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Abstract. Schinzel’s Hypothesis (H) was used by Colliot-Thélène and
Sansuc, and later by Serre, Swinnerton-Dyer and others, to prove that the
Brauer–Manin obstruction controls the Hasse principle and weak approx-
imation on pencils of conics and similar varieties. We show that when
the ground field is Q and the degenerate geometric fibres of the pencil
are all defined over Q, one can use this method to obtain unconditional
results by replacing Hypothesis (H) with the finite complexity case of the
generalised Hardy–Littlewood conjecture recently established by Green, Tao
and Ziegler.

Introduction

The finite complexity case of the generalised Hardy–Littlewood conjecture
recently proved by Green and Tao [GT10, GT12] and Green–Tao–Ziegler
[GTZ12] is of fundamental importance to number theory. The aim of this
note is to explore some of its consequences for the Hasse principle and weak
approximation on algebraic varieties over Q.

Hasse used Dirichlet’s theorem on primes in an arithmetic progression
to deduce what is now called the Hasse principle for quadratic forms in
four variables from the global reciprocity law and the Hasse principle for
quadratic forms in three variables, itself a corollary of global class field
theory (see [Hasse], p. 16 and p. 87). This ‘fibration method’ was taken
up by Colliot-Thélène and Sansuc in [CSan82]. They showed that Schinzel’s
Hypothesis (H), a vast generalisation of Dirichlet’s theorem in which at + b
is replaced by a finite collection of irreducible polynomials in t of arbitrary
degree [SchSi58], has strong consequences for the Hasse principle and weak
approximation on conic bundles and some other pencils of varieties over Q.
The method of [CSan82] was extended to number fields and generalised in
various directions by Serre (see [Serre], Ch. II, Annexe), Swinnerton-Dyer
(see [Sw94], [Sw09] and references in that paper), Colliot-Thélène and others
[CSw94, CSkSw98a, W07, Wei12]. In this note we show that when the ground
field is Q and the degenerate geometric fibres of the pencil are all defined
over Q, one can apply the methods of the aforementioned papers to obtain
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unconditional results by using the theorem of Green, Tao and Ziegler in place
of Schinzel’s Hypothesis (H).

Additive combinatorics was recently applied to the study of rational points
by Browning, Matthiesen and one of the authors in [BMS12]. The approach of
[BMS12] uses the descent method of Colliot-Thélène and Sansuc; it crucially
relies on the work of Matthiesen on representation of linear polynomials by
binary quadratic forms [M12a, M12b] in order to prove the Hasse principle
and weak approximation for certain varieties appearing after descent. In
this paper we give a short proof of most of the results of [BMS12] as well
as a generalisation to certain equations involving norms of cyclic (and some
non-cyclic) extensions. Our approach is based directly on the Green–Tao–
Ziegler theorem and on various generalisations of the method of Hasse, Colliot-
Thélène–Sansuc and Swinnerton-Dyer mentioned above, thus avoiding the use
of descent and the results of [M12a, M12b].

We recall the theorem of Green, Tao and Ziegler and give its first corollaries
in Section 1. In Section 2 we compare Schinzel’s Hypothesis (H), in the form
of Hypothesis (H1), with Proposition 2.1, a consequence of the Green–Tao–
Ziegler theorem. We prove our main results and deduce their first applications
in Section 3. In Section 4 we consider applications to representation of norms
(and products of norms) by products of linear polynomials.

This paper was started during the special semester ‘Rational points and alge-
braic cycles’ at the Centre Interfacultaire Bernoulli of the École Polytechnique
Fédérale de Lausanne, which we would like to thank for its hospitality. The
second author would also like to thank the Hausdorff Research Institute for
Mathematics in Bonn for its hospitality during the ‘Arithmetic and geometry’
program. The authors are grateful to T.D. Browning, J.-L. Colliot-Thélène and
D. Schindler for their comments, and to B. Viray for pointing out a mistake
in the first version of this paper.

1. A corollary of the generalised Hardy–Littlewood
conjecture

In a series of papers Green and Tao [GT10, GT12] and Green–Tao–Ziegler
[GTZ12] proved the generalised Hardy–Littlewood conjecture in the finite
complexity case. The following qualitative statement is [GT10, Cor. 1.9].

Theorem 1.1 (Green, Tao, Ziegler). Let L1(x, y), . . . , Lr(x, y) ∈ Z[x, y] be
pairwise non-proportional linear forms, and let c1, . . . , cr ∈ Z. Assume that for
each prime p, there exists (m,n) ∈ Z2 such that p does not divide Li(m,n)+ ci
for any i = 1, . . . , r. Let K ⊂ R2 be an open convex cone containing a point
(m,n) ∈ Z2 such that Li(m,n) > 0 for i = 1, . . . , r. Then there exist infinitely
many pairs (m,n) ∈ K ∩ Z2 such that Li(m,n) + ci are all prime.

We shall use the following easy corollary of this result. For a finite set of
rational primes S we write ZS = Z[S−1].
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Proposition 1.2. Suppose that we are given (λp, µp) ∈ Q2
p for p in a finite set

of primes S, and a positive real constant C. Let e1, . . . , er be elements of ZS.
Then there exist infinitely many pairs (λ, µ) ∈ Z2

S such that

(1) λ > Cµ > 0;
(2) (λ, µ) is close to (λp, µp) in the p-adic topology for p ∈ S;
(3) λ − eiµ = piui with ui ∈ Z∗

S, for i = 1, . . . , r, where p1, . . . , pr are
primes not in S such that pi = pj if and only if ei = ej.

Proof. By eliminating repetitions we can assume that e1, . . . , er are pairwise
different. We can multiply λ, µ and all λp, µp by a product of powers of primes
from S, and so assume without loss of generality that (λp, µp) ∈ Z2

p for p ∈ S.
Replacing C with a larger constant we assume C > ei, i = 1, . . . , r. Using the
Chinese remainder theorem, we find λ0 ∈ Z such that λ0 − λp is divisible by a
sufficiently high power pnp for all p ∈ S, and similarly for µ0 ∈ Z. In doing so
we can assume that λ0 > Cµ0 > 0, in particular, λ0 − eiµ0 > 0 for all i.

