λ) ∼= RigDMeff,gr(K,Λ) UnDM(k,Λ) ∼= RigDMgr(K,Λ)

induced by a choice of elements π[i as in Proposition 5.17.

Proof. The effective and the stable case are analogous, and we only consider here the latter.
From our assumptions on the fields K̂ and K[ (see Proposition 5.17) Propositions 5.19 and
5.24 show that there exist canonical equivalences RigDMgr(K,Λ) ∼= RigDMgr(K̂,Λ) and
RigDMgr(K[,Λ) ∼= RigDMgr(K̂[,Λ). If we combine them with the tilting equivalence of
Proposition 5.18 we obtain the first claim.

The equivalence of the second claim follows by combining the first point with the equivalence
of Ayoub UnDM(k,Λ) ∼= RigDMgr(K[,Λ) (see Theorem 5.10) induced by a choice of
elements in K[ generating its value group. �
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