
FOUR-FOLD MASSEY PRODUCTS IN GALOIS COHOMOLOGY

PIERRE GUILLOT, JÁN MINÁČ, AND ADAM TOPAZ
WITH AN APPENDIX BY OLIVIER WITTENBERG

Abstract. In this paper, we develop a new necessary and sufficient condition for the
vanishing of 4-Massey products of elements in the mod-2 Galois cohomology of a field.
This new description allows us to define a splitting variety for 4-Massey products, which
is shown in the Appendix to satisfy a local-to-global principle over number fields. As
a consequence, we prove that, for a number field, all such 4-Massey products vanish
whenever they are defined. This provides new explicit restrictions on the structure of
absolute Galois groups of number fields.
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1. Introduction

Let F be a field and F a separable closure of F . The absolute Galois group of F ,
denoted GF := Gal(F/F ) is an object of great interest in algebra and number theory.
Many aspects of modern Galois theory, in one way or another, aim to understand the
structural properties of GF . Recent major results in Galois cohomology show that such
absolute Galois groups are extremely rare among all profinite groups. The most notable
restriction on absolute Galois groups arises from the Bloch-Kato conjecture, which is now
a theorem due to Rost-Voevodsky; see [47] [38] [45] [18] [49]. In particular, if F contains a
primitive p-th root of unity, then H∗(GF ,Z/p) is a quadratic algebra. More explicitly, this
means that H∗(GF ,Z/p) is generated by elements of H1(GF ,Z/p), and the relations are
generated only by those relations appearing in degree 2. This is a very strong restriction
on the group-theoretical structure of GF . Recently, other explicit structural restrictions
on absolute Galois groups started to arise, based on the notion of Massey Products in the
context of Galois cohomology.
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We will recall the definition of Massey products below, but we briefly note that, given
x1, . . . , xn ∈ H1(GF ,Z/p) where p is a prime, the n-Massey product, denoted 〈x1, . . . , xn〉,
is a (possibly empty) subset of H2(GF ,Z/p). In the case n = 2, one has a simple descrip-
tion in terms of the cup-product as 〈x1, x2〉 = {x1 ∪ x2}. Just as the cup-product x1 ∪ x2
provides an obstruction to the existence of Heisenberg extensions of F (of degree p3),
the n-Massey product provides as obstruction for the existence of higher Z/p-unipotent
extensions. In this respect, we are primarily interested in situations where the n-Massey
product 〈x1, . . . , xn〉 contains 0. In the sequel, when 〈x1, . . . , xn〉 contains 0, we will
simply say that “〈x1, . . . , xn〉 vanishes.”

In the breakthrough paper on the subject, Hopkins-Wickelgren [20] proved that, given
x1, x2, x3 ∈ H1(GF ,Z/p), the triple Massey product 〈x1, x2, x3〉 always vanishes whenever
it is nonempty, in the case where F is a number field and p = 2. This result was
later extended by Mináč-Tân to arbitrary fields and p = 2 [29] partially based on ideas
appearing in [15], and to arbitrary primes p with F a global field [31].

The end of 2014 and early 2015 saw a surge of activity on triple Massey products of
elements of H1(GF ,Z/p), significantly extending the results mentioned above. Matzri
[23] was first to announce his proof, extending these results to all primes p and all fields
F which contain µp. Shortly thereafter, the arguments from loc. cit. were refined by
Efrat-Matzri, and this work was eventually published in [10]. At around the same time
as when [10] was posted, Mináč-Tân [30] also released their proof that triple Massey
products of elements of H1(GF ,Z/p) always vanish when defined, while also removing
the condition that F must contain µp. Motivated by these results, Mináč-Tân [29] [30]
[28] eventually formulated the so-called n-Massey Vanishing Conjecture, which states that
for an arbitrary field F , the n-Massey products of elements of H1(GF ,Z/p) always vanish
whenever they are non-empty.

The case of number fields has always played a particularly important role in this con-
text, as will be outlined in the historical discussion below. In this respect, the present
paper presents the first significant result concerning vanishing of 4-Massey products in
Galois cohomology. Namely, this paper proves the following result.
Main Theorem – Let F be a number field, and let x1, x2, x3, x4 ∈ H1(GF ,Z/2) be given.
If the Massey product 〈x1, x2, x3, x4〉 is non-empty, then it vanishes.

To achieve this, we construct a “splitting variety” for the problem at hand, which
works over any field of characteristic 6= 2, and which is compatible with base-change.
More precisely, given a field F of characteristic 6= 2 and x1, x2, x3, x4 ∈ H1(GF ,Z/2), we
construct an F -variety XF such that the following are equivalent:

(1) The set of F -rational points XF (F ) is non-empty.
(2) The 4-Massey product 〈x1, x2, x3, x4〉 vanishes.

Furthermore, this construction is compatible with base-change, in the sense that for all
L/F , one has XF ⊗F L = XL.

The study of the geometry and arithmetic of this variety falls within the reach of
the recent results in [19]. Hence, when F is a number field, it turns out to be possible
to prove that (a variant of) XF satisfies a local-to-global principle for the existence of
rational points, as soon as the corresponding Brauer-Manin obstruction vanishes. In the
proof of Theorem 6.1, we arrange the existence of local points satisfying certain additional
conditions which force the corresponding Brauer-Manin obstruction to vanish; this proves
the mod-2 case of the 4-Massey vanishing conjecture over number fields. Moreover, it
turns out that the Brauer-Manin obstruction always vanishes in “generic” situations,
which allows us to prove a stronger version of our result in such cases (see Theorem C).
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The overall strategy we take in this paper is similar to the approach taken by
Wickelgren-Hopkins [20], primarily because of the fact that we use splitting varieties.
However, their methods are highly specialized to the case of triple Massey products. In-
deed, working with n-Massey products for n ≥ 4 is substantially harder, especially with
respect to their definability and indeterminacy (see the discussion below). Moreover,
there is a technical, yet fundamental difference between the two approaches arising from
the additional conditions one must arrange for the local points of the splitting variety.
The details and new tools we develop here are therefore completely different and more
technically involved than those in loc. cit.

? ? ?

We want to say more about the context, and the history of the subject. Massey
products were first introduced in the context of algebraic topology by W. Massey [22],
as a collection of “higher-order cohomology operations” defined in terms of the cochain
algebra. For example, Massey products of elements of H1 play a central role in (rational)
homotopy theory, as being the most basic obstruction to 1-formality of manifolds – see
the work of Deligne, Griffiths, Morgan, and Sullivan [7] [44] [32] [33]. Massey products in
Galois cohomology were first systematically considered over number fields by Morishita
[34] [35], Vogel [48] and Sharifi [41]. These papers were primarily focused on Galois groups
of extensions with restricted ramification over number fields, where Massey products have
interesting connections with topics from Iwasawa theory, Milnor invariants, and Rédei
symbols. Understanding Massey products in the Galois cohomology of number fields is
particularly important, as they also show up in the context of Grothendieck’s section
conjecture – see Wickelgren [50] [52] [51]. More generally, Massey products in Galois
cohomology play an important role in understanding the structure of nilpotent quotients
of absolute Galois groups. Therefore, a detailed understanding of Massey products in
Galois cohomology could lead to significant generalizations of results in [12] [25] from the
two-step nilpotent setting to more general settings.

The investigation of Massey products in Galois cohomology of arbitrary fields has
recently started progressing very rapidly. This surge started with the work of Hopkins-
Wickelgren [20], and further progressed by Mináč-Tân [27] [29] [30] [26] and Efrat-Matzri
[11] [10] [9] [23]. In fact, ideas related to vanishing of mod-2 triple Massey products al-
ready appeared in 2003 by Gao-Leep-Mináč-Smith [15], albeit using different terminology.
However, it is important to note that all of the results mentioned above were restricted
to studying triple Massey products.

Until now, the cases of the n-Massey vanishing conjecture for n ≥ 4 have remained
completely open. Already in the case n = 4, having a non-empty 4-Massey product forces
the vanishing of a new invariant defined by Isaksen [21]. In particular, prior to the present
paper there was not even a strategy for approaching the 4-Massey vanishing conjecture.

? ? ?

We now introduce the basic concepts, and the precise notation, needed to state the
main results of the paper.

1.1. Basic Notation. Throughout the paper, F will denote a field of characteristic 6= 2.
We will use the usual notation H∗(F,A) := H∗(GF , A) for the Galois cohomology of F
with coefficients in the GF -module A.

Recall that Kummer theory yields a canonical isomorphism

F×/F×2 ∼=−→ H1(F,F2).
3



For an element x ∈ F×, we write [x] for its class in F×/F×2, and χx ∈ H1(F,F2) for
the image of [x] under the Kummer isomorphism. We will usually consider χx as a
(continuous) homomorphism

χx : GF → F2

via the canonical identification H1(F,F2) = Homcont(GF ,F2).
Given a, b ∈ F×, we will usually write (a, b)F (or (a, b) when F is understood) for the

cup-product χa ∪ χb ∈ H2(F,F2). This notation borrows from the fact that H2(F,F2) is
canonically isomorphic to the 2-torsion of Br(F ), and that the class of the quaternion
algebra (a, b)F corresponds to χa ∪ χb via this identification.

1.2. The Groups Un(F2). The group Un(F2), for n ≥ 2, is comprised of the n×n upper-
triangular matrices with entries in F2 with 1’s along the diagonal. The group Un(F2) is
endowed with n− 1 homomorphisms

s1, . . . , sn−1 : Un(F2)→ F2

defined as si(g) = gi,i+1 (the i-th near-diagonal component of g).
The center Z(Un(F2)) of Un(F2) consists of those matrices whose only possibly non-zero

coefficient above the diagonal is in the top-right corner. In particular, the map g 7→ g1,n
induces an isomorphism Z(Un(F2)) ∼= F2. We write Un(F2) := Un(F2)/Z(Un(F2)), and
consider Un(F2) as an extension of Un(F2) by F2. Furthermore, we denote by ξn the
element of H2(Un(F2),F2) associated to this extension.

1.3. Massey Products. Let Γ be a profinite group, and let x1, . . . , xn ∈ H1(Γ,F2) be
given. In this context, we say that the n-Massey product 〈x1, . . . , xn〉 is defined provided
that there exists a homomorphism ϕ : Γ→ Un+1(F2) such that xi = si◦ϕ for i = 1, . . . , n.
Furthermore, in this case we say that ϕ is a defining system for the n-Massey product
〈x1, . . . , xn〉.

The n-Massey product associated to the defining system ϕ, denoted by 〈x1, . . . , xn〉ϕ,
is defined to be ϕ∗ξn+1 ∈ H2(Γ,F2), the pull-back of ξn+1 along ϕ. Note that one has
〈x1, . . . , xn〉ϕ = 0 if and only if the map ϕ : Γ → Un+1(F2) lifts to a homomorphism
ϕ̃ : Γ→ Un+1(F2).

Finally, the n-Massey product 〈x1, . . . , xn〉 is defined as the set

〈x1, . . . , xn〉 := {〈x1, . . . , xn〉ϕ}

where ϕ varies over all defining systems for 〈x1, . . . , xn〉. In particular, the n-Massey
product 〈x1, . . . , xn〉 is non-empty if and only if it is defined. As mentioned above we will
be primarily interested in situations where the n-Massey product 〈x1, . . . , xn〉 contains
0, and we say that “〈x1, . . . , xn〉 vanishes” in such situations. Note that, when we say
“〈x1, . . . , xn〉 vanishes” we are also implying that 〈x1, . . . , xn〉 is defined (as 〈x1, . . . , xn〉
is non-empty).

Remark. We have presented the definition of defining systems and Massey products in
the context of group-cohomology from the point of view of embedding problems. This
is nevertheless equivalent to the classical (highly technical) definitions, by the work of
Dwyer [8]. For our purposes, Massey products are defined as above.

We will simplify the notation somewhat in the context of Galois cohomology. Namely,
given a1, . . . , an ∈ F×, we write 〈a1, . . . , an〉 instead of 〈χa1 , . . . , χan〉. We will follow this
convention when talking about defining systems as well as Massey products themselves.

4



1.4. Main Results. We are now prepared to state our main theorems which characterize
the vanishing of 4-Massey products in mod-2 Galois cohomology.

Theorem A – Let F be a field of characteristic 6= 2. Let a, b, c, d ∈ F× be given,
choose square roots

√
a resp.

√
d of a resp. d in an algebraic closure of F , and put

E := F [
√
a,
√
d]. Then the following are equivalent:

(1) The 4-Massey product 〈a, b, c, d〉 vanishes (i.e., it is defined and contains 0).
(2) There exist B ∈ F [

√
a], C ∈ F [

√
d] and z1, z2 ∈ F× such that the following

conditions hold:
(a) One has NF [

√
a]/F (B) = b · z2

1 and NF [
√
d]/F (C) = c · z2

2.
(b) One has (B,C)E = 0, (B, c)F [

√
a] = 0, (b, C)F [

√
d] = 0 and (b, c)F = 0.

(3) There exist B ∈ F [
√
a], C ∈ F [

√
d] and z1, z2 ∈ F× such that the following

conditions hold:
(a) One has NF [

√
a]/F (B) = b · z2

1 and NF [
√
d]/F (C) = c · z2

2.
(b) One has (B,C)E = (B, c)E = (b, C)E = (b, c)E = 0.

Note that condition (2) of Theorem A can be readily described in terms of polynomial
equations over F , hence defining an (affine) F -variety. Theorem A then shows that
this variety has an F -point if and only if 〈a, b, c, d〉 vanishes. Note, however, that these
equations depend on whether a, d, and/or ad are squares in F (the definition involves a
Weil-restriction from F [

√
a,
√
d] to F ); in other words, the variety is not compatible with

base-change to extensions of F . This is undesirable, as compatibility with base-change
will be an important property towards the end of the paper. With some additional work,
we are able to obtain the following characterization theorem which provides us with our
desired uniform polynomial equations.

Theorem B – Let F be a field of characteristic 6= 2 and let a, b, c, d ∈ F× be given.
Consider the finite étale F -algebra

E := F [X, Y ]/(X2 − a, Y 2 − d).

Then the following are equivalent:
(1) The 4-Massey product 〈a, b, c, d〉 vanishes.
(2) There exist x1, y1, x2, y2 ∈ F , z1, z2 ∈ F× and u, v ∈ E such that the following

equations are satisfied:
(a) One has x2

1 − y2
1 · a = b · z2

1 and x2
2 − y2

2 · d = c · z2
2.

(b) One has u2−B̃v2 = C̃ in E, where B̃ = x1+y1 ·X ∈ E and C̃ = x2+y2 ·Y ∈ E.