Let d be a product of powers of primes from S such that dei ∈ Z for
i = 1, . . . , r. Let us write d(λ0 − eiµ0) = Mici, where Mi is a product of
powers of primes from S, and ci ∈ Z is coprime to the primes in S. Let N
be a product of primes in S such that N > ci − cj for any i and j. Let
M =

∏

p∈S p
mp where

mp ≥ max{np, valp(N) + valp(Mi)}, i = 1, . . . , r.

Then N divides M/Mi for each i. We now look for λ and µ of the form

λ = λ0 +Mm, µ = µ0 +Mn, (m,n) ∈ Z2. (1.1)

Write Li(x, y) = M−1
i Md(x− eiy), then

λ− eiµ = d−1Mi(Li(m,n) + ci) (1.2)

for each i = 1, . . . , r. Let us check that the linear functions Li(x, y)+ ci satisfy
the condition of Theorem 1.1. For p ∈ S, the integer Li(0, 0) + ci is non-zero
modulo p for each i. Now let p be a prime not in S. Since the determinant
of the homogeneous part of the affine transformation (1.1) is in Z∗

S and each
M−1

i d(λ − eiµ) equals M−1
i d ∈ Z∗

S at the point (λ, µ) = (1, 0), we see that
there is (m,n) ∈ Z2 such that

∏r
i=1(Li(m,n) + ci) is not divisible by p.

We now choose an open convex cone K. Choose (m0, n0) ∈ Z2, m0 > Cn0 >
0, for which the positive integers Li(m0, n0) are pairwise different. After re-
ordering the subscripts, we see that the inequalities

x > Cy > 0, L1(x, y) > . . . > Lr(x, y) > 0

hold for (x, y) = (m0, n0). Define K ⊂ R2 by these inequalities. We can apply
Theorem 1.1 to the linear functions Li(x, y) + ci and the cone K. Thus there
exist infinitely many pairs (m,n) ∈ K ∩Z2 such that Li(m,n)+ ci = pi, where
pi is a prime not in S, for i = 1, . . . , r. The coefficients of each Li(x, y) are
divisible by N , hence

Li(m,n)− Li+1(m,n) ≥ N > ci+1 − ci.
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Thus pi > pi+1 for each i = 1, . . . , r − 1, so all the primes pi are pairwise
different. Since n > 0 and m > Cn we see that µ = µ0 + Mn > 0 and
λ = λ0 +Mm > Cµ.

By (1.2) we see that λ− eiµ differs from Li(x, y) + ci by an element of Z∗
S,

so the proof is now complete. �

Proposition 1.2 can be used to study the Hasse principle and weak ap-
proximation for rational points. In the proof of the following result, which is
modelled on the original proof of Hasse (in the version of [CSan82, Prop. 2]),
it replaces Dirichlet’s theorem on primes in an arithmetic progression.

For a field extension K/Q of degree n we denote by NK/Q(x) the correspond-
ing norm form of degree n in n variables x = (x1, . . . , xn), defined by choosing
a basis of the Q-vector space K.

Theorem 1.3. Let Ki be a cyclic extension of Q of degree di and let bi ∈ Q∗,
ei ∈ Q, for i = 1, . . . , r. Then the affine variety V ⊂ A2×Ad1 × . . .×Adr over
Q defined by

bi(u− eiv) = NKi/Q(xi) 6= 0, i = 1, . . . , r, (1.3)

satisfies the Hasse principle and weak approximation.

Proof. We are given Mp ∈ V (Qp) for each prime p, and M0 ∈ V (R). Let S
be the set of places of Q where we need to approximate. We include the real
place in S. Note that the set of real points (u, v,x1, ...,xr) ∈ V (R) for which
(u, v) ∈ Q2 is dense in V (R), and so it will be enough to prove the claim in
the case when the coordinates u and v of M0 are in Q. By a Q-linear change
of variables we can assume without loss of generality that M0 has coordinates
(u, v) = (1, 0). Then we have bi > 0 whenever Ki is totally imaginary.

We enlarge S so that bi ∈ Z∗
S, ei ∈ ZS and the field Ki is not ramified

outside S, for all i = 1, . . . , r. Thus for each p ∈ S we now have a pair
(λp, µp) ∈ Q2

p such that

bi(λp − eiµp) = NKi/Q(xi,p) 6= 0, i = 1, . . . , r,

for some xi,p ∈ (Qp)
di. Let C be a large positive constant to be specified later,

such that C > ei for i = 1, . . . , r. An application of Proposition 1.2 produces
(λ, µ) ∈ Z2

S, λ > Cµ > 0, such that for each i the number bi(λ− eiµ) is a local
norm for Ki/Q at each finite place of S. This is also true for the real place
because bi > 0 whenever Ki is totally imaginary, and λ − eiµ > 0 for all i.
Moreover, for each i we have bi(λ − eiµ) = piui, where pi is a prime not in S
and ui ∈ Z∗

S . Recall that pi = pj if and only if ei = ej .

Let (Ki/Q, bi(λ − eiµ)) ∈ Br(Q) be the class of the corresponding cyclic
algebra. By continuity we have invp(Ki/Q, bi(λ− eiµ)) = 0 for any p ∈ S, and
also invR(Ki/Q, bi(λ − eiµ)) = 0. Next, bi(λ − eiµ) is a unit at every prime
p 6∈ S ∪ {pi}, hence we obtain

invp(Ki/Q, bi(λ− eiµ)) = 0

for any p 6= pi. The global reciprocity law now implies

invpi(Ki/Q, bi(λ− eiµ)) = invpi(Ki/Q, pi) = 0,
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and since Ki/Q is unramified outside S, the prime pi splits completely in Ki.
In particular, bi(λ − eiµ) is a local norm at every place of Q. By Hasse’s
theorem it is a global norm, so that

bi(λ− eiµ) = NKi/Q(xi) 6= 0

for some xi ∈ Qdi . This proves the Hasse principle for V .

Let us now prove weak approximation. Write d = d1 . . . dr. Using weak
approximation in Q we find a positive rational number ρ that is p-adically
close to 1 for each prime p ∈ S, and ρd is close to λ > 0 in the real topology.
We now make the change of variables

λ = ρdλ′, µ = ρdµ′, xi = ρd/dix′
i, i = 1, . . . , r.

