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Abstract. We revisit the abstract framework underlying the fibration method for
producing rational points on the total space of fibrations over the projective line. By
fine-tuning its dependence on external arithmetic conjectures, we render the method
unconditional when the degree of the non-split locus is ≤ 2, as well as in various instances
where it is 3. We are also able to obtain improved results in the regime that is conditionally
accessible under Schinzel’s hypothesis, by incorporating into it, for the first time, a
technique due to Harari for controlling the Brauer–Manin obstruction in families.

1. Introduction

In 1970, Manin [Man71] showed that an obstruction based on Brauer groups of schemes,
now referred to as the Brauer–Manin obstruction, can often explain failures of the Hasse
principle and weak approximation for the rational points of an algebraic variety X defined
over a number field k. A conjecture of Colliot-Thélène predicts that the Brauer–Manin
obstruction explains all such failures when X is smooth, proper and rationally connected—
by which we mean that for any algebraically closed field extension K of k, two general
K-points of X are joined by a rational curve defined over K (see [Kol96, Chapter IV]). In
terms of the diagonal embedding of the set of rational points X(k) in the space of adelic
points X(Ak), this conjecture is stated as follows:

Conjecture 1.1 ([CT03]). Let X be a smooth, proper and rationally connected variety

over a number field k. The set X(k) is dense in the Brauer–Manin set X(Ak)Br(X).

Though wide open, Conjecture 1.1 has been established for many special families of
rationally connected varieties. The reader will find in [Wit18, §3] an almost up-to-date
survey of known methods and results.

A common structure that can often be fruitfully exploited to study rational points on X
is that of a fibration f : X → P1

k. (We use the term “fibration” in a loose sense, to refer to
a morphism whose generic fibre is geometrically irreducible.) By the Graber–Harris–Starr
theorem [GHS03], if the generic fibre of f is rationally connected, then X is rationally
connected as well. In the context of Conjecture 1.1, this naturally leads one to ask:

Question 1.2. Let X be a smooth, proper, irreducible variety over a number field k and
f : X → P1

k be a dominant morphism whose geometric generic fibre is rationally connected.
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Assume that Xc(k) is dense in Xc(Ak)Br(Xc) for all but finitely many c ∈ P1(k), where

Xc = f−1(c). Does it follow that X(k) is dense in X(Ak)Br(X)?

Question 1.2 has been extensively studied. One approach consists in applying the theory
of descent developed by Colliot-Thélène and Sansuc [CTS87a] to reduce the problem
to certain torsors associated with the vertical Brauer group of X relative to P1

k. This
approach, systematically formalised by Skorobogatov [Sko96] and by Colliot-Thélène and
Skorobogatov [CTS00], has been applied successfully in many special cases, including
Châtelet surfaces [CTSSD87], other types of conic and quadric bundles [BMS14], and
various normic (or more generally toric) bundles [HBS02, CTHS03, DSW15, Sko15, BM17].
See also [SD99, BHB12] for instances of implicit uses of this approach.

Another approach is the fibration method, the first instance of which was Hasse’s proof
of the local-global principle for the isotropy of quadratic forms over number fields. Here,
the argument is less concerned with the particular geometry of X, but on the other hand it
is highly sensitive to the rank of f , defined as the degree of the finite locus in P1

k consisting
of the closed points m such that the fibre Xm is not split over k(m), and to the possible
finite extensions L/k(m) that split Xm, i.e. that are such that the L-variety Xm ⊗k(m) L

is split. (We recall that a variety is said to be split if it contains a geometrically integral
open subset, see [Sko96, Definition 0.1].)

When the rank of f is ≤ 1, a version of the fibration method yielding a positive answer
to Question 1.2 was established by Skorobogatov [Sko90] under the additional assumption
that the smooth fibres of f satisfy the Hasse principle and weak approximation. Under
the same assumption on the smooth fibres, this result was extended by Colliot-Thélène
and Skorobogatov [Sko96, CTS00] to the case where the rank of f is 2, and to the case
where the rank is 3 and every non-split fibre Xm is split by a quadratic extension of k(m).
When the rank of f is ≤ 1, the assumption that the fibres satisfy the Hasse principle and
weak approximation was removed in Harari’s thesis [Har94], using a delicate argument to
control the Brauer–Manin obstruction in the smooth fibres.

In situations more general than the above, one can still make the fibration method work
conditionally if one assumes Schinzel’s hypothesis. This was first observed by Colliot-
Thélène and Sansuc [CTS82] and later extended in [Ser92, SD94, CTSD94, CTSSD98],
culminating in [CTSSD98, Theorem 1.1(e)] in a positive answer to Question 1.2 under the
following assumptions:

(1) Schinzel’s hypothesis holds.
(2) Each non-split fibre Xm is split by an abelian extension of k(m).
(3) The smooth fibres of f satisfy the Hasse principle and weak approximation.

We recall that Schinzel’s hypothesis is a vast generalization of the twin prime conjecture,
which says that a finite collection of irreducible polynomials in Z[t] infinitely often take
prime values simultaneously, unless there is a local obstruction to this being so. Schinzel’s
hypothesis is required in loc. cit., when k = Q, for the polynomials that encode the non-
split fibres of f over the points of A1

k ⊂ P1
k. (When k 6= Q, see [CTSD94, Proposition 4.1].)

The only known case of Schinzel’s hypothesis is the case of a single polynomial of degree 1
(i.e. Dirichlet’s theorem on primes in arithmetic progression), which makes the last theorem
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unconditional when the locus of non-split fibres consists of either one or two rational points
of P1

k. However, as we described above, these small rank cases are also known under less
restrictive conditions.

In a more recent development, the first- and third-named authors, in collaboration with
Skorobogatov [HSW14], showed that the fibration method can also be set up using a
variant of Schinzel’s hypothesis applied to homogeneous polynomials in two variables (still
keeping conditions (2) and (3) above). This homogeneous variant, referred to as Schinzel’s
hypothesis (HH1), has the advantage of being known in a slightly wider set of circumstances.
Most notably, by the seminal work of Green–Tao–Ziegler [GT10, GT12, GTZ12], it
is known, over Q, when all the homogeneous polynomials are linear (see [HSW14,
Proposition 1.2]). Another known case, due to Heath-Brown and Moroz [HBM04], is that
of a single homogeneous polynomial of degree 3, over Q.

The use of the homogeneous variant of Schinzel’s hypothesis has led to more uncon-
ditional answers to Question 1.2 (see [HSW14, Theorem 3.3]); however, these were still
subject to conditions (2) and especially (3) above. Later on, in [HW16, §9], the first- and
third-named authors suggested a way of bypassing condition (2) by replacing Schinzel’s
hypothesis (HH1) with another hypothesis, namely [HW16, Conjecture 9.1], and showed
that the latter implies a positive answer to Question 1.2 in complete generality, even in the
absence of condition (3). This yields an unconditional positive answer to Question 1.2 when
k = Q and all the non-split fibres of f lie above rational points of P1

Q, as the corresponding

special case of [HW16, Conjecture 9.1] was established by Matthiesen [Mat18], building on
the work of Browning and Matthiesen [BM17].

Conjecture 9.1 of [HW16] mentioned above depends, among others, on a collection of
closed points m1, . . . , mn of P1

k and a collection of field extensions L1/k(m1), . . . , Ln/k(mn).
Unfortunately, given a fibration f : X → P1

k with rationally connected geometric generic
fibre, the precise choice of m1, . . . , mn and L1, . . . , Ln needed to obtain a positive answer
to Question 1.2 using the results of [HW16] is not completely straightforward: while one
has to include in this list at least the closed points over which the fibre of f is non-split,
additional points might be required in order to make it possible to describe the Brauer
groups of the smooth fibres uniformly in terms of Brauer classes defined on the complement,
in X, of the union of the fibres Xm1

, . . . , Xmn
. Similarly, each Li needs to be not only

large enough to split the fibre Xmi
, it must also split the “constant” part of the residues of

these Brauer classes. All in all, this state of affairs is inconvenient since for a given fibration
f : X → P1

k, the precise choice of m1, . . . , mn and L1, . . . , Ln to which Conjecture 9.1 needs
to be applied is implicit and hard to determine in practice. A more serious consequence is
that the applicability of [HW16, §9] finds itself hindered in the regime where unconditional
cases of Question 1.2 are potentially within reach. For example:

(i) Conjecture 9.1 of [HW16] is known in various instances where r =
∑n

i=1 deg(mi) is
small, e.g. when r ≤ 2, or when r ≤ 3 and each Li/k(mi) is quadratic (see [HW16,
Theorem 9.11] and Remark 6.5 below). However, due to the possible need for
additional closed points, one cannot deduce from this an unconditional answer to
Question 1.2 for fibrations of rank 2, or for fibrations of rank 3 whose non-split fibres
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are split by quadratic extensions. One can still deduce a positive answer under the
additional assumption that the smooth fibres of f satisfy the Hasse principle and
weak approximation, thus (only) recovering [CTS00, Theorem A and Theorem B].

(ii) When all the field extensions Li/k(mi) are abelian (or, more generally, almost abelian
in the sense of [HW16, Definition 9.4]), Conjecture 9.1 of [HW16] is implied by
Schinzel’s hypothesis (HH1) for the defining homogeneous polynomials of the points
m1, . . . , mn. However, due to the possible need to increase the fields Li, one cannot
deduce that Schinzel’s hypothesis (HH1) implies a positive answer to Question 1.2
when the fibres of f are split by, say, abelian extensions. One can still deduce a
positive answer under the additional assumption that the smooth fibres of f satisfy
the Hasse principle and weak approximation, a result already implicit in [HSW14].
By Heath-Brown and Moroz [HBM04], this yields an unconditional positive answer
to Question 1.2, when k = Q, in the case of a single non-split fibre over a point of
degree 3, but only when conditions (2) and (3) above both hold.

Our goal in this article is to address these issues by putting forth an improved form
of [HW16, Conjecture 9.1]. To this end, we rely on a construction of auxiliary varieties that
was introduced and exploited in [HW16] in connection with Conjecture 9.1 of op. cit. This
construction, antecedents of which had previously come up in the context of descent theory
(see [Sko96, §3.3], [CTS00, p. 391], [Sko01, §4.4]), involves associating with a choice of
points m1, . . . , mn and of finite extensions L1/k(m1), . . . , Ln/k(mn) a certain family of non-
proper varieties, typically denoted W , equipped with a morphism W → P1

k whose singular
fibres lie over the closed points m1, . . . , mn and are respectively split by the field extensions
L1/k(m1), . . . , Ln/k(mn). It is shown in [HW16, Proposition 9.9] that Conjecture 9.1 of
op. cit. holds for the parameters m1, . . . , mn and L1/k(m1), . . . , Ln/k(mn) if and only if for
every variety W in the family associated with these parameters, the subset

⋃
c∈P1(k) Wc(Ak)

of W (Ak) is a dense subset. In the present article, we study a strengthened version of
this last property, which, on the one hand, becomes equivalent to the original version
when stated for all possible choices of m1, . . . , mn and L1/k(m1), . . . , Ln/k(mn), and, on
the other hand, is sufficiently strong to allow the incorporation of non-vertical Brauer
classes into the fibration method. This leads to an equivalent, alternative approach to
the framework of [HW16, §9] that has the practical advantage of unlocking many of the
remaining unconditional cases which escaped op. cit. In particular, we obtain the following
new cases as applications:

Theorem 1.3 (see Theorem 7.3 and Theorem 7.4). Question 1.2 has a positive answer in
each of the following cases:

(i) the rank of f is at most 2;
(ii) the rank of f is 3 and every fibre Xm is split by a quadratic extension of k(m);
(iii) the rank of f is 3, one fibre Xm lies above a rational point of P1

k and every remaining
fibre Xm is split by a quadratic extension of k(m).

In addition, using this improved framework, we are able to combine for the first time the
arguments of Harari [Har97] for dealing with Brauer–Manin obstructions in the fibres with
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the use of Schinzel’s hypothesis in the fibration method—a problem that had been open
since the 1990’s. This leads to a version of the theorem of Colliot-Thélène, Skorobogatov
and Swinnerton-Dyer [CTSSD98, Theorem 1.1(e)] in which the smooth fibres are not
assumed any more to satisfy the Hasse principle or weak approximation (though at the
expense of assuming that the splitting fields are cyclic, or, alternatively, almost abelian
but not abelian):

Theorem 1.4 (see Theorem 7.2). Question 1.2 has a positive answer when the following
two conditions are both satisfied:

(1) Schinzel’s hypothesis (HH1) holds for the set of irreducible homogeneous two-variable
polynomials vanishing on the closed points m ∈ P1

k such that the fibre Xm is non-split;
(2) every fibre Xm is split by an extension of k(m) that is either cyclic or almost abelian

but non-abelian (e.g. a cubic extension).

When combined with the work of Heath-Brown and Moroz [HBM04], Theorem 1.4 yields
an unconditional positive answer to Question 1.2, when k = Q, in the case of a single non-
split fibre over a point of degree 3, subject to condition (2) of Theorem 1.4 but without
assuming anything on the smooth fibres of f beyond their rational connectedness (see
Theorem 7.4).

The article is organised as follows. We begin in §2 with a discussion of the unramified
Brauer groups of norm 1 tori and their torsors, over arbitrary fields of characteristic 0. In §3,
we discuss the variety W which plays a key rôle in this work. After verifying that the Brauer
group of W is reduced to constant classes (Proposition 3.5), we discuss some canonical
ramified Brauer classes on W (see §3.4) and use them to formulate a conjecture on the
arithmetic of W , which we call Conjecture F+ (see §3.6). It is a strengthened version of the
property that the subset

⋃
c∈P1(k) Wc(Ak) is dense in W (Ak), which we dub Conjecture F.

In §4, we establish the main technical result of the article (Theorem 4.1), according to
which Conjecture F+ implies a positive answer to Question 1.2. The argument is similar to
the proof of [HW16, Theorem 9.17], with the difference that the variety W for which one
needs to assume Conjecture F+ is under better control. In §5, we analyse the relationship
between Conjectures F and F+ in greater detail. The comparison goes through an auxiliary
intermediate statement, which we call Conjecture Fconst. The results of this section, and
in particular those of §5.3, are the main input needed for Theorem 1.4. In §6, we collect
all of the cases of Conjecture F+ that we are able to prove, either by strong approximation
arguments, from Schinzel’s hypothesis or from additive combinatorics. Finally, in §7, we
deduce Theorem 1.3 and Theorem 1.4 and discuss some examples.
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Notation and conventions. In this article, an extension of a field will always be meant
to be a field extension. Let X be a variety, that is, a scheme of finite type, over a
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field k. We say that X is split if it contains a geometrically integral open subset. We
say that X is rationally connected if for any algebraically closed field extension K of k,
the variety X ⊗k K over K is rationally connected in the sense of Campana, Kollár,
Miyaoka and Mori. The Brauer group Br(X) = H2

ét(X, Gm) contains the algebraic Brauer
group Br1(X) = Ker

(
Br(X) → Br(X ⊗k K)

)
, where K denotes any algebraically closed

field extension of k (the kernel does not depend on the choice of K), and the subgroup
Br0(X) = Im

(
Br(k) → Br(X)

)
of constant classes. When X is smooth and connected

and k has characteristic 0, we denote by Brnr(X) ⊆ Br(X) the unramified Brauer group,
which coincides with the Brauer group of any smooth and proper variety birationally
equivalent to X. Hilbert subsets of an irreducible variety are meant in the sense of Lang
[Lan83, Chapter 9, §5], and thus do not only consist of rational points; for example the
generic point belongs to every Hilbert subset (see also [HW16, Notation and conventions]).
If k is a number field and v is a place of k, we denote by kv the completion of k at v and,
if v is finite, by Fv the residue field of v. Given a nonzero k-algebra L and a variety Y
over L, we denote by RL/kY the Weil restriction of Y from L down to k. If M is an abelian

group and L is an étale k-algebra, say L =
∏

Li where the Li are fields, we write Hn(L, M)
for the group

∏
Hn(Li, M), where Hn(Li, M) denotes the n-th Galois cohomology group

of Li with values in M . If G is a group and M is a G-module, we denote by Cn(G, M) the
group of n-cochains of G with values in M and by Zn(G, M) the subgroup of n-cocycles.
Finally, if k is a number field with algebraic closure k̄, we say that a finite field extension
L/k is almost abelian (in the sense of [HW16, Definition 9.4]) if it is abelian or if there
exist a prime number p and a bijection Spec(L⊗k k̄) ≃ Fp that makes Gal(k̄/k) act on Fp

by affine transformations.

2. Unramified Brauer groups of torsors under norm tori

We discuss three complementary aspects of unramified Brauer groups of norm tori and of
their torsors over arbitrary fields of characteristic 0, in three logically independent sections
§2.1, §2.2, §2.3. The first one provides a criterion for classes of the shape CoresL/k(z, χ)

to be unramified (Proposition 2.1). This will play a key rôle in the proof of Theorem 1.4.
The second one is devoted to norm tori T such that Brnr(T ) = Br0(T ), a condition which
also turns up in the proof of Theorem 1.4 (see Corollary 5.8). The third one reinterprets
the computation of the quotient group Brnr(T )/Br0(T ) for norm tori T in terms of central
extensions of a finite group G by Q/Z (Proposition 2.10). This last result is not used in
the rest of the article but it may be of interest in a broader perspective. We illustrate
it by analysing an example of Kunyavskĭı of a class of three-dimensional tori satisfying
Brnr(T ) 6= Br0(T ) (Example 2.11) and by giving an independent proof of Bartels’ theorem
according to which Brnr(T ) = Br0(T ) if T is the norm torus associated with a degree n
field extension whose Galois closure has Galois group Dn (Example 2.12).

2.1. Unramifiedness of corestrictions. Let k be a field of characteristic 0 with algebraic
closure k̄. Let T be an algebraic torus over k. Let Z be a torsor, over k, under T .

