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OLIVIER WITTENBERG

Abstract. The inverse Galois problem asks whether any finite group can be realised as
the Galois group of a Galois extension of the rationals. This problem and its refinements
have stimulated a large amount of research in number theory and algebraic geometry
in the past century, ranging from Noether’s problem (letting X denote the quotient of
the affine space by a finite group acting linearly, when is X rational?) to the rigidity
method (if X is not rational, does it at least contain interesting rational curves?) and to
the arithmetic of unirational varieties (if all else fails, does X at least contain interesting
rational points?). The goal of the present notes, which formed the basis for three lectures
given at the Park City Mathematics Institute in August 2022, is to provide an introduction
to these topics.

The inverse Galois problem is a simple-looking but fundamental open question of number
theory on which tools coming from diverse areas of mathematics can be brought to bear.
These lectures aim to explain the problem as well as a few of the many methods that have
been developed to attack it, emphasising a geometric point of view whenever possible.

The first lecture introduces the problem together with a refinement of it first considered
by Grunwald, and presents the strategy of Hilbert and Noether—a strategy based on
Hilbert’s irreducibility theorem and laid out more than a hundred years ago. This leads
us to the notion of versal torsor, and to questions of rationality, stable rationality, retract
rationality for quotient varieties. The second lecture is devoted to the regular inverse
Galois problem, which is about the construction of Galois covers of curves. We present the
rigidity method in detail, via Hurwitz moduli spaces. The third and final lecture explains
how Grunwald’s problem is expected to be controlled by the Brauer–Manin obstruction to
weak approximation on the quotient varieties appearing in the Hilbert–Noether strategy,
and discusses the descent method and its applications to the inverse Galois problem and
to its variants.

Several important topics could not fit into these three lectures and had to be left
aside, such as the connection between the inverse Galois problem and the construction
of Galois representations (see [Shi74], [Zyw15] for some examples), the directions in which
the rigidity method has been developed beyond its base case (see e.g. [DR00], [Völ01],
[MM18, Chapter III] among many others), or the study of embedding problems.

Additional material on the inverse Galois problem can be found in [Ser07, MM18, Völ96,
Dèb99, JLY02, Mat87, Sza09].
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1. From Galois to Hilbert and Noether

1.1. Introduction. Galois theory turns the collection of all number fields into a profinite
group, the absolute Galois group Gal(Q̄/Q) of Q. The study of this group and of its
representations has been a cornerstone of number theory for more than a century. Yet,
even such a basic question as the following one remains wide-open to this day: do all finite
groups appear as quotients of Gal(Q̄/Q)? This is the so-called “inverse Galois problem”.

The same question can be asked about the absolute Galois group of an arbitrary field k:
given a finite group G and a field k, does there exist a Galois field extension K of k such that
Gal(K/k) ≃ G? Obviously, the answer is in the negative for some fields k that have a small
absolute Galois group (e.g. the fields C and R, trivially; or the field Qp, as its absolute
Galois group is prosolvable). When k is a number field, a positive answer is known when G
is solvable (Shafarevich, see [NSW08, Chapter IX, §6] and the references therein), when G
is a symmetric or an alternating group (Hilbert [Hil92]), when G is a sporadic group other
than M23 (Shih, Fried, Belyi, Matzat, Thompson, Hoyden–Siedersleben, Zeh–Marschke,
Hunt, Pahlings, see [MM18]), when G belongs to various infinite families of non-abelian
simple groups of Lie type (e.g. the groups PSL2(Fp), according to Shih, Malle, Clark,
Zywina; see [Zyw15]); but the problem remains open over Q even for such a small group
as SL2(F13), of order 2184, or as the simple group PSL3(F8) (for the latter, see [Zyw13],
to be complemented with [DFV22]).

Several variants or generalisations of the inverse Galois problem have been considered in
the literature. Here is one of them. Given a number field k, we denote the set of its places
by Ω and the completion of k at v ∈ Ω by kv.

Problem 1.1.1 (Grunwald). Let k be a number field and S ⊂ Ω be a finite subset. Let G
be a finite group. For each v ∈ S, let Kv be a Galois field extension of kv such that the
group Gal(Kv/kv) can be embedded into G. Does there exist a Galois field extension K
of k such that Gal(K/k) ≃ G and such that for all v ∈ S, the completion of K/k at any
place of K lying above v is isomorphic to Kv/kv?

The Grunwald–Wang theorem, which was proved by Wang [Wan50] following the work
of Grunwald [Gru33] and which has an interesting history (see [AT09, Chapter X, footnote
on p. 73] and [Mil20, Chapter VIII, §2, p. 234, Notes]), gives a complete answer to
Problem 1.1.1 when G is abelian, via class field theory. In particular, the answer to
Grunwald’s problem is negative for G = Z/8Z and k = Q (see Proposition 1.6.2 below),
but it is positive, for any number field k and any finite abelian group G, as soon as S does
not contain any place dividing 2. For an arbitrary finite group G, the Grunwald problem
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is expected to have a positive answer whenever G does not contain any place dividing the
order of G. This is the “tame” Grunwald problem, a terminology coined in [DLAN17].

Other variants include embedding problems (given a Galois field extension ℓ/k, a finite
group G and a surjection ϕ : G ։ Gal(ℓ/k), can one embed ℓ/k into a Galois field
extension K/k such that G ≃ Gal(K/k), the map ϕ being identified with the restriction
map Gal(K/k) ։ Gal(ℓ/k)?) or the question of resolving the inverse Galois problem with
additional constraints, such as the constraint that a given finite collection of elements of k
be norms from K (a problem raised in [FLN22]).

1.2. Torsors and Galois extensions. Let us start by reformulating the inverse Galois
problem in terms of torsors. Hereafter, a variety over a field k is a separated scheme of
finite type over k (which may be disconnected or otherwise reducible) and k̄ denotes an
algebraic closure of k.