Then (λ′, µ′) is still close to (λp, µp) in the p-adic topology for each prime
p ∈ S. In the real topology (λ′, µ′) is close to (1, µ/λ). Since 0 < µ/λ < C−1,
by choosing a large enough C we ensure that (λ′, µ′) is close to (1, 0). We can
conclude by using weak approximation in the norm tori NKi/Q(z) = 1. �

Remarks. (1) In the case when all the fields Ki are quadratic this result is
Thm. 1.2 of [BMS12]. Eliminating u and v one sees that V is then isomorphic
to an open subset of a complete intersection of r− 2 quadrics in A2r of a very
special kind. These intersections of quadrics are important because of their
relation to conic bundles, first pointed out by Salberger in [Sa86]. In [CSan87b]
Colliot-Thélène and Sansuc proved the main results of descent theory and gave
a description of universal torsors by explicit equations. Given the conclusion
of Theorem 1.3 their results imply that the Brauer–Manin obstruction is the
only obstruction to weak approximation on conic bundles over P1

Q such that
all the degenerate fibres are over Q-points (this is Thm. 1.1 of [BMS12]; see
[CSan87b], Thm. 2.6.4 and Chapter III, or [Sk01], Prop. 4.4.8 and Cor. 6.1.3).

(2) In Section 3.3 below we give a somewhat different proof of Theorem 1.3
deducing it from the main result of this paper, Theorem 3.1.

2. Comparison with Schinzel’s Hypothesis (H)

Our aim in this section is to show that in the study of rational points on
pencils of varieties Proposition 1.2 can replace Schinzel’s Hypothesis (H). In
such applications it is often more convenient to use a consequence of (H), stated
in [CSw94, Section 4] under the name of Hypothesis (H1). We reproduce it
below in the case of linear polynomials over Q. In this case it was already used
in [CSan82, Section 5].

Hypothesis (H1) Let e1, . . . , er be pairwise different rational numbers. Let
S be a finite set of primes containing the prime factors of the denominators of
e1, . . . , er and the primes p ≤ r. Suppose that we are given τp ∈ Qp for p ∈ S
and a positive real constant C. Then there exist τ ∈ Q and primes p1, . . . , pr
not in S such that

(1) τ is arbitrarily close to τp in the p-adic topology, for p ∈ S;
(2) τ > C;
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(3) valp(τ − ei) = 0 for any p /∈ S ∪ {pi}, i = 1, . . . , r;
(4) valpi(τ − ei) = 1 for any i = 1, . . . , r.

Hypothesis (H1) is usually supplemented with the following statement. Let
K/Q be a cyclic extension unramified outside S. Assuming the conclusion
of (H1) we have the following implication:

if
∑

p∈S invp(K/Q, τp− ei) = 0 for some i, then pi splits completely in K/Q.

Hypothesis (H1) and its supplement can be compared to the following
consequence of Proposition 1.2.

Proposition 2.1. Let e1, . . . , er be rational numbers. Let S be a finite set of
primes containing the prime factors of the denominators of e1, . . . , er. Suppose
that we are given τp ∈ Qp for p ∈ S and a positive real constant C. Then there
exist τ ∈ Q and primes p1, . . . , pr not in S, with pi = pj if and only if ei = ej,
such that

(1) τ is arbitrarily close to τp in the p-adic topology, for p ∈ S;
(2) τ > C;
(3) valp(τ − ei) ≤ 0 for any p /∈ S ∪ {pi}, i = 1, . . . , r;
(4) valpi(τ − ei) = 1 for any i = 1, . . . , r;
(5) for any cyclic extension K/Q unramified outside S and such that

∑

p∈S

invp(K/Q, τp − ei) = c ∈ Q/Z

for some i, we have invpi(K/Q, τ − ei) = −c; in particular, if c = 0,
then pi splits completely in K/Q.

Proof. By increasing the list of ei’s we may assume that r ≥ 2 and ei 6= ej
for some i 6= j. Let us also assume C > ei for i = 1, . . . , r. We then apply
Proposition 1.2 to (λp, µp) = (τp, 1) for p ∈ S. This produces (λ, µ) ∈ Z2

S

such that τ = λ/µ satisfies all the properties in the proposition. Indeed, (1)
and (2) are clear. For p /∈ S we have valp(µ) ≥ 0. For p /∈ S ∪ {pi} we have
valp(λ− eiµ) = 0, so that

valp(τ − ei) = valp(λ− eiµ)− valp(µ) ≤ 0,

which proves (3). We claim that valpi(µ) = 0 for i = 1, . . . , r. Indeed,
valpi(µ) > 0 implies valpi(λ) > 0; taking j such that ei 6= ej, we obtain
valpi(λ − ejµ) > 0, thus contradicting property (3) of Proposition 1.2. This
proves (4). Since (λ, µ) is close to (τp, 1) in the p-adic topology for p ∈ S, by
continuity we have

∑

p∈S

invp(K/Q, λ− eiµ) = c.

We also have λ − eiµ > 0, hence invR(K/Q, λ − eiµ) = 0. By the global
reciprocity law of class field theory this implies

∑

p/∈S

invp(K/Q, λ− eiµ) = −c.
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Since K/Q is unramified outside S, we have invp(K/Q, λ − eiµ) = 0 for any
prime p /∈ S ∪ {pi}, because in this case valp(λ− eiµ) = 0. Thus

invpi(K/Q, λ− eiµ) = −c.

In the case when c = 0, we deduce from valpi(λ − eiµ) = 1 that pi splits
completely in K, so that (5) is proved. �

Remark. One can give a stronger variant of this proposition by proving that τ ,
in addition to properties (1) to (5), can be chosen in a given Hilbertian subset
of Q. The proof uses Ekedahl’s effective version of Hilbert’s irreducibility
theorem and the fact that any Hilbertian subset of Q is open in the topology
induced by the product topology of

∏

pQp, where the product is over all primes.
We do not give a detailed proof, because this variant will not be used in this
paper.

3. Varieties fibred over the projective line

3.1. Main results. Recall that for a variety X over Q one denotes the image
of Br(Q) in Br(X) by Br0(X). If π : X → P1 is a dominant morphism
of integral varieties over Q, then the corresponding vertical Brauer group is
defined as follows:

Brvert(X) = Br(X) ∩ π∗Br(Q(P1)) ⊂ Br(Q(X)).

By a Q-fibre of π : X → P1 we understand a fibre above a Q-point of P1.