The problem of calculating the unramified Brauer group of Z is classically addressed by
noting, on the one hand, that the group Brnr(Z ⊗k k̄) vanishes, so that Brnr(Z) ⊆ Br1(Z),
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and on the other hand, that the group Pic(Z ⊗k k̄) vanishes, so that the Hochschild–
Serre spectral sequence determines an isomorphism Br1(Z) = H2(k, k̄[Z]∗) and hence an
injection

Br1(Z)/Br0(Z) →֒ H2(k, k̄[Z]∗/k̄∗) = H2(k, T̂ ),(2.1)

which is an isomorphism when either Z(k) 6= ∅ or H3(k, k̄∗) = 0, e.g. when k is a number

field. Let us denote by X
2
ω(k, T̂ ) the subgroup of H2(k, T̂ ) consisting of those classes which

vanish in H2(k′, T̂ ) for any field extension k′/k such that the absolute Galois group of k′

is procyclic. It is known that an element of Br1(Z) belongs to Brnr(Z) if and only if its

image in H2(k, T̂ ) belongs to X
2
ω(k, T̂ ) (see [BDH13, Théorème 8.1]). This results in an

injection

Brnr(Z)/Br0(Z) →֒X
2
ω(k, T̂ ),(2.2)

which is an isomorphism when Z(k) 6= ∅ or H3(k, k̄∗) = 0, thus turning, in these cases,
the determination of Brnr(Z)/Br0(Z) into a finite and computable endeavour: indeed, the

action of Gal(k̄/k) on T̂ factors through a finite quotient, say G, and we can identify

X
2
ω(k, T̂ ) ∼←−X

2
cyc(G, T̂ ),(2.3)

where X
2
cyc(G, T̂ ) denotes the subgroup of H2(G, T̂ ) consisting of those elements whose

image in H2(H, T̂ ) vanishes for every cyclic subgroup H of G.
Our goal in this section is to extract from the above an explicit description of certain

classes in Brnr(Z) in the case where T is the norm 1 torus associated with a given nonzero
étale algebra L over k and Z is the corresponding norm c torsor for some c ∈ k∗.

We fix L and c until the end of §2. The torsor Z (resp. the torus T ) can be explicitly
described as the closed subvariety of RL/k(A1

L) defined by the equation NL/k(z) = c (resp.

by the equation NL/k(z) = 1), where z denotes a point of RL/k(A1
L). We shall again

denote by z the invertible function on Z ⊗k L obtained by restricting the tautological
regular function on RL/k(A1

L)⊗k L. For χ ∈ H1(L, Q/Z), let us write (z, χ) ∈ Br(Z ⊗k L)

for the class obtained by identifying H1(L, Q/Z) with H2(L, Z) and considering the image
of the pair (z, χ) by the cup product map

H0(Z ⊗k L, Gm)×H2(L, Z)→ Br(Z ⊗k L).

We note that (z, χ) ∈ Ker
(
Br(Z⊗kL)→ Br(Z⊗kL⊗kk̄)

)
since χ vanishes when pulled back

to L⊗k k̄. Hence its push-forward CoresL/k(z, χ) ∈ Br(Z) along the projection Z⊗k L→ Z

belongs to the subgroup Br1(Z) ⊆ Br(Z).
The following proposition gives criteria for this class CoresL/k(z, χ) ∈ Br1(Z) to be

constant or unramified. It builds on the ideas contained in [Wei14b, Theorem 5], in which L
is assumed to be a Galois extension of k.

Proposition 2.1. Let χ ∈ H1(L, Q/Z).

(1) CoresL/k(z, χ) ∈ Br0(Z) if and only if χ ∈ Im
(
H1(k, Q/Z)→ H1(L, Q/Z)

)
.
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(2) CoresL/k(z, χ) ∈ Brnr(Z) if and only if for any field extension k′/k such that the

absolute Galois group of k′ is procyclic and for any two k-algebra homomorphisms
ι1, ι2 : L→ k′, the two images of χ in H1(k′, Q/Z) via ι1 and via ι2 are equal.

Proof. Letting k̄ denote a fixed algebraic closure of k and Σ the set of k-algebra homomor-
phisms L → k̄, the character group T̂ of the torus T sits in the commutative diagram of
Galois modules

0 // Z //

��

Z[Σ] //

α
��

T̂ //

≀
��

0

0 // k̄∗ // k̄[Z]∗ // k̄[Z]∗/k̄∗ // 0

(2.4)

whose rows are exact, whose leftmost vertical arrow sends 1 to c, and whose middle vertical
arrow sends σ ∈ Σ to the image of z by the morphism L[Z]∗ → k̄[Z]∗ induced by σ. The
rightmost vertical arrow is an isomorphism. Passing to cohomology and taking into account
the canonical isomorphism Br1(Z) = H2(k, k̄[Z]∗) given by the Hochschild–Serre spectral
sequence, we obtain the commutative diagram with exact rows

H1(k, Q/Z) //

��

H1(L, Q/Z)
β

//

α′

��

H2(k, T̂ )
≀
��

Br(k) // Br1(Z) // H2(k, k̄[Z]∗/k̄∗).

(2.5)

Lemma 2.2. The map α′ sends χ ∈ H1(L, Q/Z) to CoresL/k(z, χ) ∈ Br1(Z).

Proof. We denote by f : Z → Spec(k) and f ′ : Z⊗k L→ Spec(L) the structure morphisms
and by ν : Z ⊗k L → Z the natural projection. Let γ : Z → Gm be the morphism of
étale sheaves on Z ⊗k L defined by γ(1) = z ∈ H0(Z ⊗k L, Gm). Applying the functors
H2(Z,−) and H2(k, f∗−), related by a natural transformation H2(k, f∗−)→ H2(Z,−), to
the morphisms of étale sheaves on Z

ν∗Z
ν∗γ

// ν∗Gm

NL/k
// Gm,(2.6)

we obtain a commutative diagram

H2(k, f∗ν∗Z) // H2(k, f∗ν∗Gm) // H2(k, f∗Gm)

H1(L, Q/Z) = H2(L, Z)

f ′∗

��

// H2(k, k̄[Z]∗)

��

H2(Z ⊗k L, Z)
ξ 7→ z⌣ξ

// Br(Z ⊗k L)
CoresL/k

// Br(Z).

(2.7)

The map (f∗ν∗Z)(k̄)→ (f∗Gm)(k̄) obtained from the composition of the morphisms in (2.6)
coincides, via the canonical isomorphism (f∗ν∗Z)(k̄) = Z[Σ], with the map α appearing
in (2.4). Thus, the composition of the middle horizontal maps of (2.7) with the lower



RATIONAL POINTS ON FIBRATIONS WITH FEW NON-SPLIT FIBRES 9

right-hand side vertical map of (2.7) coincides with α′. The lemma then follows from the
commutativity of this diagram. �

Lemma 2.2 and a diagram chase in (2.5) together imply Proposition 2.1 (1).
Let us now prove Proposition 2.1 (2). As discussed above, an element of Br1(Z) belongs

to the subgroup Brnr(Z) if and only if its image in H2(k, T̂ ) by the map Br1(Z)→ H2(k, T̂ )

extracted from the diagram (2.5) belongs to X
2
ω(k, T̂ ), see [BDH13, Théorème 8.1]. In view

of (2.5) and of Lemma 2.2, the proof will therefore be complete once we check that the
following two conditions are equivalent:

(a) for any field extension k′/k such that the absolute Galois group of k′ is procyclic, the
images of χ in H1(k′, Q/Z) via any two k-algebra morphisms L→ k′ are equal;

(b) for any field extension k′/k such that the absolute Galois group of k′ is procyclic, the
image of χ in H1(L⊗k k′, Q/Z) comes from H1(k′, Q/Z).

Any k-algebra morphism L→ k′ induces a k′-algebra morphism L⊗k k′ → k′ and hence a
retraction of the natural map H1(k′, Q/Z) → H1(L⊗k k′, Q/Z). Therefore (b)⇒(a). For
the converse, we need the following lemma.

Lemma 2.3. Let N ≥ 1. Let n1, . . . , nN be nonzero integers and let (λi)1≤i≤N ∈ (Q/Z)N

satisfy the equality

n

ni

λi =
n

nj

λj(2.8)

for all i, j ∈ {1, . . . , N} and for all integers n divisible by both ni and nj. Then there exists
λ ∈ Q/Z such that λi = niλ for all i ∈ {1, . . . , N}.

Proof. By induction on N , we may assume that N = 2. Then, as Q/Z is divisible, we may
assume that n1 and n2 are coprime. Write 1 = a1n1 + a2n2 for a1, a2 ∈ Z. Applying the
hypothesis to n = n1n2 shows that λ = a1λ1 + a2λ2 satisfies the desired property. �

Going back to the implication (a)⇒(b), let us write L⊗k k′ = E1×· · ·×EN where Ei is a
field extension of k′ of degree ni and let us choose an algebraic closure k̄′ of k′, a topological
generator τ ∈ Gal(k̄′/k′) and, for each i ∈ {1, . . . , N}, a k′-linear isomorphism between Ei

and the subfield of k̄′ fixed by τni . Using these choices to identify H1(L ⊗k k′, Q/Z)
with (Q/Z)N , the implication (a)⇒(b) now results from Lemma 2.3. �

When L is a field, Proposition 2.1 (2) can be reformulated in Galois theoretical terms,
viewing χ as a group homomorphism Gal(k̄/L)→ Q/Z.

Corollary 2.4. Suppose that L is a field. Fix an algebraic closure k̄ of k and a k-linear
embedding L →֒ k̄. Let χ ∈ H1(L, Q/Z). The following conditions are equivalent:

(1) CoresL/k(z, χ) ∈ Brnr(Z);

(2) for any τ1, τ2 ∈ Gal(k̄/L) that are conjugate in Gal(k̄/k), the equality χ(τ1) = χ(τ2)
holds, where we regard χ as a group homomorphism Gal(k̄/L)→ Q/Z.
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Proof. Assume that CoresL/k(z, χ) ∈ Brnr(Z) and let τ1, τ2 ∈ Gal(k̄/L) and σ ∈ Gal(k̄/k)

satisfy σ−1τ1σ = τ2. Let ι1 : L→ k′ be the inclusion of L in the subfield k′ of k̄ fixed by τ1,
and ι2 : L→ k′ the map induced by σ. Proposition 2.1 (2) now ensures that χ(τ1) = χ(τ2).

To prove the converse implication, it suffices to note that if two embeddings ι1, ι2 of the
extension L/k into a field extension k′/k with procyclic absolute Galois group are given,
then, after choosing an algebraic closure k̄′ of k′, a topological generator τ ∈ Gal(k̄′/k′)
and, for each i ∈ {1, 2}, an embedding ῑi : k̄ → k̄′ that extends ιi, the images τ1 and τ2

of τ by the restriction maps ῑ∗
i : Gal(k̄′/k′)→ Gal(k̄/L) are conjugate in Gal(k̄/k). �

Remark 2.5. If k is a number field, then H2(k, Q/Z) = 0 (see [Har20, Corollary 18.17]),
so that the map β appearing in (2.5) is onto. As a consequence, all elements of Br1(Z)
can be written as δ + CoresL/k(z, χ) for some χ ∈ H1(L, Q/Z) and δ ∈ Br0(Z) (see (2.5)).
Thus, in this case, Proposition 2.1 fully describes the unramified Brauer group of Z.

2.2. Some norm tori with Brnr(T ) = Br0(T ). For later use in §6.2, the next proposition
collects a few cases in which norm tori satisfy Brnr(T ) = Br0(T ).

Proposition 2.6. Let L/k be a finite extension of fields of characteristic 0. After choosing
a bijection Spec(L⊗k k̄) = {1, . . . , n}, we view the Galois group G of a Galois closure of L/k
as a transitive subgroup of the symmetric group Sn. The torus T = R1

L/kGm over k satisfies

Brnr(T ) = Br0(T ) under any of the following assumptions:

(i) for every prime divisor p of n, the p-Sylow subgroups of G are cyclic;
(ii) G is cyclic;
(iii) n is prime;
(iv) L/k is Galois and H3(G, Z) = 0;
(v) Ker

(
Hab → Gab

)
has order prime to n (for example Hab = 0) and n is squarefree;

(vi) G = Sn is the symmetric group;
(vii) G = Dn is the dihedral group of order 2n;
(viii) G = An is the alternating group and n ≥ 5.

Cases (vi), (vii), (viii) of Proposition 2.6 are due to Kunyavskĭı–Voskresenskĭı [VK84],
Bartels [Bar81] and Macedo [Mac20], respectively. For the convenience of the reader, we
reproduce below the main points of the arguments, and provide a simple alternative proof
of Macedo’s theorem in the exceptional case G = A6, which in op. cit. relied on the use
of a computer. The proof we give here was inspired by an argument of Drakokhrust and
Platonov [DP86].

Proof of Proposition 2.6. Let H ⊆ G denote the subgroup whose fixed field is L, so that
T̂ = ZG/H/Z and H2(G, T̂ ) fits into an exact sequence

H2(G, Z) // H2(H, Z) // H2(G, T̂ ) // H3(G, Z) // H3(H, Z),(2.9)

in view of Shapiro’s lemma. We need to prove that X
2
cyc(G, T̂ ) = 0 (see (2.2) and (2.3)).

Lemma 2.7. Let p be a prime number. The p-torsion subgroup of X
2
cyc(G, T̂ ) vanishes

under any of the following assumptions:
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(a) p does not divide n;
(b) the p-Sylow subgroups of G are cyclic;
(c) the group Ker

(
Hab → Gab

)
has order prime to p, and, denoting by Hp a p-Sylow

subgroup of H, by Gp a p-Sylow subgroup of G containing Hp, and by L′ and k′ their

respective fixed fields, the torus T ′ = R1
L′/k′Gm over k′ satisfies Brnr(T

′) = Br0(T ′).

Proof. The H-module T̂ is isomorphic to Z(G/H)\{H}, hence it is a permutation H-module.
We deduce, by Shapiro’s lemma, that X

2
cyc(H, T̂ ) = 0. It follows that (G : H) = n kills

X
2
cyc(G, T̂ ) (see [NSW08, Corollary 1.5.7]). This takes care of (a). By the same token, the

index (G : S) kills X
2
cyc(G, T̂ ) for any cyclic subgroup S of G, since X

2
cyc(S, T̂ ) obviously

vanishes. This takes care of (b). Now assume that (c) holds. We let M{p} denote the
p-primary torsion subgroup of an abelian group M and consider the commutative diagram
with exact rows

H2(G, Z){p}

��

α
// H2(H, Z){p}

��

// H2(G, T̂ ){p}
β
��

// H3(G, Z){p}
γ
��

H2(Gp, Z){p} // H2(Hp, Z){p} // H2(Gp, T̂ ′){p} // H3(Gp, Z){p}

induced, thanks to Shapiro’s lemma, by the natural morphism of exact sequences

0 // Z // ZG/H //

��

T̂

��

// 0

0 // Z // ZGp/Hp // T̂ ′ // 0.

The first part of (c) implies that α is surjective, since H2(G, Z){p} = Hom(Gab, Qp/Zp)

and H2(H, Z){p} = Hom(Hab, Qp/Zp). In addition, a corestriction argument as above
shows that γ is injective. We conclude that β is injective. On the other hand, the image
of X

2
cyc(G, T̂ ){p} by β is contained in X

2
cyc(Gp, T̂ ′), which vanishes by the second part

of (c), in view of (2.2) and (2.3). Hence X
2
cyc(G, T̂ ){p} = 0. �

Proposition 2.6 in case (i) results from Lemma 2.7 (a)(b). Cases (ii) and (iii) are

subcases of (i), as the p-Sylow subgroups of Sp are cyclic. In case (iv), even H2(G, T̂ )
vanishes. Proposition 2.6 in case (v) results from Lemma 2.7 (a)(c) and from case (iii) of
Proposition 2.6, once one notes that if n is squarefree, then for any prime p dividing n, the
extension L′/k′ appearing in Lemma 2.7 (c) has prime degree (namely, degree p).

We now turn to cases (vi)–(viii). When G = Sn and n ≥ 6 (so that H = Sn−1) or

G = An and n ≥ 8 (so that H = An−1), the restriction map H2(G, Z)→ H2(H, Z) is onto,

being Pontrjagin dual to the natural map Hab → Gab (see [NSW08, p. 52, l. 7]), which is
injective if G = Sn and n ≥ 3 (since Hab = Gab = Z/2Z is generated by a transposition)
or if G = An and n ≥ 6 (since Hab = 0); on the other hand, the restriction map
H3(G, Z)→ H3(H, Z) is injective, by [Mac20, Lemma 2.2] and [NSW08, Proposition 3.1.2]
when G = An and n ≥ 8, and by similar arguments starting from [Mac20, Proposition 2.4]

when G = Sn and n ≥ 6. Thus H2(G, T̂ ) = 0 in these cases. When G = Dn (so that
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H = Z/2Z), Lemma 2.7 (a)(b)(c) reduces one to the case where n is a power of 2; in
this case, a direct computation using the semidirect product structure of Dn shows that

the restriction map H2(G, T̂ ) → H2(H, T̂ ) is injective (see [Bar81, Lemma 3] and apply

[NSW08, Proposition 3.1.2]), hence X
2
cyc(G, T̂ ) = 0. When n = 4 and G = S4, one has

X
2
cyc(G, T̂ ) = 0 by Lemma 2.7 (a)(c) and by Proposition 2.6 (vii) for n = 4. When n = 6

and G = A6, case (v) of Proposition 2.6 is applicable. Finally, when n ∈ {2, 3, 5, 7},
case (iii) of Proposition 2.6 is applicable. �

Remarks 2.8. (i) When the extension L/k is cyclic or has prime degree, the torus T is
even a direct factor of a rational variety (when n is prime, see [CTS87b, Proposition 9.1,
Proposition 9.5]; when L/k is cyclic, the torus T is itself rational, see [Vos98, Chapter 2,
§4.8] and the proof of [CTS87b, Proposition 9.1]). We note that the case where n is
prime includes the case where L/k is an almost abelian extension in the sense of [HW16,
Definition 9.4] but is not abelian.

(ii) The equality Brnr(T ) = Br0(T ) fails whenever the extension L/k is abelian but is

not cyclic, since in this case X
2
cyc(G, T̂ ) = H3(G, Z) 6= 0. Another situation in which this

equality fails can be found in Example 2.11 below.