Note that the polynomial equations described by condition (2) of Theorem B actually
have the same shape over any field which contains a, b, c, d. The F -variety defined by
these equations is what we will eventually call the splitting variety for 〈a, b, c, d〉.

It is important to note that both Theorems A and B will play a key role in this paper.
Indeed, condition (2) of Theorem A has an immediate and direct formulation involving
cup-products in mod-2 Galois cohomology (we exhibit some direct applications, over any
field, in §4). On the other hand, condition (2) of Theorem B defines a splitting variety
whose geometry is remarkably simple. In generic situations, it satisfies the Hasse principle
for the existence of rational points; in all cases, the local-to-global principle is governed
by the Brauer-Manin obstruction, which takes a simple form here. See Theorem A.1 in
the Appendix for a detailed statement. We thereby obtain a more precise version of the
Theorem announced above:
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Theorem C – Let F be a number field, and let a, b, c, d ∈ F× be given. Then the
following are equivalent:

(1) The 4-Massey product 〈a, b, c, d〉 vanishes.
(2) The 4-Massey product 〈a, b, c, d〉 is defined.

If furthermore ad, ab, cd are all non-squares in F , then the above conditions are further
equivalent to:

(3) One has (a, b)F = (b, c)F = (c, d)F = 0.

Theorem C will be proved in Theorems 6.1, 6.2 below. It is natural to ask whether
the implication (3) =⇒ (1) holds in general. It turns out that this implication fails in
general, even over number fields. See Remark 6.3, Example A.15, and the surrounding
discussions for more details.

? ? ?

Organization of the paper. After some preliminaries in the next section, we prove Theo-
rem A in §3. In section 4, we give some first applications of Theorem A by proving a few
cases of the 4-Massey vanishing conjecture by hand, over arbitrary fields. Then in §5 we
introduce the splitting variety XF , as well as a variant XF which will simplify some cal-
culations. The next section, that is §6, gives a proof of Theorem C. Finally in §7 we make
some of our constructions explicit, and explain concretely how to get a Galois extension
with group U5(F2) when 〈a, b, c, d〉 vanishes and a, b, c, d are linearly independent modulo
squares; incidentally, this gives an alternative, more pedestrian proof for the implication
(3) =⇒ (1) in Theorem A in this case.

An Appendix by Wittenberg shows that the variety XF satisfies the local-to-global
principle alluded to above, which is of course a crucial ingredient for Theorem C.

Ackowledgements. First and foremost, we have been in touch very frequently with Olivier
Wittenberg while writing this paper. We thank him warmly for writing the Appendix,
and for various suggestions. We also thank Adriano Marmora for suggesting us to contact
Olivier in the first place. Moreover, we warmly thank Nguyễn Duy Tân for his interest and
insight, and for his extremely inspiring collaboration with the second author. It is a great
pleasure to also thank B. I. Chetard, I. Efrat, Ch. Kapulkin, E. Matzri, C. McLeman, D.
Neftin, M. Palaisti, C. Quadrelli and K. Wickelgren for inspiring discussions. Finally, we
thank the referee for helpful comments regarding the exposition.

2. Preliminaries

2.1. The groups U3(F2) and U5(F2). We shall need special notation for these two
groups. First note that we define the dihedral group of order 8 to be U3(F2), and we may
write D4 = U3(F2). An element g ∈ D4 is a matrix of the form

g =

 1 s1(g) t(g)
0 1 s2(g)
0 0 1

 .

Thus D4 is equipped with maps s1, s2, t : D4 → F2. (The letter t is for “top”.) Note that
the first two are group homomorphisms, but t is not. Our favourite generators are the
involutions σ1 and σ2, with si(σi) = 1 and sj(σi) = t(σi) = 0 for j 6= i.
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Similarly, an element g ∈ U5(F2) will be written
1 s1(g) t1(g) u1(g) z(g)
0 1 s2(g) u3(g) u2(g)
0 0 1 s3(g) t2(g)
0 0 0 1 s4(g)
0 0 0 0 1

 .

This endows U5(F2) with maps s1, . . . , z : U5(F2)→ F2, and si is a group homomorphism
for 1 ≤ i ≤ 4.

More generally the group Un(F2) has homomorphisms si : Un(F2) → F2 for 1 ≤ i ≤
n− 1, already mentioned in the Introduction, obtained by looking at the entries on what
we call the near-diagonal. If we define elements σi by requiring si(σi) = 1 while all the
other entries of σi above the diagonal are 0, then each σi is an involution, and these
generate Un(F2).

We note that Un(F2) has an automorphism which exchanges σi with σn−i. Most of our
considerations respect this symmetry, and this motivates the notation above for U5(F2).
(The automorphism is given by “the transpose but along the other diagonal”, followed
by g 7→ g−1.)

2.2. Around the group D4. We write s = (s1, s2) : D4 → C2 × C2, where we have
identified F2 with the cyclic group of order 2 in multiplicative notation, written C2.
There is an exact sequence

1 −→ F2 −→ D4
s−→ C2 × C2 −→ 1 ,

the kernel of s being generated by [σ1, σ2] (which is the element g with t(g) = 1 and si(g) =
0, i = 1, 2).

The quotient group C2 × C2 is generated by the images of σ1, σ2, written σ1, σ2. The
cohomology group H1(C2

2 ,F2) = Hom(C2
2 ,F2) is endowed with the dual basis s1, s2. The

next Lemma is very well-known:

Lemma 2.1 – The cohomology class of the above extension is s1s2 ∈ H2(C2
2 ,F2). �

We introduce the two elementary abelian subgroups E1, E2, where E1 is the kernel of s2
and E2 is the kernel of s1 (the switch is justified by the next Lemma). A very useful
observation is that t, when restricted to either of these, is a group homomorphism.

Lemma 2.2 – The corestriction
cores : H1(Ei,F2) −→ H1(D4,F2)

carries t|Ei
to si, for i = 1, 2. More generally if Γ is any profinite group with a continuous

homomorphism ϕ : Γ → D4, and if H = ϕ−1(Ei) is assumed to have index 2 in Γ, then
the corestriction

cores : H1(H,F2) −→ H1(Γ,F2)
carries t ◦ ϕ to si ◦ ϕ, for i = 1, 2.

Proof. We recall some properties of the corestriction
cores : Hi(N,M) −→ Hi(G,M)

where N is a subgroup of finite index of the profinite group G, and M is a G-module.
In fact, we only need to consider the case when M has a trivial action, N is closed of
index 2 (and thus is normal) in G, and i = 1, so that

cores : Hom(N,M) −→ Hom(G,M) .
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Here if f : N →M , then the map cores(f) : G→M is characterized as follows. Pick τ ∈
GrN . Then (i) cores(f)(n) = f(n) + f(τ−1nτ) for n ∈ N , and (ii) cores(f)(τ) = f(τ 2).
This follows from the material in [46], §2, for example.

Let us use this for N = E1 and G = D4. If

n =

 1 a b
0 1 0
0 0 1

 and τ =

 1 c d
0 1 1
0 0 1

 ,

then

τ−1nτ =

 1 a a+ b
0 1 0
0 0 1

 .

Moreover

τ 2 =

 1 0 c
0 1 0
0 0 1

 .

Thus t(n) + t(τ−1nτ) = b + a + b = a = s1(n), and t(τ 2) = c = s1(τ). Hence the first
statement of the lemma for i = 1. The other cases are treated similarly. �

2.3. D4-extensions of fields. We proceed to apply the above observations in a Galois-
theoretic context, but a couple of comments are in order. First, the group D4 has an
automorphism exchanging σ1 and σ2, but the Proposition below is not “symmetric” in
this way – it involves the subgroup E2 and not E1, for example (so that one could get
a new Proposition by exchanging the roles of various players). Second, when asked for
a basis for E2, the reader would probably offer [σ1, σ2], σ2; however, later considerations
with U5(F2) compel us to work with σ2[σ1, σ2], σ2 instead (specifically, we want Lemma 2.5
to have the simple form given below). This is reflected in the Proposition below, since
the dual basis of H1(E2,F2) is t, s2 + t (or, in more complete notation, t|E2 , s2|E2 + t|E2).

Proposition 2.3 – Let F be a field of characteristic 6= 2 and let a, b ∈ F× be given.
Then the following are equivalent:

(1) (a, b)F = 0.
(2) There exists a continuous homomorphism ϕ : GF −→ D4 such that s1 ◦ ϕ = χa

and s2 ◦ ϕ = χb.
(3) There exist x, y, z ∈ F such that x2 − ay2 = bz2, with z 6= 0.

When the equivalent conditions hold and B := x+ y
√
a, we will say that ϕ from (2) and

x, y, z from (3) are consistent, provided that χbB = t◦ϕ and χB = (s2 + t)◦ϕ as elements
of H1(F [

√
a],F2). Then given any ϕ as in (2), we can choose x, y, z as in (3) which are

consistent with ϕ. Conversely, given any x, y, z as in (3), we can choose ϕ as in (2)
which is consistent with x, y, z.

Again, this is essentially known, but we need the precise version given here. Note that
it is necessary to deal with the cases when either a or b is a square, and that the proof
below gives more concrete information in some situations. Also note that, as promised,
the elements t, s2 + t, related to E2, make an uncanny appearance.
Proof. We can combine χa and χb into a homomorphism GF → C2×C2. The obstruction
to lifting it to D4 is the cohomology class of the extension, so that Lemma 2.1 gives
immediately the equivalence of (1) and (2).

We first conduct the rest of the proof under the following
Assumption. Assume for the moment that a is not a square in F .
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Suppose (2) holds. Note that ϕ−1(E2) = GF [
√
a]. Let B′ = x′ + y′

√
a ∈ F [

√
a] be such

that χB′ = t ◦ ϕ|GF [
√

a] . Since a is not a square in F , the subgroup GF [
√
a] has index 2

in GF . Lemma 2.2 shows then that cores(χB′) = s2 ◦ ϕ = χb. Now recall that under the
identifications of H1(F,F2) with F×/F×2 and of H1(F [

√
a],F2) with F [

√
a]×/F [

√
a]×2, the

corestriction becomes the usual norm NF [
√
a]/F . It follows that

NF [
√
a]/F (B′) = (x′)2 − a(y′)2 = b mod squares .

This gives (3), clearly, but we need to modify B′ to get the consistency statement. And
indeed, we put B = bB′, so that B′ = bB modulo squares, and the result follows.

Next, we must prove that (3) implies (2), or equivalently (1). We may as well suppose
that a and b are both not squares, for (1) holds trivially otherwise. The assumption is
that b is a norm from F [

√
a], or in more cohomological terms, that χb is the corestriction

of an element from the subgroup GF [
√
a]. That the cup product χaχb = 0 then follows

from the Arason exact sequence [1].
However, to prove the claimed consistency, a more explicit argument is needed. As-

sume b is not a square. The element B = x+ y
√
a, where x, y are as in (3), is fixed up to

squares by Gal(F [
√
a,
√
b]/F ), as is readily checked. It follows that K = F [

√
a,
√
b,
√
B]

is Galois over F (by equivariant Kummer theory, if you will).
We distinguish two cases, and assume first that a and b are not equal modulo squares.

We now introduce elements σ1, σ2 ∈ Gal(K/F ) which are dual to
√
a,
√
b in the obvious

sense. Direct computation shows that σ2
1 = σ2

2 = 1, and that [σ1, σ2](
√
B) = −

√
B, so

that [σ1, σ2] 6= 1. From this one draws readily that Gal(K/F ) ∼= D4 and (again!) that
(2) holds. Also, one computes that σ2(

√
B) = ±

√
B. We want to ensure that σ2(

√
B) =

−
√
B, and to achieve this we replace σ2 by σ2[σ1, σ2] if needed. Having done this, the

elements
√
B,
√
bB are dual to σ2, σ2[σ1, σ2], and one checks that the corresponding

map ϕ : GF → D4 has precisely the required consistency.
If a = b modulo squares, one sees that Gal(K/F ) has order 4, so is abelian, and

if σ is the non-trivial element of Gal(F [
√
a]/F ) extended to Gal(K/F ), another direct

calculation shows that σ does not have order 2. So Gal(K/F ) ∼= C4 can be identified
with the subgroup of D4 generated by σ1σ2, and (2) follows. Consistency is automatic.

Finally, if b is a square in F , we use the same extension K = F [
√
a,
√
B] of F , but

compute that Gal(K/F ) ∼= C2
2 . We identify this group with E1 appropriately, yielding a

consistent ϕ.

The case when a is a square.

In this situation (1) holds trivially, and thus (2) also holds. As for (3), if a = u2 then
put

x0 = b+ 1
2 and y0 = 1− b

2u
and compute that x2

0 − ay2
0 = b.

Let us see how we can adjust ϕ from x, y, z. Put B = x+ y
√
a ∈ F , and consider the

characters χbB and χb, together defining a homomorphism GF → C2 × C2. Identifying
Klein’s group with E2 sitting in D4 appropriately, we obtain ϕ : GF → D4 satisfying our
requirements.

Our very last step is to see how one can adjust x, y, z from ϕ. First putB0 = x0+y0
√
a ∈

F where x0 and y0 are as above, which is a non-zero element since B0(x− y
√
a) = b 6= 0.

For f ∈ F , put x = f
B0
x0 and y = f

B0
y0, so that x2 − ay2 = bz2 for some z ∈ F×,

while B = x+y
√
a = f , an arbitrary element of F . Of course ϕ lands in the subgroup E2,

9



so we only need to pick f so that χf = (s2 + t) ◦ ϕ = χB; we have then (2) and (3)
simultaneously and consistently. �

2.4. The group U5(F2) and its subquotients. Let S (for “square”) be the subgroup
of matrices of the form 

1 0 0 y1 y2
0 1 0 y3 y4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Then S ∼= C4
2 , and our favourite F2-basis, denoted e1, e2, e3, e4, will be given by

e1 = e =


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , e2 = σ1eσ
−1
1 =


1 0 0 1 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

e3 = σ4eσ
−1
4 =


1 0 0 0 0
0 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , e4 = (σ1σ4)e(σ1σ4)−1 =


1 0 0 1 1
0 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The centralizer of S in U5(F2), which we denote by C (S), is easily seen to be comprised of
the elements g for which s1(g) = s4(g) = 0, that is C (S) = ker s1∩ker s4. In particular σ2
and σ3 centralize S, and from the formulae above we see that S is normal in U5(F2). We
shall write G = U5(F2)/S, which we identify with D4×D4, as we visibly may. The image
of C (S) in G, that is C (S)/S, will be denoted by N , a normal subgroup of G.