We denote the completions of Q by Qv, and the ring of adèles of Q by AQ.
Let Q be an algebraic closure of Q. For a subfield K ⊂ Q we write ΓK for the
Galois group Gal(Q/K).

Theorem 3.1. Let X be a geometrically integral variety over Q with a smooth
and surjective morphism π : X → P1 such that

(a) with the exception of finitely many Q-fibres, denoted by X1, . . . , Xr, each
fibre of π contains a geometrically integral irreducible component;

(b) for each i, the fibre Xi contains an irreducible component such that the
algebraic closure of Q in its field of functions is an abelian extension of Q.

Then P1(Q) ∩ π(X(AQ)) is dense in π
(

X(AQ)
Brvert

)

⊂ P1(AQ) =
∏

v P
1(Qv).

Note that the assumptions of Theorem 3.1 imply that the generic fibre of
π : X → P1 is geometrically integral. Thus all but finitely many Q-fibres of π
are geometrically integral. The cokernel of the natural map Br(Q) → Brvert(X)
is finite by [CSk00, Lemma 3.1]. Note finally that when r = 1, the statement
of Theorem 3.1 is well known, see Section 2.1 of [CSkSw98a].

Proof of Theorem 3.1. Without loss of generality we can assume that Xi is
the fibre above a point ei ∈ A1(Q), for i = 1, . . . , r. Let Ki be the abelian
extension of Q as in (b).

We follow the proof of [CSkSw98a, Thm. 1.1] which uses the same method
as [CSw94, Thm. 4.2]. Steps 1 and 2 of the proof below repeat the proof of
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[CSkSw98a, Thm. 1.1] verbatim. Step 3 contains modifications necessary to
replace the use of Hypothesis (H1) by Proposition 2.1.

Step 1. Let us recall a well-known description of Brvert(X). Write Ki as a
compositum of cyclic extensions Kij/Q, and let χij : ΓQ → Q/Z be a character
such that Kij is isomorphic to the invariant subfield of Ker(χij). Let t be a
coordinate on A1 ⊂ P1 so that Q(P1) = Q(t). The class

Aij = (Kij/Q, t− ei) ∈ Br(Q(t))

of the corresponding cyclic algebra is ramified on P1 only at ei and ∞
with residues χij and −χij , respectively. Let A ∈ Br(Q(t)) be such that
π∗A ∈ Br(X). Assumptions (a) and (b), together with [CSw94, Prop. 1.1.1],
imply that A on P1 is unramified away from e1, . . . , er, and that the residue
of A at ei belongs to

Ker[Hom(ΓQ,Q/Z) → Hom(ΓKi
,Q/Z)].

This group is generated by the characters χij. Hence there exist nij ∈ Z such
that A − ∑

nijAij is unramified on A1. Since Br(A1) = Br(Q) we conclude
that A =

∑

nijAij +A0 for some A0 ∈ Br(Q), and this implies, by considering
residues at ∞, that

∑

nijχij = 0 ∈ Hom(ΓQ,Q/Z). (3.1)

Therefore, every element of Brvert(X) is of the form
∑

nijπ
∗Aij +A0 for some

nij satisfying (3.1) and some A0 ∈ Br(Q).

Step 2. We can clearly assume that X(AQ)
Brvert 6= ∅, otherwise there is

nothing to prove. Pick any (Mp) ∈ X(AQ)
Brvert, where M0 is a point in X(R).

By a small deformation we can assume that Mp does not belong to any of the
fibres X1, ..., Xr.

We include the real place in the finite set of places S where we need to
approximate. The set of real points M0 ∈ V (R) for which π(M0) ∈ P1(Q) is
dense in V (R), and so it is enough to approximate adelic points (Mp) such that
π(M0) ∈ P1(Q). By a change of variables we then assume that π(M0) = ∞.
By another small deformation of the points Mp for each prime p we can further
assume that π(Mp) 6= ∞ when p 6= 0.

We include in S the primes of bad reduction for X . We ensure that ei ∈ ZS

for each i = 1, . . . , r, ei − ej ∈ Z∗
S for all i 6= j, and no prime outside of S

is ramified in any of the fields Ki. Furthermore, we increase S so that if Ki

has a place of degree 1 over p /∈ S, then the corresponding Fp-component
of the degenerate fibre of π over the reduction of ei has an Fp-point. This
is achieved by using the Lang–Weil estimate, see [CSkSw98a, Lemma 1.2].
By a similar argument we assume that on the reduction of X modulo p /∈ S
any geometrically integral component of a fibre over an Fp-point contains an
Fp-point. All these Fp-points are smooth, because π is a smooth morphism.

Since X(AQ)
Brvert 6= ∅, by the result of Step 1 we can use Harari’s ‘formal

lemma’ [H94, Cor. 2.6.1] to increase S ⊂ S1 and choose Mp ∈ X(Qp) for
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p ∈ S1 \ S away from the fibres X1, . . . , Xr so that for all i, j we have
∑

p∈S1

invp

(

Aij(π(Mp))
)

= 0. (3.2)

Step 3. Let τp be the coordinate of π(Mp), where p is a prime in S1. An
application of Proposition 2.1 produces τ ∈ Q which is an arbitrarily large
positive real number, and is close to τp in the p-adic topology for the primes
p ∈ S1.

Let us prove that Xτ (AQ) 6= ∅. By the inverse function theorem we have
Xτ (R) 6= ∅ and Xτ (Qp) 6= ∅ for p ∈ S1. Thus it remains to consider the
following two cases.

Qv = Qp, where p = pi, i = 1, . . . , r. Since valpi(τ − ei) = 1, the reduction
of τ modulo pi equals the reduction of ei. In view of (3.2) property (5) of
Proposition 2.1 implies that for each given value of i all the cyclic fields Kij

are split at pi, and thus Ki is also split. Hence there is a geometrically integral
irreducible component of the Fpi-fibre over the reduction of ei modulo pi. We
arranged that it has an Fpi-point. By Hensel’s lemma it gives rise to aQpi-point
in Xτ .

Qv = Qp, where p /∈ S1 ∪ {p1, . . . , pr}. We have valp(τ − ei) ≤ 0 for each
i = 1, . . . , r, and hence the reduction of τ modulo p is a point of P1(Fp) other
than the reduction of any of e1, . . . , er. Thus any Fp-point on a geometrically
integral irreducible component of the fibre at τ mod p gives rise to a Qp-point
on Xτ , by Hensel’s lemma.