2.3. Central extensions by Q/Z. Keeping the set-up of §2.1, we now explain how the

elements of the group X
2
cyc(G, T̂ ), which appears in (2.3), can be interpreted in terms of

central extensions of G by Q/Z. This turns the practical computation of Brnr(T )/Br0(T )
into a very concrete question on extensions and their trivialisations. We illustrate this
point of view in Example 2.11, where we provide a simple explanation for an example due
to Kunyavskĭı of a class of norm tori such that Brnr(T ) 6= Br0(T ), and in Example 2.12,
where we give an independent proof of Proposition 2.6 (vii) (Bartels’ theorem).

From now on, we assume that L is a field and we fix an algebraic closure k̄ of k and a
k-linear embedding L →֒ k̄. Let L̃ be the Galois closure of L/k in k̄. Set G = Gal(L̃/k)

and H = Gal(L̃/L). To interpret H2(G, T̂ ), we consider central extensions

1 // Q/Z
ι

// G̃
ρ

// G // 1(2.10)

of G by Q/Z equipped with a splitting of their pull-back

1 // Q/Z // ρ−1(H) // H // 1.(2.11)

along the inclusion H →֒ G. Such data can be encoded by a triple (G̃, ρ, r) formed by a

group G̃, a surjective homomorphism ρ : G̃→ G and a homomorphism r : ρ−1(H)→ Q/Z

whose restriction to the kernel of ρ is an isomorphism. A morphism from a triple (G̃1, ρ1, r1)

to a triple (G̃2, ρ2, r2) is by definition a homomorphism γ : G̃1 → G̃2 such that ρ2 ◦ γ = ρ1

and r2 ◦
(
γ|ρ−1

1
(H)

)
= r1. We denote by Ext(G, H; Q/Z) the set of isomorphism classes

of such triples (G̃, ρ, r) and by Extnr(G, H; Q/Z) the subset consisting of the isomorphism
classes of unramified triples, in the following sense.
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Definition 2.9. A triple (G̃, ρ, r) is unramified if the equality r(h̃1) = r(h̃2) holds for all

h̃1, h̃2 ∈ ρ−1(H) that are conjugate in G̃.

The next proposition justifies this terminology, in view of (2.2) and (2.3).

Proposition 2.10. There is a canonical bijection H2(G, T̂ ) = Ext(G, H; Q/Z). It induces,

by restriction, a bijection X
2
cyc(G, T̂ ) = Extnr(G, H; Q/Z).

Proof. Let M = T̂ ⊗Z Q/Z. As T̂ is a free Z-module, the sequence of G-modules

0 // T̂ // T̂ ⊗Z Q // M // 0(2.12)

is exact. For any subgroup C ⊆ G, the abelian group H i(C, T̂ ⊗Z Q) vanishes for all i > 0
as it is killed by the order of C while being a Q-vector space. The sequence (2.12) therefore

induces isomorphisms H1(G, M) = H2(G, T̂ ) and X
1
cyc(G, M) = X

2
cyc(G, T̂ ). In addition,

the exact sequence of G-modules

0 // Q/Z
∆

// (Q/Z)G/H // M // 0,(2.13)

where ∆ is the diagonal map, yields an identification of the group of cochains

C1(G, M) = C1(G, (Q/Z)G/H)/
(
∆ ◦ C1(G, Q/Z)

)

and hence an identification of the cohomology group

H1(G, M) =

{
(α, β) ∈ Z2(G, Q/Z)× C1

(
G, (Q/Z)G/H

)
; dβ = ∆ ◦ α

}
{
(dγ, dδ + ∆ ◦ γ); (γ, δ) ∈ C1(G, Q/Z)× (Q/Z)G/H

} .(2.14)

To be precise, in the notation of (2.14), the group C1(G, M) consists of the β’s modulo
the ∆ ◦ γ’s; the cocycles are defined by the condition that dβ = ∆ ◦ α for some α; the
coboundaries are represented by the dδ’s.

Given a central extension (2.10), let us consider its push-forward by ∆, i.e. the extension

1 // (Q/Z)G/H //
(Q/Z)G/H

⋊ G̃

((−∆)× ι)(Q/Z)
// G // 1,(2.15)

where G̃ acts on (Q/Z)G/H through ρ. The extension (2.15) is also the induction from H
to G of (2.11) in the sense of [Sti10, §2.4], since (2.11) is the extension obtained from (2.15)
by applying the functor sh2 of loc. cit. (see §2.3.4 and §2.4.2 of op. cit.). By Corollary 15
of op. cit., splittings of (2.11) are therefore in one-to-one correspondence with splittings

of (2.15) up to conjugation by (Q/Z)G/H .
Recall that H2(G, Q/Z) is in canonical bijection with the set of isomorphism classes of

central extensions of G by Q/Z; if s : G → G̃ is a set-theoretic section of ρ, the class
of (2.10) is given by the cocycle α ∈ Z2(G, Q/Z) defined by ι(α(σ, τ)) = s(σ)s(τ)s(στ)−1

(see [Bro94, Chapter IV, Theorem 3.12]). Once s is fixed, the datum of a splitting of (2.15)

is equivalent to that of a map β : G→ (Q/Z)G/H such that (−β)×s : G→ (Q/Z)G/H
⋊ G̃

is a homomorphism modulo ((−∆)× ι)(Q/Z), or in other words, such that dβ = ∆◦α. For
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(γ, δ) ∈ C1(G, Q/Z)× (Q/Z)G/H , conjugating (−β)× s by δ and replacing s with (ι ◦ γ)s
amounts to adding (dγ, dδ + ∆ ◦ γ) to the pair (α, β).

Altogether, we have now obtained a canonical map Ext(G, H; Q/Z) → H1(G, M). By
unwinding its construction and applying [Bro94, Chapter IV, Theorem 3.12], one readily
checks that it is bijective, thus proving the first part of Proposition 2.10.

To verify the second part, let us fix a central extension (2.10), a set-theoretic section s

of ρ and a splitting of (2.15), corresponding on the one hand to a triple (G̃, ρ, r) and on

the other hand to α ∈ Z2(G, Q/Z) and β ∈ C1
(
G, (Q/Z)G/H

)
as above, with dβ = ∆ ◦ α.

Denoting by β(g)(g′), for g, g′ ∈ G, the image of g′H by β(g) : G/H → Q/Z, we shall now
conclude the proof by establishing the equivalence of the following conditions:

(i) the triple (G̃, ρ, r) is unramified;
(ii) β(h)(g′) = β(h)(1) for all h ∈ H and g′ ∈ G such that g′−1hg′ ∈ H;
(iii) β(g)(g′) = β(g)(g′′) for all g, g′, g′′ ∈ G such that g′−1gg′ ∈ H and g′′−1gg′′ ∈ H;
(iv) the image of β in H1(G, M) belongs to the subgroup X

1
cyc(G, M).

The splitting of (2.11) induced by the given splitting of (2.15) is h 7→ ι(−β(h)(1))s(h)
(see [Sti10, §2.4.2]); hence r(s(h)) = β(h)(1) for every h ∈ H. Writing elements of ρ−1(H)
as ι(u)s(h) with u ∈ Q/Z and h ∈ H, we deduce that (i) holds if and only if

ι
(
β(h2)(1) − β(h1)(1)

)
= s(g)s(h2)s(g)−1s(h1)−1(2.16)

for all h1, h2 ∈ H and g ∈ G such that h1 = gh2g−1. As the right-hand side of (2.16) is equal
to ι(α(g, h2)−α(h1, g)) and as dβ = ∆◦α, we can rewrite (2.16) as β(h2)(1) = β(h2)(g−1).
This proves the equivalence (i)⇔(ii). The implications (iv)⇒(iii)⇒(ii) are immediate. To
see that (ii)⇒(iii), we remark that as dβ = ∆◦α, the image β̄ ∈ C1(G, M) of β is a cocycle,
hence β̄(g) = β̄(g′) + g′(β̄(g′−1gg′)) − g(β̄(g′)) for all g, g′ ∈ G. Evaluating at g′ and g′′

and noting that β(g′)(g′) = β(g′)(g−1g′) and β(g′)(g′′) = β(g′)(g−1g′′) if g′ and g′′ satisfy
the hypotheses of (iii), one deduces that (ii)⇒(iii).

It remains to prove that (iii)⇒(iv). We assume that (iii) holds, fix a cyclic subgroup
C ⊆ G and verify that the image of β̄ in H1(C, M) vanishes. To this end, we choose
a generator g of C and representatives g1, . . . , gN ∈ G of the orbits of C on G/H. Let
n1, . . . , nN be the lengths of these orbits. Condition (iii) implies the following:

(iii’) β(gn)(gi) = β(gn)(gj) for all n, i, j such that ni and nj both divide n.

On the other hand, the exact sequence (2.13) induces an exact sequence

H1(C, Q/Z) // H1
(
C, (Q/Z)G/H

)
// H1(C, M) // H2(C, Q/Z).(2.17)

As H2(C, Q/Z) = 0 (see [NSW08, Proposition 1.7.1] and note that C is cyclic and Q/Z is

divisible), there exists β′ ∈ Z1
(
C, (Q/Z)G/H

)
whose image in H1(C, M) equals the image

of β̄. Condition (iii’) still holds with β replaced with β′. Set λi = β′(gni)(gi). For any
integer n divisible by ni, we have β′(gn) = (1 + gni + g2ni + · · ·+ gn−ni)(β′(gni)) since β′ is
a cocycle, and hence β′(gn)(gi) = n

ni
λi. Thus, thanks to (iii’), we deduce from Lemma 2.3

the existence of λ ∈ Q/Z such that λi = niλ for all i.
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Let m be the order of g. Decomposing (Q/Z)G/H as a direct sum indexed by the orbits
of C on G/H and using Shapiro’s lemma on each summand, we rewrite (2.17) as

(
1

m
Z

)
/Z //

N⊕

i=1

((
ni

m
Z

)
/Z

)
// H1(C, M) // 0,

where the first map is x 7→ (nix)1≤i≤N . As the class of β′ in the second group is (λi)1≤i≤N ,

we see that β′ comes from the left, hence β̄ vanishes in H1(C, M) and (iv) is proved. �

Example 2.11 (Kunyavskĭı [Kun82]). Let k be a field of characteristic 0 and L be a
quartic field extension of k. If a Galois closure of L/k has Galois group G = A4, then the
torus T = R1

L/kGm over k satisfies Brnr(T )/Br0(T ) = Z/2Z.

To verify this claim, we first note that H2(G, T̂ ) = Z/2Z, as one deduces from (2.9).
Proposition 2.10 now reduces us to showing that Extnr(A4, A3; Q/Z) = Ext(A4, A3; Q/Z).
To this end, we fix a central extension (2.10) and a retraction r : ρ−1(H)→ Q/Z of (2.11),

with G = A4 and H = A3, and let h̃1, h̃2 ∈ ρ−1(H) and g̃ ∈ G̃ satisfy h̃1 = g̃h̃2g̃−1. Set
hi = ρ(h̃i) and g = ρ(g̃). Now h1, h2 ∈ A3 and g ∈ A4 are such that h1 = gh2g−1, and this
implies that h1 = h2 = 1 or g ∈ A3. In both cases, we deduce that h̃1 and h̃2 are conjugate
in ρ−1(H), and hence that r(h̃1) = r(h̃2), as desired.

Example 2.12. Taking up the notation of Proposition 2.6, let us assume that G = Dn

and explain how the point of view of central extensions leads to a short proof of Bartels’
theorem that Brnr(T ) = Br0(T ). According to Proposition 2.10, we have to check that

any unramified triple (G̃, ρ, r) is isomorphic to the trivial triple (Q/Z×G, pr2, pr1). Here
H = Z/2Z and the inclusion H →֒ G admits a retraction, so that the restriction map
H1(G, Q/Z) → H1(H, Q/Z) is surjective, which implies the desired conclusion when the

central extension (2.10) is trivial (i.e. when G̃ = Q/Z × G and ρ = pr2) since in this
case the splittings of (2.11) are parametrised by H1(H, Q/Z) and the automorphisms

of (2.10) by H1(G, Q/Z). Let us now fix an unramified triple (G̃, ρ, r) such that (2.10)
is nontrivial. As H2(Dn, Q/Z) = 0 when n is odd and H2(Dn, Q/Z) = Z/2Z when n is
even (see [Han93, Theorem 5.2, Theorem 5.3]), the integer n must be even and (2.10) is
the unique nontrivial central extension of Dn by Q/Z up to isomorphism. Presenting Dm

as 〈σ, τ ; σ2 = τm = 1, στσ = τ−1〉 for any m, setting

D̃n = (Q/Z×D2n)/
〈(

1/2, τn)〉(2.18)

and letting π : D̃n → Dn be induced by the second projection (noting that D2n/〈τn〉 = Dn),
one checks that π does not admit a section, as n is even; hence the central extension given
by D̃n and π must be isomorphic to (2.10) and we may assume that G̃ = D̃n and ρ = π.

Now the classes h̃1, h̃2 ∈ D̃n of (0, σ), (0, στn) ∈ Q/Z ×D2n are conjugate in D̃n (indeed

τ−n/2στn/2 = στn in D2n) and belong to π−1(H), but differ by the class of (1/2, 1) in D̃n,
so that r(h̃1) 6= r(h̃2), a contradiction.
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3. The variety W and Conjecture F+

We recall in §§3.1–3.2 the definition and geometry of the quasi-affine variety W which
was introduced in [HW16, §9.2.2] and partial compactifications of which had previously
appeared in [Sko96, §3.3], [CTS00, p. 391], and in [Sko01, §4.4]. We discuss in §§3.3–3.5
some of its basic properties, showing, in particular, that its Brauer group consists only of
constant classes. When the ground field is a number field, the adelic points of W are the
subject of two key conjectures studied in this article: Conjecture F and Conjecture F+.
We state them in §3.6. Conjecture F is another name for [HW16, Conjecture 9.1], while
the formulation of Conjecture F+ is new. As we shall see later in §5, these two conjectures
are equivalent when their parameters are allowed to vary.

3.1. Parameters and definition. Let k be a field of characteristic 0. We denote by P

the collection of all triples π = (M, (Lm)m∈M , (bm)m∈M ) consisting of a finite closed subset
M ⊂ A1

k together with the data, for each m ∈ M , of a finite field extension Lm of the
residue field k(m) of m and of an element bm ∈ k(m)∗. Given π ∈ P, we let am ∈ k(m)
denote the value at m of the regular function t on A1

k = Spec(k[t]) and let Fm denote the
singular locus of the variety RLm/k(A1

Lm
) \RLm/k(Gm,Lm

). Following [HW16, §9.2.2], for
π ∈P, we consider the morphism

(
A2

k \ {(0, 0)}
)
×
∏

m∈M

(
RLm/k(A1

Lm
) \ Fm

)
→

∏

m∈M

Rk(m)/k(A1
k(m))(3.1)

defined by (λ, µ, (zm)m∈M ) 7→ (bm(λ − amµ) − NLm/k(m)(zm))m∈M , where λ, µ are the

coordinates of A2
k and zm stands for a point of RLm/k(A1

Lm
).

Definition 3.1. The variety W over k associated with π ∈ P is the fibre, above the
rational point 0, of the morphism (3.1).

Remark 3.2. Let π = (M, (Lm)m∈M , (bm)m∈M ) ∈ P. Let M ′ = {m ∈ M ; Lm 6= k(m)}.
Let π′ = (M ′, (Lm)m∈M ′ , (bm)m∈M ′). The varieties W and W ′ associated with π and π′

are naturally isomorphic.

3.2. Geometry. For ease of reference, we collect in the next proposition some elementary
facts about the geometry of W that already appear in the proof of [HW16, Proposition 9.9].
We set U = P1

k \M and let p : W → P1
k denote the map (λ, µ, (zm)m∈M ) 7→ [λ : µ].

Proposition 3.3. Let π ∈P. The morphism p is smooth (hence W is a smooth variety).
Its fibres over U are geometrically integral. For each m ∈ M , the fibre Wm = p−1(m) is
integral and the algebraic closure of k(m) in its function field is Lm.

Remark 3.4. The variety W ′ defined in the same way as W except that one does not
remove Fm from RLm/k(A1

Lm
) in (3.1) was first considered in [Sko96, §3.3]. It is a smooth

variety (loc. cit., Lemma 3.3.1) and it contains W as the complement of a codimension 2
closed subset. More precisely, the variety W is the locus where the faithfully flat morphism
p′ : W ′ → P1

k that extends p is smooth.
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3.3. Brauer group. The vertical Brauer group of p is reduced to constant classes, as was
shown in [HW16, Proof of Proposition 9.9]. More generally, so is the algebraic Brauer
group of W , according to [CT15, §1] (which formally deals with W ′, in the notation of
Remark 3.4, but by purity for the Brauer group [Gro68, Corollaire 6.2] applies to W too,
since the smooth varieties W ′ and W differ by a codimension 2 closed subset) or to [CWX18,
Lemma 5.1]. The following proposition generalises this assertion to the full Brauer group.

Proposition 3.5. Let π ∈P. The pull-back map Br(k)→ Br(W ) is onto.

Proof. Only until the end of this proof, let us modify the definition of P by allowing Lm

to be an arbitrary nonzero finite étale k(m)-algebra, not necessarily a field. We shall prove
that the proposition holds in this slightly more general situation, with the same definition
for W , by induction on the dimension of W . If dim(W ) < 3, then Lm = k(m) for all
m ∈ M , hence W = A2

k \ {(0, 0)}, so that Br(k) = Br(W ) (see [CTS21, Theorem 3.7.1,
Theorem 6.1.1]). Let us now assume that dim(W ) ≥ 3 and that the conclusion of the
proposition holds for lower dimensions of W (letting both k and π vary).

In order to prove that the pull-back map Br(k) → Br(W ) is onto, we may and will
assume that k is algebraically closed, since the algebraic Brauer group of W is reduced to
constant classes by [CT15, Proposition 1.1, Proposition 1.2 (ii)–(iii)].

Setting dm = dimk Lm and letting λ, µ, (zm,j)m∈M,1≤j≤dm
denote the coordinates of

A2
k ×

∏
m∈M Adm

k , the variety W is then isomorphic to the subvariety of this affine space

defined by the following equations:
∏dm

j=1 zm,j = bm(λ−amµ) for each m ∈M ; at most one

of the coordinates zm,1, . . . , zm,dm
vanishes for each m ∈M ; and (λ, µ) 6= (0, 0).