One has G/N = U5(F2)/C (S) = 〈σ1, σ4〉 ∼= C2
2 (we shall often write σi for the image of

this element in various quotients, whenever no confusion can arise). The next observation
is now clear, but it is crucial:

Lemma 2.4 – The action of G/N on S, induced by conjugation, turns it into a free
F2[G/N ]-module of rank 1. A specific isomorphism F2[G/N ]→ S is given by 1 7→ e, for
example. �

The group N itself also has a simple structure: one has N ∼= C4
2 , a basis being

σ2[σ1, σ2], σ2, σ3, σ3[σ4, σ3].
(A choice which respects the ambient “symmetry” already alluded to.) The corresponding
dual basis of H1(N,F2) will be denoted x1, x2, x3, x4. To bridge the notation with that
of the previous sections, we regard N as sitting in D4 × D4, which itself possesses six
maps s1, s2, t1, s3, s4, t2 to F2, using names adapted from §2.1. With this notation, one
has x1 = t1, x2 = s2 + t1, x3 = s3 + t2, and x4 = t2 (where restrictions to N are implicit).

Next we introduce some subgroups of S, and use them to produce extensions of N .
These extensions turn out to control the entire situation, as will be explained. So we let

S1 := 〈e2, e3, e4〉 , S2 := 〈e1, e3, e4〉, S3 := 〈e1, e2, e4〉 .
(The group S4 which could be defined using the same logic will not play any role, as it
happens. Also note that among these three, only S1 respects the ambient “symmetry”.)

Lemma 2.5 – Using the notation above, the following hold:
10



(1) The cohomology class of the extension

0 −→ S/S1 ∼= F2 −→ C (S)/S1 −→ N −→ 1

is x2x3.
(2) The cohomology class of the extension

0 −→ S/S2 ∼= F2 −→ C (S)/S2 −→ N −→ 1

is x1x3.
(3) The cohomology class of the extension

0 −→ S/S3 ∼= F2 −→ C (S)/S3 −→ N −→ 1

is x2x4.

Proof. An element of C (S) has the form

g =


1 0 t1(g) u1(g) z(g)
0 1 s2(g) u3(g) u2(g)
0 0 1 s3(g) t2(g)
0 0 0 1 0
0 0 0 0 1

 .

Let us multiply two of these, say g and g′, using the shorthand s2 = s2(g) and s′2 = s2(g′),
and so on:

(*) gg′ =


1 0 t1 + t′1 t1s

′
3 + u1 + u′1 t1t

′
2 + z + z′

0 1 s2 + s′2 s2s
′
3 + u3 + u′3 s2t

′
2 + u2 + u′2

0 0 1 s3 + s′3 t2 + t′2
0 0 0 1 0
0 0 0 0 1

 .

We shall use the set-theoretic section sec : N → C (S) given by

sec(g) =


1 0 t1(g) 0 0
0 1 s2(g) 0 0
0 0 1 s3(g) t2(g)
0 0 0 1 0
0 0 0 0 1

 .

Let us prove (1). Using the section N → C (S)/S1 induced by sec, we end up with the
bijection of sets Φ: S/S1 ×N → C (S)/S1 given by

Φ(x, g) = x sec(g) =


1 0 0 0 0
0 1 0 x 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

× sec(g) =


1 0 t1(g) 0 0
0 1 s2(g) x 0
0 0 1 s3(g) t2(g)
0 0 0 1 0
0 0 0 0 1

 .

Here we have used (*) to perform the calculation. A caveat : in these expressions, we
have identified S/S1 with F2 (this can be done uniquely!), so that x ∈ S/S1 can be seen as
an entry (0 or 1) of a matrix. A second caveat is that the matrix displayed is understood
modulo S1 only.

From the theory of group extensions, we have Φ(x, g)Φ(y, g′) = Φ(x+ y+ c(g, g′), gg′),
where the expression c(g, g′), is what we are after, that is, it is a two-cocycle representing

11



the cohomology class of the extension under scrutiny. So we compute, from (*), that

Φ(x, g)Φ(y, g′) =


1 0 t1 + t′1 t1s

′
3 t1t

′
2

0 1 s2 + s′2 s2s
′
3 + x+ y s2t

′
2

0 0 1 s3 + s′3 t2 + t′2
0 0 0 1 0
0 0 0 0 1

 .

Another useful computational remark is that, in S identified with the additive group
of 2× 2-matrices, we have(
a b
c d

)
= (a+ b+ c+d)e1 +(a+ b)e2 +(b+d)e3 + be4 ≡

(
0 0

a+ b+ c+ d 0

)
mod S1 .

Thus the last matrix displayed, viewed in C (S)/S1, is also
1 0 t1 + t′1 0 0
0 1 s2 + s′2 x+ y + s2s

′
3 + t1s

′
3 + s2t

′
2 + t1t

′
2 0

0 0 1 s3 + s′3 t2 + t′2
0 0 0 1 0
0 0 0 0 1

 .

We conclude that, as predicted, c(g, g′) = s2(g)s3(g′) + t1(g)s3(g′) + s2(g)t2(g′) +
t1(g)t2(g′) = x2(g)x3(g′), and c is indeed the cup-product of x2 and x3.

The proofs of (2) and (3) are similar. �

Remark 2.6. Note that in each case C (S)/Si ∼= C2
2 ×D4.

3. The fundamental cup-products

In this section, we prove Theorem A, as stated in the Introduction. We shall see that
we are led naturally to another statement first, in which the following notation is used.
When a ∈ F , we put Fa = F [X]/(X2 − a). When e + fX ∈ Fa, we define its norm
to be NFa/F (e + fX) = e2 − af 2. When a square root

√
a has been chosen in some

field containing F , there is a homomorphism Fa → F [
√
a] mapping X to

√
a. Of course

when a is not a square in F , this map is an isomorphism of extensions of F , and the
norm just introduced coincides with the usual norm map between fields. However, it is
useful to work with Fa for those occasions when a is already a square in F .

We start by the implication (1) =⇒ (2) from Theorem A.

3.1. Proving that the four cup-products vanish.

Theorem 3.1 – Let F be a field of characteristic not 2, let a, b, c, d ∈ F× be given and
put E := F [

√
a,
√
d]. Suppose there exist a continuous homomorphism ϕ : GF → U5(F2)

such that χa = s1 ◦ ϕ, χb = s2 ◦ ϕ, χc = s3 ◦ ϕ, and χd = s4 ◦ ϕ. (In other words, we
assume that 〈a, b, c, d〉 is defined.) Then there exist B̃ ∈ Fa and C̃ ∈ Fd such that the
following hold, where B denotes the image of B̃ under Fa → F [

√
a] and C denotes the

image of C̃ under Fd → F [
√
d].

(1) One has NFa/F (B̃) = b modulo squares and NFd/F (C̃) = c modulo squares.
(2) One has (B, c)F [

√
a] = 0, (b, C)F [

√
d] = 0, and (b, c)F = 0.

(3) There is a class u ∈ H2(F,F2) whose image under the canonical restriction map
H2(F,F2) −→ H2(E,F2) is (B,C)E.

(4) Suppose that ϕ can be lifted to ϕ : GF → U5(F2). (In other words, assume that
〈a, b, c, d〉 vanishes.) Then one has (B,C)E = 0.

12



Note that the mere existence of B̃ and C̃ implies also that (a, b)F = 0 and (c, d)F = 0,
by Proposition 2.3.

Proof. First we consider the composition

ϕ : GF −→ U5(F2) −→ U5(F2)/S = G = D4 ×D4 .

Projecting further onto the left factor, we make a first use of Proposition 2.3. We draw
the existence of x, y, z ∈ F satisfying x2 − ay2 = bz2, that is NFa/F (B̃) = bz2, with B̃ =
x + yX ∈ Fa. If B = x + y

√
a is the corresponding element, then the Proposition says

that we can arrange to have χbB = t1 ◦ϕ = x1 ◦ϕ, χB = (s2 + t1) ◦ϕ = x2 ◦ϕ. (We fully
use the notation from §2.4.)

Using the right factor, we find elements C̃ and C similarly, such that χC = x3 ◦ ϕ,
χcC = x4 ◦ ϕ. This also proves the first assertion.

We prove that the cup-products vanish as announced in the second assertion, starting
with (b, c)F = 0 (which of course does not depend on the choices for B and C). For this,
consider the map

U5(F2) −→ U3(F2) = D4

which discards the top row and the rightmost column of an element of U5(F2); this factors
through U5(F2). Postcomposing ϕ with this, we draw from Proposition 2.3 that (b, c)F =
0, as required.

Next we turn to the proof of (B, c)F [
√
a] = 0, the cup-product (b, C)F [

√
d] being treated

in a similar way. Define a group homomorphism π : ker(s1) ⊂ U5(F2)→ U3(F2) = D4 by

g 7→

 1 t1(g) u1(g)
0 1 s3(g)
0 0 1

 .

One checks that π is well-defined. Note that π ◦ ϕ : GF [
√
a] → D4 is a lift for (t1 ◦

ϕ, s3 ◦ ϕ) : GF [
√
a] → F2 × F2 (using that GF [

√
a] = ϕ−1(ker(s1))). Therefore, we see from

Proposition 2.3 that the cup product of t1◦ϕ and s3◦ϕ is zero. This means, in alternative
notation, that (Bb, c)F [

√
a] = 0, so (B, c)F [

√
a] = 0.

We now turn to the third assertion. Let α be the cohomology class of the extension

0 −→ F2 −→ U5(F2) −→ U5(F2) −→ 1 .

Let us write down an explicit two-cocycle γ representing α. First, recall the functions
s1, t1, . . . : U5(F2) → F2 introduced in §2.1. Multiplying two matrices g, h ∈ U5(F2), the
top-right coefficient must be z(g) + z(h) + γ(g, h), and we deduce

γ(g, h) = s1(g)u2(h) + t1(g)t2(h) + u1(g)s4(h) .

To obtain a two-cocycle representing the pull-back ϕ∗(α) ∈ H2(F,F2), we only need
compose with ϕ. Restricting to the subgroup GE where s1 ◦ϕ and s4 ◦ϕ both vanish, we
obtain that ϕ∗(α)E is represented by the two-cocyle

σ, τ 7→ (t1 ◦ ϕ(σ)) (t2 ◦ ϕ(τ)) .

It follows that ϕ∗(α)E = t1 ◦ ϕ∪ t2 ◦ ϕ, the cup-product of the classes ti ◦ ϕ ∈ H1(E,F2).
Or in other words ϕ∗(α)E = (bB, cC)E.

Given that (B, c)F [
√
a] = 0, (b, C)F [

√
d] = 0, and (b, c)F = 0, it follows that u = ϕ∗(α) ∈

H2(F,F2) satisfies uE = (B,C)E.
13



Finally, suppose that ϕ exists as in the fourth assertion. We note that GE = ϕ−1(C (S))
(again the notation C (S) for the centralizer of S is from §2.4, and we had noted C (S) =
ker(s1) ∩ ker(s4)). The composition

f : GE −→ C (S) −→ N

factors via C (S)/Si (for i = 1, 2, 3), so from the Lemma 2.5, we must have f ∗(x2x3) = 0,
f ∗(x1x3) = 0 and f ∗(x2x4) = 0. But these translate as (B,C)E = 0, which we were after,
and (bB,C)E = 0, (B, cC)E = 0, consistently with the above. �

3.2. Shapiro’s lemma and the converse. LetG be a finite group, letN be a subgroup,
and let k be a field. For any kN -module A, we let CoindGN(A) denote HomN(kG,A), which
is a (left) kG-module with action (σ · f)(x) = f(xσ). (We are thinking of G and N as
being the groups bearing those names in the discussion above, with k = F2, and A having
trivial action.) The well-known Shapiro’s lemma states the existence of an isomorphism

sh : H2(G,CoindGN(A)) −→ H2(N,A) .
More precisely, the map is obtained using ev : CoindGN(A)→ A which evaluates at 1 ∈ G,
followed by restriction (in cohomology) to N . Note, if the class α ∈ H2(G,CoindGN(A))
describes the extension

0 −→ CoindGN(A) −→ Γ p−→ G −→ 1 ,
then sh(α) corresponds to

0 −→ A −→ p−1(N)
ker(ev) −→ N −→ 1 ,

as is easily verified.
In order to recognize that a given G-module, say S, is isomorphic to CoindGN(A) for

some A, let us merely consider the case where A = kr with trivial N -action, and as-
sume that N is normal in G to boot. Then CoindGN(A) = (k[G/N ]∗)r. The dual mod-
ule (k[G/N ])∗ is free of rank one, that is, it is isomorphic to k[G/N ]. (Consider the map
taking 1 ∈ G to δ1, the Dirac delta function at 1. Thus, δ1(N) = 1 and δ1(g · N) = 0 if
g /∈ N .) We conclude that S is isomorphic to CoindGN(kr) if and only if N acts trivially
and we can find a basis for S as a free k[G/N ] of rank r. If this basis is ε1, . . . , εr,
then ker(ev) is the k-vector space spanned by gεi, for g ∈ G, g 6= 1, i = 1, . . . , r.

For example, let G,N, S recover their concrete meanings as in §2.4 (all the accompa-
nying notation will be used, too). Then Lemma 2.4 asserts that S ∼= CoindGN(F2), in such
a way that ker(ev) is identified with S1. As a result, the cohomology class of
(*) 0 −→ S −→ U5(F2) −→ G −→ 1
corresponds via sh to the cohomology class of the first extension treated in Lemma 2.5,
that is, x2x3.

But S can be regarded in another way. Consider the subgroup G′ ⊂ G of elements
mapping into 〈σ1σ4〉 under G→ G/N (equivalently, g ∈ G′ if s1(g) = s4(g)), and view S
as a G′-module. Lemma 2.4 shows that S is a free F2[〈σ1σ4〉] = F2[G′/N ]-module, with
basis e1, e2 (or alternatively e1, e3). Thus we also have S ∼= CoindG′N (F2⊕F2), and ker(ev)
is spanned by e3, e4 (or e2, e4 in the alternative). Now the cohomology class of

0 −→ S −→ U5(F2)′ −→ G′ −→ 1 ,
where U5(F2)′ is the preimage of G′, is taken by Shapiro to that of the extension

0 −→ F2e1 ⊕ F2e2 −→
C (S)
〈e3, e4〉

−→ N −→ 1 .
14



This extension is described by two classes in H2(N,F2), corresponding to the exact se-
quences obtained by factoring out e1 and e2 respectively. From Lemma 2.5, these are x1x3
and x2x3 respectively. With the alternative choice of basis for S, this discussion ends
with x2x4 and x2x3.

There is a well-known version of Shapiro’s lemma for profinite groups (cf. [37, Ch. 1
§6]), which can be deduced from the version mentioned above using a straightforward
limit argument. We record this version below in the context of Galois cohomology, since
we will use it later on.