In both cases we constructed a Qp-point that comes from a Zp-point on an
integral model of Xτ , therefore Xτ (AQ) 6= ∅. The theorem is proved. �

Corollary 3.2. In the situation of Theorem 3.1, let us further assume that
all but finitely many Q-fibres of π : X → P1 satisfy the Hasse principle. Then
π(X(Q)) is dense in π

(

X(AQ)
Brvert

)

. If, in addition, these Q-fibres Xτ are

such that Xτ (Q) is dense in Xτ (AQ), then X(Q) is dense in X(AQ)
Brvert .

Remark. If the generic fibre of π : X → P1 is proper, then all but finitely
many fibres of π are proper. For proper Q-fibres Xτ the approximation
assumption in Corollary 3.2 is that of weak approximation, since in this
case Xτ (AQ) =

∏

v Xτ (Qv). By Hironaka’s theorem one can always replace
π : X → P1 by a partial compactification π′ : X ′ → P1 such that X is a dense
open subset of X ′ and the morphism π′ is smooth with proper generic fibre.

We now give a statement for a smooth and proper variety X , to be compared
with [CSkSw98a, Thm. 1.1].

Theorem 3.3. Let X be a smooth, proper and geometrically integral variety
over Q with a surjective morphism π : X → P1 such that

(a) with the exception of finitely many Q-fibres, denoted by X1, . . . , Xr, each
fibre of π contains a geometrically integral irreducible component of multiplicity
one;
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(b) for each i, the fibre Xi contains an irreducible component of multiplicity
one such that the algebraic closure of Q in its field of functions is an abelian
extension of Q.

Then P1(Q) ∩ π(X(AQ)) is dense in π
(

X(AQ)
Brvert

)

⊂ P1(AQ) =
∏

v P
1(Qv).

If, moreover, all but finitely many Q-fibres of π satisfy the Hasse principle and
weak approximation, then X(Q) is dense in X(AQ)

Brvert .

Proof. Let Y ⊂ X denote the smooth locus of π. By (a) and (b) each
fibre of π : X → P1 contains a multiplicity one irreducible component,
hence π(Y ) = P1. Thus Theorem 3.1 can be applied to π : Y → P1. We
have Brvert(X) = Br(X) ∩ Brvert(Y ), and by [CSk00, Lemma 3.1], the set
Y (AQ)

Brvert(Y ) is dense in X(AQ)
Brvert(X). This proves the first statement. The

second one now follows from Corollary 3.2. �

Remarks. (1) We note that assumptions (a) and (b) will hold for any smooth,
proper and geometrically integral variety X ′ over Q with a surjective morphism
π′ : X ′ → P1 such that the generic fibres of π and π′ are isomorphic. This
follows from [Sk96, Lemma 1.1], see also [W07, Lemme 3.8].

(2) Using the remark after Proposition 2.1 one can prove a stronger variant
of Theorem 3.3 with “all but finitely many Q-fibres of π” replaced by “the Q-
fibres of π over a Hilbertian subset of Q”. The details are left to the interested
reader.

3.2. Application to pencils of Severi–Brauer and similar varieties.

Theorem 3.3 can be applied to the varieties considered by Colliot-Thélène and
Swinnerton-Dyer in [CSw94], see also [CSkSw98a].

Corollary 3.4. Let X be a smooth, proper and geometrically integral variety
over Q with a morphism π : X → P1. Suppose that the generic fibre of π is
a Severi–Brauer variety (for example, a conic), a 2-dimensional quadric, or
a product of such. If all the fibres of π that are not geometrically integral are
Q-fibres, then X(Q) is dense in X(AQ)

Brvert .

Proof. The assumptions of Theorem 3.3 are satisfied for X and π by well-
known results of class field theory and by the structure of fibres of regular
models of quadric bundles [Sk90] and Artin models of Severi–Brauer varieties
[F97] (or see [W07, pp. 117–118] for an alternative argument). �

In particular, this result gives a uniform approach to Theorems 1.1, 1.3
and 1.4 of [BMS12] that does not use descent and leads to shorter and more
natural proofs. See [BMS12] for a survey of known results on conic and quadric
bundles, most of which are established over an arbitrary number field in place
of Q but under a strong restriction on the number of degenerate geometric
fibres.

3.3. Theorem 1.3 as a consequence of Theorem 3.1. Here is one way
to deduce Theorem 1.3 from Corollary 3.2 that keeps the Brauer group
calculations to the minimum.
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Let W be the quasi-affine subvariety of A2 × Ad1 × . . .× Adr given by

bi(u− eiv) = NKi/Q(xi), i = 1, . . . , r, (u, v) 6= (0, 0).

The variety V defined in (1.3) is a dense open subset of W . The projection to
the coordinates (u, v) defines a morphism W → A2 \ (0, 0). Let π : W → P1

be the composed morphism W → A2 \ (0, 0) → P1, and let X ⊂ W be the
smooth locus of π. It is easy to see that π(X) = P1. Let π′ : Y → P1 be a
partial compactification of π : X → P1 as in the remark after Corollary 3.2, so
that π′ is smooth with proper generic fibre.

Let t = u/v be a coordinate on P1. It is straightforward to see that
conditions (a) and (b) of Theorem 3.1 hold. In order to deduce Theorem 1.3
from Corollary 3.2 we need to prove that

(1) geometrically integral, proper Q-fibres of π′ satisfy the Hasse principle
and weak approximation;

(2) Brvert(Y ) = Br0(Y ).

The fibre of π at τ ∈ Q, τ 6= ei, is the affine variety

NK1/Q(x1)

b1(τ − e1)
= . . . =

NKr/Q(xr)

br(τ − er)
6= 0.

This is a principal homogeneous space of the torus T defined by

NK1/Q(t1) = . . . = NKr/Q(tr) 6= 0.