Definition 1.2.1. Let π : Y → X be a finite morphism between varieties over a field k.
Let G be a finite group acting on Y , in such a way that π is G-equivariant (for the trivial
action of G on X). We say that π is a G-torsor, or that Y is a G-torsor over X, if π is
étale and G acts simply transitively on the fibres of the map Y (k̄)→ X(k̄) induced by π.

When G is a finite group acting on a variety Y , we denote by Y/G the quotient variety,
characterised by the universal property of quotients, when it exists. Let us recall that the
quotient Y/G exists if Y is quasi-projective; the projection π : Y → Y/G is then finite and
surjective; it is étale if the action of G on Y is free (by which we mean that G acts freely on
the set Y (k̄)); and in the affine case, if Y = Spec(A), then Y/G = Spec(AG) (see [Mum08,
Chapter II, §7 and Chapter III, §12]).

It is easy to see that a finite G-equivariant morphism π : Y → X is a G-torsor if and
only if G acts freely on Y and π induces an isomorphism Y/G ∼−→ X. Thus, in particular, a
Galois field extension K/k with Galois group G is the same thing as an irreducible G-torsor
over k (that is, over Spec(k)); and this, in turn, is the same thing as an irreducible variety
of dimension 0, over k, endowed with a simply transitive action of G.

This rewording leads to a slight change in perspective, first emphasised by Hilbert and
Noether: in order to solve the inverse Galois problem for G, we can now start with any
irreducible quasi-projective variety Y endowed with a free action of G; setting X = Y/G,
we obtain a G-torsor π : Y → X; it is then enough to look for rational points x ∈ X(k)
such that the fibre π−1(x) is irreducible. Indeed, this fibre is in any case a G-torsor over k.

Remark 1.2.2. Given a subgroup H ⊆ G, any H-torsor Y → X gives rise to a G-torsor
Y ′ → X. Namely, if H acts on the left on Y , we let it act on the right on G × Y by
(g, y) · h = (gh, h−1y) and observe that Y ′ = (G × Y )/H inherits a free left action of G,
turning the projection Y ′ → X into a G-torsor. The variety Y ′ is (canonically) a disjoint
union indexed by G/H of varieties each of which is (non-canonically, in general) isomorphic,
over X, to Y . Conversely, if Y ′ → X is a G-torsor and X is connected, then any connected
component Y of Y ′ is an H-torsor over X for some subgroup H (namely, the stabiliser
of Y ), and Y ′ coincides with (G × Y )/H. All in all, when X is connected, the data of a
G-torsor Y ′ → X together with the choice of a connected component of Y ′ is equivalent to
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the data of a subgroup H ⊆ G and of a connected H-torsor Y → X. In particular, we see
that if G is a finite group and k is a field, the data of a G-torsor over k together with the
choice of a connected component is equivalent to the data of a Galois field extension K/k
endowed with an embedding Gal(K/k) →֒ G.

1.3. Hilbert’s irreducibility theorem. When the base of the G-torsor π : Y → X is an
open subset of P1

k, with k a number field, and its total space Y is irreducible, the existence
of rational points x ∈ X(k) such that the fibre π−1(x) is irreducible is guaranteed by
Hilbert’s irreducibility theorem, which we state next.

Theorem 1.3.1 (Hilbert). Let k be a number field. Let X ⊆ P1
k be a dense open subset.

Let π : Y → X be an irreducible étale covering (i.e. a finite étale morphism from an
irreducible variety). There exists x ∈ X(k) such that π−1(x) is irreducible.

Theorem 1.3.1 is classically formulated in the following equivalent way: given an
irreducible two-variable polynomial f(s, t) with coefficients in a number field k, there exist
infinitely many t0 ∈ k such that f(s, t0) is an irreducible one-variable polynomial with
coefficients in k. In fact, the set of such t0 is not just infinite: asymptotically, it contains
100% of the elements of k, when they are ordered by height (see [Ser97, §13.1, Theorem 3]).

A proof of Theorem 1.3.1 can be found in [Ser97, §9.2, §9.6], where the next corollary
is also established.

Corollary 1.3.2. Same statement, with X now a dense open subset of Pn
k for some n ≥ 1.

Combining Corollary 1.3.2 with the remarks of §1.2 leads to an observation, originating
from Hilbert’s work, which is extremely effective for the inverse Galois problem. Before
stating it in Corollary 1.3.3 below, let us recall that a variety X over a field k is said to
be rational if it is birationally equivalent to an affine space, i.e. if it contains a dense open
subset isomorphic to a dense open subset of an affine space; when X is irreducible and
reduced, this means that its function field k(X) is a purely transcendental extension of k.

Corollary 1.3.3. Let k be a number field. Let G be a finite group. If there exist an
irreducible quasi-projective variety Y over k and a faithful action of G on Y such that the
quotient Y/G is rational, then the inverse Galois problem admits a positive solution for G
over k.

Proof. As G acts faithfully on Y , it acts freely on a dense open subset of Y , say V . Indeed,
for g ∈ G, the locus in Y fixed by g is a closed subset of Y of codimension ≥ 1; one can
take for V the complement of the (finite) union of these fixed loci. After shrinking V , we
may assume that V/G is isomorphic to an open subset of Pn

k . Corollary 1.3.2 can now be
applied to the projection V → V/G. �

Example 1.3.4. The order 3 automorphism of P1
k given, in homogeneous coordinates, by

[x : y] 7→ [y : y − x] induces a faithful action of G = Z/3Z on P1
k. The quotient P1

k/G is
rational since it is a unirational curve (Lüroth’s theorem). Thus, any number field admits
a cyclic extension of degree 3.
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Ekedahl proved the following useful generalisation of Hilbert’s irreducibility theorem.
We recall that Ω denotes the set of places of a number field k.