Let us fix m ∈ M such that dm > 1. The generic fibre V of the projection W → A1
k

to the coordinate zm,dm
is a variety of the form W associated with a parameter in P over

the function field of A1
k. By the induction hypothesis, we deduce that Br(k(A1

k)) surjects
onto Br(V ). Hence Br(V ) = 0, in view of Tsen’s theorem. Now, as the schemes V and W
are irreducible and regular and share the same generic point, the group Br(W ) injects
into Br(V ). We conclude that Br(W ) = 0; the proof is complete. �

Remark 3.6. When k is a number field, it was proved in [HW16, Corollary 9.10] that if,
for every π ∈P and every finite place v0 of k, the variety W satisfies strong approximation
off v0, then Conjecture 9.1 of op. cit. is true. This strong approximation property holds
in several cases (see [HW16, Theorem 9.11] and [BS19, Theorem 1.2]) and it is natural to
hope that it may hold in general. Proposition 3.5 supports this hope, as it shows that the
Brauer–Manin obstruction to strong approximation on W always vanishes.

3.4. Canonical ramified Brauer classes. Given π ∈P, the classes

CoresLm/k(zm, χ) ∈ Br(k(W ))(3.2)

for m ∈ M and χ ∈ H1(Lm, Q/Z), where zm denotes the regular function on W ⊗k Lm

obtained by pulling back the tautological regular function on (RLm/k(A1
Lm

)) ⊗k Lm, will
play a special rôle in the article.

Proposition 3.7. Let π ∈P. Let m ∈M and χ ∈ H1(Lm, Q/Z).
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(1) The class CoresLm/k(zm, χ) belongs to Br(p−1(P1
k \ {m})).

(2) Its residue at the generic point of Wm = p−1(m) is equal to the image of χ by the
restriction map H1(Lm, Q/Z)→ H1(k(Wm), Q/Z) (see Proposition 3.3).

Proof. Assertion (1) follows from the remark that the regular function zm on W ⊗k Lm is
invertible on p−1(P1

k \ {m})⊗k Lm. Assertion (2) results from [CTSD94, Proposition 1.1.2
and Proposition 1.1.3]. �

3.5. Local integral points. We now assume that k is a number field. Given a finite set S
of places of k, we denote by OS the ring of S-integers of k and by p : W → P1

OS
the integral

model of p : W → P1
k obtained by replacing, in the definition of W , all occurrences of the

fields k, k(m), Lm, respectively, by their rings of S-integers OS , Ok(m),S , OLm,S, and Fm

by the singular locus Fm of the scheme ROLm,S/OS
(A1

OLm,S
) \ ROLm,S/OS

(Gm,OLm,S
). We

will refer to W as the standard integral model of W .
For m ∈ P1

k, we denote by m̃ the Zariski closure of m in P1
OS

, and we set M̃ =
⋃

m∈M m̃.
The next proposition records a useful interpretation for the integral local points of W

at the places of k outside of S, when S is large enough.

Proposition 3.8. Assume that k is a number field. Let S ⊂ Ω be a finite subset containing
the archimedean places, the finite places that ramify in Lm for some m ∈M and the finite
places above which at least one of the bm for m ∈ M fails to be a unit. Assume, finally,

that S is large enough that M̃ ∪ ∞̃ is étale over OS . For any v ∈ Ω \ S, the set W (Ov)
can be identified with the set of families (λv, µv, (zm,u)m∈M,u|v) consisting of two elements
λv, µv ∈ Ov at least one of which is a unit and, for each m ∈ M and each place u of Lm

dividing v, of an element zm,u ∈ O(Lm)u
, such that for all m ∈M , the following properties

are satisfied:

• letting the product run over the places u of Lm dividing v and letting w denote the trace
of u on k(m), the equality

∏
N(Lm)u/k(m)w

(zm,u) = bm(λv − amµv)

holds in k(m)w;
• there exists at most one place u of Lm dividing v such that zm,u is not a unit;
• if such a place u of Lm exists, then it has degree 1 over v.

Proof. We need only verify that for any Ov-point (zm,u)u|v of ROLm,S/OS
(A1

OLm,S
), the

reduction modulo v of (zm,u)u|v lies in Fm(Fv) if and only if zm,u fails to be a unit at u
either for at least two distinct u or for at least one u of degree > 1 over v. This local assertion
can be checked after replacing kv with any unramified extension of kv, in particular it is
enough to check it when v splits completely in Lm, in which case it is clear. �

3.6. Statement of Conjecture F+. We take up the notation introduced in §§3.1–3.2 and
assume, in addition, that k is a number field: with any π ∈P are associated a variety W
and a smooth morphism p : W → P1

k, with split fibres above U = P1
k \M . For any c ∈ P1

k,
we set Wc = p−1(c). The following conjecture on the arithmetic of W was put forward in
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[HW16, §9]. To be precise, it is equivalent to op. cit., Conjecture 9.1, according to op. cit.,
Proposition 9.9.

Conjecture F. Let π ∈P. The subset
⋃

c∈U(k)

Wc(Ak) is dense in W (Ak).

The goal of §3.6 is to propose a more general formulation, which we call Conjecture F+

and view as an improved substitute for Conjecture F. Before stating it, we need to introduce
some additional notation related to the parameters on which Conjecture F+ depends.

We let P+ be the collection of all quadruples π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M )
consisting of a triple π = (M, (Lm)m∈M , (bm)m∈M ) belonging to P together with the data,
for each m ∈M , of a finite abelian field extension Km of Lm.

Given π+ ∈P+, we set

Cm = Ker
(
H1(Lm, Q/Z)→ H1(Km, Q/Z)

)
= Hom(Gal(Km/Lm), Q/Z)(3.3)

and denote by B ⊆ Br(p−1(U)) the subgroup generated by the classes CoresLm/k(zm, χ)

for m ∈ M and χ ∈ Cm (see Proposition 3.7 (1)). This is a finite subgroup. Finally, for
c ∈ U(k), we denote by Wc(Ak)B the subset of Wc(Ak) consisting of those adelic points
that are orthogonal, with respect to the Brauer–Manin pairing, to the image of B by the
restriction map Br(p−1(U))→ Br(Wc).

Conjecture F+. Let π+ ∈P+. The subset
⋃

c∈U(k)

Wc(Ak)B is dense in W (Ak).

Conjecture F can be seen as the special case of Conjecture F+ for those π+ ∈P+ that
satisfy Km = Lm for all m ∈ M . In §§4–7, we shall see that Conjecture F+ should be
expected to be just as true as Conjecture F, and that the flexibility provided by allowing
nontrivial abelian extensions Km/Lm leads at the same time to a better theory and to
more general results about rational points in fibrations into rationally connected varieties
over the projective line.

4. Fibration theorem for rational points

In this section, we show that the fibration method for proving the density of rational
points in the Brauer–Manin set works for fibrations into proper smooth rationally connected
varieties if Conjecture F+ holds for certain parameters π+ associated with the fibration.

4.1. Main theorem. Theorem 4.1 should be compared with [HW16, Theorem 9.17],
whose statement, based on Conjecture F, is very similar but contains an unpleasant
technical assumption absent from Theorem 4.1 (namely, the surjectivity of [HW16, (9.9)];
this assumption is satisfied when k is totally imaginary or M contains a rational point, by
[HW16, Remark 9.18 (ii)]). The proof of Theorem 4.1 refines ideas that were elaborated
over a long series of works, among which [Har94, Har97, CTSD94, CTSSD98, HW16].

Theorem 4.1. Let X be a smooth, irreducible variety over a number field k, endowed with
a morphism f : X → P1

k with geometrically irreducible generic fibre. Let U ⊂ P1
k be an
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open subset over which the fibres of f are split, with ∞ ∈ U . Let A ⊂ Br(f−1(U)) be a
finite subgroup. Let H ⊂ P1

k be a Hilbert subset. Let M = P1
k \ U .

For each m ∈ M , suppose given an irreducible component Ym of multiplicity 1 of the
fibre Xm = f−1(m) and a finite abelian extension Em/k(Ym) such that the residue of
any element of A at the generic point of Ym belongs to the kernel of the restriction map
H1(k(Ym), Q/Z)→ H1(Em, Q/Z). Let L0

m (resp. K0
m) denote the algebraic closure of k(m)

in k(Ym) (resp. in Em). For each m ∈M , suppose given a finite extension Lm of L0
m and

a finite abelian extension Km of Lm in which K0
m can be embedded L0

m-linearly.
Assume that for all choices of (bm)m∈M ∈

∏
m∈M k(m)∗, Conjecture F+ holds for the

parameter π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ). Then the subset
⋃

c∈U(k)∩H

Xc(Ak)A(4.1)

is dense in X(Ak)(A+f∗

η Br(η))∩Br(X).

For the reader’s ease, we summarise the various fields involved in the above statement
with a commutative diagram:

Km Em

K0
m

♦♦♦♦♦

Lm k(Ym)

L0
m

♦♦♦♦

▲▲▲▲

k(m)

Proof. The arguments used to deduce [HW16, Theorem 9.22] from [HW16, Theorem 9.17]
also prove, in the exact same way, that Theorem 4.1 in the special case where H = P1

k

implies Theorem 4.1 in general. Hence we may, and will, assume that H = P1
k.

Let Ω denote the set of places of k. Let (xv)v∈Ω ∈ X(Ak)(A+f∗

η Br(η))∩Br(X) be the adelic
point that we shall approximate. Our goal is to produce c ∈ U(k) and (x′′′

v )v∈Ω ∈ Xc(Ak)A

arbitrarily close to (xv)v∈Ω in X(Ak). We break up the proof into five steps.

Step 1. Choice of the parameter π+.

In Step 3, we shall apply Conjecture F+ to the parameter

π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M )(4.2)

for a certain choice of a family (bm)m∈M ∈
∏

m∈M k(m)∗. Step 1 is devoted to specifying
this choice, using the next lemma.

For its statement, we take up the notation of §3.1 and §3.6, where a variety W , a
morphism p : W → P1

k and various groups (Cm)m∈M and B ⊆ Br(p−1(U)) were associated
with the parameter π+ defined by (4.2). In addition, we let U0 = U \ {∞}, X0 = f−1(U0)
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and W 0 = p−1(U0). We stress that in the statement of Lemma 4.2, the variety W 0, the
morphism p and the group B depend on (bm)m∈M . We also note that Lemma 4.2 does not
depend on Conjecture F+.

Lemma 4.2. There exist an adelic point (x′
v)v∈Ω ∈ X0(Ak)A arbitrarily close to (xv)v∈Ω

in X(Ak) and a family (bm)m∈M ∈
∏

m∈M k(m)∗ such that if we let W , p and B be defined

in terms of (bm)m∈M as explained above, there exists an adelic point (z′
v)v∈Ω ∈ W 0(Ak)B

satisfying p(z′
v) = f(x′

v) for all v ∈ Ω. One can require, in addition, that the x′
v for v ∈ Ω

all belong to smooth fibres of f .

Proof. Let T be the torus over k defined by the exact sequence of tori

1 // T // Gm ×
∏

m∈M

RKm/kGm
//

∏

m∈M

Rk(m)/kGm
// 1,(4.3)

where the second map is (ν, (zm)m∈M ) 7→ (NKm/k(m)(zm)/ν)m∈M . According to Shapiro’s
lemma and Hilbert’s Theorem 90, this exact sequence induces a surjection

∏

m∈M

k(m)∗
։ H1(k, T ).(4.4)

Given (bm)m∈M ∈
∏

m∈M k(m)∗, let p+ : W+ → P1
k denote the variety and the morphism

associated in §3.1 with the triple (M, (Km)m∈M , (bm)m∈M ) and let W 0
+ = p−1

+ (U0). The

morphism W 0
+ → U0 induced by p+ is a torsor under T . We denote by τ ∈ H1

ét(U
0, T ) its

isomorphism class.
Starting with an arbitrary choice of (bm)m∈M (for instance bm = 1 for all m), let A0 be the

subgroup of Br(X0) generated by A and by the inverse images, by f∗ : Br(U0)→ Br(X0),

of the cup products of τ with the elements of the finite group H1(k, T̂ ), where T̂ denotes the

character group of T . As (xv)v∈Ω ∈ X(Ak)A0∩Br(X), the version of Harari’s formal lemma

that can be found in [CT03, Théorème 1.4] provides (x′
v)v∈Ω ∈ X0(Ak)A0

arbitrarily close
to (xv)v∈Ω in X(Ak). As A0 is finite, we may assume, after modifying the x′

v using the
implicit function theorem, that they all belong to smooth fibres of f .

Let us apply open descent theory to the projection W+×P1
k

X0 → X0, which is a torsor

under T . According to [HS13, Theorem 8.4, Proposition 8.12], the adelic point (x′
v)v∈Ω

can be lifted to an adelic point of some twist of this torsor. Now, twisting the class τ by
a class in H1(k, T ) amounts, in view of the surjectivity of (4.4), to modifying the choice
of (bm)m∈M . Thus, after modifying our choice of (bm)m∈M , we may assume that (x′

v)v∈Ω

comes from (W+ ×P1
k

X0)(Ak). In particular, there exists (z′
+,v)v∈Ω ∈ W 0

+(Ak) such that

p+(z′
+,v) = f(x′

v) for all v ∈ Ω.
Let q : W+ → W be defined by q(λ, µ, (zm)m∈M ) = (λ, µ, (NKm/Lm

(zm))m∈M ) and set

z′
v = q(z′

+,v), so that p(z′
v) = f(x′

v) for all v ∈ Ω. The projection formula implies that B

is contained in the kernel of the pull-back map q∗ : Br(p−1(U)) → Br(p−1
+ (U)) and hence

that β(z′
v) = 0 for any β ∈ B and any v ∈ Ω. It follows that (z′

v)v∈Ω ∈W 0(Ak)B . �
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We now apply Lemma 4.2 and leave the resulting (x′
v)v∈Ω, (bm)m∈M , π+, W , p, B and

(z′
v)v∈Ω fixed for the remainder of the proof of Theorem 4.1.

Step 2. Choice of the finite set of bad places S.

Let S be a finite set of places of k, containing the archimedean places and the places at
which we want to approximate (xv)v∈Ω, large enough that f : X → P1

k extends to a flat
morphism f : X → P1

OS
, where OS denotes the ring of S-integers of k.

For m ∈ P1
k, we denote by m̃ the Zariski closure of m in P1

OS
and by Xm and Ym the

Zariski closures of Xm and Ym in X , all endowed with the reduced scheme structures.
When m ∈ M , we denote by m̃′ → m̃ the normalisation of m̃ in the finite extension
L0

m/k(m). We set Gm = Gal(Em/k(Ym)) and Hm = Gal(Em/k(Ym)K0
m) ⊆ Gm and fix,

for each m ∈ M , a dense open subset Y 0
m ⊆ Ym, small enough that the normalisation

Em → Y 0
m of Y 0

m in the finite extension Em/k(Ym) is a finite and étale morphism and that
the restriction of f to Y 0

m factors through a smooth morphism fm : Y 0
m → m̃′.

Set M̃ =
⋃

m∈M m̃, U = P1
OS
\ M̃ and U 0 = P1

OS
\ (M̃ ∪ ∞̃). Let p : W → P1

OS
denote

the standard integral model of p : W → P1
k (see §3.5). Let W 0 = p−1(U 0).

After enlarging S, we may assume that M̃ ∪ ∞̃ is étale over OS , that the morphisms
m̃′ → m̃ for m ∈M are étale, that the bm for m ∈M are units above the places of Ω \ S,
that the extensions Km/k are unramified above the places of Ω \ S, that z′

v ∈ W 0(Ov)
for all v ∈ Ω \ S, that A ⊆ Br(f−1(U )), that

∑
v∈S invv α(x′

v) = 0 for all α ∈ A, that∑
v∈S invv β(z′

v) = 0 for all β ∈ B, that S contains the finite places which divide the order
of A, and, by the Lang–Weil–Nisnevich bounds [LW54] [Nis54] and by a geometric version
of Chebotarev’s density theorem [Eke90, Lemma 1.2], that the following hold:

• every closed fibre of f above U contains a smooth rational point;
• for every m ∈M , every closed fibre of fm : Y 0

m → m̃′ contains a rational point;
• for every m ∈ M and every place u of L0

m which splits in K0
m and does not lie above

a place of S, any element of Hm can be realised as the Frobenius automorphism of the
irreducible abelian étale cover Em → Y 0

m at some rational point of the fibre of fm above
the closed point of m̃′ corresponding to u.

Step 3. Application of Conjecture F+.

Let us fix a collection (vm)m∈M of places of k that are pairwise distinct and do not
belong to S, such that vm splits completely in Km for all m ∈ M . For each m ∈ M ,
let us fix a place wm of k(m) dividing vm, an element tvm

∈ kvm
such that tvm

− am

is a uniformiser at wm, and a point z′′
vm
∈ W (Ovm

) such that p(z′′
vm

) = tvm
, where we

view tvm
inside kvm

= A1(kvm
) ⊂ P1(kvm

) (see Proposition 3.8 for the existence of z′′
vm

).
For every v ∈ Ω \ {vm ; m ∈ M}, we set z′′

v = z′
v. We have thus defined an adelic point

(z′′
v )v∈Ω ∈W (Ak) such that z′′

v ∈ W (Ov) for all v ∈ Ω \ S.
We now apply Conjecture F+ to π+ and (z′′

v )v∈Ω and deduce that there exist c ∈ U(k)

and (z′′′
v )v∈Ω ∈ Wc(Ak)B arbitrarily close to (z′′

v )v∈Ω in W (Ak), in particular such that
z′′′

v ∈ W (Ov) for all v ∈ Ω \ S and such that
∑

v∈S invv β(z′′′
v ) = 0 for all β ∈ B.
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For each v ∈ Ω \ S, let (λ′′′
v , µ′′′

v , (z′′′
m,u)m∈M,u|v) be the data corresponding to z′′′

v in the

notation of Proposition 3.8 and let w denote the closed point c̃ ∩P1
Fv

of P1
OS

.

For m ∈ M , we set Ωm = {v ∈ Ω \ S ; w ∈ m̃}; equivalently, this is the set of places
v ∈ Ω \ S such that λ′′′

v − amµ′′′
v has positive valuation at some place of k(m) dividing v.

The sets Ωm for m ∈M are finite and pairwise disjoint. When v ∈ Ωm, we shall identify w
with a place of k(m) of degree 1 over v. For each m ∈M , we may assume, by choosing z′′′

vm

close enough to z′′
vm

, that vm ∈ Ωm and that λ′′′
vm
− amµ′′′

vm
is a uniformiser at w.