Lemma 3.2 – Let E/F be a finite Galois extension, let A be a trivial, discrete GE-module,
and consider CoindGF

GE
(A), a discrete GF -module. Then Shapiro’s map

H2(F,CoindGF
GE

(A)) −→ H2(E,A) ,
defined as above, is an isomorphism. �

With the preparations above, we can now prove our primary converse to Theorem 3.1.

Theorem 3.3 – Let F be a field of characteristic not 2, let a, b, c, d ∈ F× be given,
and put E := F [

√
a,
√
d]. Assume that there exist B̃ ∈ Fa such that NFa/F (B̃) = b

modulo squares, and C̃ ∈ Fd such that NFd/F (C̃) = c modulo squares, with the following
additional property: if B is the image of B̃ under Fa → F [

√
a] and C is the image of C̃

under Fd → F [
√
d], then (B,C)E = (B, c)E = (b, C)E = (b, c)E = 0.

Then there exist a continuous homomorphism ϕ : GF → U5(F2) such that s1 ◦ ϕ = χa,
s2 ◦ ϕ = χb, s3 ◦ ϕ = χc and s4 ◦ ϕ = χd. In other words, the Massey product 〈a, b, c, d〉
is defined and vanishes.

Proof. We start by assuming that neither a nor d is a square in F (we identify Fa and Fd
with F [

√
a] and F [

√
d] respectively). From Proposition 2.3 (applied twice), we obtain a

homomorphism
f : GF −→ D4 ×D4 = G

such that si ◦f = χa, χb, χc, χd according as i = 1, 2, 3, 4, and also f ∗(x1) = χbB, f ∗(x2) =
χB, f ∗(x3) = χC , f ∗(x4) = χcC . If α ∈ H2(D4 ×D4, S) is the class of the extension

0 −→ S −→ U5(F2) −→ D4 ×D4 −→ 1 ,

then its pull-back f ∗(α) ∈ H2(F, S) is represented by the fibered-product of U5(F2)
with GF over D4 × D4 (via f). To conclude the proof of the theorem, we will show
that one has f ∗(α) = 0, so that this fibered-product is a split extension of GF by S.
The composition of such a splitting with the projection to U5(F2) provides the necessary
homomorphism ϕ.

Note that GE = f−1(N). Suppose first that [E : F ] = 4. The GF -module S is
isomorphic to CoindGF

GE
(F2), the trivial module of GE (co)induced to GF . Shapiro’s lemma

applies, yielding the isomorphism
H2(F, S) −→ H2(E,F2) .

From the comments above and the naturality of Shapiro’s isomorphism, we see that f ∗(α)
is taken to f ∗(x2x3) = f ∗(x2)f ∗(x3) = (B,C)E = 0, so we are done in this case.

We turn to the case where a = d mod squares and [E : F ] = 2; another way to phrase
this is by saying that the image of f lies within G′. Now the GF -module S is isomorphic,
although not canonically, to CoindGF

GE
(F2⊕F2): we have at least the two possibilities given

in the discussion preceding the proof, and for definiteness say we pick the basis e1, e2.
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Now Shapiro’s lemma gives an isomorphism

H2(F, S) −→ H2(E,F2 ⊕ F2) = H2(E,F2)⊕ H2(E,F2) .

This takes f ∗(α) to a pair of cohomology classes, and again from naturality, they
are f ∗(x2x3) = (B,C)E and f ∗(x1x3) = (bB,C)E. These are both zero by assump-
tion, and f ∗(α) = 0 also in this case.

Finally, suppose that a is a square in F (a symmetric argument deals with the case
when d is a square). A neat way to handle this is to use the Massey Vanishing Conjecture
for n = 3, (which is now a theorem, see [23] [10] [29] [30]). First we claim that (b, c)F = 0.
Indeed, (b, c)E = 0 by assumption; if d is also a square in F then E = F , and other-
wise E = F [

√
d] and NE/F (C) = c mod squares, so (b, C)E = 0 implies (b, c)F = 0 by the

projection formula in group cohomology. We also have (c, d)F = 0 by Proposition 2.3.
We deduce that the Massey product 〈b, c, d〉 vanishes, and so that there is a continu-
ous ψ : GF → U4(F2) compatible with b, c, d. However, if we see U4(F2) as the subgroup
of U5(F2) consisting of those matrices whose first row is that of the identity matrix, we
see that we have built GF → U5(F2) compatible with 1, b, c, d, as required. �

Remark 3.4. It is possible to avoid relying on the Massey Vanishing Conjecture for n = 3
if one wishes to do so. Here is a sketch. When d is not a square, use another argument
based on Shapiro’s lemma, this time replacing G′ by G′′, the subgroup of G of elements
mapping to 〈σd〉 ⊂ G/N . When d is a square, define f as in the first part of the proof;
this time f takes values in N . The exact sequence

0 −→ S −→ C (S) −→ N −→ 1

is central, and controlled by four cohomology classes in H2(N,F2), pulling back to (B,C),
(b, C), (B, c) and (b, c) in H2(F,F2) under f ∗.

The proof of Theorem A is now almost complete. In fact, what we have is this:

Theorem 3.5 – Let F be a field of characteristic not 2, and let a, b, c, d ∈ F× be given.
Then the following statements are equivalent.

(1) 〈a, b, c, d〉 is defined and vanishes.
(2) There exist B̃ ∈ Fa such that NFa/F (B̃) = b modulo squares, and C̃ ∈ Fd such

that NFd/F (C̃) = c modulo squares, with the following extra property. If B is the
image of B̃ under Fa → F [

√
a] and C is the image of C̃ under Fd → F [

√
d], then

(B,C)F [
√
a,
√
d] = 0, (B, c)F [

√
a] = 0, (b, C)F [

√
d] = 0, and (b, c)F = 0.

(3) There exist B̃ ∈ Fa such that NFa/F (B̃) = b modulo squares, and C̃ ∈ Fd such
that NFd/F (C̃) = c modulo squares, with the following extra property. If B is the
image of B̃ under Fa → F [

√
a] and C is the image of C̃ under Fd → F [

√
d], then

(B,C)E = (B, c)E = (b, C)E = (b, c)E = 0.

Proof. Theorem 3.1 shows the implication (1) =⇒ (2), while (2) =⇒ (3) is trivial, and
Theorem 3.3 shows (3) =⇒ (1). �

The only difference with Theorem A is the presence of the elements B̃ and C̃ instead
of just B,C. Clearly, if neither a nor d is a square in F , then the two results are the
same. On the other hand, when one of these two elements is a square, in fact when one
of a, b, c, d is a square, things become very easy, as we proceed to show in the following
subsection.
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3.3. Some trivial cases.

Lemma 3.6 – Let F be a field of characteristic different from 2 and let a, b, c, d ∈ F× be
given. Suppose that (a, b)F = (b, c)F = (c, d)F = 0. Finally, assume that one of a, b, c, d
is a square in F . Then the Massey product 〈a, b, c, d〉 is defined and vanishes.

Proof. First assume that a is a square, or equivalently a = 1. Then the argument given
in the last paragraph of the proof of Theorem 3.3 shows that 0 ∈ 〈a, b, c, d〉. The case
when d = 1 is treated similarly.

On the other hand, suppose that b = 1. From (c, d)F = 0, we draw the existence
of GF → U3(F2) compatible with c and d, by Proposition 2.3. The element a itself
defines χa : GF → F2 ∼= C2. Since the subgroup of U5(F2) generated by σ1, σ3, σ4 is
isomorphic to C2 × U3(F2), we see immediately that we may combine our two homo-
morphisms into one of the form GF → U5(F2), showing that 0 ∈ 〈a, 1, b, c〉. The case
when c = 1 is treated similarly. �

Remark 3.7. The above proof, via the reference to the proof of Theorem 3.3, uses the
Massey Vanishing Conjecture for n = 3. Without this, it is still a general fact about
Massey products that 〈a, b, c, d〉 vanishes when it is defined and one of them is a square
([14], Lemma 6.2.4). However, the statement just given is stronger.

We proceed to show how we can improve the statement of Theorem 3.5 to that of
Theorem A from the Introduction, so that the two are in fact equivalent. We have
already mentioned that this is obvious when neither a nor d is a square in F .

Let us call (1A), (2A), (3A) the conditions of Theorem A, and keep (1), (2), (3) for
those of Theorem 3.5, which we know are equivalent. Note (1) = (1A).

Suppose a is a square in F , but not d. Assume condition (1A). We must show that con-
dition (2A) holds. Indeed, from condition (2), we have the element C with NF [

√
d]/F (C) =

c mod squares, and satisfying (b, C)F [
√
d] = 0, and moreover (b, c)F = 0. Now put B =

b ∈ F = F [
√
a], so that NF [

√
a]/F (B) = B = b. Then (B,C)E = (b, C)E = 0,

while (B, c)F [
√
a] = (b, c)F = 0. We do have condition (2A), and so also (3A).

Conversely, condition (3A) is enough to ensure that (a, b)F = (1, b)F = 0, (b, c)F = 0
(apply the projection formula to (b, C)E = 0) and (c, d)F = 0 (merely because C exists,
cf Proposition 2.3). So the last Lemma applies and shows that condition (1A) holds.

The situation when a is not a square, but d is, is clearly similar.
Now suppose a and d are both squares. Suppose condition (1A) holds, and so also (2),

and we have (a, b) = (c, d) = 0 (because B̃ and C̃ exist, cf remark after Theorem 3.1)
and (b, c) = 0. Thus condition (2A) holds with B = b and C = c, and (2A) = (3A) here.
Conversely, condition (3A) contains the statement (b, c) = 0, while (a, b) = (1, b) = 0
and (c, d) = (c, 1) = 0, and we see by the last Lemma that condition (1A) holds. We
have therefore just proven Theorem A.

Remark 3.8. Theorem 3.5 is heavier on notation than Theorem A, so we have deemed
it unfit for the Introduction. However, the extra case-by-case considerations needed to
establish the latter, as just given, are perhaps an indication that it is less natural. (Also,
it relies more seriously on the Massey Vanishing Conjecture for n = 3, see Remark 3.4.)
In the sequel we shall refer to Theorem 3.5, rather than to Theorem A.

3.4. Maps from profinite groups into U5(F2). A routine modification of the argu-
ments given above produces the next result.
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Theorem 3.9 – Let Γ be a profinite group, and let χ1, χ2, χ3, χ4 ∈ H1(Γ,F2) be given.
Put Γ1 := ker(χ1), Γ4 := ker(χ4), and Γ14 := Γ1 ∩ Γ4. The the following statements are
equivalent.

(1) There exists a continuous homomorphism ϕ : Γ → U5(F2) such that χi = si ◦ ϕ
for i = 1, 2, 3, 4. In other words, 〈χ1, χ2, χ3, χ4〉 is defined and vanishes.

(2) There exist a continuous homomorphism Γ→ D4 given by

γ 7→

 1 χ1(γ) ζ1(γ)
0 1 χ2(γ)
0 0 1

 ,

and another one given by

γ 7→

 1 χ3(γ) ζ2(γ)
0 1 χ4(γ)
0 0 1

 ,

such that ζ1|Γ14 ∪ ζ2|Γ14 = 0, ζ1|Γ1 ∪ χ3|Γ1 = 0, χ2|Γ4 ∪ ζ2|Γ4 = 0, χ2 ∪ χ3 = 0.
(3) ζ1 and ζ2 exist as above and satisfy ζ1|Γ14∪ζ2|Γ14 = ζ1|Γ14∪χ3|Γ14 = χ2|Γ14∪ζ2|Γ14 =

χ2|Γ14 ∪ χ3|Γ14 = 0.

We shall have no use for this Theorem in the sequel, so we leave the proof to the reader.

4. First applications

While our main objective in this paper is to prove the 4-Massey Vanishing Conjecture
for number fields, there are a few cases which can be treated over any field. Usually,
we use the following trick when working “by hand”. It will have a more theoretical use
below, too.

Proposition 4.1 – Let F be a field of characteristic not 2, and let a, b, c, d ∈ F×.
Let B̃0 ∈ Fa be any initial element such that NFa/F (B̃0) = b, and likewise let C̃0 ∈ Fd be
any initial element such that NFd/F (C̃0) = c. The following statements are equivalent:

(1) There exist B̃ ∈ Fa with NFa/F (B̃) = bz2
1, and C̃ ∈ Fd with NFd/F (C̃) = cz2

2,
for some z1, z2 ∈ F×, such that we have simultaneously (B,C)F [

√
a,
√
d] = 0,

(B, c)F [
√
a] = 0, (b, C)F [

√
d] = 0, (b, c)F = 0, where B ∈ F [

√
a] and C ∈ F [

√
d]

correspond to B̃, C̃ respectively.
(2) There exist β, γ ∈ F× such that B̃ = βB̃0 and C̃ = γC̃0 satisfy the previous

condition.

Of course, by Theorem 3.5 these conditions are also equivalent to the vanishing
of 〈a, b, c, d〉, but the point of the Proposition is to show that it makes sense to start
with any B̃0, C̃0 and then look for the “modifiers” β, γ.

Proof. It is plain that (2) implies (1), so here is the non-trivial part. Assume that B̃, C̃
exist as in the first part. We claim that we can in fact find β, γ ∈ F and λ ∈ F [

√
a],

µ ∈ F [
√
d] such that B = βB0λ

−2 and C = γC0µ
−2, where B0 ∈ F [

√
a] and C0 ∈ F [

√
d]

correspond to B̃0, C̃0 respectively. Clearly this will give the result.
To prove the claim, we suppose first that a is not a square in the field F , and write

NF [
√
a]/F (Bz−1

1 ) = b = NF [
√
a]/F (B0). Since we have NF [

√
a]/F (Bz−1

1 B−1
0 ) = 1, by Hilbert

90 we have
Bz−1

1
B0

= σ(λ)
λ
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for some λ ∈ F [
√
a], where σ is the non-trivial element of Gal(F [

√
a]/F ). Rewrite

this B = βB0λ
−2, with β = z1λσ(λ) ∈ F , and we are done.

If on the other hand a is a square in F , then B0, B ∈ F×, so we may put β = B
B0

and λ = 1.
A similar argument works with C,C0. �

We give a series of examples. These will demonstrate how, in practice, one looks for β
and γ rather than B and C directly. Logically speaking, only the trivial implication of
the last Proposition is used, at this point (although knowing that the converse holds gives
us confidence in the whole approach).

The elements a and d are always assumed not to be squares in F , so we identify Fa
and F [

√
a], as well as Fd and F [

√
d], and B̃0 = B0, C̃0 = C0. As you have guessed, the

characteristic is always 6= 2. We will make some forward references to the results of the
next section, which reduce the number of conditions to check.