Theorem 1.3.5 ([Eke90]). Let π : Y → X be a finite étale morphism between geometrically
irreducible varieties over a number field k. Let S ⊂ Ω be a finite subset. If X(k) 6= ∅, then
there exists a nonempty open subset U ⊂ ∏v∈Ω\S X(kv) such that for all x ∈ X(k) ∩ U ,

the fibre π−1(x) is irreducible.

In the above statement, we view X(k) as diagonally embedded into
∏

v∈Ω\S X(kv), which

we endow with the product of the v-adic topologies. When X is rational, the set X(k)∩U is
automatically nonempty, by the weak approximation property for affine spaces. In general,
though, this set can be empty. A proof of Theorem 1.3.5, at least in the Galois case1, which
is the only one that we shall use (we use it in the proof of Proposition 1.5.5 below), can be
found in [Eke90, Theorem 1.3].

1.4. Noether’s problem: statement. The following problem, raised by Emmy Noether,
takes on particular importance in view of Corollary 1.3.3.

Problem 1.4.1 (Noether). Let G be a finite group and k be a field. Choose an embedding
G →֒ Sn for some n ≥ 1. Let G act on An

k through this embedding by permuting the
coordinates. Is the quotient An

k/G rational over k?

By Corollary 1.3.3, when k is a number field, a positive answer to Noether’s problem for G
over k implies a positive answer to the inverse Galois problem for G over k. Beyond this
implication, Noether’s problem has become a central problem in the study of rationality,
and has been the focus of much research for its own sake.

Example 1.4.2. Noether’s problem has a positive answer, over any field, for the symmetric
group G = Sn. Indeed, for G = Sn, the quotient An

k/G is in fact isomorphic to An
k , as

the ring k[x1, . . . , xn]Sn of symmetric polynomials coincides with the polynomial ring in
the elementary symmetric polynomials. Thus, in particular, every number field admits a
Galois field extension with group Sn, for every n ≥ 1.

Example 1.4.3. Noether’s problem has a positive answer, for any n ≥ 1 and any
embedding G →֒ Sn, when G is an abelian group of exponent e and k is a field that
contains the eth roots of unity and whose characteristic does not divide e. In particular, it
has a positive answer for all abelian groups over C. This is a theorem of Fischer [Fis15].

Example 1.4.4. Noether’s problem has a positive answer, over any field, for the alternat-
ing group G = A5. This is a theorem of Maeda [Mae89]. On the other hand, as soon as
n ≥ 6, Noether’s problem for G = An is still open, over any field.

1It can be checked that Theorem 1.3.5, in the Galois case, still holds when Y is only assumed to be
irreducible, instead of geometrically irreducible. Under this weaker assumption on Y , the Galois case does
imply the general case; hence the validity of Theorem 1.3.5 as stated (and even slightly more generally than
stated, since this weaker assumption on Y also suffices in the non-Galois case).
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Noether knew that her problem has a positive answer for small groups (namely, for all
subgroups of S4). In general, however, its answer is often negative, as we discuss in some
detail in §1.6 below.

1.5. Versal torsors. For some G-torsors π : Y → X, the existence of rational points
x ∈ X(k) such that π−1(x) is irreducible is not only a sufficient condition for a positive
answer to the inverse Galois problem for G over k, but it is also necessary. These are the
versal torsors.

Definition 1.5.1. Let G be a finite group, let k be a field and let X be a variety over k.
A G-torsor π : Y → X is weakly versal if for any field extension k′/k with k′ infinite, every
G-torsor over k′ can be realised as the fibre of π above a k′-point of X. It is versal if for
any dense open subset U ⊆ X, the induced G-torsor π−1(U)→ U is weakly versal.

Example 1.5.2. Choose an embedding G →֒ Sn for some n ≥ 1 and let G act on An
k

through this embedding by permuting the coordinates. Let Y be the open subset of An
k

consisting of the points whose coordinates are all pairwise distinct. Then G acts freely
on Y and it can be checked, as a consequence of Hilbert’s2 Theorem 90, according to which
the Galois cohomology set H1(k′, GLn) is a singleton for any field k′, that the resulting
torsor π : Y → X = Y/G is versal (see [GMS03, Example 5.5]).

Example 1.5.3. Choose an embedding G →֒ SLn(k) for some n ≥ 1 and let G act on the
algebraic group SLn over k through this embedding by right multiplication. This action
is free and it can again be checked, as a consequence of Hilbert’s Theorem 90, that the
resulting torsor π : SLn → SLn/G is versal. The argument for this is the same as in
[GMS03, Example 5.5] once one knows that the Galois cohomology set H1(k′, SLn) is a
singleton for any field k′; the latter fact easily follows from Hilbert’s Theorem 90.

Remark 1.5.4. Two varieties V and W over k are called stably birationally equivalent if
V ×Ar

k and W ×As
k are birationally equivalent for some r, s. It can be shown that for any

finite group G, the varieties Am
k /G and SLn/G appearing in Examples 1.5.2 and 1.5.3, for

all values of m, n and all possible choices of embeddings G →֒ Sm and G →֒ SLn(k), all fall
into the same stable birational equivalence class of varieties over k. This is the so-called
“no-name lemma”, see [CTS07, Corollary 3.9].