For later use, we note that according to Proposition 3.8, for each m ∈ M and each
v ∈ Ωm, there exists a unique place u of Lm dividing v such that z′′′

m,u is not a unit.
Moreover, this place divides both w and v and it has degree 1 over them.

Step 4. Construction of (x′′′
v )v∈Ω ∈ Xc(Ak) assuming given (σm)m∈M ∈

∏
m∈M Hm.

For v ∈ S, we can ensure that c is arbitrarily close to f(x′
v), by choosing z′′′

v close enough
to z′′

v . On the other hand, by the implicit function theorem, the map X0(kv) → P1(kv)
induced by f admits a local v-adic analytic section, around c, passing through x′

v. Thus,
by choosing z′′′

v close enough to z′′
v , we may assume that for every v ∈ S, there exists

x′′′
v ∈ Xc(kv) arbitrarily close to x′

v in X(kv). We fix x′′′
v in this way for every v ∈ S. By

ensuring that x′′′
v is close enough to x′

v for v ∈ S, we may assume that
∑

v∈S

invv α(x′′′
v ) = 0(4.5)

for all α ∈ A.
For v ∈ Ω \ (S ∪ ⋃m∈M Ωm), noting that w ∈ U , we fix a smooth rational point of the

fibre of f : X → P1
OS

above w and use Hensel’s lemma to lift it to a kv-point x′′′
v of Xc.

For any m ∈ M and any v ∈ Ωm \ {vm}, let us consider the trace on L0
m of the unique

place u of Lm dividing v such that z′′′
m,u is not a unit. It defines a closed point of m̃′. We

fix a rational point ξv of the fibre of fm : Y 0
m → m̃′ above this closed point and, viewing it

as a smooth rational point of the fibre of f : X → P1
OS

above w, we lift it, using Hensel’s

lemma, to a kv-point x′′′
v of Xc.

Let us assume that we are given a family (σm)m∈M ∈
∏

m∈M Hm (to be specified at the
end of Step 5). Then, for m ∈M , we construct x′′′

v for v = vm in the exact same way as we
constructed x′′′

v for v ∈ Ωm \ {vm}, except that we require, in addition, that the Frobenius
automorphism of the irreducible abelian étale cover Em → Y 0

m at ξv be equal to σm.
At this stage, we have now constructed an adelic point (x′′′

v )v∈Ω of Xc(Ak), depending
on the choice of (σm)m∈M ∈

∏
m∈M Hm. To conclude the proof of the theorem, it only

remains to show that the family (σm)m∈M can be prescribed in such a way that (x′′′
v )v∈Ω

automatically belongs to Xc(Ak)A.

Step 5. Evaluation of the Brauer–Manin obstruction.

For m ∈ M and v ∈ Ωm, let nv denote the local intersection multiplicity of c̃ and m̃
at w inside P1

OS
(i.e. the length of the local ring of c̃ ∩ m̃ at w) and let Frξv

∈ Gm denote

the Frobenius automorphism of the irreducible abelian étale cover Em → Y 0
m at ξv.
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Lemma 4.3. For each m ∈M , the element
∑

v∈Ωm\{vm}

nvFrξv

of Gm belongs to the subgroup Hm.

Proof. Let us fix m ∈M . We recall that (z′′′
v )v∈Ω ∈Wc(Ak)B and that

∑
v∈S invv β(z′′′

v ) = 0
for all β ∈ B, so that

∑
v∈Ω\S invv β(z′′′

v ) = 0 for all β ∈ B. Let us apply this equality to the

class β = CoresLm/k(zm, χ) for χ ∈ Cm. For v ∈ Ω\(S∪Ωm), we have invv β(z′′′
v ) = 0 since χ

is unramified above v and z′′′
m,u is a unit at all places u of Lm above v (see Proposition 3.8).

For v ∈ Ωm, we have invv β(z′′′
v ) = invu(z′′′

m,u, χ) where u is the unique place of Lm dividing v

such that z′′′
m,u fails to be a unit; moreover, the normalised valuation of z′′′

m,u is equal to nv, so
that invu(z′′′

m,u, χ) = nvχ(Fru), where we view χ as a homomorphism Gal(Km/Lm)→ Q/Z

and Fru ∈ Gal(Km/Lm) denotes the Frobenius automorphism at u. Finally, we recall that
Fru = 0 if v = vm, since vm splits completely in Km. All in all, we conclude that

∑

v∈Ωm\{vm}

nvχ(Fru) = 0(4.6)

for all χ ∈ Cm = Hom(Gal(Km/Lm), Q/Z), hence
∑

v∈Ωm\{vm} nvFru = 0 in Gal(Km/Lm)

by Pontrjagin duality. Applying the natural map Gal(Km/Lm) → Gal(K0
m/L0

m) to this
equality now yields the statement of the lemma, as the image of Fru by this map coincides
with the image of Frξv

by the quotient map Gm → Gm/Hm = Gal(K0
m/L0

m). �

For m ∈M and α ∈ A, let ∂α,m ∈ H1(Gm, Q/Z) ⊂ H1(k(Ym), Q/Z) denote the residue
of α at the generic point of Ym. Viewing ∂α,m as a homomorphism Gm → Q/Z, we have

invv α(x′′′
v ) = nv∂α,m(Frξv

)(4.7)

for any m ∈ M and any v ∈ Ωm, since α ∈ Br(f−1(U )) (see [Har94, Corollaire 2.4.3]).
Moreover, we have invv α(x′′′

v ) = 0 for all v ∈ Ω \ (S ∪⋃m∈M Ωm), as α ∈ Br(f−1(U )) and
x′′′

v is an Ov-point of f−1(U ) while Br(Ov) = 0. In view of these remarks and of (4.5), we
deduce that in order for (x′′′

v )v∈Ω to be orthogonal to A with respect to the Brauer–Manin
pairing, it suffices that the equality

∑

v∈Ωm

nvFrξv
= 0(4.8)

hold in Gm for all m ∈M . Now, as nvm
= 1 and as Frξvm

= σm for every m ∈M , we can

force (4.8) to hold by choosing σm = −∑v∈Ωm\{vm} nvFrξv
for all m ∈M in Step 4, thanks

to Lemma 4.3. This concludes the proof of Theorem 4.1. �

4.2. Stability of Conjecture F+. We first use Theorem 4.1 to show, in Corollary 4.4
below, that when the bm are allowed to vary, Conjecture F+ is stable under the operation
of replacing the fields Lm and Km by subfields.
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Corollary 4.4. Let k be a number field and π0
+ ∈P+ be a parameter for Conjecture F+.

Write π0
+ = (M, (L0

m)m∈M , (b0
m)m∈M , (K0

m)m∈M ). For every m ∈M , suppose given a finite
extension Lm of L0

m and a finite abelian extension Km of Lm in which K0
m can be embedded

L0
m-linearly. Assume that for all choices of (bm)m∈M ∈

∏
m∈M k(m)∗, Conjecture F+ holds

for π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ) ∈P+. Then Conjecture F+ holds for π0
+.

Proof. Set U = P1
k \M . Let p : W → P1

k and B ⊂ Br(p−1(U)) denote the morphism and
the subgroup associated in §3.1 and §3.6 with the parameter π0

+. Taking Proposition 3.3
and Proposition 3.7 into account, we may apply Theorem 4.1 to X = W , f = p, A = B,
H = P1

k, Ym = Wm and Em = k(Wm) ⊗L0
m

K0
m. In view of Proposition 3.5, the desired

conclusion follows. �

4.3. Specialisation of the Brauer group. To obtain concrete corollaries for the fibration
method, we shall apply Theorem 4.1 in §4.4 in conjunction with the following specialisation
result for the Brauer group, which goes back to the work of Harari [Har94, Har97]. The
version we state here simultaneously generalises [HW16, Proposition 4.1] (in which f was
assumed to be proper) and [CTH16, Théorème 2.7] (in which the generic fibre of f was
assumed to be a homogeneous space of a connected, semi-simple, simply connected linear
algebraic group, with connected and reductive geometric stabilisers).

Proposition 4.5. Let C be a smooth, irreducible curve over a number field k. Let X be a
smooth, separated, irreducible variety over k, endowed with a morphism f : X → C whose
geometric generic fibre Xη̄ is irreducible. Assume that H1

ét
(Xη̄, Q/Z) = 0 and that Br(Xη̄)

is finite. Let C0 ⊆ C be a dense open subset, let X0 = f−1(C0) and let B ⊆ Br(X0) be
a subgroup. If the natural map B → Br(Xη)/f∗

η Br(η) is surjective, there exists a Hilbert

subset H ⊆ C0 such that the natural map B → Br(Xh)/f∗
h Br(h) is surjective for all h ∈ H.

Proof. We may assume, after shrinking C, that C0 = C. By the next lemma, we may
assume, after further shrinking C, that the étale sheaf R2f∗Q/Z(1) is a direct limit of
locally constant sheaves with finite stalks and that H1

ét(Xh̄, Q/Z(1)) = 0 for any geometric

point h̄ of C. Indeed, our hypothesis that H1
ét(Xη̄ , Q/Z) = 0 implies that H1

ét(Xη̄, µn) = 0

for all n > 0, and the sheaf R1f∗µn must vanish if it is locally constant while its stalk at η̄
vanishes. From this point on, the proof given in [HW16, Proposition 4.1] for the special
case in which f is proper works verbatim (ignoring its first sentence). �

Lemma 4.6. For any q ≥ 0, there exists a dense open subset U ⊆ C such that for every
n > 0, the restriction of the étale sheaf Rqf∗µn to U is locally constant and its stalk at any
geometric point h̄ of U is naturally isomorphic to Hq

ét
(Xh̄, µn).

Proof. After shrinking C, we may assume, thanks to Nagata [Nag62, Del10, Con07] and to
Hironaka [Hir64, §3, Main theorem I, §5, Corollary 3], that there exist an open immersion
j : X → X ′ and a smooth and proper morphism g : X ′ → C such that f = g ◦ j and
that X ′ \X is a divisor with simple normal crossings on X ′ relatively to C (in the sense
of [G+71, Exp. XIII, §2.1]). The morphism f is then cohomologically proper with respect
to µn for every n > 0 (see [Del77, Appendice, §1.3.1, §1.3.3]), which already ensures the
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second part of the assertion. On the other hand, it is a locally acyclic morphism, since it is
smooth (see [Mil80, Theorem 4.15]). Hence the étale sheaf Rqf∗µn is locally constant for
every n > 0 (see [Del77, Appendice, §2.4] and [Art73, Proposition 2.11]; or see the proof
of [Mil80, Corollary 4.2]). �

4.4. Main corollary. It is through Corollary 4.7 below, which depends on Proposition 4.5,
that we shall apply Theorem 4.1 in §7.

Corollary 4.7. Let X be a smooth, separated, irreducible variety over a number field k
and f : X → P1

k be a morphism with irreducible geometric generic fibre Xη̄. Assume that

(i) the group H1
ét

(Xη̄ , Q/Z) vanishes and the group Br(Xη̄) is finite,

(ii) every fibre of f contains an irreducible component of multiplicity 1,

(iii) the geometric fibre X∞̄ = f−1(∞) ⊗k k̄ is smooth and irreducible, and the group
H1

ét
(X∞̄, Q/Z) vanishes.

For each m ∈ A1
k, choose an irreducible component of multiplicity 1 of f−1(m) and let Lm

denote the algebraic closure of k(m) in its function field. Finally, assume that for all finite
subsets M ⊂ A1

k and for all choices of (bm)m∈M and of (Km)m∈M , Conjecture F+ holds
for the parameter π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ). Then, for any Hilbert subset

H ⊂ P1
k, the subset

(4.9)
⋃

c∈U(k)∩H

Xc(Ak)Br(Xc)

is dense in X(Ak)Br(X). In particular, if Xc(k) is dense in Xc(Ak)Br(Xc) for all rational

points c of a Hilbert subset of P1
k, then X(k) is dense in X(Ak)Br(X).

Proof. By the Kummer exact sequence, the vanishing of H1
ét(Xη̄, Q/Z), which amounts to

the vanishing of H1
ét(Xη̄, Z/nZ) for all n > 0, implies that the group Pic(Xη̄) is torsion-free

and that the group of invertible functions on Xη̄ is divisible (see [Mil80, Proposition 4.11]).
As the group of invertible functions on Xη̄ modulo the subgroup of constant invertible
functions is finitely generated (see [Ros57, Lemma on p. 28]), we deduce that every
invertible function on Xη̄ is constant. From these facts and from the finiteness of Br(Xη̄),
it follows, by the Hochschild–Serre spectral sequence, that the quotient Br(Xη)/f∗

η Br(η) is
finite, where fη : Xη → η denotes the generic fibre of f .

For β ∈ Br(Xη), our hypothesis (iii) implies that the residue of β at the generic point

of X∞ = f−1(∞) can be written as f∗
η χ for some χ ∈ H1(k, Q/Z). Let δ = (t, χ) ∈ Br(η).

By [CTSD94, Proposition 1.1.1], the residue of f∗
η δ at the generic point of X∞ is equal

to −f∗
η χ. We have thus shown that for any β ∈ Br(Xη), there exists δ ∈ Br(η) such that

β + f∗
η δ is unramified along f−1(∞). As the quotient Br(Xη)/f∗

η Br(η) is finite, we can
therefore choose a finite subgroup A ⊂ Br(Xη) that surjects onto Br(Xη)/f∗

η Br(η) and

whose elements are unramified along f−1(∞).
Let U ⊂ P1

k be a dense open subset containing∞ such that A ⊂ Br(f−1(U)). According
to Proposition 4.5, there exists a Hilbert subset H0 ⊆ U such that the natural map
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A → Br(Xc)/f∗
c Br(k) is surjective for all c ∈ H0 ∩ P1(k). To conclude the proof of

Corollary 4.7, we now apply Theorem 4.1 to the Hilbert subset H ∩H0. �

Remarks 4.8. (i) When assumption (i) of Corollary 4.7 is satisfied, assumption (iii) can
always be made to hold by a change of coordinates on P1

k.
(ii) If f is proper and Xη̄ is rationally connected, assumptions (i) and (ii) of Corollary 4.7

are satisfied (see [Deb01, Corollary 4.18(b)], [CTS13, Lemma 1.3 (i)], [HW16, Lemma 8.6],
[GHS03, Theorem 1.1]).

5. Comparing Conjectures F and F+

This section is devoted to a detailed study of the relationship between Conjecture F
and Conjecture F+. In order to facilitate their comparison, we introduce an intermediate
statement, Conjecture Fconst. We prove that when the parameters are allowed to vary, the
three conjecture are equivalent, and that in certain special circumstances, Conjecture F
coincides with Conjecture Fconst, while in certain other special circumstances, Conjec-
ture Fconst coincides with Conjecture F+. One advantage of considering Conjecture Fconst

is that under some abelianness assumptions, it is implied by Schinzel’s hypothesis (HH1),
as we will see in §6. This is what will eventually allow us to deduce Theorem 1.4.

5.1. Introduction. A number field k is fixed until the end of §5.3. Let us first formulate
Conjecture Fconst. Given π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ) ∈P+, we define

Cm,const = Cm ∩ Im
(
H1(k(m), Q/Z)→ H1(Lm, Q/Z)

)

for all m ∈M and let Bconst ⊆ B be the subgroup generated by the classes CoresLm/k(zm, χ)
for m ∈M and χ ∈ Cm,const.

Conjecture Fconst. Let π+ ∈P+. The subset
⋃

c∈U(k)

Wc(Ak)Bconst is dense in W (Ak).

We note right away, in the next proposition, that when the parameters are allowed to
vary, the conjectures we have introduced are all equivalent. Thus, the existing evidence for
Conjecture F (see [HW16, §9.2], [BS19]) lends support to Conjecture F+ as well.

Proposition 5.1. The following statements are equivalent:

(1) Conjecture F holds for all π ∈P;
(2) Conjecture Fconst holds for all π+ ∈P+;
(3) Conjecture F+ holds for all π+ ∈P+.

Proof. The implications (3)⇒(2)⇒(1) being obvious, we need only prove that (1)⇒(3).
Let us fix π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ) ∈P+. Among the conditions

(i) Conjecture F for (M, (Km)m∈M , (b′
m)m∈M ) for all choices of (b′

m)m∈M ,
(ii) Conjecture F+ for (M, (Km)m∈M , (b′

m)m∈M , (Km)m∈M ) for all choices of (b′
m)m∈M ,

(iii) Conjecture F+ for π+,

we have (i)⇔(ii) by definition, and (ii)⇒(iii) by Corollary 4.4; hence (1)⇒(3). �
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From here onwards, we shall systematically consider the three conjectures with fixed
parameters. Whenever a quadruple π+ ∈ P+ is given, it will be understood that the
notation M , (Lm)m∈M , (bm)m∈M and (Km)m∈M refers to its components, unless specified
otherwise, and that π denotes the underlying triple (M, (Lm)m∈M , (bm)m∈M ) ∈P.

It is immediate that Conjecture F+ for π+ implies Conjecture Fconst for π+ and that the
latter in turn implies Conjecture F for π. We shall now attempt to reverse these trivial
implications.

5.2. From Conjecture F to Conjecture Fconst.

Proposition 5.2. Let π+ ∈P+. The inclusion

Bconst ⊂ p∗Br(U)(5.1)

of subgroups of Br(p−1(U)) holds if and only if the two groups
⊕

m∈M

Ker
(
H1(k(m), Q/Z)→ H1(Lm, Q/Z)

)
(5.2)

and
⊕

m∈M

Ker
(
H1(k(m), Q/Z)→ H1(Km, Q/Z)

)
(5.3)

have the same image by the “sum of corestrictions” map
⊕

m∈M

H1(k(m), Q/Z)→ H1(k, Q/Z).(5.4)

When these conditions are satisfied, Conjecture F for π implies Conjecture Fconst for π+.

Proof. If Bconst ⊂ p∗Br(U), then Wc(Ak) = Wc(Ak)Bconst for all c ∈ U(k). Hence in this
case Conjecture F for π implies Conjecture Fconst for π+. It only remains to check the first
assertion of Proposition 5.2.