Example 4.2 (The abaa case) – We show that when (a, b) = (a, a) = 0, the Massey
product 〈a, b, a, a〉 is defined and vanishes, under the assumption that a 6= b modulo
squares, and that a and b are not squares.

Clearly we can find B0 and C0 as in the Proposition, by our assumption (and using
Proposition 2.3, of course). We claim thatB0 and C0 form a basis for F [

√
a] as an F -vector

space. Indeed, if we had βB0 = γC0 for β, γ ∈ F×, then by taking norms to F we would
find that b = a modulo squares, a contradiction. Therefore there must exist β, γ ∈ F
such that

βB0 + γC0 = 1 .
This implies (βB0, γC0)F [

√
a] = 0. Moreover (βB0, a)F [

√
a] = (βB0, 1)F [

√
a] = 0. By

Lemma 5.5 below, the other cup-products vanish automatically (the reader will also
enjoy looking for a direct argument). By Theorem 3.5, the Massey product is defined
and vanishes.

Example 4.3 (The aaaa case) – Now we complete the discussion of the previous
example, and turn to the case when a = b modulo squares (still assuming that a is not a
square). We show that (a, a) = 0 implies that 〈a, a, a, a〉 is defined and vanishes.

Since (a, a) = 0, we draw the existence of B0 with NF [
√
a]/F (B0) = a from Proposi-

tion 2.3. It is always true that (a,−a) = 0, so we have (a,−1) = 0, implying that a is
a sum of two squares in F . We invoke the “Norm Principle” from [13]: from the fact
that NF [

√
a]/F (B0) is the product of two elements, namely a and 1, which are each the sum

of two squares in F , this principle implies that there exists β ∈ F× such that B = βB0 is
the sum of two squares in F [

√
a]. In turn, this means that (B,−1) = 0 and so (B,B) = 0.

Obviously (B, a) = (B, 1) = 0 in the cohomology of F [
√
a] since a is a square there, so

Theorem 3.5 applies (with C = B).

Example 4.4 (The abad case) – One more example in the same style. We prove
that 〈a, b, a, d〉 is defined and vanishes, under the following assumptions: none of a, b, d ∈
F× is a square, neither is ad, and (a, b) = (a, d) = 0.

Pick B0 such that NF [
√
a]/F (B0) = b and C0 such that NF [

√
d]/F (C0) = a. Put E =

F [
√
a,
√
d]. From the fact that NE/F [

√
a](C/

√
a) = 1, we draw via Hilbert 90 the existence

of x ∈ E× such that Cx2 = NE/F [
√
a](x)
√
a, and so in particular Cx2 ∈ F [

√
a].

Two cases can occur. First, assume that B0 and C0x
2 are linearly independent in F [

√
a]

over F . Then there exist β, γ ∈ F such that
βB0 + γC0x

2 = 1 .
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We can see easily that β and γ are both non-zero, for supposing otherwise would lead us
to conclude, upon taking norms, that b or a is a square in F . Thus

(βB0, γC0x
2)E = (βB0, γC0)E = 0 .

Let us check that we can come to the same conclusion if we assume, alternatively,
that B0 = hC0x

2 for some h ∈ F×. Indeed, put β = 1 and γ = −h and we do have
(βB0, γC0) = (B0,−hC0) = (B0,−hC0x

2) = (B0,−B0) = 0 .
In either case, if we put B = βB0 and C = γC0, then (B,C)E = 0. The other

hypotheses required to apply Theorem 3.5 are redundant here, from Lemma 5.2 below
(essentially because of the projection formula).

5. Splitting varieties

5.1. The fundamental equation. Proposition 2.3 gives a necessary and sufficient con-
dition for a cup-product to vanish in Galois cohomology, in terms of a simple polynomial
equation. We shall see that the four cup-products of Theorem 3.5 are likewise controlled
by a single polynomial equation, taking place in a certain finite étale F -algebra, namely

E = F [X, Y ]/(X2 − a, Y 2 − d) ∼= Fa ⊗F Fd.

More precisely, we establish the following.

Proposition 5.1 – Let a, b, c, d ∈ F×. Let B̃ ∈ Fa ⊂ E satisfy NFa/F (B̃) = bz2
1,

and let C̃ ∈ Fd ⊂ E satisfy NFd/F (C̃) = cz2
2, for some z1, z2 ∈ F×. Let B ∈ F [

√
a]

and C ∈ F [
√
d] be the corresponding elements. Then the equation

u2 − B̃v2 = C̃

has a solution with u, v ∈ E if and only if we have simultaneously (B,C)F [
√
a,
√
d] = 0,

(B, c)F [
√
a] = 0, (b, C)F [

√
d] = 0, (b, c)F = 0. Alternatively, the same holds with the

equation
u2B̃ + v2C̃ = 1 .

The proof will be done in a case-by-case manner (each time getting a slightly more
precise statement than that in the Proposition). A quick remark about the equivalence
of the two equations, though: it is not a completely general fact, as for example the
equation u2 + 2v2 = 1 has four solutions over Z/4Z while u2 − v2 = 2 has no solution
over the same ring. When working over a field of characteristic different from 2 however,
the two problems are equivalent, as elementary computations reveal; since E is a direct
sum of such fields, we may indeed use either equation. The second is symmetric in B̃
and C̃, and will be used in the sequel, but the proofs in the remainder of this section will
be dealing with the first.

In the “generic case” first, that is when a and d are linearly independent in F×/F×2, we
can and we do identify E with E = F [

√
a,
√
d]. Moreover, we have the following simple

situation.

Lemma 5.2 – Let B̃, B, C̃, C be as in the Proposition. Suppose that (B,C)E = 0.
(i) If neither d nor ad is a square in F , then we have (B, c)F [

√
a] = 0. If neither a

nor ad is a square in F , we have (b, C)F [
√
d] = 0.

(ii) If (B, c)F [
√
a] = 0 and a is not a square in F , we have (b, c)F = 0. Likewise, if

(b, C)F [
√
d] = 0 and d is not a square in F , we also conclude that (b, c)F = 0.
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In particular, when [E : F ] = 4, the four cup-products from Theorem 3.5 vanish
precisely when there are u, v ∈ E satisfying

u2 − v2B = C .

Proof. If we suppose that a is not a square in F , then NF [
√
a]/F (B) = bz2

1 ; if ad is not a
square either, than we can also write NE/F [

√
d](B) = bz2

1 . Thus we can use the projection
formula from group cohomology, asserting that

cores((B,C)E) = (b, C)F [
√
d] ,

where cores : H2(E,F2) → H2(F [
√
d],F2) is the corestriction. Thus (B,C)E = 0 does

imply (b, C)F [
√
d] = 0. The other case is treated similarly.

One also proves (ii) using the projection formula.
For the last statement, we invoke Proposition 2.3 which states that the proposed equa-

tion has a solution if and only if (B,C)E = 0. By the first part, this implies that the
other three cup-products also vanish. �

Now suppose that a and d are both squares in F . Then we have four F -homomorphisms
pi : E → F , for i = 1, 2, 3, 4, mapping X to ±

√
a and Y to ±

√
d. Together they induce

an isomorphism E ∼= F × F × F × F , by the Chinese Remainder Theorem. (Note that
the map F → E which turns E naturally into an F -algebra is the diagonal embedding
of F in F 4, under this isomorphism.)

Lemma 5.3 – Suppose a and d are both squares in F . Let B̃, B, C̃, C be as in the
Proposition. Then

u2 − B̃v2 = C̃

has a solution with u, v ∈ E if and only if we have simultaneously (B,C)F = (B, c)F =
(b, C)F = (b, c)F = 0.

Proof. Applying pi with i = 1, 2, 3, 4, the equation becomes equivalent to the four equa-
tions

u2
i − pi(B̃)v2

i = pi(C̃)
with unknowns ui, vi ∈ F . This is possible if and only if (pi(B̃), pi(C̃)) = 0 for i = 1, 2, 3, 4.
(Note that the calculations to follow will establish that pi(B) 6= 0, pi(C) 6= 0 for all i, so
that the cup-products make sense.)

We need some notation. Let B = x + y
√
a and C = x′ + y′

√
d, and introduce B′ =

x− y
√
a and C ′ = x′ − y′

√
d, so that BB′ = bz2

1 6= 0, and likewise CC ′ = cz2
2 6= 0. To fix

our ideas, we assume that the numbering of the homomorphisms pi has been made such
that

p1(B̃) = p3(B̃) = B , p2(B̃) = p4(B̃) = B′ ,

p1(C̃) = p2(C̃) = C , p3(C̃) = p4(C̃) = C ′ .

The four cup-products we consider are then (B,C), (B′, C), (B,C ′) and (B′, C ′) for i =
1, 2, 3, 4 respectively, all in the cohomology of F . However

(b, C) = (BB′, C) = (B,C) + (B′, C) = 0 ,
and similarly we draw (B, c) = 0 and (b, c) = 0. One can also work backwards, clearly. �

When a is a square in F , but d is not, we view E as F [
√
d][X]/(X2−a) ∼= F [

√
d]×F [

√
d]

with its two F [
√
d]-homomorphisms p1, p2 : E → F [

√
d]. The elements Y and

√
d are

identified. A reasoning similar to the above yields:
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Lemma 5.4 – Suppose that a is a square in F , and that d is not. Let B̃, B, C̃, C be as
in the Proposition. Then the equation

u2 − B̃v2 = C̃

has a solution with u, v ∈ E if and only if we have simultaneously (B,C)F [
√
d] =

(b, C)F [
√
d] = 0. When this is the case, we have automatically (B, c)F = (b, c)F = 0

from Lemma 5.2. �

Of course a similar result holds with the roles of a and d exchanged.
Finally we turn to the case when neither a nor d is a square in F , but ad is. This

is in fact similar to the previous case, except that we now have a choice. Namely, we
can produce two F [

√
d]-homomorphisms p1, p2 : E → F [

√
d] giving an isomorphism E ∼=

F [
√
d]×F [

√
d], identifying

√
d with Y all along; or, we can alternatively find two F [

√
a]-

homomorphisms p′1, p′2 : E → F [
√
a], giving an isomorphism E ∼= F [

√
a] × F [

√
a], iden-

tifying X with
√
a all along. These two isomorphisms are distinct, even if a = d. Using

one and then the other, we get:

Lemma 5.5 – Suppose that neither a nor d is a square in F , but that ad is. Let B̃, B, C̃, C
be as in the Proposition. Then the equation

u2 − B̃v2 = C̃

has a solution with u, v ∈ E if and only if we have simultaneously (B,C)F [
√
d] =

(b, C)F [
√
d] = 0, if and only if we have simultaneously (B,C)F [

√
a] = (B, c)F [

√
a] = 0.

When this is the case, we have automatically (b, c)F = 0 from Lemma 5.2. �

This concludes the proof of the Proposition. Given that the existence of B̃ and C̃ is
itself controlled by an simple polynomial equation, as in Proposition 2.3, the situation is
now entirely rewritten in terms of the existence of a rational point on an algebraic variety.

5.2. Splitting varieties. We proceed to translate our results into the language of alge-
braic geometry.

As ever, let F be a field of characteristic not 2, let a, b, c, d ∈ F×, and put E =
F [X, Y ]/(X2 − a, Y 2 − d). Together, Theorem 3.5, Proposition 2.3 and Proposition 5.1
show that the vanishing of the Massey product 〈a, b, c, d〉 is equivalent to the existence of
a solution to the following system of equations, with unknowns x1, y1, z1, x2, y2, y3 ∈ F ,
u, v ∈ E :

(1) x2
1 − ay2

1 = bz2
1 ,

(2) x2
2 − dy2

2 = cz2
2 ,

(3) u2B̃ + v2C̃ = 1, where B̃ = x1 + y1X ∈ E and C̃ = x2 + y2Y ∈ E .
There is also the condition z1 6= 0, z2 6= 0. Here u = u1 + u2X + u3Y + u4XY , and
likewise for v, so that equation (3) can be written as four equations over F (carrying out
the expansion in practice does not seem to clarify things).

For technical reasons, related to Proposition 4.1, we change coordinates and work with
the equations:

(i) x2
1 − ay2

1 = b,
(ii) x2

2 − dy2
2 = c,

(iii) u2βB̃ + v2γC̃ = 1, where B̃ = x1 + y1X ∈ E and C̃ = x2 + y2Y ∈ E .
Here β, γ ∈ F× are two new unknowns, and z1, z2 have disappeared.

Equations (i), (ii), (iii) define an affine subvariety of A14
F , the affine space of dimension

14 over F ; we consider its intersection with the open subset defined by β 6= 0, γ 6= 0, and
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call it XF . Also, note that equation (i) implies that B̃ is a unit of Fa := F [X]/(X2− a),
and similarly equation (ii) implies that C̃ is a unit of Fd := F [Y ]/(Y 2−d). In particular,
we can describe XF in a more conceptual way using the Weil-restriction functors RE |F ,
RFa|F and RFd|F . Namely, consider the F -variety:

Y := Gm ×Gm ×RE /FA2
E ×RFa/FGm ×RFd/FGm .

We view an F -point of Y as a tuple (β, γ, u, v, B̃, C̃), with β, γ ∈ F×, u, v ∈ E , B̃ ∈ F×a
and C̃ ∈ F×d . Then XF is the closed subvariety of Y defined by the three equations:

NFa/F (B̃) = b, NFd/F (C̃) = c, u2βB̃ + v2γC̃ = 1 .
We have the following trivial, yet crucial property: for an extension L/F , we have

XF ×Spec(F ) Spec(L) = XL .

In particular, we have XF (L) = XL(L) (using the standard notation for the set of
rational points). As already noted, the set XF (F ) is non-empty if and only if the Massey
product 〈a, b, c, d〉 is defined and vanishes in the cohomology of F . Now, it is obviously
also true, but nicer, that for any field extension L/F , the set XF (L) is non-empty if and
only if the Massey product 〈a, b, c, d〉 is defined and vanishes in the cohomology of L. This
is a property which is expected of a “splitting variety” for the problem of the vanishing
of 〈a, b, c, d〉.

As it turns out, we can introduce a second splitting variety XF . It will depend on
choices, and so is not canonically associated with the problem alone; on the other hand,
the local-global principle is established in the Appendix for XF rather than XF . The
construction will echo Proposition 4.1 rather precisely. Let ZF be the subvariety of
RFa/FGm ×RFd/FGm, defined over F be the equations

NFa/F (B̃) = b, NFd/F (C̃) = c .