The notion of versality, in the context of these notes3, is motivated by the following
observation, which is an improved version of Corollary 1.3.3:

Proposition 1.5.5. Let k be a number field. Let S0 ⊂ Ω be a finite subset. Let G be
a finite group. Suppose that there exist an irreducible smooth quasi-projective variety Y
over k and a free action of G on Y satisfying the following two conditions:

2Despite its name Hilbert’s Theorem 90, this theorem, for arbitrary n, is due to Speiser [Spe19].
3Outside of the context discussed here, the notion of versality notably also gives rise to the definition

of the “essential dimension” of a finite group G over a field k—this is the minimal dimension of a versal
G-torsor defined over k—which is interesting in its own right and has been the focus of many works (see
[BR97, BF03, Rei11, Mer13, Mer17, Rei21]). Even determining the essential dimension of Z/8Z over Q is
a highly nontrivial task (see [Flo08]).
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(i) the variety X = Y/G satisfies weak approximation off S0, i.e. the diagonal embedding
X(k) →֒ ∏

v∈Ω\S0
X(kv) has dense image;

(ii) the G-torsor π : Y → X is weakly versal.

Then Grunwald’s problem admits a positive answer for G over k, for any finite subset
S ⊂ Ω disjoint from S0.

Proof. We shall need the following classical lemma, proved in [Poo17, Proposition 3.5.74]
and whose statement holds for any finite étale morphism π.

Lemma 1.5.6 (Krasner). For v ∈ Ω, the isomorphism class of the variety π−1(xv) over kv

is a locally constant function of xv ∈ X(kv) with respect to the v-adic topology.

Fix Galois field extensions Kv/kv for v ∈ S as in Problem 1.1.1 and choose embeddings
Gal(Kv/kv) →֒ G for v ∈ S. By Remark 1.2.2, these choices give rise to G-torsors over kv

for v ∈ S. By weak versality, the latter come from kv-points xv ∈ X(kv).
Lemma 1.5.6 provides, for every v ∈ S, a neighbourhood Uv ⊂ X(kv) of xv such that

π−1(x′
v) and π−1(xv) are isomorphic, as varieties over kv, for all x′

v ∈ Uv. In particular, by
Remark 1.2.2 again, for all v ∈ S and all x′

v ∈ Uv, the fibre π−1(x′
v) is isomorphic, over kv,

to a disjoint union of copies of Spec(Kv).
The weak versality of π also implies that X(k) 6= ∅. Theorem 1.3.5 therefore provides

a nonempty open subset U 0 ⊂ ∏v∈Ω\(S∪S0) X(kv) such that π−1(x) is irreducible for all

x ∈ X(k)∩U 0. Let U =
(∏

v∈S Uv

)
×U 0. As the variety X satisfies weak approximation

off S0, the set X(k) ∩U is nonempty. We fix x ∈ X(k) ∩U .
The fibre π−1(x) is now an irreducible G-torsor (i.e. Spec(K) for some Galois field

extension K/k with Galois group G) whose scalar extension from k to kv , for each v ∈ S,
is a disjoint union of copies of Spec(Kv). This proves the proposition. �

As smooth rational varieties satisfy weak approximation, one can apply Proposition 1.5.5
with S0 = ∅ whenever the variety Y/G is rational and the torsor Y → Y/G is weakly versal.
In view of Example 1.5.2, we deduce:

Corollary 1.5.7. Given a finite group G and a number field k, a positive answer to
Noether’s problem for G and k implies a positive answer to Grunwald’s problem for G
and k, for any S ⊂ Ω.

Corollary 1.5.7 was first established by Saltman (see [Sal82, Theorem 5.1, Theorem 5.9]).
As an example of an application, Corollary 1.5.7 implies that over any number field k,
Grunwald’s problem has a positive answer for Sn and for A5 over k, without the need to
exclude any place from S ⊂ Ω (see Example 1.4.2 and Example 1.4.4).

1.6. Noether’s problem: some counterexamples. The hope that a positive solution
to the inverse Galois problem might in general come from a positive solution to Noether’s
problem turned out, however, to be too optimistic. Indeed, Noether’s problem seems to
have a negative solution more often than not, as we briefly discuss below.



8 OLIVIER WITTENBERG

1.6.1. Counterexamples among abelian groups. Noether’s problem has a negative answer
even for cyclic groups over Q. Swan and Voskresenskĭı discovered, at the end of the 1960’s,
the counterexample Z/47Z over Q (see [Swa69], [Vos70]). An even smaller counterexample,
the group Z/8Z over Q, was then exhibited in [EM73], [Len74], [Vos73]. As Saltman [Sal82]
later observed, Corollary 1.5.7 provides a direct proof that Noether’s problem admits
a negative answer for Z/8Z over Q. Indeed, by this corollary, it suffices to show that
Grunwald’s problem has a negative answer for G = Z/8Z, k = Q and S = ∅, and this is
exactly what Wang had done in the 1940’s:

Proposition 1.6.2 (Wang). In a cyclic field extension K/Q of degree 8, the prime 2
cannot be inert. In other words, the completion of a cyclic field extension K/Q of degree 8
at a place dividing 2 cannot be the unramified extension of Q2 of degree 8.

An elementary proof can be found in [Swa83, p. 29, end of §5].
Further work on Noether’s problem for abelian groups, by Endo, Miyata, Voskresenskĭı

and Lenstra, led to a complete characterisation, by Lenstra [Len74], of the stable rationality
of the quotient An

k/G appearing in Problem 1.4.1 (and even of its rationality, in the case
where G acts through its regular representation), when G is a finite abelian group and k is
an arbitrary field. This characterisation is in terms of the arithmetic of cyclotomic number
fields. For cyclic groups over Q, it reads as follows (see [Len80, §3]):

Theorem 1.6.3 (Lenstra). Let n ≥ 1 be an integer. Let G = Z/nZ faithfully act on An
Q

by cyclically permuting the coordinates. The following conditions are equivalent:

(1) The variety An
Q/G is rational.

(2) The variety An
Q/G is stably rational.

(3) The integer n is not divisible by 8, and for every prime factor p of n, if s denotes
the p-adic valuation of n, the cyclotomic ring Z

[
ζ(p−1)ps−1

]
contains an element

whose norm is equal to p or to −p.