Assume first that Bconst ⊂ p∗Br(U) and let (χm)m∈M belong to (5.3). Let γ ∈ Br(U)
be such that

∑
m∈M CoresLm/k(zm, χm) = p∗γ. By the Faddeev exact sequence, the family

(∂mγ)m∈M given by the residues of γ belongs to the kernel of (5.4) (see [CTSD94, §1.2]).
On the other hand, by Proposition 3.3, Proposition 3.7 and [CTSD94, Proposition 1.1.1],
computing residues at the generic point of Wm for m ∈ M shows that (∂mγ − χm)m∈M

belongs to (5.2). We have thus proved that (5.2) and (5.3) have the same image by (5.4).
Conversely, assuming that this last condition holds, let us fix β ∈ Bconst and write

it as β =
∑

m∈M CoresLm/k(zm, χm) with (χm)m∈M in (5.3). Our assumption provides

(δm)m∈M in the kernel of (5.4) such that (δm −χm)m∈M belongs to (5.2). By the Faddeev
exact sequence again, there exists γ ∈ Br(U) such that ∂mγ = δm for all m ∈ M . By
Proposition 3.3 and Proposition 3.7, the class β − p∗γ ∈ Br(p−1(U)) belongs to the
subgroup Br(W ). By Proposition 3.5, we conclude that β ∈ p∗Br(U). �

Corollary 5.3. Suppose given a finite closed subset M ⊂ A1
k, a point m0 ∈M and, for each

m ∈M \{m0}, a finite extension Lm/k(m) and a finite abelian extension Km/Lm. Assume
that k(m0) = k or that k is totally imaginary. Then there exists a finite abelian extension
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L0/k(m0) with the following property: for any (bm)m∈M ∈ ∏m∈M k(m)∗ and any finite
extension Lm0

/L0, if we set Km0
= Lm0

, Conjecture F for π = (M, (Lm)m∈M , (bm)m∈M )
implies Conjecture Fconst for π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ).

Proof. The corestriction map H1(k(m0), Q/Z)→ H1(k, Q/Z) is surjective since k(m0) = k
or k is totally imaginary (see [Gra03, Note, p. 327], [HW16, Remark 9.18 (ii)]). Hence we
can choose a finite subgroup C ⊂ H1(k(m0), Q/Z) whose image by this map coincides with
the image, by the map (5.4), of the finite group

⊕

m∈M\{m0}

Ker
(
H1(k(m), Q/Z)→ H1(Km, Q/Z)

)
.(5.5)

Let L0/k(m0) be a finite abelian extension such that the image of C in H1(L0, Q/Z)
vanishes. The condition of Proposition 5.2 is now satisfied for any Lm0

and Km0
as in the

statement of the corollary. �

Remarks 5.4. (i) More generally, one can verify that in the situation of [HW16,
Theorem 9.17], if we set Km = Lm for m ∈M ′ and Lm = k(m) for m ∈M ′′ and if we are
given finite abelian extensions Km/k(m) for m ∈M ′′, the assumption that the map (9.9) of
loc. cit. is onto for all m ∈M ′′ (an assumption that is satisfied when M ′ contains a rational
point or k is totally imaginary, by [HW16, Remark 9.18 (ii)]) implies that the condition of
Proposition 5.2 holds, with M = M ′ ∪M ′′, as soon as the fields Lm for m ∈ M ′ are large
enough (in the sense that they contain certain subfields, as in Corollary 5.3).

(ii) Conjecture Fconst for π+ is the same as Conjecture F+ for π+ when for all m ∈ M ,
at least one of the extensions Km/Lm and Lm/k(m) is trivial.

(iii) In view of Remark 3.2 and of Remarks 5.4 (i)–(ii), the statement of [HW16,
Theorem 9.17] can be recovered by combining Theorem 4.1 with Proposition 5.2.

5.3. From Conjecture Fconst to Conjecture F+. The next theorem, which gives an
equivalent formulation for Conjecture F+, will allow us to pass from Conjecture Fconst to
Conjecture F+ in more general situations than that of Remark 5.4 (ii).

Let π+ ∈P+. For m ∈M , we denote by Cm,nr ⊆ Cm the subgroup consisting of those
χ ∈ Cm such that the class

CoresLm/k(m)(z, χ) ∈ Br(R1
Lm/k(m)Gm)(5.6)

belongs to the subgroup Brnr(R
1
Lm/k(m)Gm), where z stands for the tautological invertible

function on R1
Lm/k(m)Gm⊗k(m) Lm. We denote by Bnr ⊆ B the subgroup generated by the

classes CoresLm/k(zm, χ) ∈ Br(p−1(U)) for m ∈M and χ ∈ Cm,nr.

Theorem 5.5. Let π+ ∈P+. The following conditions are equivalent:

(1) the subset
⋃

c∈U(k) Wc(Ak)Bnr is dense in W (Ak);

(2) Conjecture F+ holds for π+.

Proof. The implication (2)⇒(1) being trivial, we assume (1) and prove (2). To this end,
we fix an adelic point (zv)v∈Ω ∈ W (Ak) and a finite subset S ⊂ Ω large enough that
it satisfies the assumptions of Proposition 3.8. We take up the notation of §3.5 for the
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standard integral model p : W → P1
OS

of p : W → P1
k, for the Zariski closure m̃ of m ∈ P1

k

in P1
OS

, and for M̃ =
⋃

m∈M m̃. We choose S large enough that zv ∈ W (Ov) for all v ∈ Ω\S.

Our goal is then to produce c ∈ U(k) and (z′′′
v )v∈Ω ∈ Wc(Ak)B with z′′′

v arbitrarily close
to zv for v ∈ S and z′′′

v ∈ W (Ov) for v ∈ Ω \ S.
For each m ∈ M , fix a Galois closure Jm/k of Km/k. We denote by Θ the set of

triples (m, σ, τ), where m ∈ M and (σ, τ) ∈ Gal(Jm/Lm) × Gal(Jm/k(m)) are such that
τστ−1 ∈ Gal(Jm/Lm). For m ∈ M , we denote by Θm ⊆ Θ the subset of triples whose
first component is m and by ϕm : Θm → Gal(Km/Lm) the map that sends (m, σ, τ) to the
restriction, to Km, of the automorphism στσ−1τ−1 of Jm.

For θ = (m, σ, τ) ∈ Θ, Chebotarev’s density theorem ensures the existence of infinitely
many places of Jm that do not lie over a place of S and whose Frobenius automorphism
in Gal(Jm/k) is equal to σ. For each θ, we choose such a place rθ of Jm and let vθ denote
its trace on k. We choose the rθ for θ ∈ Θ in such a way that the vθ are pairwise distinct,
and let T ⊂ Ω \ S denote the subset consisting of the places vθ for θ ∈ Θ.

Given θ = (m, σ, τ) ∈ Θ, we denote by wθ the trace of rθ on k(m) and by uθ,1 and uθ,2

the traces of rθ and of τ(rθ) on Lm, respectively. We note that uθ,1 and uθ,2 both divide wθ

and that the Frobenius automorphisms of rθ and of τ(rθ) in Gal(Jm/k) are equal to σ and
to τστ−1, respectively. In particular, letting Fruθ,i

∈ Gal(Km/Lm) denote the Frobenius

automorphism of the abelian extension Km/Lm at uθ,i, we have

Fruθ,1
− Fruθ,2

= ϕm(θ)(5.7)

in the abelian group Gal(Km/Lm).

Lemma 5.6. Let θ = (m, σ, τ) ∈ Θ. For ease of notation, set v = vθ and w = wθ.

(1) There exists tv ∈ kv such that tv − am ∈ k(m)w is a uniformiser.
(2) For any tv ∈ kv such that tv − am ∈ k(m)w is a uniformiser and any i ∈ {1, 2}, there

exists zv,i ∈ W (Ov) such that p(zv,i) = tv (viewing tv in kv = A1(kv) ⊂ P1(kv)) and

such that for all m′ ∈M and all χ ∈ Cm′ , the following equality holds:

invv

(
CoresLm′ /k(zm′ , χ)

)
(zv,i) =

{
χ
(
Fruθ,i

)
if m′ = m,

0 if m′ 6= m.
(5.8)

In the right-hand side of (5.8), we view χ as a homomorphism Gal(Km/Lm)→ Q/Z.

Proof. As the Frobenius automorphisms of rθ and of τ(rθ) in Gal(Jm/k) lie in Gal(Jm/Lm),
the three places uθ,1, uθ,2 and w have degree 1 over v. Assertion (1) follows.

Let now tv be as in (2), in particular tv ∈ Ov. As M̃ ⊗OS
Ov is regular, we may interpret

its closed points as pairs (m′, w′) where m′ ∈M and w′ is a place of k(m′) dividing v. For

any (m′, w′) ∈ M̃ ⊗OS
Ov , the element tv − am′ has positive w′-adic valuation if and only if

the Zariski closure of tv ∈ P1(kv) in P1
Ov

meets M̃ ⊗OS
Ov at (m′, w′). As M̃ ∪ ∞̃ is étale

over OS and as tv − am is a uniformiser at w, it follows that tv − am′ is a unit at w′ for all

(m′, w′) ∈ M̃ ⊗OS
Ov distinct from (m, w).
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Fix i ∈ {1, 2} and set λv = tv and µv = 1. By the conclusions of the last two
paragraphs, there exists (zm′,u)m′∈M,u|v ∈

∏
m′∈M,u|v O(Lm′ )u

, where u runs over the places
of Lm′ dividing v, that satisfies the conditions of Proposition 3.8 as well as the following
property: zm,ui

is a uniformiser while zm′,u is a unit for every m′ ∈ M and every

place u of Lm′ dividing v such that (m′, u) 6= (m, ui). By Proposition 3.8, the family
(λv, µv, (zm′,u)m′∈M,u|v) then gives rise to a point zv,i ∈ W (Ov) such that p(zv,i) = tv.

For any m′ ∈M and χ ∈ Cm′ , the left-hand side of (5.8) is equal to
∑

u|v invu(zm′,u, χ),

where the sum runs over the places u of Lm′ dividing v (see [Har20, Theorem 8.9]). As χ
is unramified above v and as zm′,u is a unit if m′ 6= m or if u 6= ui, and is a uniformiser
otherwise, the validity of (5.8) follows (see [Har20, Corollary 9.6]). �

For v ∈ Ω \ T , we set z′
v = zv. For each v ∈ T , let us apply the two parts of Lemma 5.6,

with i = 1, and denote by z′
v ∈ W (Ov) the resulting local integral point.

Applying our assumption (1) to the adelic point (z′
v)v∈Ω ∈ W (Ak) thus constructed

yields c ∈ U(k) and (z′′
v )v∈Ω ∈ Wc(Ak)Bnr , with (z′′

v )v∈Ω arbitrarily close to (z′
v)v∈Ω. We

may, in particular, assume that c 6= ∞, that z′′
v is arbitrarily close to zv for v ∈ S, that

z′′
v ∈ W (Ov) for all v ∈ Ω \ S and that β(z′′

v ) = β(z′
v) for all v ∈ T and all β ∈ B (so that

invv β(z′′
v ) is described by (5.8)).

Lemma 5.7. There exists a subset Θ♯ ⊆ Θ such that
∑

v∈Ω

invv

(
CoresLm/k(zm, χ)

)
(z′′

v ) =
∑

θ∈Θ♯
m

χ
(
ϕm(θ)

)
(5.9)

for all m ∈M and all χ ∈ Cm, where Θ♯
m = Θ♯ ∩Θm.

Proof. For m ∈ M , let Dm ⊆ Gal(Km/Lm) denote the subgroup generated by the image
of ϕm. Under the perfect duality of finite abelian groups

Cm ×Gal(Km/Lm)→ Q/Z,(5.10)

the subgroups Cm,nr and Dm are exact orthogonal complements, according to Corollary 2.4.
On the other hand, the homomorphism Cm → Q/Z that sends χ ∈ Cm to the left-hand side
of (5.9) vanishes on Cm,nr, since (z′′

v )v∈Ω ∈Wc(Ak)Bnr . It follows that there exists a family
of integers (nθ)θ∈Θ such that for all m ∈ M and all χ ∈ Cm, the left-hand side of (5.9) is
equal to

∑
θ∈Θm

nθχ
(
ϕm(θ)

)
. Now one observes that for any m ∈ M and any integer n,

the image of ϕm is stable under multiplication by n in the abelian group Gal(Km/Lm).
Hence we can choose the nθ in {0, 1}, and the lemma is proved. �

Let T ♯ ⊆ T denote the subset consisting of the places vθ for θ ∈ Θ♯. For each v ∈ T ♯,
apply Lemma 5.6 (2) with i = 2 and with tv = c ∈ A1(k), and let z′′′

v ∈ W (Ov) ∩Wc(kv)
denote the resulting local integral point. Set z′′′

v = z′′
v for all v ∈ Ω \ T ♯. We have thus

constructed an adelic point (z′′′
v )v∈Ω ∈ Wc(Ak) with z′′′

v ∈ W (Ov) for v ∈ Ω \ S and with
z′′′

v arbitrarily close to zv for v ∈ S.
We finally check that (z′′′

v )v∈Ω ∈Wc(Ak)B . It is enough to see that for any m′ ∈M and
any χ ∈ Cm′ , if we set β = CoresLm′ /k(zm′ , χ), then

∑
v∈Ω invv β(z′′′

v ) vanishes. Now, as
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z′′′
v = z′′

v for all v ∈ Ω \ T ♯, this sum can be rewritten as
∑

v∈Ω

invv β(z′′
v ) +

∑

θ∈Θ♯

(
invvθ

β(z′′′
vθ

)− invvθ
β(z′′

vθ
)
)
.(5.11)

The first term of (5.11) is equal to
∑

θ∈Θ♯

m′

χ
(
ϕm′(θ)

)
, according to (5.9). On the other

hand, the definition of z′
v and of z′′′

v shows that for any m ∈M and any θ ∈ Θ♯
m, the term

invvθ
β(z′′′

vθ
)− invvθ

β(z′′
vθ

) vanishes if m 6= m′ and is equal to χ(Fruθ,2
)−χ(Fruθ,1

) otherwise

(see (5.8)). In the latter case we have χ(Fruθ,2
) − χ(Fruθ,1

) = −χ(ϕm′(θ)) (see (5.7)).

Hence (5.11) indeed vanishes. �

Theorem 5.5 is especially useful when Bnr = Bconst. The following corollary records
situations in which this equality holds for purely algebraic reasons.

Corollary 5.8. Let π+ ∈P+. Assume that for each m ∈M , at least one of the following
conditions is satisfied:

(1) the torus T = R1
Lm/k(m)Gm over k(m) satisfies Brnr(T ) = Br0(T );

(2) the extension Km/Lm is trivial.

Then Conjecture Fconst for π+ implies Conjecture F+ for π+.

Proof. Under either assumption, one has Cm,nr = Cm,const, according to Proposition 2.1 (1)
in case (1), and because Cm = 0 in case (2). Hence Bnr = Bconst. �

Various conditions which ensure that Brnr(T ) = Br0(T ) are listed in Proposition 2.6.

6. Known cases of Conjecture F+

The concrete cases in which Conjecture F is currently known to hold are those listed
in [HW16, §9.2] and in [BS19]. In many of these cases, the underlying arguments can be
enhanced to prove Conjecture F+ as well, as we verify in this section.

6.1. From strong approximation. The following proposition strengthens [HW16, Corol-
lary 9.10], where the analogous conclusion was obtained for Conjecture F.

Proposition 6.1. Let π+ ∈ P+. If the variety W satisfies strong approximation off v0

for every finite place v0 of k, then Conjecture F+ holds for π+.

Proof. Let (zv)v∈Ω ∈ W (Ak). Let S ⊂ Ω be a finite subset of places. Let p : W → P1
OS

be the standard integral model of p : W → P1
k (see §3.5). We choose S large enough that

it satisfies the assumptions of Proposition 3.8 and that zv ∈ W (Ov) for all v ∈ Ω \ S. To
prove the theorem, it suffices to produce c ∈ U(k) and (z′

v)v∈Ω ∈ Wc(Ak)B such that z′
v

lies arbitrarily close to zv for v ∈ S and that z′
v ∈ W (Ov) for v ∈ Ω \ S.

Fix a place v0 ∈ Ω \ S that splits completely in Km for all m ∈ M . By assumption,
there exists z ∈ W

(
OS∪{v0}

)
lying arbitrarily close to zv for v ∈ S. Set c = p(z). As v0

splits completely in Lm for all m ∈M , there exists z′
v0
∈ W (Ov0

) such that p(z′
v0

) = c (see
Proposition 3.8). Set z′

v = z for v ∈ Ω \ {v0}. For any β ∈ B, one has
∑

v∈Ω invv β(z) = 0
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(by the global reciprocity law) and invv0
β(z′

v0
) = invv0

β(z) = 0 (since v0 splits completely
in Km for all m ∈M), hence

∑
v∈Ω invv β(z′

v) = 0, as desired. �

In the next corollary, case (iv) is a delicate theorem of Browning and Schindler [BS19]
resting on methods of analytic number theory.

Corollary 6.2. Let π+ ∈ P+. Let M ′ = {m ∈ M ; Lm 6= k(m)}. Conjecture F+ holds
for π+ under any of the following sets of assumptions:

(i)
∑

m∈M ′ [k(m) : k] ≤ 2;
(ii)

∑
m∈M ′ [k(m) : k] = 3 and [Lm : k(m)] = 2 for all m ∈M ′;

(iii)
∑

m∈M ′ [k(m) : k] = 3 and there exists m0 ∈ M ′ such that k(m0) = k and such that
[Lm : k(m)] = 2 for all m ∈M ′ \ {m0};

(iv)
∑

m∈M ′ [k(m) : k] = 3, the set M ′ has cardinality 2, and k = Q.