There is an obvious morphism π : XF → ZF (forgetting β, γ, u, v), and we will define XF

to be a fibre of π above an F -rational point of ZF . That is, we suppose from now on
that (a, b)F = (c, d)F = 0, and using Proposition 2.3 twice, we select B̃0 ∈ Fa and C̃0 ∈ Fd
whose norms are b and c respectively; then we put XF = π−1(B̃0, C̃0). The variety XF is
thus defined by the equation

u2βB̃0 + v2γC̃0 = 1 .
Note that our construction of XF depends on the choice of B̃0 and C̃0 as above. In the
sequel, this choice will always be clear from context, so we omit the B̃0, C̃0 from the
notation.

It is clear that XF is also compatible with base-change, just like XF is. That it is also
a splitting variety is part of the next Theorem.

Theorem 5.6 – Let the notation be as above (in particular, B̃0 and C̃0 have been chosen).
Let L/F be any field extension. The following statements are equivalent.

(1) The Massey product 〈a, b, c, d〉 is defined and vanishes in the cohomology of L.
(2) The variety XF has an L-rational point.
(3) The variety XF has an L-rational point.
Moreover, let β, γ ∈ L. Then there is a rational point (β, γ, u, v) ∈ XF (L) if and only

if we have (βB0, γC0)L[
√
a,
√
d] = 0, (βB0, c)L[

√
a] = 0, (b, γC0)L[

√
d] = 0 and (b, c)L = 0

simultaneously, where B0 ∈ L[
√
a] corresponds to B̃0 under the natural map Fa → L[

√
a],

and likewise for C0 ∈ L[
√
d].
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Proof. Since XF (L) = XL(L), and similarly for XF , we may as well (and we do) assume
that L = F . Then the equivalence is a mere reformulation of earlier material. To wit,
Theorem 3.5 together with Proposition 5.1 shows the equivalence of (1) and (2), the
variety XF being defined just for this purpose. The implication (3) =⇒ (2) is trivial.
On the other hand, Proposition 4.1 gives (2) =⇒ (3) readily.

The “moreover” statement is obtained by another application of Proposition 5.1. �

Having such a statement dealing with field extensions is necessary for us, as we intend
to apply a local-global principle to prove the existence of rational points, and this requires
an understanding of XF (Fv) where Fv is a completion of F .

6. The 4-Massey Vanishing Conjecture for number fields

In this section we finally prove:

Theorem 6.1 – Let F be a number field, and let a, b, c, d ∈ F× be such that the Massey
product 〈a, b, c, d〉 is defined. Then 〈a, b, c, d〉 vanishes. In other words, the 4-Massey
Vanishing Conjecture is true for number fields.

Proof. Since the Massey product is defined, we can apply Theorem 3.1, but some simpli-
fying remarks are in order. First, we have (a, b) = (b, c) = (c, d) = 0, and so Lemma 3.6
takes care of the case when one of a, b, c, d is a square in F ; now we assume that none
of them is a square, and in particular, we identify Fa and F [

√
a], and we identify Fd

and F [
√
d]. We do not distinguish between B̃ and B, or between C̃ and C, in the no-

tation of Theorem 3.1. A second point is that we may replace once and for all b by bz2
1

for z1 ∈ F× if we wish, as the class χb ∈ H1(F,F2) is not affected by this, and neither is
the Massey product 〈a, b, c, d〉. Likewise with c.

With these precautions, the result of our application of Theorem 3.1 is this. We can
find B0 ∈ F [

√
a] and C0 ∈ F [

√
d] such that NF

√
a]/F (B0) = b and NF [

√
d]/F (C0) = c,

while (B0, c)F [
√
a] = 0 and (b, C0)F [

√
d] = 0. Finally, we can find u ∈ H2(F,F2) whose

restriction to E is (B0, C0).
We select this B0 and this C0 in order to construct the splitting variety XF , and we

proceed to prove that XF (F ) is non-empty (by Theorem 5.6, we will then be done). From
Theorem A.1, we see that it suffices to show that for each place v of F , we can find a
rational point (βv, γv, uv, vv) in XF (Fv), in such a way that our various choices satisfy∑

v

invv ((βv, c)Fv) = 0 ,
∑
v

invv ((b, γv)Fv) = 0 .

Here invv is the unique isomorphism between H2(Fv,F2) and F2. We turn to this, and in
fact we shall arrange to have invv ((βv, c)Fv) = 0 and invv ((b, γv)Fv) = 0 at each place.

Let v be a place. We see B0 and C0, chosen above, as elements of Fv[
√
a] and Fv[

√
d]

respectively, and we wish rely on the “moreover” statement of Theorem 5.6 with L = Fv.
First we treat the case when one of a or d is not a square in the completion Fv: either

way, the field Fv[
√
a,
√
d] is strictly larger than Fv. However, it is a well-known fact from

the theory of local fields that the restriction map H2(Fv,F2) → H2(Fv[
√
a,
√
d],F2) is

then the zero map. Since (B0, C0)Fv [
√
a,
√
d] is the image of uFv ∈ H2(Fv,F2) (in the above

notation), we have in fact (B0, C0)Fv [
√
a,
√
d] = 0. For such a place, we take βv = γv = 1.

The four cup-products in (3) of Theorem 5.6 then vanish, so we have a rational point
in XF (Fv). In this case (βv, c)Fv = 0 and (b, γv)Fv = 0, as promised.

Now suppose alternatively that a and d are both squares in Fv. Suppose our element B0
was of the form B0 = x+y

√
a ∈ F [

√
a] ⊂ Fv, and let βv = x−y

√
a ∈ Fv, so that βvB0 = b.
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Likewise, write C0 = x′ + y′
√
d and let γv = x′ − y′

√
d ∈ Fv, so γvC0 = c. The four cup-

products mentioned in (3) of Theorem 5.6 are equal to (b, c)Fv , so they all vanish, and
there is an Fv-rational point. Moreover, we have

0 = (βvB0, c)Fv = (βv, c)Fv + (B0, c)Fv = (βv, c)Fv ,

as (B0, c)F [
√
a] = 0. Similarly we draw (b, γv)Fv = 0. �

The argument given in this proof establishes, in particular, that fourfold Massey prod-
ucts always vanish in the cohomology of local fields, when they are defined. This was of
course known (we quote a strong version of this in the next proof), but here everything
stays fairly concrete.

In many cases, we obtain an improved version of the conjecture:

Theorem 6.2 – Let F be a number field, and let a, b, c, d ∈ F× be given. Suppose that
none of ad, ab, cd is a square. Then the following are equivalent:

(1) The 4-Massey product 〈a, b, c, d〉 vanishes.
(2) The 4-Massey product 〈a, b, c, d〉 is defined.
(3) One has (a, b)F = (b, c)F = (c, d)F = 0.

Proof. The definitions are so arranged that (1) =⇒ (2) is a tautology, while (2) =⇒ (3)
is (a very small) part of Theorem 3.1 (and following remark). The non-trivial portion of
the proof is (3) =⇒ (1).

Assume (3). From Theorem 5.6, we must prove that XF (F ) is non-empty. By Theo-
rem A.1 in the Appendix, it suffices to show that for each place v of F , we have XF (Fv) 6=
∅. Applying Theorem 5.6 yet again, we now see that we must prove that the Massey
product 〈a, b, c, d〉 is defined and vanishes in the cohomology of Fv. However, for a local
field such as Fv, it is known (see [27], Proposition 4.1) that the conditions (a, b)Fv =
(b, c)Fv = (c, d)Fv = 0 (which hold here by restriction of the analogous identities over F )
are enough to imply this. �

Remark 6.3. The implication (3) =⇒ (1) from Theorem 6.2 fails in general, if one
removes the additional assumptions on ad, ab, cd. More precisely, Proposition A.12
and Remark A.14 provide necessary and sufficient conditions for the classes (β, c), (γ, b)
and/or (β, c) + (γ, b), over the function field of XF , to be unramified over F (see the
notation in §5.2). When these conditions hold for one of these classes, a Brauer-Manin
obstruction to the implication (3) =⇒ (1) may arise. See Example A.15, suggested by
Y. Harpaz, for a concrete situation where (3) holds, so the variety XF has local points
everywhere, but no F -rational point exists – that is, (1) fails. By Theorem 6.1, (2) also
fails to hold. (In this case (β, c) is unramified.) As we see from Theorem 6.2, this cannot
happen in non-degenerate situations, where [F (

√
a,
√
b,
√
c,
√
d) : F ] = 24.

7. Explicit constructions

Suppose a, b, c, d ∈ F× are linearly independent in F×/F×2. When the Massey product
〈a, b, c, d〉 vanishes, there is a certain map ϕ : GF → U5(F2) which is surjective when
composed with U5(F2)→ U5(F2)/Φ(U5(F2)), the quotient modulo the Frattini subgroup,
as follows from examining the notation (note that Φ(U5(F2)) is the intersection of the
kernels of the four maps si, i = 1, 2, 3, 4). If follows that ϕ is itself surjective, and
therefore, there exists an extension L/F such that Gal(L/F ) ∼= U5(F2). The compatibility
with a, b, c, d means that F [

√
a,
√
b,
√
c,
√
d] must be contained in L, corresponding to the

Frattini quotient via the Galois correspondence.
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This section is about constructing L explicitly, under the condition that our usual four
cup-products vanish – or equivalently, from Lemma 5.2, under the condition (B,C)E = 0.
As it turns out, we end up giving an alternative, more explicit proof for Theorem 3.3,
restricted to the “non-degenerate case”.

Theorem 7.1 – Let F be a field of characteristic 6= 2, and let a, b, c, d ∈ F× be elements
such that [a], [b], [c], [d] are linearly independent in F×/F×2.

Assume that we can find x, y ∈ F such that

(1) x2 − ay2 = b ,

and likewise assume that we can find x′, y′ ∈ F such that

(2) (x′)2 − d(y′)2 = c .

Finally, put B = x + y
√
a and C = x′ + y′

√
d, and assume that we can find u, v ∈

F [
√
a,
√
d] such that

(3) u2 −Bv2 = C .

Under these assumptions, if we put w = u+ v
√
B, then the Galois closure L of

F [
√
a,
√
b,
√
c,
√
d,
√
B,
√
C,
√
w]

verifies Gal(L/F ) ∼= U5(F2).

The rest of this section is devoted to the proof. The argument is self-contained, but
assumes the notation from §2 and §3, and uses Shapiro’s lemma.

Lemma 7.2 – Put K = F [
√
a,
√
b,
√
c,
√
d,
√
B,
√
C]. Then K/F is Galois with

Gal(K/F ) ∼= D4 ×D4 .

More precisely, the isomorphism can be chosen such that the standard generating invo-
lutions σ1, σ2, σ3, σ4 ∈ D4 ×D4, when viewed in Gal(K/F ), act on the elements of K as
follows:

√
a

√
b

√
B

σ1 −
√
a

√
b ?

σ2
√
a −

√
b −

√
B

[σ1, σ2]
√
a

√
b −

√
B

and

√
d

√
c

√
C

σ4 −
√
d

√
c ?

σ3
√
d −

√
c −

√
C

[σ4, σ3]
√
d

√
c −

√
C

Finally, σ1 and σ2 fix
√
c,
√
d,
√
C, and vice-versa.

The ? means that we do not insist on a value. One may show, for example, that
σ1(
√
B) = ±

√
b√
B
, but the particular sign will not be relevant.

Proof. Let K1 = F [
√
a,
√
b,
√
B] and K2 = F [

√
c,
√
d,
√
C]. Then Ki is a D4-extension

of F , for i = 1, 2, and the actions are as announced, for some choices of generating
involutions for the dihedral groups : simply argue as in the proof of Proposition 2.3.

In order to show that K = K1K2 is a D4×D4-extension, it suffices to show that K1 ∩
K2 = F .

The extension of F which corresponds to the Frattini quotient of Gal(K1/F ) resp.
Gal(K2/F ) is F [

√
a,
√
b], resp. F [

√
c,
√
d], so K1 6= K2. Thus K1 ∩K2 corresponds to a

non-trivial normal subgroup of Gal(Ki/F ), for i = 1, 2. Looking at the normal subgroups
of D4, we see that K1∩K2 ⊂ F [

√
a,
√
b]∩F [

√
c,
√
d] = F , which concludes the proof. �
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From now on we write G for the group D4×D4, which we have just identified explicitly
with Gal(K/F ). As above, we will write N for the subgroup of Gal(K/F ) generated
by σ2, [σ1, σ2], σ3, [σ4, σ3].

Lemma 7.3 – The fixed field of N within K is E = F [
√
a,
√
d]. �

Consider now w = u + v
√
B as above, with u, v ∈ F [

√
a,
√
d], and let us study its

class [w] ∈ K×/K×2. Note that w is clearly non-zero, since w(u− v
√
B) = C 6= 0.

Lemma 7.4 – The element [w] is fixed by N .

Proof. The element w is itself fixed by σ3 and [σ4, σ3], as we see immediately from the
tables. On the other hand σ2(w) = u−v

√
B, and things have thus been arranged so that

σ2(w) = wσ2(w)
w

= C

w
= w

(√
C

w

)2

.

As a result σ2([w]) = [w]. The element [σ1, σ2] has the same effect on w as σ2, so the
same argument applies. �

We now let W denote the G-module spanned by [w] within K×/K×2. By the Lemma
this can be seen as a G/N -module, and indeed it is the image of

π : F2[G/N ] −→ W

mapping 1 ∈ G/N to [w]. We put L = K[
√
W ], which is indeed the L introduced in the

Theorem. Equivariant Kummer theory states that L/F is Galois, and that Gal(L/K) ∼=
W ∗ via the Kummer pairing. For future reference, let us recall that τ ∈ Gal(L/K) is
viewed as an element of W ∗ via

τ(w) = τ(
√
w)√
w
∈ {±1} ∼= F2 .

So we have an exact sequence

0 −→ W ∗ −→ Gal(L/F ) q−→ G −→ 1 ,

and we let α ∈ H2(G,W ∗) denote the corresponding cohomology class. Consider the
following commutative diagram.

H2(G,W ∗) π∗−−−→ H2(G,F2[G/N ]∗)

s̃h

y ysh
H2(N, W ∗[w]⊥ ) =−−−→ H2(N,F2) .

Here is a word of explanation about the notation. First, [w]⊥ = {f ∈ W ∗ : f([w]) =
0}. The map sh is Shapiro’s isomorphism; the map π∗ is the injection which is dual
to the surjection π : F2[G/N ] → W ; the map s̃h is Shapiro-like, defined by using the
projection W ∗ → W ∗

[w]⊥ and restriction to N ; and the bottom map is seen as the identity,
since W ∗

[w]⊥ can be identified with F2 in a unique way (just like any group of order 2).
Commutativity is clear.