We recall that a variety is said to be stably rational if its product with an affine space of
large enough dimension is rational. Stable rationality is known to be strictly weaker than
rationality in general, even over C, see [BCTSSD85].

Theorem 1.6.3 when n is a prime number is due to Voskresenskĭı [Vos71]. Even when n
is prime, determining whether condition (3) of Theorem 1.6.3 does or does not hold for a
given n is in general a hard problem; for instance, it is only recently that this condition
was shown to fail for n = 59 (see [Hos15, Added remark 3.2]). Even more recently, based
on Theorem 1.6.3, on a height estimate due to Amoroso and Dvornicich [AD00] and on
extensive computer calculations run by Hoshi [Hos15], among other tools, Plans [Pla17]
was able to give a complete answer to Noether’s problem for cyclic groups over Q:

Theorem 1.6.4 (Plans). The conditions of Theorem 1.6.3 are equivalent to the following:

(4) The integer n divides 22 · 3m · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 61 · 67 · 71
for some integer m ≥ 0.

In particular, Noether’s problem has a negative answer over Q for G = Z/pZ for all but
finitely many prime numbers p.
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1.6.5. Counterexamples over C. For non-abelian groups, Noether’s problem has a negative
answer even over C. Saltman [Sal84] gave the first counterexamples over C. His results
were then generalised by Bogomolov [Bog88], who established the following theorem (see
[CTS07, §7] and [GS17, §6.6] for accounts of its proof):

Theorem 1.6.6 (Bogomolov’s formula). Let n ≥ 1 and G ⊂ SLn(C) be a finite subgroup.
The unramified Brauer group of the complex variety SLn/G is isomorphic to

Ker
(
H2(G, Q/Z)→

∏
H2(H, Q/Z)

)
,(1.6.7)

where the product ranges over all bicyclic subgroups H ⊆ G (i.e. abelian subgroups of G
that are generated by at most two elements).

We recall that the Brauer group, defined by Grothendieck as H2
ét(−, Gm), is a stable

birational invariant among smooth proper varieties over a field of characteristic 0, and that
the unramified Brauer group of a variety over a field of characteristic 0 is by definition
the Brauer group of any smooth proper variety birationally equivalent to it; for instance,
the unramified Brauer group of An

C is trivial. Thus, if the unramified Brauer group of a
variety over C does not vanish, then this variety is not stably rational, a fortiori it is not
rational. The unramified Brauer group was first considered and used as a tool for rationality
questions by Saltman [Sal85, Sal84]. For smooth proper unirational varieties over C, it
coincides with the invariant that had earlier been employed by Artin and Mumford [AM72]
to give “elementary” examples of complex unirational threefolds failing to be rational. For
a thorough treatment of the Brauer group, we refer the reader to [CTS21].

In view of Remark 1.5.4, Bogomolov’s formula gives an easy recipe for computing the
unramified Brauer group of the variety An

C/G that appears in Noether’s problem over C.
The kernel (1.6.7) can be computed to be nonzero for some p-groups G, thus yielding
counterexamples to Noether’s problem over C (see [CTS07, Example 7.5], [GS17, §6.7]).

Other counterexamples over C were later produced by Peyre [Pey08] based on a further
stable birational invariant introduced by Colliot-Thélène and Ojanguren [CTO89], called
unramified cohomology of degree 3. The unramified Brauer group coincides with unramified
cohomology of degree 2.

Many more results about Noether’s problem can be found in the survey [Hos20].

1.7. Retract rationality. Saltman introduced a useful weakening of the notion of stable
rationality: a variety X over a field k is said to be retract rational if there exist an integer
n ≥ 1, a dense open subset U ⊆ An

k and a morphism U → X that admits a rational section.
Retract rationality is a stable birational invariant.

In the situation of Noether’s problem, it can happen that the variety An
k/G fails to be

rational and even to be stably rational, but is nevertheless retract rational. For instance
this is so when G = Z/47Z and k = Q:

Theorem 1.7.1 (Saltman [Sal82]). Taking up the notation of Problem 1.4.1, assume that G
is abelian, that k has characteristic 0, and, letting 2r denote the highest power of 2 that
divides the exponent of G, that the cyclotomic field extension k(ζ2r )/k is cyclic. Then the
quotient An

k/G is retract rational over k.
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Theorem 1.7.1 can in particular be applied to all finite abelian groups of odd order. Thus,
retract rationality is weaker than rationality (compare with Theorem 1.6.4). Nevertheless,
as far as the applications to the inverse Galois problem are concerned, it is just as good:
indeed, as Saltman observed, smooth retract rational varieties over number fields are easily
seen to satisfy weak approximation, so that Proposition 1.5.5 can be applied with S0 = ∅

whenever the variety Y/G is retract rational and the torsor Y → Y/G is weakly versal.
Combining this observation with Theorem 1.7.1 and with Proposition 1.5.5, we deduce,

in view of Example 1.5.2, that Grunwald’s problem has a positive answer over any number
field k, without excluding any place, for all abelian groups G satisfying the assumption
of Theorem 1.7.1—a conclusion that already resulted from the Grunwald–Wang theorem,
but whose proof now fits into the framework of Hilbert’s and Noether’s general strategy,
even though, according to Theorem 1.6.4, Noether’s problem itself has a negative answer
for many of these groups G (perhaps even for “almost all” of them?).

Conversely, by the same token, Wang’s negative answer to Grunwald’s problem (see
Proposition 1.6.2) implies that when G = Z/8Z and k = Q, the quotient An

k/G fails
not only to be stably rational but also to be retract rational. Similarly, the negative
answers to Noether’s problem over C discussed in §1.6.5 are in fact counterexamples to the
retract rationality of the quotients An

C/G in question. Thus, despite the wider scope of
applicability of the Hilbert–Noether method when rationality is replaced with the weaker
notion of retract rationality, further ideas are necessary to address arbitrary finite groups.