Proof. We claim that in all cases, the variety W satisfies strong approximation off v0 for
any finite place v0 of k. To prove this, we may assume that M = M ′, by Remark 3.2. In
case (iv), the claim is then [BS19, Corollary 2.1]. In the other cases, one observes, as in
the proof of [HW16, Theorem 9.11], that the variety W is isomorphic, in case (i), to the
complement of a codimension 2 closed subset in an affine space, in case (ii), to the punctured
affine cone over the complement of a codimension 2 closed subset in a smooth projective
quadric of dimension 4, and in case (iii), to a variety as in the statement of Lemma 6.3
below. Such a variety satisfies strong approximation off v0 for any finite place v0 of k, in
case (i) by [CX18, Proposition 3.6] or [Wei21, Lemma 1.1] (see also [HW16, Lemma 1.8]),
in cases (ii) and (iii) by Lemma 6.3 and Lemma 6.4. �

Lemma 6.3. Let k be a field of characteristic 0, with algebraic closure k̄. Let L be a nonzero
étale algebra over k, of dimension m. Let q ∈ k[x1, . . . , xn] be a non-degenerate quadratic
form. Denote by X the smooth closed subvariety of RL/k(A1

L)× (An
k \ {(0, . . . , 0)}) defined

by the equation

NL/k(z) = q(x1, . . . , xn),(6.1)

where z stands for a point of RL/k(A1
L) and x1, . . . , xn are the coordinates of An

k . Let

F ⊂ X be a closed subset of codimension ≥ 2 and set U = X \ F .

(i) If n ≥ 1, then U is geometrically integral.

(ii) If n ≥ 2, then Br(Uk̄) = 0 and k̄[U ]∗ = k̄∗.

(iii) If n ≥ 3, then Pic(Uk̄) = 0. If n = 2, then Pic(Uk̄) ≃ Zm−1 (ignoring Galois actions).

(iv) If n ≥ 3, the pull-back map Br(k)→ Br(U) is onto.

(v) If n = 2 and both L and q are split, then Gal(k̄/k) acts trivially on Pic(Uk̄) and the
pull-back map Br(k)→ Br(U) is onto.

Assume that k is a number field and let v0 be a place of k.

(vi) If n = 2, the subset U(k) is dense off v0 in U(Ak)Br(U) (see [Wit18, Definition 2.9]).
(vii) If n ≥ 3, the variety U satisfies strong approximation off v0.
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Proof. Let us first prove (ii)–(v). As the restriction maps Hq(Xk̄, Gm)→ Hq(Uk̄, Gm) and
Hq(X, Gm) → Hq(U, Gm) are isomorphisms for q ≤ 2 (see [CTS21, Theorem 3.7.2 (i)]),
we may assume that U = X. We now argue by induction on m, with n ≥ 2 fixed
but letting k, L, q vary, to prove (ii)–(v) under this assumption. If m = 1, then
X = An

k \ {(0, . . . , 0)} and (ii)–(v) are true (see [CTS21, Theorem 3.7.1, Theorem 6.1.1]).
Let us fix m > 1 and assume that (ii)–(v) hold for lower values of m. The Hochschild–
Serre spectral sequence shows that (ii) and (iii) imply (iv); hence, in order to prove (ii)–
(v), we may assume, after extending the scalars, that both q and L are split over k.
The variety X is then isomorphic to the subvariety of Am

k ×
(
An

k \ {(0, . . . , 0)}
)
, with

coordinates z1, . . . , zm, x1, . . . , xn, defined by
∏m

i=1 zi = q(x1, . . . , xn). Let f : X → A1
k

be the projection to the coordinate zm. The generic fibre Xη of f is a variety of the
form appearing in Lemma 6.3, associated with a split algebra of rank m − 1 and a split
quadratic form of rank n, over the function field K of A1

k. Letting K̄ be an algebraic closure

of K, the induction hypothesis therefore guarantees that K̄[Xη ]∗ = K̄∗ (hence k̄[X]∗ = k̄∗,

as f is surjective), that Br(Xη ⊗K K̄) = 0, that Pic(Xη ⊗K K̄) = 0 if n ≥ 3, and that

Pic(Xη ⊗K K̄) ≃ Zm−2, with trivial action of Gal(K̄/K), if n = 2. As Br(K ⊗k k̄) = 0

(Tsen’s theorem) and H1(K ⊗k k̄, Pic(Xη ⊗K K̄)) ≃ H1(K ⊗k k̄, Zm−2) = 0 if n = 2, one
deduces, by the Hochschild–Serre spectral sequence, that

Pic(Xη ⊗k k̄) ≃
{

0 if n ≥ 3,

Zm−2 if n = 2,
(6.2)

with trivial action of Gal(k̄/k), and that Br(Xη ⊗k k̄) = 0. It follows that Br(Xk̄) = 0,

since Br(Xk̄) ⊆ Br(Xη⊗k k̄). As the last part of (v) results, again by the Hochschild–Serre
spectral sequence, from the rest of (ii)–(v), we need only check that

Pic(Xk̄) ≃
{

0 if n ≥ 3,

Zm−1 if n = 2,
(6.3)

with trivial action of Gal(k̄/k). As Xk̄ is smooth and as Pic(A1
k̄
) = 0, we have an exact

sequence of Gal(k̄/k)-modules

N → Pic(Xk̄)→ Pic(Xη ⊗k k̄)→ 0,(6.4)

where N is the quotient of the group of divisors on Xk̄ supported on the fibres of f by
the subgroup f∗Div(A1

k̄
). When n ≥ 3, the fibres of f are geometrically integral, hence

N = 0, which proves (6.3) in this case, in view of (6.2). Assume now that n = 2. The
fibres of f are then geometrically integral except f−1(0), which is the disjoint union of two
geometrically integral subvarieties, say E and E′. Thus N = Z, generated by the class
of Ek̄, with trivial action of Gal(k̄/k). As K̄[Xη ]∗ = K̄∗, the class of Ek̄ in Pic(Xk̄) has

infinite order: the first arrow of (6.4) is injective. As any extension of Gal(k̄/k)-modules
of Zm−2 by Z is equivariantly split, this completes the proof of (6.3), and hence of (ii)–(v).

Let us prove (i). As U is smooth and nonempty, if it were not geometrically integral, it
would not be geometrically connected, which would contradict the last part of (ii) if n ≥ 2.
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When n = 1, the variety Xk̄ is isomorphic to the subvariety of Am+1
k̄

, with coordinates

z1, . . . , zm, x, defined by
∏m

i=1 zi = x2 6= 0, which is indeed connected.
To prove (vi), we note that if n = 2, then X is a toric variety. Indeed, after a change of

variables, we may assume that q is diagonal, i.e. q(x1, x2) = b(x2
1 − cx2

2) for some b, c ∈ k∗;
the equations NL/k(z) = x2

1 − cx2
2 6= 0 then define a torus which acts on X with a dense

open orbit. As the variety X is toric and satisfies k̄[X]∗ = k̄∗, the main theorem of [Wei21]
ensures the validity of (vi).

We shall now prove that the assertion of (vi) in fact holds for all n ≥ 2, by induction
on n. In view of (iv), this will establish (vii).

Let n ≥ 3 be such that the assertion of (vi) holds for smaller values of n. Choose a
codimension 2 linear subspace D ⊂ An

k containing (0, . . . , 0) such that X∩
(
RL/k(A1

L)×D
)

is smooth and that F∩
(
RL/k(A1

L)×D
)

has codimension ≥ 1 in F . Write Λ for the projective

line parametrising hyperplanes in An
k containing D. Let g : X ′ → X be the blow-up of X

along X ∩
(
RL/k(A1

L) ×D
)

and f : X ′ → Λ the morphism obtained by composing g, the
second projection X → An

k and the rational map An
k 99K Λ given by projection from D.

The fibres of f are the varieties X ∩
(
RL/k(A1

L)×H
)

where H ranges over the hyperplanes
of An

k containing D. As the restriction of q to any hyperplane of An
k is a quadratic form

of rank ≥ n − 2, and as n ≥ 3, we deduce that the fibres of f are geometrically integral.
Let F ′ = g−1(F ) and U ′ = X ′ \ F ′. As F ′ has codimension ≥ 2 in X ′, the geometric
generic fibre U ′

η̄ of f |U ′ : U ′ → Λ is a variety of the form appearing in Lemma 6.3 (with n
replaced by n−1). In particular, it has no non-constant invertible function, by (ii), and the
abelian group Pic(U ′

η̄) is torsion-free, by (iii), so that H1
ét(U

′
η̄, Q/Z) = 0; and (ii) ensures

that Br(U ′
η̄) = 0. We can therefore apply Corollary 4.7 to f |U ′ (recalling that Λ ≃ P1

k).
The parameters π+ which appear in the statement of Corollary 4.7 satisfy Lm = k(m) for
all m ∈M , so that Conjecture F+ holds for them, by Corollary 6.2 (i). We conclude that

any point of U ′(Ak)Br(U ′) can be approximated arbitrarily well by a point of U ′
c(Ak)Br(U ′

c)

for a rational point c of an arbitrary dense open subset of Λ. By the induction hypothesis,
this point of U ′

c(Ak)Br(U ′

c) can in turn be approximated, for the adelic topology off v0, by

a rational point of U ′
c. This shows that U ′(k) is dense off v0 in U ′(Ak)Br(U ′). On the other

hand, as the map U ′ → U induced by g is a blow-up with smooth centre, it induces a
surjection U ′(Ak)Br(U ′)

։ U(Ak)Br(U). Hence U(k) is dense off v0 in U(Ak)Br(U). �

Lemma 6.4. Let X be the punctured affine cone over an n-dimensional smooth projective
quadric, over a number field k. Let v0 be a place of k. Let U = X \ F , where F ⊂ X is a

closed subset of codimension ≥ 2. If n = 2, the subset U(k) is dense off v0 in U(Ak)Br(U).
If n ≥ 3, the variety U satisfies strong approximation off v0.

Remark 6.5. In the case n = 4, Lemma 6.4 was asserted and used in the proof of [HW16,
Theorem 9.11]. However, a gap in the justification given there (as well as a very simple fix
for the proof of that theorem, by working around Lemma 6.4) was kindly pointed out to
us by Yang Cao. Thus, Lemma 6.4 is new and requires a proof, even for n = 4. The proof
we give also fills the aforementioned gap.
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Proof of Lemma 6.4. Choose, for the underlying quadric, a diagonal equation of the form∑n+2
i=1 aix

2
i = 0 with an+2 = −1. Set q(x1, . . . , xn) =

∑n
i=1 aix

2
i and L = k[t]/(t2 − an+1).

The variety X0 associated with L and q by Lemma 6.3 is an open subvariety of X
whose complement has codimension ≥ 2 in X. Hence the conclusions of Lemma 6.3 for
U0 = X0 ∩ U imply the same conclusions for U . �

6.2. From Schinzel’s hypothesis. The next theorem strengthens [HW16, Theorem 9.6],
where the same conclusion was obtained for Conjecture F rather than Conjecture Fconst. In
its statement, almost abelian extensions are meant in the sense of [HW16, Definition 9.4].
Let us recall that abelian extensions as well as cubic extensions are almost abelian (see the
end of §1 for the definition). We refer the reader to [HW16, §9.2.1] for the statement of
Schinzel’s hypothesis in its homogeneous form (HH1), which follows from the more common
Schinzel’s hypothesis (H) and which takes, as input, a finite collection of homogeneous
polynomials in k[λ, µ]. Given a closed point m ∈ A1

k, we set Pm(λ, µ) = Nk(m)/k(λ−amµ).

Theorem 6.6. Let π+ ∈ P+. Assume that for each m ∈ M , the extension Lm/k(m) is
almost abelian. If Schinzel’s hypothesis (HH1) holds for the set of homogeneous polynomials
(Pm(λ, µ))m∈M ′ , where M ′ = {m ∈M ; Lm 6= k(m)}, then Conjecture Fconst holds for π+.

Proof. Let U = P1
k \M and let q : W → A2

k \{(0, 0)} and r : A2
k \{(0, 0)} → P1

k denote the
natural projections, so that p = r ◦ q. Under our assumptions, Conjecture F holds for π,
by Remark 3.2 and [HW16, Theorem 9.6, Proposition 9.9]. The proof given in loc. cit. is
in fact a proof of the more precise result that the subset of W (Ak) consisting of the adelic
points that lie in a fibre of q over a rational point of A2

k \ {(0, 0)} is dense in W (Ak). On
the other hand, for any m ∈M and any χ ∈ H1(k(m), Q/Z), we have

CoresLm/k(zm, χ) = Coresk(m)/k(NLm/k(m)(zm), χ) = Coresk(m)/k(bm(λ− amµ), χ),

hence Bconst ⊆ q∗Br(r−1(U)) and any adelic point of p−1(U) that lies in a fibre of q over a
rational point of A2

k \ {(0, 0)} is therefore automatically orthogonal to Bconst with respect
to the Brauer–Manin pairing. �

Corollary 6.7. Let π+ ∈P+. Assume that for each m ∈M , at least one of the following
conditions is satisfied:

(1) the extension Lm/k(m) is cyclic, or it is almost abelian but not abelian;
(2) the extension Lm/k(m) is abelian and the extension Km/Lm is trivial.

Let M ′ = {m ∈ M ; Lm 6= k(m)} and assume that Schinzel’s hypothesis (HH1) holds for
the set of homogeneous polynomials (Pm(λ, µ))m∈M ′ . Then Conjecture F+ holds for π+.

Proof. By Theorem 6.6, Conjecture Fconst holds for π+. By Corollary 5.8, Proposition 2.6
and Remark 2.8, Conjecture Fconst for π+ implies Conjecture F+ for π+. �

The work of Heath-Brown and Moroz [HBM04] on primes represented by binary cubic
forms implies the validity of Schinzel’s hypothesis (HH1) for a single polynomial of degree 3
with coefficients in Q (see [HW16, Remark 9.7]). We thus obtain the following corollary
(to be compared with Corollary 6.2 (iv)):
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Corollary 6.8. Let π+ ∈ P+. Assume that k = Q, that there is a unique m ∈ M such
that Lm 6= k(m), that this m is such that [k(m) : k] = 3, and that for this m, the extension
Lm/k(m) is cyclic or is almost abelian but non-abelian. Then Conjecture F+ holds for π+.

6.3. From additive combinatorics. Under the assumption that k = Q, Conjecture F
is known to hold for triples π ∈ P such that M only consists of rational points. This
was proved by Matthiesen [Mat18] (see [HW16, Theorem 9.14]), following her work with
Browning [BM17] and using the methods of additive combinatorics developed by Green,
Tao and Ziegler [GT08, GT10, GT12, GTZ12]. The next theorem strengthens this result,
by replacing Conjecture F with Conjecture F+ while allowing non-rational points in M
with trivial extension Lm/k(m) (and arbitrary finite abelian extensions Km/Lm).

Theorem 6.9. Let π+ ∈P+. Assume that k = Q and that for each m ∈M , at least one
of the extensions Lm/k(m) and k(m)/k is trivial. Then Conjecture F+ holds for π+.

Proof. Let π0
+ = (M, (L0

m)m∈M , (b0
m)m∈M , (K0

m)m∈M ) ∈P+ satisfy the assumptions of the

theorem. We shall prove Conjecture F+ for π0
+.

Set M ′ = {m ∈ M ; L0
m 6= k(m)}. If M ′ = ∅, then Conjecture F+ holds for π0

+ by
Corollary 6.2 (i). Otherwise, we choose m0 ∈M ′ and note that k(m0) = k by assumption.
For m ∈M \M ′, let us set Km = K0

m and Lm = L0
m = k(m). For m ∈M ′ \{m0}, let us set

Km = Lm = K0
m. Let L0/k denote the field extension given by Corollary 5.3 applied to the

extensions Km/Lm/k(m) for m ∈M \ {m0}. Finally, let us choose a finite extension Lm0

of K0
m0

in which L0 can be embedded k-linearly, and set Km0
= Lm0

.
According to Corollary 4.4, we will be done if we prove Conjecture F+ for the parameter

π+ = (M, (Lm)m∈M , (bm)m∈M , (Km)m∈M ) for any choice of (bm)m∈M ∈ ∏
m∈M k(m)∗.

Let us fix (bm)m∈M . By Matthiesen’s theorem [HW16, Theorem 9.14, Proposition 9.9] and
Remark 3.2, Conjecture F holds for π+. By the definition of L0 (see Corollary 5.3), it follows
that Conjecture Fconst holds for π+. By Remark 5.4 (ii), we conclude that Conjecture F+

holds for π+, as desired. �

7. Applications

As was the case for Conjecture F in [HW16], our motivation for Conjecture F+ ultimately
lies in the following question (which slightly refines Question 1.2 by incorporating a Hilbert
subset into its statement):

Question 7.1. Let X be a smooth, proper, irreducible variety over a number field k. Let
f : X → P1

k be a dominant morphism whose geometric generic fibre is rationally connected.

Assume that Xc(k) is dense in Xc(Ak)Br(Xc) for all rational points c of a Hilbert subset

of P1
k. Does it follow that X(k) is dense in X(Ak)Br(X)?

Question 7.1 admits an affirmative answer if Conjecture F (or Conjecture F+) holds true,
by [HW16, Corollary 9.25] (or Corollary 4.7 and Remarks 4.8 (i)–(ii)), and unconditionally,
in various special cases listed in [HW16, §9.4] and [BS19], the most notable one being
when k = Q and the non-split fibres of f lie over rational points of P1

k (using Matthiesen’s
theorem, see [HW16, Theorem 9.28]).
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7.1. Statements. We now turn to the new affirmative answers to Question 7.1 that can
be obtained by combining the main results of §§4–6. In the statements below, we fix X
and f as in Question 7.1, and let M ⊂ P1

k denote the locus of non-split fibres of f . For each
m ∈ M , we choose an irreducible homogeneous polynomial Pm(λ, µ) that vanishes on m,
where λ, µ denote homogeneous coordinates of P1

k. Following a terminology introduced by
Skorobogatov [Sko96], the rank of f , denoted rank(f), is the degree of M over k (viewing M
as a reduced closed subscheme of P1

k). Finally, for m ∈ M , we say that a finite extension
Lm of k(m) splits the fibre Xm if the variety Xm ⊗k(m) Lm over Lm is split.

Theorem 7.2. Assume that the following two conditions are satisfied:

(1) Schinzel’s hypothesis (HH1) holds for the homogeneous polynomials (Pm(λ, µ))m∈M .
(2) For each m ∈M , there exists an extension of k(m) that splits the fibre Xm and that is

either cyclic or almost abelian but non-abelian (e.g. a cubic extension).

Then Question 7.1 admits an affirmative answer.