The Hasse principle and weak approximation hold for smooth compactifica-
tions of principal homogeneous spaces of T if X

2
ω(Q, T̂ ) = 0, see [San81,

Ch. 8] or [Sk01, Thm. 6.3.1]. Let Ti = R1
Ki/Q

(Gm) be the norm torus attached

to Ki/Q, and let Gi be the cyclic group Gal(Ki/Q). Then T is an extension
of Gm by the product of the tori Ti, so that we have the exact sequence of
ΓQ-modules of characters

0 → Z → T̂ →
r
∏

i=1

T̂i → 0. (3.3)

The long exact sequence of Galois cohomology gives rise to the exact sequence

r
∏

i=1

Hom(Gi,Q/Z) → Hom(ΓQ,Q/Z) → H2(Q, T̂ ) →
r
∏

i=1

H2(Q, T̂i).

Let K be the compositum of the fields Ki, and let G = Gal(K/Q). Since

X
2
ω(Q, T̂i) = 0 it is enough to show that if α ∈ Hom(ΓQ,Q/Z) goes to

X
2
ω(Q, T̂ ) in H2(Q, T̂ ), then α ∈ Hom(G,Q/Z). But the tori Ti and T are

split by K, hence (3.3) is split as an extension of ΓK-modules. It follows that
the restriction of α to H2(K,Z) = Hom(ΓK ,Q/Z) is in X

2
ω(K,Z) = 0, thus

α ∈ Hom(G,Q/Z). This proves (1).

Since π : X → P1 factors through the inclusion of X into Y , to prove (2)
it is enough to prove Brvert(X) = Br0(X). Write χi ∈ Hom(ΓQ,Q/Z) for the
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image of a generator of Hom(Gi,Q/Z). Recall from Step 1 of the proof of
Theorem 3.1 that any A ∈ Br(Q(t)) such that π∗A ∈ Br(X) can be written as

A =

r
∑

i=1

ni(χi, t− ei) + A0, where

r
∑

i=1

niχi = 0,

for some A0 ∈ Br(Q). In Br(X) we have

π∗A =

r
∑

i=1

ni(χi, u− eiv)−
r

∑

i=1

ni(χi, v)+A0 = −
r

∑

i=1

ni(χi, bi)+A0 ∈ Br0(X),

since (χi, NKi/Q(xi)) = 0 in Br(Q(X)). This finishes the proof of (1) and (2).

4. Norms and their products as products of linear polynomials

4.1. Cyclic extensions. Consider the following system of Diophantine equa-
tions:

NKi/Q(xi) = Pi(t), i = 1, . . . , r, (4.1)

where Ki/Q are cyclic extensions and the polynomials Pi(t) are products of
(possibly repeated) linear factors over Q.

Corollary 4.1. Let X be a smooth, proper and geometrically integral variety
over Q with a morphism π : X → P1 such that the generic fibre of π is
birationally equivalent to the affine variety (4.1) over Q(P1) = Q(t). Then
X(Q) is dense in X(AQ)

Brvert .

Proof. Each fibre of π outside infinity and the zero set of P1(t) . . . Pr(t) = 0
contains a geometrically integral irreducible component of multiplicity one.
Since π has a section over the compositum K1 . . .Kr, which is an abelian
extension of Q, assumptions (a) and (b) of Theorem 3.3 hold for π : X → P1.
By Hasse’s norm theorem the varieties NK/Q(z) = c, where K/Q is cyclic and
c ∈ Q∗, satisfy the Hasse principle. Moreover, smooth and proper models of
principal homogeneous spaces of cyclic norm tori satisfy the Hasse principle
and weak approximation, by [San81, Ch. 8]. We conclude by Theorem 3.3. �

For r = 1 the statement of Corollary 4.1 was previously known for any finite
extension K/Q in the case when P1 has at most two roots, see [HS02], [CHS03];
see also [SJ11], where Q was replaced by an arbitrary number field.

For any cyclic extension of fields K/k the affine variety NK/k(x) = c, where
c ∈ k∗, is well known to be birationally equivalent to the Severi–Brauer variety
defined by the cyclic algebra (K/k, c). Thus Corollary 4.1 can be seen as a
particular case of Corollary 3.4.

When each polynomial Pi(t) is linear we have the following consequence of
Corollary 4.1.

Corollary 4.2. Let Ki be a cyclic extension of Q of degree di, i = 1, . . . , r.
Let bi ∈ Q∗ and ei ∈ Q, i = 1, . . . , r. Then the variety over Q defined by

bi(t− ei) = NKi/Q(xi) 6= 0, i = 1, . . . , r,

satisfies the Hasse principle and weak approximation.
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Proof. An easy calculation shows that this variety X is smooth. By
Corollary 4.1 it is enough to prove that Brvert(X) = Br0(X). In Step 1
of the proof of Theorem 3.1 we saw that for any A ∈ Br(Q(t)) such that
π∗A ∈ Br(X) ⊂ Br(Q(X)) there exists A0 ∈ Br(Q) for which we can write

A =

r
∑

i=1

ni(Ki/Q, t− ei) + A0.

Since (Ki/Q, NKi/Q(xi)) = 0 in Br(Q(X)), the element π∗A ∈ Br(X) can be
written as

π∗A = −
r

∑

i=1

ni(Ki/Q, bi) + A0 ∈ Br0(X). �

The following statement is deduced from Corollary 4.1 by an easy application
of the fibration method in the form of [H97, Thm. 3.2.1].

Corollary 4.3. Let X be a smooth and proper model of the variety over Q

defined by the system of equations

NKi/Q(xi) = Pi(t1, . . . , tn), i = 1, . . . , r, (4.2)

where each Ki is a cyclic extension of Q and each Pi(t1, . . . , tn) is a product
of polynomials of degree 1 over Q. Then X(Q) is dense in X(AQ)

Br.

In [ScSk12], under a mild general position condition, this was proved for
r = 1 and degP1 ≤ 2n, but with the cyclic extension K of Q replaced by any
finite extension of an arbitrary number field.

4.2. Products of norms. Instead of a norm form of a cyclic extension of
Q we can consider a product of norm forms associated to field extensions
of Q satisfying certain conditions. We start with one more application of
Theorem 3.3.

Corollary 4.4. Let P (t) be a product of (possibly repeated) linear factors
over Q. Let L1, . . . , Ln be n ≥ 2 finite field extensions of Q such that L1/Q is
abelian and linearly disjoint from the compositum L2 . . . Ln. Let X be a smooth,
proper and geometrically integral variety over Q with a morphism π : X → P1

such that the generic fibre of π is birationally equivalent to the affine variety

NL1/Q(x1) . . . NLn/Q(xn) = P (t) (4.3)

over Q(P1) = Q(t). Then X satisfies the Hasse principle and weak approxi-
mation.