2. Regular inverse Galois problem

2.1. Statement. We saw, in §1, that Noether’s problem does not always admit a positive
answer, i.e. the quotient variety An

k/G can fail to be rational, or stably rational, or even
retract rational. A simple way out, if one still wants to apply Hilbert’s irreducibility
theorem, is to look for rational subvarieties of An

k/G, in particular rational curves. To take
advantage of the geometry of the situation, it is natural to focus on those rational curves
whose inverse image in An

k is geometrically irreducible and meets the locus Y ⊂ An
k on

which G acts freely. By the versality of the torsor Y → Y/G (Example 1.5.2), finding such
curves is the same as solving the regular inverse Galois problem (when k is perfect):

Problem 2.1.1 (regular inverse Galois). Let k be a field. Let G be a finite group. Do there
exist a smooth, projective, geometrically irreducible curve C over k and a finite morphism
π : C → P1

k such that the corresponding extension of function fields k(C)/k(t) is Galois
with Gal(k(C)/k(t)) ≃ G?

When k is a perfect field, this is equivalent to asking for the existence of a field extension
of k(t) with Galois group G in which k is algebraically closed, i.e. a field extension that is
regular over k. Following standard practice, we shall refer to such a field extension as a
regular Galois extension of k(t) with group G.

When k is a number field, a positive answer to Problem 2.1.1 for k and G implies
a positive answer to the inverse Galois problem for k and G, by Hilbert’s irreducibility
theorem. Over an arbitrary field and for an arbitrary finite group, the inverse Galois
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problem and Noether’s problem both have negative answers in general, as we have seen; in
contrast, Problem 2.1.1 might well always have a positive answer.

Remark 2.1.2. It follows from the Bertini theorem that if k is infinite and perfect, a
positive answer to Noether’s problem for k and G implies a positive answer to the regular
inverse Galois problem for k and G (see [Jou83, Théorème 6.3]). In fact, for such k, one
can check that the retract rationality of An

k/G already implies a positive answer to the
regular inverse Galois problem for k and G.

2.2. Riemann’s existence theorem. A solution to the regular inverse Galois problem
over k gives rise, by scalar extension, to a solution over any field extension of k. Thus, in
order to find a solution over Q, it is necessary to first solve the problem over C and over Q̄.
The key tool for this is Riemann’s existence theorem, which allows one to transform this
algebraic question into a purely topological one.

Theorem 2.2.1 (Riemann’s existence theorem). Let k be an algebraically closed subfield
of C. Let X be a variety over k. The natural functor

(
étale coverings of X

)
→
(
finite topological coverings of X(C)

)

that maps Y → X to Y (C)→ X(C) is an equivalence of categories.

An étale covering of X is a variety over k endowed with a finite étale morphism to X.
A topological covering is finite if its fibres are finite. Theorem 2.2.1 in the above formulation
is proved in [Gro03]. To be precise, the case where k = C is [Gro03, Exp. XII, Théorème 5.1]
and builds on Grothendieck’s reworking of Serre’s GAGA theorems; the case of an arbitrary
algebraically closed subfield of C then results from it by [Gro03, Exp. XIII, Corollaire 3.5].

Corollary 2.2.2. Let k be an algebraically closed subfield of C. Let X be a connected
variety over k. Let x ∈ X(k). For any finite group G, isomorphism classes of G-torsors
(resp. of connected G-torsors) Y → X endowed with a lift y ∈ Y (k) of x are canonically in
one-to-one correspondence with homomorphisms π1(X(C), x) → G (resp. with surjective
homomorphisms π1(X(C), x) ։ G). Changing the choice of y amounts to conjugating the
homomorphism by an element of G.

Proof. Indeed, this follows from Theorem 2.2.1 combined with the well-known equivalence
of categories between the category of topological coverings of X(C) and the category of sets
endowed with an action of π1(X(C), x) (see [Sza09, Theorem 2.3.4]). The homomorphism
π1(X(C), x) → G corresponding to Y → X sends γ ∈ π1(X(C), x) to the unique g ∈ G
such that γy = yg, where we are taking the convention that the action of G on Y is a
right action and that the monodromy action of π1(X(C), x) on the fibre of Y (C)→ X(C)
above x is a left action. �

Remark 2.2.3 (reminder on monodromy groups and Galois groups). Let k and X be as
in Corollary 2.2.2. Let x ∈ X(C). The monodromy group M of an étale covering Y → X
is, by definition, the largest quotient of π1(X(C), x) through which the monodromy action
of this group on the fibre of Y (C)→ X(C) above x factors. Assume that X is normal and
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irreducible and let Y ′ → Y → X be a tower of irreducible étale coverings such that the field
extension k(Y ′)/k(X) is a Galois closure of k(Y )/k(X). Let G = Gal(k(Y ′)/k(X)). Then
Y ′ → X is the normalisation of X in k(Y ′); as such, it receives an action of G, with respect
to which it is a G-torsor; in addition, the surjective homomorphism π1(X(C), x) ։ G that
Corollary 2.2.2 associates with Y ′ → X and with the choice of a lift y′ ∈ Y ′(k) of x induces
an isomorphism M ∼−→ G. (Changing the choice of the lift y′ amounts to composing
this isomorphism with an inner automorphism.) Thus, computing the Galois group of the
Galois closure of the field extension k(Y )/k(X) is tantamount to computing a monodromy
group in the topological setting.