Proof. Combine Corollary 4.7, Remarks 4.8 (i) and (ii), the invariance of (HH1) under
changes of coordinates of P1

k (if X∞ is singular), and Corollary 6.7. �

Theorem 7.2 recovers and generalises a theorem of Smeets [Sme15, Corollaire 1.5], who
dealt with the special case where the generic fibre of f is a torsor under a torus defined
over k and quasi-split by a cyclic extension of k. Apart from this case, Theorem 7.2 was
previously known only under the assumption that the smooth fibres of f satisfy weak
approximation (in which case Xm can be allowed to be split by an abelian extension; see
[HW16, Corollary 9.27], which expanded on [CTSSD98] and on [Wei14a, Theorem 4.6]).

Theorem 7.3. Question 7.1 admits an affirmative answer if rank(f) ≤ 2.

Proof. Combine Corollary 4.7, Remarks 4.8 (i) and (ii), and Corollary 6.2 (i). �

Theorem 7.3 was previously known only under the assumption that k is totally imaginary
or that M consists of rational points of P1

k (see [HW16, Theorem 9.31]).

Theorem 7.4. Assume that rank(f) = 3 and that at least one of the following holds:

(i) k = Q and f has at least two non-split fibres;
(ii) k = Q, the morphism f has a unique non-split fibre, say over m, and Xm is split by

an extension of k(m) that is either cyclic or almost abelian but non-abelian;
(iii) for every m ∈M , the fibre Xm is split by a quadratic extension of k(m);
(iv) there exists m0 ∈ M such that k(m0) = k and such that for every m ∈ M \ {m0},

the fibre Xm is split by a quadratic extension of k(m).

Then Question 7.1 admits an affirmative answer.

Proof. Combine Corollary 4.7 and Remarks 4.8 with Corollary 6.2 (iv) (which builds on the
work of Browning and Schindler) in case (i) if f has two non-split fibres, with Theorem 6.9
(which builds on the work of Matthiesen) in case (i) if f has three non-split fibres, with
Corollary 6.8 (which builds on the work of Heath-Brown and Moroz) in case (ii), with
Corollary 6.2 (ii) in case (iii) and with Corollary 6.2 (iii) in case (iv). �
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The above theorem collects everything that can be proved to this day about Question 7.1
when f has rank 3. Theorem 7.4 in case (i) is [BS19, Theorem 1.1] and is only stated for
the record. Cases (ii), (iii) and (iv), on the other hand, are entirely new. Among them, the
only previously known particular case was a theorem of Colliot-Thélène and Skorobogatov
[CTS00, Theorem B], who had established Theorem 7.4 in case (iii) under the assumption
that the smooth fibres of f satisfy weak approximation.

7.2. Examples. We now describe some concrete examples of varieties for which one can
prove the density of rational points in the Brauer–Manin set by applying Theorem 7.4 to
rank 3 fibrations meeting the requirements (ii), (iii) or (iv) of its statement.

7.2.1. An example for Theorem 7.4 (ii). Consider a number field k and a nonzero étale
algebra L =

∏
i Li over k, where the Li are number fields. The arithmetic of smooth and

proper models X of the affine closed subvariety of RL/k(A1
L)×A1

k defined by the equation

NL/k(z) = p(t),

where z and t are coordinates in RL/k(A1
L) and in A1

k respectively, and where p ∈ k[t]

is a polynomial in one variable, has been extensively studied in the literature (see e.g.
[HBS02, CTHS03, VAV12, BHB12, SJ13, Wei14a, DSW15, BM17, Irv17, Shu22]). One
can always choose X so that the projection (z, t) 7→ t extends to a morphism f : X → P1

k
each of whose smooth fibre is a compactification of a torsor under the norm torus defined
by NL/k(z) = 1. Then the generic fibre of f is rationally connected and Xc(k) is dense in

Xc(Ak)Br(Xc) for all c ∈ P1(k) such that Xc is smooth, by a theorem of Colliot-Thélène and
Sansuc (see [Sko01, Theorem 6.3.1]). Applying Theorem 7.4 (ii) thus yields the following:

Corollary 7.5. Let b ∈ Q∗. Let e ≥ 1 be an integer. Let q ∈ Q[t] be an irreducible cubic
polynomial. Set E = Q[t]/(q(t)). Let L =

∏
Li be a nonzero étale Q-algebra, where the Li

are number fields. Let X be a smooth and proper model over Q of the closed subvariety of
RL/Q(A1

L)×A1
Q defined by the equation

NL/Q(z) = bq(t)e,

where z denotes a point of RL/Q(A1
L) and t is the coordinate of A1

Q. Suppose that the
following conditions hold:

(1) The gcd of the degrees [Li : Q] divides 3e.
(2) Writing the étale E-algebra L⊗Q E as a product of fields, at least one of the factors is

an extension of E that is either cyclic or almost abelian but non-abelian.

Then the subset X(k) is dense in X(Ak)Br(X).

The rôle of condition (1) in the above corollary is to ensure that when X is chosen in
such a way that the projection (z, t) 7→ t extends to a morphism f : X → P1

Q (which we can

assume, as the conclusion of the corollary is a birational invariant [Wit18, Remark 2.4 (iv)]),
the fibre f−1(∞) is split. The following homogeneous variant of this example permits one
to dispense with this condition:
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Corollary 7.6. Let b ∈ Q∗. Let e ≥ 1 be an integer. Let q ∈ Q[λ, µ] be an irreducible
homogeneous cubic polynomial. Let L =

∏
Li be a nonzero étale Q-algebra, where the Li

are number fields. Let Y be a smooth and proper model over Q of the closed subvariety of
RL/Q(A1

L)× (A2
Q \ {(0, 0)}) defined by the equation

NL/Q(z) = bq(λ, µ)e,

where z denotes a point of RL/Q(A1
L) and λ, µ are the coordinates of A2

Q\{(0, 0)}). Setting

E = Q[t]/(q(t, 1)) and writing the étale E-algebra L ⊗Q E as a product of fields, suppose
that at least one of the factors is an extension of E that is either cyclic or almost abelian
but non-abelian. Then the subset Y (k) is dense in Y (Ak)Br(X).

Remark 7.7. When the gcd of the degrees [Li : Q] divides 3e, the variety Y considered
in Corollary 7.6 is birationally equivalent to X ×Gm, where X is the variety associated in
Corollary 7.5 with the polynomial q(t, 1). As a result, Corollary 7.5 is in fact equivalent
to a special case of Corollary 7.6. We have nevertheless opted for stating Corollary 7.5
separately in view of the considerable attention that the variety X has received in the
literature (see the references at the beginning of §7.2.1).

7.2.2. An example for Theorem 7.4 (iv). We keep the set-up of §7.2.1 and assume that L
is a quartic extension of k and that p ∈ k[t] is an irreducible quadratic polynomial having
its roots in L. In this case, using techniques from analytic number theory, Browning and
Heath-Brown [BHB12, Theorem 1] established the Hasse principle and weak approximation
for X when k = Q. Derenthal, Smeets and the second-named author then provided a
second proof based on the descent method, which led, in [DSW15, Theorem 1], to the
validity of the same result over an arbitrary number field k. These authors also verified
the equality Br(X) = Br0(X) in the case under consideration (see [DSW15, Theorem 4]).
The theorem of Browning and Heath-Brown was subsequently understood to fit into the
framework of the fibration method: indeed it can be seen as an application of Browning
and Schindler’s Theorem 7.4 (i), in view of the equality Br(X) = Br0(X). Until the
present work, however, its generalisation to arbitrary number fields had remained outside
of the scope of the fibration method. We remedy this gap with Theorem 7.4 (iv). Applied
to f : X → P1

k (with m0 = ∞), the latter immediately yields the density of X(k) in

X(Ak)Br(X), thus recovering [DSW15, Theorem 1] since Br(X) = Br0(X).

7.2.3. An example for Theorem 7.4 (iii). Let us start with a field k of characteristic 0 and
a reduced closed subscheme M ⊂ P1

k of degree 3 over k. Let U = P1
k \M . Let C be a

smooth projective curve over k (which we do not assume to be connected or geometrically
connected) and π : C → P1

k be a finite morphism satisfying the following condition:

(∗) the morphism π is étale over U and for every m ∈ M , the gcd of the ramification
indices of π at the points of π−1(m) is equal to 2.

For b ∈ k∗, we consider the closed subvariety X0 of RC/P1
k
(A1

k × C) defined by

NC/P1
k
(z) = b

and let f0 : X0 → P1
k denote the projection.
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Corollary 7.8. For any M , C, π, b as above, and any smooth and proper model X of X0,
if k is a number field, the subset X(k) is dense in X(Ak)Br(X).

Proof. The variety X0 is smooth (see Lemma 7.9 below). As the conclusion of the corollary
is a birational invariant, we may therefore assume that X contains X0 as a dense open
subset and that f0 extends to a morphism f : X → P1

k. The corollary then results from
Theorem 7.4 (iii) in view of the following description of the fibres of f0. �

Lemma 7.9. The morphism f0 is smooth. Its fibres over U are geometrically integral.
For m ∈M , the fibre (f0)−1(m) is split by the extension k(m)

(√
b
)
/k(m).

Proof. As the morphism f0 is obtained by base change from the norm map

NC/P1
k

: RC/P1
k
(Gm ×C)→ Gm ×P1

k(7.1)

it suffices to prove that the latter is smooth, and to describe its fibres.
The fibre of (7.1) above an arbitrary point (b, m) of Gm × P1

k is the closed subvariety
of Rπ−1(m)/m(A1

k × π−1(m)) defined by the equation Nπ−1(m)/m(z) = b. Let us choose

an isomorphism π−1(m) =
∐s

i=1 Spec
(
ki[v]/(vei)

)
, where k1, . . . , ks are finite extensions

of k(m) and e1, . . . , es are the ramification indices. There results an isomorphism

Rπ−1(m)/m(A1
k × π−1(m)) =

s∏

i=1

ei−1∏

j=0

Rki/k(m)A
1
ki

.(7.2)

Letting zi,j stand for a point of the corresponding factor Rki/k(m)A
1
ki

in the right-hand side

of (7.2), the equation Nπ−1(m)/m(z) = b is rewritten, through this isomorphism, as

s∏

i=1

Nki/k(m)(zi,0)ei = b.(7.3)

All in all, the fibre of (7.1) above (b, m) is isomorphic to Z×A
deg(π)−

∑s

i=1
[ki:k(m)]

k(m) , where Z

denotes the closed subvariety of
∏s

i=1 Rki/k(m)Gm defined by (7.3).
Let e denote the gcd of the ei. It is easy to see that Z is a torsor under a group of

multiplicative type over k(m) which is an extension of µe by a torus, and that the torsor
under µe induced by Z is the closed subvariety of Gm,k(m) defined by ze = b. Hence Z is

geometrically integral if e = 1, and in any case it is split by k(m)(b1/e)/k(m).
Thanks to (∗), we have now proved the second and third assertions of the lemma. Our

description of the fibres of (7.1) also shows that they are smooth and all have the same
dimension (namely deg(π) − 1). As in addition (7.1) is a finite type morphism between
regular schemes (indeed, between smooth P1

k-schemes, see [BLR90, 7.6/5]), it follows that
it is smooth (flatness being ensured by [Gro65, Proposition 6.1.5]). �

It remains to give examples of covers π satisfying (∗).
Example 7.10. Condition (∗) holds if π : C → P1

k is a connected Galois cover with branch
locus equal to M and with Galois group (Z/2Z)2. Such covers exist if M consists of three
rational points (e.g. take k(C) = k(t)

(√
t(t + 1),

√
t(t− 1)

)
if M = {−1, 0, 1}).
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Example 7.11. More generally, consider the algebraic group S over k defined as the kernel
of the norm map NM/k : RM/k(Z/2Z) → Z/2Z. This is a twisted form of (Z/2Z)2. Let t

denote the parameter of A1
k and, assuming for simplicity that M ⊂ A1

k, let a ∈ H0(M, OM )
denote the restriction of t to M . As M has degree 3 over k, the exact sequence

0 // S // RM/k(Z/2Z) // Z/2Z // 0(7.4)

induces an isomorphism H1
ét(U, S) ∼−→ Ker

(
NM/k : H1

ét(U ×k M, Z/2Z) → H1
ét(U, Z/2Z)

)
;

in particular, any invertible function on U ×k M whose norm down to U is a square
defines a class in H1

ét(U, S). Applying this to the function NM/k(t− a)/(t− a), we obtain

the isomorphism class of a torsor CU → U under S. Let π : C → P1
k be the cover

obtained by compactifying this torsor. We claim that (∗) holds and that C is geometrically
connected over k. To check this, we may freely extend the scalars and thus assume that k is
algebraically closed and that M = {−1, 0, 1}, in which case we can identify S with (Z/2Z)2

and π with the cover considered in Example 7.10.

Remarks 7.12. (i) In the situation of Example 7.11, the Galois group of a Galois closure
of the quartic extension k(C)/k(t), when viewed as a subgroup of S4, is (Z/2Z)2 if M
consists of three rational points, or D4 if M consists of a rational point and a quadratic
point, or A4 if M consists of a cubic point with cyclic residue field, or else S4.

To see this, let k′ be a minimal Galois extension of k that splits M completely and
a1, a2, a3 be the values of t at the k′-points of M . Let pi =

∏
j 6=i(t− aj) ∈ k′[t] for every i.

As the set {p1, p2, p3} is stable under Gal(k′/k) and as k′(C) = k′(t)
(√

p1,
√

p2,
√

p3

)
, the

extension k′(C)/k(t) is Galois. Viewing Gal(k′/k) both as the quotient Gal(k′(t)/k(t)) of
G = Gal(k′(C)/k(t)) and as its subgroup Gal(k′(C)/k(C)), and noting that k′(C)/k′(t) is
biquadratic, we find that G ≃ (Z/2Z)2

⋊ Gal(k′/k), from which the claim follows easily.
(ii) In the situation of Lemma 7.9, even though f and X are not explicit, it is possible

to get a hold on the splitting behaviour of the fibres of f (rather than f0) by considering
the points of the generic fibre of f0 with values in complete discretely valued fields with
pseudo-algebraically closed residue field (see [CT11, Proposition 3.8]). In this way, one can
check that for every m ∈M , the fibre f−1(m) is split if and only if b becomes a square in
the field k′ of Remark 7.12 (while it follows from the proof of Lemma 7.9 that (f0)−1(m)
is split if and only if b becomes a square in k(m), a slightly stronger condition in general).
Thus, in Examples 7.10 and 7.11, all of the fibres of f over M are truly non-split if b does
not become a square in k′.

7.2.4. Further comments. In all of the examples given in §7.2, the smooth fibres of the
fibrations we construct are compactifications of torsors under algebraic tori. Specifically,
in Corollary 7.5, the algebraic torus in question is R1

L/Q
Gm; in Corollary 7.6, it is the

subtorus of Gm ×RL/QGm defined by the equation y3eNL/k(z) = 1; and in Corollary 7.8,

the fibre over c ∈ U is a compactification of a torsor under the norm torus R1
π−1(c)/cGm.

Such torsors can have non-constant unramified Brauer classes and generally fail to satisfy
the Hasse principle or weak approximation. Non-constant unramified Brauer classes in
the fibres do exist, in the case of Corollary 7.5 (and therefore also of Corollary 7.6, see
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Remark 7.7), when E/Q is a cyclic extension and L/Q is a Galois extension with Galois
group G = Z/3Z × Z/3Z that contains E, since in this case the norm torus T associated

with L/Q satisfies X2
cyc(G, T̂ ) 6= 0 by Remark 2.8 (ii). (Recall that the injection (2.1) is an

isomorphism since k is a number field.) In the case of Corollary 7.8, the same phenomenon
occurs when M consists either of three rational points or of one cubic point with cyclic
residue field, according to Remark 7.12 (i), Remark 2.8 (ii) and Example 2.11.

Because of the presence of non-constant unramified Brauer classes in the fibres, the
various examples we have given are not covered by [CTS00, Theorem B].
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[Vos98] V. E. Voskresenskĭı, Algebraic groups and their birational invariants, Translations of Mathe-
matical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998.

[Wei14a] D. Wei, On the equation NK/k(Ξ) = P (t), Proc. Lond. Math. Soc. (3) 109 (2014), no. 6,
1402–1434.

[Wei14b] , The unramified Brauer group of norm one tori, Adv. Math. 254 (2014), 642–663.
[Wei21] , Strong approximation for a toric variety, Acta Math. Sin., Engl. Ser. 37 (2021), no. 1,

95–103.
[Wit18] O. Wittenberg, Rational points and zero-cycles on rationally connected varieties over number

fields, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer.
Math. Soc., Providence, RI, 2018, pp. 597–635.

Institut Galilée, Université Sorbonne Paris Nord, 99 avenue Jean-Baptiste Clément, 93430

Villetaneuse, France

Email address: harpaz@math.univ-paris13.fr

Hua Loo-Keng Key Laboratory of Mathematics, Academy of Mathematics and System

Science, CAS, Beijing 100190, P. R. China & School of mathematical Sciences, University

of CAS, Beijing 100049, P. R. China

Email address: dshwei@amss.ac.cn

Institut Galilée, Université Sorbonne Paris Nord, 99 avenue Jean-Baptiste Clément, 93430

Villetaneuse, France

Email address: wittenberg@math.univ-paris13.fr


	1. Introduction
	2. Unramified Brauer groups of torsors under norm tori
	2.1. Unramifiedness of corestrictions
	2.2. Some norm tori with Brₙᵣ(T)=Br₀(T)
	2.3. Central extensions by 𝐐/𝐙

	3. The variety W and Conjecture F₊
	3.1. Parameters and definition
	3.2. Geometry
	3.3. Brauer group
	3.4. Canonical ramified Brauer classes
	3.5. Local integral points
	3.6. Statement of Conjecture F₊

	4. Fibration theorem for rational points
	4.1. Main theorem
	4.2. Stability of Conjecture F₊
	4.3. Specialisation of the Brauer group
	4.4. Main corollary

	5. Comparing Conjectures F and F₊
	5.1. Introduction
	5.2. From Conjecture F to Conjecture Fconst
	5.3. From Conjecture Fconst to Conjecture F₊

	6. Known cases of Conjecture F₊
	6.1. From strong approximation
	6.2. From Schinzel's hypothesis
	6.3. From additive combinatorics

	7. Applications
	7.1. Statements
	7.2. Examples

	References