Proof. This proof is similar to that of Corollary 4.1. Assumptions (a) and
(b) of Theorem 3.3 are satisfied since L1/Q is abelian. To prove that almost
all Q-fibres satisfy the Hasse principle and weak approximation it is enough,
by [San81, Ch. 8] (see also [Sk01, Thm. 6.3.1]), to verify that X 2

ω(Q, T̂ ) = 0,
where T is the multinorm torus over Q attached to the fields L1, . . . , Ln. This
was proved by Demarche and Wei [DW12, Thm. 1]. To finish the proof we note
that Brvert(X) = Br0(X). Indeed, let A ∈ Br(Q(t)) be such that π∗A ∈ Br(X).
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The morphism π has a section defined over Li, for each i = 1, . . . , n. By
restricting A to this section we see that the restriction of A to Br(Li(t)) comes
from Br(P1

Li
) = Br(Li). In particular, the residues of A at the roots of P (t) are

in the kernel of the map H1(Q,Q/Z) → H1(Li,Q/Z). Since L1∩L2 . . . Ln = Q

there is no non-trivial cyclic extension of Q contained in all of the Li. This
implies that A is not ramified at the zero set of P (t). A well known argument
[CSw94, Prop. 1.1.1] shows that A is unramified away from the zero set of
P (t). Hence A ∈ Br(A1) = Br(Q). �

For more cases when X
2
ω(Q, T̂ ) = 0 for the multinorm torus T see [DW12],

Thm. 1 and Cor. 8. One can extend Corollary 4.4 to systems of equations (4.3)
and replace P (t) by a product of linear polynomials in several variables. We
leave the details to the interested reader.

Following Wei [Wei12, Thm. 3.5] we now consider a case where the Q-fibres
do not satisfy the Hasse principle nor weak approximation.

Proposition 4.5. Let P (t) be a product of (possibly repeated) linear factors
over Q, and let a, b ∈ Q∗. Let X be a smooth, proper and geometrically integral
variety over Q with a morphism π : X → P1 such that the generic fibre of π is
birationally equivalent to the affine variety

NQ(
√
a)/Q(x)NQ(

√
b)/Q(y)NQ(

√
ab)/Q(z) = P (t) (4.4)

over Q(P1) = Q(t). Then X(Q) is dense in X(AQ)
Br.

Proof. We can assume that Q(
√
a), Q(

√
b) and Q(

√
ab) are quadratic fields,

otherwise the variety X is rational and the statement is clear. Let V be the
smooth locus of the affine variety (4.4), and let U be the image of V by the
projection to the coordinate t. It is clear that P1 \ U is a finite union of Q-
points. The fibres of V → U are principal homogeneous spaces of the torus T
that is given by

NQ(
√
a)/Q(x)NQ(

√
b)/Q(y)NQ(

√
ab)/Q(z) = 1.

Let E be a smooth equivariant compactification of T (which exists by [CHS05]),
and let V c = V ×T E be the contracted product. Then V c → U is a fibre-
wise smooth compactification of V → U . We take π : X → P1 such that
X ×P1 U = V c. We compose π with an automorphism of P1 to ensure that
the fibre at infinity is smooth and is close to the real point that we need
to approximate; in particular, the fibre at infinity contains a real point. An
obvious change of variables shows that X contains an open set which is the
smooth locus of the affine variety given by

NQ(
√
a)/Q(x)NQ(

√
b)/Q(y)NQ(

√
ab)/Q(z) = Q(t),

where Q(t) is a polynomial with rational roots e1, . . . , er such that U is the
complement to {e1, . . . , er} in P1. Note that for any τ ∈ U(Q) we have
Xτ (AQ) 6= ∅ by [C12, Prop. 5.1].

The quaternion algebra A = (NQ(
√
a)/Q(x), b) defines an element of Br(π−1(U)).
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We are given points Mp ∈ X(Qp) for all primes p and M0 ∈ X(R) such that
(Mp) ∈ X(AQ)

Br. Since Br(X)/Br0(X) is finite, by a small deformation we
can assume that π(Mp) is a point in U ∩ A1 where t equals τp ∈ Qp.

Let S0 be the finite set of places of Q where we need to approximate. We
can find a finite set S of places containing S0 and the real place, such that
π : X → P1 extends to a proper morphism π : X → P1

ZS
with X regular. By

doing so we can ensure that S contains the primes where at least one of our
quadratic fields is ramified, and that we have a, b ∈ ZS, Q(t) ∈ ZS [t], and
ei ∈ ZS for i = 1, . . . , r. By Harari’s ‘formal lemma’ [H94, Cor. 2.6.1] we can
further enlarge S so that

∑

p∈S

invp(A(Mp)) = 0,
∑

p∈S

invp(b, τp − ei) = 0, i = 1, . . . , r.

(For this we may need to modify the points Mp for p ∈ S \ S0.) Let U be the
complement to the Zariski closure of e1 ∪ . . . ∪ er in P1

ZS
. The same algebra

A defines a class in Br(π−1(U)). An application of Proposition 2.1 gives a Q-
point τ in U ∩ A1 that is as large as we want in the real topology and is close
to τp in the p-adic topology for the primes p ∈ S. For p /∈ S ∪ {p1, . . . , pr}
we see from property (3) of Proposition 2.1 that the Zariski closure of τ in
P1
Zp

is contained in U ×ZS
Zp. This implies that for any Np ∈ Xτ (Qp) the

value A(Np) ∈ Br(Qp) comes from Br(Zp) = 0. From property (5) we see

that for each i = 1, . . . , r the prime pi splits in Q(
√
b), hence A(Npi) = 0 for

any Npi ∈ Xτ (Qpi). By continuity and the inverse function theorem we can
find Np ∈ Xτ (Qp) close enough to Mp, for p ∈ S (including the real place),
so that

∑

p∈S invp(A(Np)) = 0. Summing over all places of Q we now have
∑

p invp(A(Np)) = 0, for any choice of Np, p /∈ S. By [C12, Thm. 4.1] the

algebra A generates Br(Xτ ) modulo the image of Br(Q). By [San81, Ch. 8]
or [Sk01, Thm. 6.3.1] the set Xτ (Q) is dense in Xτ (AQ)

Br, so we can find a
Q-point in Xτ close to Mp, for p ∈ S. �

4.3. Non-cyclic extensions of prime degree. The method of Colliot-
Thélène and Wei [Wei12, Thm. 3.6] can be used to prove the following result.