The cohomology class s̃h(α) corresponds to the extension

(†) 0 −→ W ∗

[w]⊥ −→
q−1(N)

[w]⊥ −→ N −→ 1 .
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Let us elucidate a few things. First we have
q−1(N) = Gal(L/E) .

Further,
[w]⊥ = {f ∈ W ∗ : f([w]) = 0}

∼= {τ ∈ Gal(L/K) : τ(
√
w) =

√
w} .

It follows that, if we put L′ = K[
√
w], then Gal(L/L′) ∼= [w]⊥, and

q−1(N)
[w]⊥ = Gal(L′/E) .

Lemma 7.5 – The Galois group Gal(L′/E) is isomorphic to C2
2 ×D4.

Proof. The element w ∈ E[
√
B] satisfies NE[

√
B]/E(w) = C, and it follows that

M = E[
√
B,
√
C,
√
w]

is a D4-extension of E. (Here we do use the fact that E[
√
B,
√
C] is a C2

2 -extension of E,
which we know from Gal(K/E) = N .)

Of course K/E is Galois with group N ∼= C4
2 , so that L′ = KM is Galois with group

Gal(KM/E) = Gal(K/E)×Gal(K∩M/E) Gal(M/E) .

Certainly we have E[
√
B,
√
C] ⊂ K ∩M , and the intersection K ∩M cannot in fact

be larger, for (by counting dimensions, say) if it were we would have K ∩ M = M ;
so M ⊂ K, a non-abelian extension contained in an abelian one, contradiction. So
K ∩M = E[

√
B,
√
C].

Thus Gal(L′/E) is of the form C4
2 ×C2

2
D4. Since the map C4

2 → C2
2 is split, we see that

this fibre product is in fact isomorphic to C2
2 ×D4. �

From this last Lemma, and its proof, it follows that (†) can be identified with the first
exact sequence in Lemma 2.5, which implies that s̃h(α) = x2x3. As a consequence, from
the commutativity of the diagram above and the injectivity of Shapiro’s map, we see that
π∗(α) describes the extension

0 −→ S ∼= F2[G/N ]∗ −→ U5(F2) −→ G −→ 1 .
We conclude that Gal(L/F ) is a subgroup of U5(F2) which maps onto the Frattini quo-
tient Gal(F [

√
a,
√
b,
√
c,
√
d]/F ). Thus Gal(L/F ) = U5(F2).

Example 7.6 – Let us take F = Q and a = 11, b = 5, c = 79, d = 13. Let us
try to look for solutions to (1)-(2)-(3). A little calculation with Hilbert symbols reveals
that (a, b) = (b, c) = (c, d) = 0, and so Theorem 6.1 guarantees that such solutions do
exist.

In practice though, the quickest way to look for x, y, z ∈ Q such that
x2 − 11y2 = 5z2

is to pick random integers y and z until 11y2 + 5z2 is a square. Let us fix an initial
solution, say x0 = 4, y0 = z0 = 1, and put B0 = 4 +

√
11. Likewise C0 = 14 + 3

√
13 is an

initial solution to equation (2).
With these random values, there will likely be no solution to (3), since (B0, C0) 6= 0 in

general. The next step is to pick random integers f, g ∈ Z and check whether (fB0, gC0) =
0. Again, Proposition 4.1 justifies the existence of these – but there would be no harm in
trying even if we did not know that. The most efficient method seems to be to compute
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the conductor of (fB0, gC0), that is, the product of those prime ideals in the ring of
integers of E = Q[

√
11,
√

13] such that the cup product (fB0, gC0) maps to a non-zero
class in the corresponding non-archimedean completion: this is an operation done quickly
by the software PARI (which we have used through Sagemath). If the conductor is trivial,
we use the more time-consuming methods of PARI to find a rational point on the conic
defined by (3).

Having found f, g, we put B = fB0 and C = gC0 (but also in principle x = fx0, y =
fy0, z = fz0, and so on, thus changing our solutions to (1), (2), although these do not
show up themselves in the statement of Theorem 7.1).

In the case at hand, one search of the type just described has yielded the solutions

B = 1
7
√

11 + 16
7 , C = 9

2
√

13 + 37
2

which verify (B,C) = 0. Indeed, equation (3) is solved by w = u+ v
√
B with

u = 2
57319

√
13
(
40730430348570235670

√
11− 283850079471799786881

)

−642122498218267058484
57319

√
11 + 143760709913945809313

7396 ,

v = 4
286595

√
13
(
27413052840094197823

√
11− 191041370339652873536

)
−172868666747038399008

57319
√

11 + 193512315164122974131
36980 .

Appendix A. Local-global principles and the splitting varieties

by Olivier Wittenberg1

The goal of this Appendix is to establish a local-global principle, when F is a number
field, for the existence of a rational point on the variety XF appearing in Theorem 5.6 of
the paper (see Theorem A.1 below). I am indebted to the authors for sharing drafts of
their paper with me, to Pierre Guillot for numerous discussions on 4-Massey products,
and to Yonatan Harpaz for suggesting Example A.15.

A.1. Statements. Let F be a field of characteristic zero. For q, q′ ∈ F , we set Fq =
F [t]/(t2 − q) and Fq,q′ = F [t, t′]/(t2 − q, t′2 − q′). Let us fix a, b, c, d ∈ F ∗ and B ∈ F ∗a ,
C ∈ F ∗d such that NFa/F (B) = b and NFd/F (C) = c, and consider the closed subvariety

X ⊂ G2
m ×RFa,d/FA2

Fa,d

defined by the equation βBx2 + γCy2 = 1, where RFa,d/F denotes the Weil restriction
functor and β, γ are the coordinates of G2

m while x, y are those of RFa,d/FA2
Fa,d

. (In the
body of the paper, this variety is denoted by XF rather than X, and our B,C play the
rôle of the elements called B0, C0 there.)

When F is a number field, we denote by Ω the set of its places, by Fv the completion
of F at v ∈ Ω, and by (x, y) ∈ {−1, 1} the Hilbert symbol of x, y ∈ F ∗v /F

∗2
v (see [36,

Ch. V, §3]).

1Département de mathématiques et applications, École normale supérieure, 45 rue d’Ulm, 75230 Paris
Cedex 05, France. wittenberg@dma.ens.fr
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Theorem A.1 – Assume that F is a number field. If none of ad, ab, cd is a square
in F , then X satisfies the Hasse principle: X(F ) 6= ∅ if and only if X(Fv) 6= ∅ for all
v ∈ Ω. In any case, the existence of a rational point on X is equivalent to the existence
of an element of ∏v∈ΩX(Fv) whose β and γ coordinates βv, γv ∈ F ∗v satisfy∏

v∈Ω
(βv, c) =

∏
v∈Ω

(γv, b) = 1.

In addition, if X(F ) 6= ∅, then X(F ) is dense in X for the Zariski topology.
It is not hard to see that X is smooth, irreducible, and geometrically rational. When F

is a number field, the existence of a rational point on X is therefore conjectured to be
controlled by the Brauer–Manin obstruction (see [3, §4]). To establish Theorem A.1, we
shall first deduce the validity of this conjecture, in the case of X, by an application of the
fibration method (specifically, of [19, Th. 9.31]). We shall then prove, in Theorem A.2
below, that the unramified Brauer group of X consists of constant classes, except when
ad, ab, or cd is a square, in which case the classes of the quaternion algebras (β, c)
and (γ, b) over F (X) may come into play. The combination of these two facts yields
Theorem A.1. We note that Theorem A.2 is a purely algebraic statement: it holds over
an arbitrary field F of characteristic zero.
Theorem A.2 – The natural map Br(F ) → Brnr(F (X)/F ) is surjective if none of ad,
ab, cd is a square in F . In any case, its cokernel is killed by 2 and is contained in
the subgroup of Coker

(
Br(F ) → Br(F (X))

)
generated by the classes of the quaternion

algebras (β, c) and (γ, b) over F (X).
We recall that the unramified Brauer group Brnr(K/F ) of a finitely generated field

extension K/F is the intersection of the subgroups Im
(
Br(A)→ Br(K)

)
where A ranges

over the discrete valuation rings F ⊂ A ⊂ K with quotient fieldK. If F has characteristic
zero and K = F (S) for a smooth irreducible variety S, the group Br(S) = H2

ét(S,Gm)
can be identified with the intersection of the subgroups Im

(
Br(OS,ξ)→ Br(K)

)
where ξ

ranges over the codimension 1 points of S; if S is proper, then Br(S) = Brnr(K/F ). See
[17, III, §6], [5, §5].
Remark A.3. It is only for simplicity that we assume that F has characteristic zero in
the statement of Theorem A.2: it allows us to refer to a smooth compactification of X.
When F has characteristic p > 2, the definition of X still makes sense and Theorem A.2
remains true. Indeed, on the one hand, the proof given below easily adapts to show
that the cokernel of Br(F ) → Brnr(F (X)/F ) satisfies the desired statement modulo its
p-primary torsion subgroup, and on the other hand, this cokernel is killed by a power
of 2 since X becomes rational over F (

√
a,
√
b,
√
c,
√
d) (see [39, Prop. 1.7]). Presumably,

the proof of Theorem A.1 should also work over a global field of characteristic p > 2;
however, the results we use from [19] have not been written down in this setting.
A.2. Geometry. Following [42], we shall say that a scheme of finite type over a field
is split if it possesses an irreducible component of multiplicity 1 which is geometrically
irreducible. In this preliminary section, we compactify X to the total space of a fibration,
over a proper base, with very few non-split fibres in codimension 1. This fibration will
play a crucial rôle both in the proof of Theorem A.1 and in that of Theorem A.2. We
then proceed to make further observations concerning its fibres (Proposition A.4 below),
for use in the proof of Theorem A.2.

Let X ′′ ⊂ G2
m×RFa,d/FP2

Fa,d
denote the closed subvariety defined by βBx2+γCy2 = z2,

where β, γ are the coordinates of G2
m and x, y, z now denote the homogeneous coordinates
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of RFa,d/FP2
Fa,d

. Clearly X ′′ is smooth and contains X as a dense open subset. Let us fix
once and for all a smooth compactification X ′′ ⊂ X ′ such that the map ϕ : X ′′ → G2

m
defined by ϕ(β, γ, [x : y : z]) = (β, γ) extends to a morphism ϕ′ : X ′ → P1

F × P1
F . (We

view G2
m as an open subset of P1

F ×P1
F .) For w ∈ F ∗, let νγ=w, νβ=wγ ∈ G2

m denote the
generic points of the subvarieties of G2

m defined by γ = w and by β = wγ, respectively.
The next proposition lists sufficient conditions for the fibre of ϕ (or, equivalently, of ϕ′)
above these points to contain a rational point (i.e., an F (Gm)-point) for some w.

Proposition A.4 – The following statements hold:
(1) If c is a square in F or if d and ac are squares in F , then there exists w ∈ F ∗

such that ϕ−1(νγ=w), ϕ−1(νγ=aw), and ϕ−1(νγ=dw) contain a rational point.
(2) If a = b = c = d in F ∗/F ∗2, then there exists w ∈ F ∗ such that ϕ−1(νβ=wγ) and

ϕ−1(νβ=awγ) contain a rational point.
(3) In the case where d and ac are squares in F , one can take w = C1 (or w = C2)

in (1), where C = (C1, C2) denotes the image of C by the isomorphism Fd = F×F
induced by the choice of a square root of d.

Proof. We first assume that c is a square in F and prove (1) in this case. As NFd/F (C) = c
is a square in F , it follows from Hilbert’s Theorem 90 that there exists w ∈ F ∗ such that
wC is a square in Fd. Evaluating the function γC at any ν ∈ {νγ=w, νγ=aw, νγ=dw} yields
an element of F (ν)⊗F Fd which becomes a square in F (ν)⊗F Fa,d, hence the claim.

Let us now assume that d and ac are squares in F , and prove (1) and (3) simultaneously.
In this case, following the notation of (3), we have C1C ∈ F ∗2a,d as c is a square in Fa and
as the decomposition Fa,d = Fa×Fa maps C1C to (C2

1 , c). Hence, with w = C1, the value
of γC at any ν ∈ {νγ=w, νγ=aw, νγ=dw} is again a square in F (ν)⊗F Fa,d.

Finally, let us assume that a = b = c = d in F ∗/F ∗2 and turn to (2). The choice
of a square root of ad determines isomorphisms ι : Fd ∼−→ Fa and Fa,d = Fa × Fa. As
NFa/F (Bι(C)) = bc is a square in F , Hilbert’s Theorem 90 ensures the existence of w ∈ F ∗
such that −wBι(C) is a square in Fa. As c is a square in Fa, it follows that −wBC is a
square in Fa,d and hence that the value of the function−γCβB at any ν ∈ {νβ=wγ, νβ=awγ}
is a square in F (ν) ⊗F Fa,d. Hence, writing (βB, γC) for the class in Br(F (ν) ⊗F Fa,d)
of the corresponding quaternion algebra, we have (βB, γC) = (−γCβB, γC) = 0 for any
such ν, or equivalently ϕ−1(ν) possesses a rational point. �

A.3. Arithmetic. Let us deduce Theorem A.1 from Theorem A.2. The relevant arith-
metic input is the following statement.

Theorem A.5 – Let Z be a smooth, proper, and irreducible variety over a number
field F . Let n ≥ 1 be an integer and f : Z → (P1

F )n be a dominant morphism. Assume
that the geometric generic fibre of f is rationally connected and that the fibre of f above
any codimension 1 point of (P1

F \ {0,∞})n is split. Assume, in addition, that for any
rational point t of a dense open subset of (P1

F )n, the set Zt(F ) is dense in Zt(AF )Br(Zt),
where Zt = f−1(t). Then Z(F ) is dense in Z(AF )Br(Z).

For n = 1, this is [19, Th. 9.31]. In view of [16, Cor. 1.3], Theorem A.5 for any n
follows from the n = 1 case by a straightforward induction.

To prove Theorem A.1, we apply Theorem A.5 to ϕ′, with n = 2. By our choice of X ′′,
the fibres of ϕ′ above (P1

F \ {0,∞})2 are Weil restrictions of smooth projective conics.
In particular, the geometric generic fibre of ϕ′ is rational, hence rationally connected,
and the codimension 1 fibres of ϕ′ above (P1

F \ {0,∞})2 are smooth and geometrically
irreducible, hence split. To verify the arithmetic hypothesis on the closed fibres of ϕ′, we
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note that if Zt is a Weil restriction, by a finite extension of number fields, of a smooth
projective conic, and if Zt(AF ) 6= ∅, then the Hasse–Minkowski theorem implies that
Zt(F ) 6= ∅, from which it follows that the variety Zt is rational over F and hence that
Zt(F ) is dense in Zt(AF ). All in all, we conclude that X ′(F ) is dense in X ′(AF )Br(X′).
Therefore X(F ) 6= ∅ if and only if X ′(AF )Br(X′)∩∏v∈Ω X(Fv) 6= ∅. By Theorem A.2, the
latter condition is implied by the one which appears in the statement of Theorem A.1,
which, in view of the quadratic reciprocity law, is itself implied by the existence of a
rational point on X. Thus the proof of Theorem A.1 is complete.