2.3. Classifying Galois covers of the projective line over C or over Q̄. Let us
apply Theorem 2.2.1 to the open subsets of the projective line. The fundamental group of
the complement of finitely many points in P1(C) is easy to describe:

Proposition 2.3.1. Let X ⊆ P1
C be a dense open subset. Write P1

C \X = {b1, . . . , br}.
Let x ∈ X(C). The group π1(X(C), x) admits a presentation with r generators γ1, . . . , γr

and a unique relation γ1 · · · γr = 1, such that γi belongs, for every i ∈ {1, . . . , r}, to the
conjugacy class in π1(X(C), x) of a local counterclockwise loop around bi.

What the last sentence of Proposition 2.3.1 means is this: if Ni denotes a small enough
open neighbourhood of bi in P1(C) that is biholomorphic to the unit disc, then a loop
contained in Ni \{bi} and going once around bi in the counterclockwise direction gives rise,
after choosing a path from x to a point of this loop, to an element of π1(X(C), x) whose
conjugacy class does not depend on the chosen path. The content of Proposition 2.3.1 is
that these paths can be chosen in such a way that the γi generate π1(X(C), x) and satisfy
the relation γ1 · · · γr = 1. This is elementary and well-known.

Using Proposition 2.3.1, we can draw the following corollary from Riemann’s existence
theorem. Corollary 2.3.2 completely describes G-torsors over dense open subsets of the
projective line over algebraically closed subfields of C, and implies a positive solution to
the regular inverse Galois problem over such fields. (The notation ni∗r(G) appearing in its
statement refers to the name Nielsen, see [Völ96, §9.2], [RW06, §3.1].)

Corollary 2.3.2. Let k be an algebraically closed subfield of C. Let X ⊆ P1
k be a dense

open subset. Write P1
C \ X = {b1, . . . , br}. Let G be a finite group. Consider the set

of r-tuples (g1, . . . , gr) ∈ Gr such that g1 · · · gr = 1 and that g1, . . . , gr generate G. Let
ni∗r(G) denote the quotient of this set by the action of G by simultaneous conjugation.
The set of isomorphism classes of irreducible G-torsors over X is in bijection with ni∗r(G)
(through a bijection that is canonically determined once a presentation of π1(X(C), x) as
in Proposition 2.3.1 is fixed).

Proof. By Corollary 2.2.2, isomorphism classes of irreducible G-torsors over X are canoni-
cally in one-to-one correspondence with conjugacy classes of surjections π1(X(C), x) ։ G.
Apply Proposition 2.3.1 to conclude. �

Corollary 2.3.3. For any finite group G, the regular inverse Galois problem admits a
positive answer over Q̄.



AROUND THE INVERSE GALOIS PROBLEM 13

Proof. Let r be an integer, large enough that G can be generated by r−1 elements. Pick r
points of P1(Q̄) and let X ⊂ P1

Q̄
denote their complement. As ni∗r(G) 6= ∅, Corollary 2.3.2

ensures the existence of an irreducible G-torsor p : Y → X. As Y is normal and p is finite,
the normalisation of P1

Q̄
in the function field of Y is a smooth curve C over Q̄ containing Y

as a dense open subset, equipped with a finite morphism π : C → P1
Q̄

that extends p. As p

is a G-torsor, the function field extension Q̄(C)/Q̄(t) is Galois with group G (see §1.2). �

2.4. Monodromy of some non-Galois covers of the projective line. Proposition 2.3.1
is also useful for computing the monodromy of ramified covers of the complex projective
line that are not necessarily Galois, via the following result.

Proposition 2.4.1. Let C be a smooth, projective, irreducible curve over C, endowed with
a finite morphism π : C → P1

C. Let X ⊆ P1
C be a dense open subset over which π is étale.

Fix x ∈ X(C) and write P1
C \X = {b1, . . . , br}. Let M denote the monodromy group of π,

i.e. the largest quotient of π1(X(C), x) that still acts on π−1(x). After choosing a bijection
π−1(x) ≃ {1, . . . , n}, we view M as a transitive subgroup of the symmetric group Sn. There
exist µ1, . . . , µr ∈M satisfying the following three properties:

(1) the elements µ1, . . . , µr generate the group M ;
(2) their product µ1 · · ·µr is the identity of M ;
(3) for each i ∈ {1, . . . , r}, the element µi ∈ Sn is a product of cycles whose lengths are

the ramification indices of π at the points of π−1(bi).

Proof. Applying Proposition 2.3.1 and letting µi denote the image of γi in M , we obtain (1)
and (2). Property (3) only depends on the conjugacy class of γi and is a standard calculation
of the monodromy of the étale coverings of the punctured unit disc. �

Example 2.4.2. Let C be a smooth, projective, irreducible curve over an algebraically
closed subfield k of C, endowed with a morphism π : C → P1

k of degree n ≥ 1. Assume
that all ramification points have ramification index 2 and that no two of them lie in the
same fibre of π. Then the Galois group of a Galois closure of the function field extension
k(C)/k(t) is the full symmetric group Sn. Indeed, Remark 2.2.3 and Proposition 2.4.1
show that this Galois group is a transitive subgroup of Sn generated by transpositions; the
only such subgroup is Sn itself.