Theorem 4.6. Let P (t) be a product of (possibly repeated) linear factors over
Q. Let K be a non-cyclic extension of Q of prime degree such that the Galois
group of the normal closure of K over Q has a non-trivial abelian quotient.
Let X be a smooth, proper and geometrically integral variety over Q with a
morphism π : X → P1 such that the generic fibre of π is birationally equivalent
to the affine variety NK/Q(x) = P (t) over Q(t). Then X satisfies the Hasse
principle and weak approximation.

This result covers the ‘generic’ case of the field K = Q[t]/(f(t)), for which
f(t) is a polynomial of prime degree ℓ > 2 such that the Galois group of f(t)
is the symmetric group Sℓ (or the dihedral group D2ℓ). In particular, the
assumption on K in Theorem 4.6 is automatically satisfied when [K : Q] = 3.
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Proof of Theorem 4.6. We start in the same way as in the proof of
Proposition 4.5. We can assume that X contains an open set which is the
smooth locus of the affine variety NK/Q(x) = Q(t), where Q(t) is a product
of powers of t− ei, i = 1, . . . , r, with the additional assumption that the fibre
at infinity is smooth and contains a real point close to the real point that we
want to approximate.

Lemma 4.7. We have Br(X) = Br0(X).

Proof. Let T be the norm torus NK/Q(x) = 1. Since ℓ = [K : Q] is prime,

[CSan87a, Prop. 9.1, Prop. 9.5] gives H1(F,Pic(Z×F F )) = X
2
ω(F, T̂ ) = 0 for

any smooth and proper variety Z over a field F such that a dense open subset
of Z is a principal homogeneous space of T . Applying this to the generic fibre
of π : X → P1 we see that Br(X) = Brvert(X).

Now let A ∈ Br(Q(t)) be such that π∗A ∈ Br(X). The morphism π has
a section defined over K. By restricting to it we see that the image of A in
Br(K(t)) belongs to the injective image of Br(P1

K) = Br(K). In particular, the
residue of A at ei lies in the kernel of the map

H1(Q,Q/Z) −→ H1(K,Q/Z).

Since K contains no cyclic extension of Q, this kernel is zero. Thus A is not
ramified at the zero set of Q(t). Since A is also unramified outside of the zero
set of Q(t), we see that A ∈ Br(Q). �

Let L be the normal closure of K/Q. By assumption there exists a cyclic
extension k/Q of prime degree such that k ⊂ L. Let ℓ = [K : Q], q = [k : Q].
Since Gal(L/Q) ⊂ Sℓ and k 6= K we see that q < ℓ.

Lemma 4.8. Let a ∈ Q∗. If p is a prime unramified in L and inert in k, then
the equation NK/Q(x) = a is solvable in Qp.

Proof. Write K ⊗Q Qp = Kv1 ⊕ . . .⊕Kvs , and let di = [Kvi : Qp].

If s > 1, then since ℓ = d1 + ... + ds is a prime number, there exist integers
n1, . . . , ns such that 1 = n1d1 + ... + nsds. It follows that

a =

s
∏

i=1

NKvi
/Qp

(ani) ∈ NK/Q(K ⊗Q Qp),

so we are done.

If s = 1, then K ⊗Q Qp = Kv is a field extension of Qp of degree ℓ. By
assumption p is inert in k, so that k⊗Q Qp = kw is a field. Since [kw : Qp] = q
is a prime less than ℓ, the fields kw and Kw are linearly disjoint over Qp, so
that kwKv is a field. Thus p is inert in kK ⊂ L, which implies that the
Frobenius at p in Gal(L/Q) is an element of order divisible by ℓq. However,
Sℓ contains no such elements, so the case s = 1 is impossible. �

End of proof of Theorem 4.6. We are given pointsMp ∈ X(Qp) for all primes
p and M0 ∈ X(R). By a small deformation we can assume that π(Mp) is a
point in U ∩ A1 where t equals τp ∈ Qp. Let S be the finite set of places of Q
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where we need to approximate, containing the real place and the primes of bad
reduction for X . We also assume that L is unramified away from S. Consider
the cyclic algebras

Ai = (k/Q, t− ei) ∈ Br(Q(X)), i = 1, . . . , r.

Harari’s ‘formal lemma’ [H94, Cor. 2.6.1] and Lemma 4.7 imply that we can
introduce new primes into S and choose the corresponding points Mp so that

∑

p∈S

invp(Ai(τp)) 6= 0, i = 1, . . . , r.

An application of Proposition 2.1 gives a Q-point τ in U ∩ A1 that is as large
as we want in the real topology and is close to τp in the p-adic topology for the
primes p ∈ S. This ensures that Xτ (R) 6= ∅ and Xτ (Qp) 6= ∅ for all p ∈ S. For
p /∈ S ∪{p1, . . . , pr} we see from property (3) of Proposition 2.1 that τ reduces
modulo p to a point of P1(Fp) other than the reduction of any of e1, . . . , er.
The corresponding fibre over Fp contains a principal homogeneous space of a
torus over a finite field, and hence an Fp-point, by Lang’s theorem. By Hensel’s
lemma it gives rise to a Qp-point in Xτ . Finally, property (5) of Proposition
2.1 gives that invpi(Ai(τ)) 6= 0. By property (4) this implies that pi is inert in
k. Now an application of Lemma 4.8 shows that Xτ (Qpi) 6= ∅. This holds for
all i = 1, . . . , r so we conclude that Xτ (AQ) 6= ∅. To finish the proof we note

that X 2
ω(Q, T̂ ) = 0 implies that the principal homogeneous spaces of T over

Q satisfy the Hasse principle and weak approximation [San81, Ch. 8]. �
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premiers. Acta Arith. 4 (1958) 185–208; Errata, ibid. 5 (1959) 259.
[Serre] J.-P. Serre. Cohomologie galoisienne. 5ème éd. Lecture Notes in Math. 5, Springer-
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