A.4. Brauer groups. In the remainder of this appendix, we prove Theorem A.2. Here-
after F denotes a field of characteristic zero. We start with two general remarks about
the Brauer group of Weil restrictions of conics and of trivial 2-dimensional tori.

Proposition A.6 – Let k′/k be a finite separable extension of fields. Let C be a smooth,
projective conic over k′. If Rk′/kC denotes the Weil restriction of C from k′ to k, the
pull-back map Br(k)→ Br(Rk′/kC) is surjective.

Proof. Let k be a separable closure of k. The choice of a (k′⊗kk)-point of C determines an
isomorphism between (Rk′/kC)⊗kk and the product of [k′ : k] copies of P1

k
indexed by the

finite set Spec(k′⊗k k). It follows that Br((Rk′/kC)⊗k k) = 0 and that Pic((Rk′/kC)⊗k k)
is isomorphic, as a Galois module, to ZSpec(k′⊗kk). Hence, by Shapiro’s lemma, the terms
E0,2

2 and E1,1
2 of the Hochschild–Serre spectral sequence

Ep,q
2 = Hp(k,Hq

ét((Rk′/kC)⊗k k,Gm))⇒ Hp+q
ét (Rk′/kC,Gm)

vanish (see [24, Ch. III, Prop. 4.9]). We conclude that E2,0
2 = Br(k) surjects onto

H2
ét(Rk′/kC,Gm) = Br(Rk′/kC). �

Given a field k of characteristic different from 2 (typically k = F (β, γ) or k = F (X))
and two elements x, y ∈ k∗, we denote by (x, y) the class, in Br(k), of the corresponding
quaternion algebra over k.

Proposition A.7 – Any 2-torsion element of Br((P1
F \ {0,∞})2) can be written as

(β, r) + (γ, s) + ε(β, γ) + δ

for some r, s ∈ F ∗, some ε ∈ {0, 1}, and some δ ∈ Im
(
Br(F )→ Br(F (β, γ))

)
.

Proof. Let D1 = A1
F×{0}, D2 = {0}×A1

F , D12 = D1∩D2, and D0
i = Di\D12. By purity

for étale cohomology, we have Hq
ét,D12(A2

F ,Z/2Z) = Hq−4
ét (D12,Z/2Z) = Hq−4(F,Z/2Z)

for any q, and H3
ét,D0

1∪D
0
2
(A2

F \ D12,Z/2Z) = H1
ét(D0

1,Z/2Z) ⊕ H1
ét(D0

2,Z/2Z) (see [24,
Ch. VI, §5]). The long exact sequence of a triple therefore yields an exact sequence

0→ H3
ét,D1∪D2(A2

F ,Z/2Z)→ H1
ét(D0

1,Z/2Z)⊕ H1
ét(D0

2,Z/2Z)→ Z/2Z,
where the rightmost map is the sum of the residues at 0 (op. cit., Ch. III, Rem. 1.26).
Finally, let us consider the localisation exact sequence

H2
ét(A2

F ,Z/2Z)→ H2
ét(A2

F \ (D1 ∪D2),Z/2Z)→ H3
ét,D1∪D2(A2

F ,Z/2Z)
(loc. cit., Prop. 1.25). As any 2-torsion element of Br((P1

F \ {0,∞})2) can be lifted to
H2

ét(A2
F \ (D1∪D2),Z/2Z) and as H1(D0

i ,Z/2Z) ⊂ H1(F (Di),Z/2Z) = F (Di)∗/F (Di)∗2
is generated by F ∗/F ∗2 and by the class of β (resp. γ) if i = 1 (resp. i = 2), we deduce from
these two exact sequences that for an arbitrary 2-torsion class α ∈ Br((P1

F \{0,∞})2), the
residues of α at the generic points of D1 and D2, viewed as elements of F (Di)∗/F (Di)∗2,
are represented by elements of F (Di)∗ of the shape βεs and γεr, respectively, for some
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r, s ∈ F ∗ and some ε ∈ {0, 1}. The class (β, r) + (γ, s) + ε(β, γ) has the same residues
as α at these two points. As H2

ét(A2
F ,Z/2Z) = H2(F,Z/2Z) (op. cit., Ch. VI, Cor. 4.20),

these two classes differ by a constant class, in view of the localisation exact sequence. �

The following is a simple consequence of Proposition A.6 and Proposition A.7.
Proposition A.8 – The cokernel of the natural map Br(F ) → Brnr(F (X)/F ) is killed
by 2. Its elements are represented by classes of the shape

(β, r) + (γ, s) + ε(β, γ)
for r, s ∈ F ∗ and ε ∈ {0, 1}.
Proof. The generic fibre of ϕ′ : X ′ → P1

F ×P1
F is a Weil restriction of a smooth projective

conic. Applying Proposition A.6 to it, we see that any element of Brnr(F (X)/F ) = Br(X ′)
can be written as ϕ′∗α for some α ∈ Br(F (P1

F ×P1
F )). As ϕ′∗α is unramified on X ′ and

as the fibres of ϕ′ above (P1
F \ {0,∞})2 are split, the class α belongs to the subgroup

Br((P1
F \ {0,∞})2) ⊂ Br(F (P1

F × P1
F )) (see [6, Prop. 1.1.1]). After adding a constant

class to α, we may assume that the value of α at the point (1, 1) vanishes in Br(F ). The
next lemma then implies that 2α = 0 (op. cit., Prop. 1.3.3). Applying Proposition A.7
now concludes the proof of Proposition A.8. �

Lemma A.9 – Let i ∈ {1, 2}, t ∈ {0,∞}. Let ξ ∈ P1
F × P1

F be the generic point of the
fibre, above t, of the ith projection P1

F ×P1
F → P1

F . The residue of α at ξ is killed by 2.
Proof. Let K = F (P1

F × P1
F ) = F (β, γ) and OK ⊂ K denote the local ring of P1

F × P1
F

at ξ. Let K ′/K be the quadratic extension obtained by adjoining a square root of β
if i = 1, or of γ if i = 2. Let OK′ denote the integral closure of OK in K ′. To prove
the lemma, it suffices to check that the image of α ∈ Br(K) in Br(K ′) belongs to the
subgroup Br(OK′) ⊂ Br(K ′) (see [6, Prop. 1.1.2]). For this, as ϕ′∗α is unramified over X ′,
it suffices to check that theK ′-variety X ′×P1

F×P1
F

Spec(K ′) admits a proper regular model
over OK′ whose special fibre is split (loc. cit., Prop. 1.1.1; this property does not depend
on the choice of the model [42, Cor. 1.2]). A look at the equations which define X ′′ shows
that X ′ ×P1

F×P1
F

Spec(K ′) even has good reduction over OK′ as it descends to a variety
over F (γ) ⊂ OK′ if i = 1, or over F (β) ⊂ OK′ if i = 2. �

To exploit the hypothesis that the classes under consideration are unramified, we shall
repeatedly use the following tool.
Proposition A.10 – Let r, s ∈ F ∗ and ε ∈ {0, 1} be such that (β, r) + (γ, s) + ε(β, γ) ∈
Brnr(F (X)/F ). Let w ∈ F ∗.

(1) If ϕ−1(νγ=w) contains a rational point, then rwε is a square in F .
(2) If ϕ−1(νβ=wγ) contains a rational point, then rs(−w)ε is a square in F .

Proof. Let ν ∈ {νγ=w, νβ=wγ}. Let ν denote the Zariski closure of ν in P1
F ×P1

F . Suppose
that ϕ−1(ν) contains a rational point. The inclusion ν ↪→ P1

F×P1
F then factors through ϕ′.

As (β, r) + (γ, s) + ε(β, γ) ∈ Br((P1
F \ {0,∞})2) becomes, by assumption, unramified

over X ′ when pulled back to X ′′, its value at ν must therefore belong to the subgroup
Br(ν) ⊂ Br(ν). Letting t denote the coordinate of P1

F , this means that when ν = νγ=w
(resp., ν = νβ=wγ), the class (t, r) + (w, s) + ε(t, w) (resp., (wt, r) + (t, s) + ε(wt, t)) in
Br(P1

F \ {0,∞}) must be unramified over P1
F ; hence the proposition. �

The next three propositions complete the proof of Theorem A.2.
Proposition A.11 – Let r, s ∈ F ∗. If the class (β, r)+(γ, s)+(β, γ) ∈ Br(F (X)) belongs
to Brnr(F (X)/F ), then it belongs to the image of the natural map Br(F )→ Br(F (X)).

33



Proof. We proceed in several steps.
Step 1: we claim that ad is a square in F .
Suppose that ad is not a square in F . Then a and d are not both squares; by symmetry,

we may assume that a is not a square in F ; after replacing F by F (
√
d), we may then

assume that d is a square in F . As a is not a square in F , it cannot be a square in F (
√
c)

and in F (
√
ac) at the same time. After replacing F by one of these two extensions, we

may therefore assume that c or ac is a square. The hypotheses of Proposition A.4 (1) are
now met. By Proposition A.10 (1) applied twice, we deduce that rw and raw are squares
in F , hence a is a square in F , which is absurd.

Step 2: we claim that at least one of d and cd is a square in F .
We may assume, after replacing F with F (

√
c), that c is a square in F . Applying

Proposition A.4 (1) and Proposition A.10 (1), we deduce that rw and rdw are squares
in F ; hence d is a square in F .

Step 3: we claim that at least one of a and ab is a square in F .
This follows from Step 2, by symmetry.
Step 4: if a = b = c = d in F ∗/F ∗2, then a = b = c = d = 1 in F ∗/F ∗2.
Applying Proposition A.4 (2) and Proposition A.10 (2), we see that −rsw and −rsaw

are squares in F , hence a is a square in F .
Putting Steps 1 to 4 together, we have now proved that a and d are squares in F . Let

us write B = (B1, B2) and C = (C1, C2) according to the decompositions Fa = F × F
and Fd = F × F induced by the choice of square roots of a and d.

Step 5: we claim that s = Bi and r = Cj in F ∗/F ∗2 for some i, j ∈ {1, 2}.
By symmetry, it suffices to check that r = Cj in F ∗/F ∗2 for some j ∈ {1, 2}. To this

end, as C1C2 = c, we may replace F with F (
√
c) and assume that c is a square in F . In

this case, Proposition A.4 (3) and Proposition A.10 (1) together imply the claim.
As the equality (βBi, γCj) = 0 holds in Br(F (X)) by the very definition of X, Step 5

implies that (β, r) + (γ, s) + (β, γ) = (Bi, Cj), which does come from Br(F ). �

Proposition A.12 – Let r, s ∈ F ∗ be such that (β, r) + (γ, s) ∈ Brnr(F (X)/F ). Then
at least one of the following holds:

(1) r and s are squares in F ;
(2) rc and s are squares in F , at least one of a, c, ad, cd is a square in F , and at

least one of a, b, c, d, abc is a square in F ;
(3) r and sb are squares in F , at least one of b, d, ad, ab is a square in F , and at

least one of a, b, c, d, bcd is a square in F ;
(4) rc and sb are squares in F , at least one of a, c, ad, cd is a square in F , and at

least one of b, d, ad, ab is a square in F .
Proof. Extending the scalars from F to F (

√
c) and applying Proposition A.4 (1) and

Proposition A.10 (1) shows that r is a square in F (
√
c), hence at least one of r and rc

is a square in F . By symmetry, at least one of s and sb is a square in F . The following
two assertions and the symmetric assertions will now imply the proposition:

(i) if rc is a square in F , then at least one of a, c, ad, cd is a square in F ;
(ii) if rc and s are squares in F , then at least one of a, b, c, d, abc is a square in F .

To prove (i), we may replace F with F (
√
ac,
√
d) and assume that ac and d are squares

in F . Proposition A.4 (1) and Proposition A.10 (1) then imply that r is a square in F ;
if rc is a square in F , it follows that c is a square in F , as desired. To prove (ii), we
may assume, in view of (i), that ad or cd is a square in F . We may then replace F with
F (
√
ab,
√
ac) and assume that ab and ac are squares in F . In this case, Proposition A.4 (2)

and Proposition A.10 (2) imply that c is a square in F . �
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Proposition A.13 – If a or c is a square in F , then (β, c) ∈ Im(Br(F )→ Br(F (X))).
If b or d is a square in F , then (γ, b) ∈ Im(Br(F )→ Br(F (X))).

Proof. By symmetry, we need only check the first assertion. If c is a square, it is trivial.
Let us assume that a is a square in F and write B = (B1, B2) according to the decom-
position Fa = F × F induced by the choice of a square root of a. The vanishing of the
class (βB, γC) ∈ Br(F (X) ⊗F Fa,d), which holds by the very definition of X, is then
equivalent to that of the two classes (βBi, γC) ∈ Br(F (X)⊗F Fd), i ∈ {1, 2}. Taking the
norm down to F (X) and applying the projection formula, we deduce that (βBi, c) = 0
in Br(F (X)) for i ∈ {1, 2}. Hence (β, c) = (Bi, c), which does come from Br(F ). �

Remark A.14. Proposition A.12 provides necessary conditions for the classes (β, c), (γ, b)
and (β, c) + (γ, b) to belong to Brnr(F (X)/F ). It is possible to show, although we do not
do it here, that these necessary conditions are in fact necessary and sufficient.

Example A.15 – Let F = Q, a = d = 34, b = 2, c = 17, B = 6 +
√

34, C =
(17 + 2

√
34)/3. It is easy to see that X has points everywhere locally. Using the fact

that at every place of Q, at least one of 2, 17, and 34 is a square, one can check that for
any place v of Q other than 17 (resp., for v = 17), if βv ∈ F ∗v denotes the β coordinate
of any Qv-point of X, the Hilbert symbol (βv, 17) is trivial (resp., is nontrivial). Hence
X(Q) = ∅. Thus, in this case, the three classes (a, b), (b, c), (c, d) ∈ Br(Q) vanish, but
the Massey product 〈a, b, c, d〉 is not defined, by Theorem 5.6 and Theorem 6.1. By
Theorem 6.2, for such an example to exist, it is necessary that at least one of ad, ab, cd
is a square.
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