Remark 2.4.3. Let k be a field of characteristic 0. Let k(t) ⊆ K ⊆ K ′ ⊂ k(t) be a tower

of fields, where k(t) denotes an algebraic closure of k(t), where K/k(t) is a finite extension

and where K ′/k(t) is its Galois closure inside k(t). Let us assume that k is algebraically
closed in K. The field k need not, in general, be algebraically closed in K ′. (For example,

if k = Q and K = Q(t1/n), then K ′ = Q(ζn)(t1/n), where ζn denotes a primitive nth root
of unity.) This pathology, however, cannot occur if the underlying topological monodromy
group is the full symmetric group, or, more generally, if it is a self-normalising subgroup
of the ambient symmetric group. Indeed, let k′ denote the algebraic closure of k in K ′,
set G = Gal(K ′/k(t)) and Ggeom = Gal(K ′/k′(t)). Letting k̄ denote the algebraic closure

of k in k(t), we remark that K ′ ⊗k′ k̄ and K ⊗k k̄ are fields and that the field extension
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K ′ ⊗k′ k̄/k̄(t) is a Galois closure of K ⊗k k̄/k̄(t), so that its Galois group Ggeom can be
viewed as the topological monodromy group associated with K/k(t) (see Remark 2.2.3).
Fix a primitive element α1 ∈ K over k(t). Denote by α1, . . . , αn ∈ K ′ the collection of
its Galois conjugates. As G acts faithfully on the αi’s, there is a sequence of inclusions
Ggeom ⊆ G ⊆ Sn. As k′/k is a Galois field extension, the group Ggeom is normal in G;
hence, if Ggeom is self-normalising in Sn, then G = Ggeom and k is algebraically closed
in K ′. Thus, for instance, if the curve C and the morphism π of Example 2.4.2 come by
scalar extension from a curve and a morphism defined over Q, and if K/Q(t) denotes the
function field extension given by the latter morphism, then a Galois closure of K/Q(t) has
Galois group Sn.

In conjunction with Remark 2.4.3, Example 2.4.2 leads to many concrete examples of
regular Galois extensions of Q(t) with group Sn. Let us recall, however, that the mere
existence of regular Galois extensions of Q(t) with group Sn already followed from the
positive answer to Noether’s problem for Sn over Q (see Example 1.4.2 and Remark 2.1.2).
As Noether’s problem is open for the alternating group An over Q as soon as n ≥ 6, it is
of interest to note that Proposition 2.4.1 also leads to concrete examples of regular Galois
extensions of Q(t) with group An for all values of n, as we now illustrate.

Example 2.4.4. Let C be a smooth, projective, geometrically irreducible curve over a
subfield k of C, endowed with a morphism π : C → P1

k of degree n ≥ 3. Assume that π has
exactly three ramification points, that these ramification points are rational points of C
lying above 0, 1,∞ ∈ P1(k), with ramification indices e0, e1, e∞, respectively, and that
(e0, e1, e∞) = (n, n−1, 2) if n is even and (e0, e1, e∞) = (n−1, n, 2) if n is odd. Let K ′/k(t)
denote a Galois closure of the function field extension k(C)/k(t). We first note that K ′ is
a regular Galois extension of k(t) with group Sn. Indeed, when k is algebraically closed,
Remark 2.2.3 and Proposition 2.4.1 imply that Gal(K ′/k(t)) is a transitive subgroup of Sn

that contains a cycle of order n− 1 and a transposition, but the only such subgroup is Sn

itself (see [Ser07, Lemma 4.4.3]); by Remark 2.4.3, the case of arbitrary k follows. Secondly,
we claim that there exists α ∈ k∗ such that αt is a square in K ′. Setting u =

√
αt, this

will imply that K ′ is a regular Galois extension of k(u) with group An (where u can
now be viewed as a free variable), as desired. To verify this claim, we note that the
topological monodromy of the double cover of P1

k corresponding to the (unique) quadratic
subextension L/k(t) of K ′/k(t) is obtained by composing the topological monodromy of π
with the signature morphism Sn → Z/2Z. As the local monodromy of π at 1 is given by
a cycle of odd length, it follows that L/k(t) is unramified outside of 0 and ∞, and, hence,
that L = k

(√
αt
)

for some α ∈ k∗ (as k is algebraically closed in L).

For explicit equations to which Example 2.4.4 can be applied, see [Ser07, §4.5].

2.5. Looking for covers over non-algebraically closed ground fields. Now that we
know that the regular inverse Galois problem has a positive answer over Q̄, we can try to
find solutions over Q or at least over overfields of Q as small as possible. This has been
achieved over the completions of Q, thus yielding, for all finite groups, a positive answer
to the regular inverse Galois problem over R (Krull and Neukirch [KN71]) and over the
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field Qp of p-adic numbers for every prime p (Harbater [Har87]). Pop [Pop96] generalised

these results as follows4,5:

Theorem 2.5.1 (Harbater and Pop). The regular inverse Galois problem has a positive
answer over any large field, for any finite group.

By definition, a field k is large when every smooth curve over k that has a rational point
has infinitely many of them. Examples include all fields that are complete with respect to
an absolute value, such as R and Qp, as well as infinite algebraic extensions of finite fields
or more generally all so-called pseudo-algebraically closed fields (fields over which every
smooth geometrically connected curve has infinitely many rational points).

The proofs of Theorem 2.5.1 given by Harbater and by Pop rely, in the formal or in the
rigid analytic context over a complete discretely valued ground field, on the construction,
by patching, of appropriate “topological coverings”, and on a variant, in the corresponding
context, of Riemann’s existence theorem. Over C, the underlying patching construction is
presented in [Sza09, §3.5].

Theorem 2.5.1 had previously been established by Fried and Völklein [FV91] in the case
of pseudo-algebraically closed fields of characteristic 0. From this special case they deduced
the following result in positive characteristic:

Theorem 2.5.2 (Fried and Völklein). Let G be a finite group. The regular inverse Galois
problem has a positive answer for G over Fp(t) for all but finitely many primes p.

Colliot-Thélène later shed new light on Theorem 2.5.1 by recasting it as a theorem about
the existence of suitable rational curves on the varieties An

k/G appearing in Noether’s
problem, and by noting that even though these varieties can fail to be rational, they are
in any case rationally connected, which opens the door to applications of the theory of
deformation of rational curves on rationally connected varieties over large fields—a theory
developed, in great generality, by Kollár [Kol99]. Over large fields of characteristic 0, a
geometric proof of Theorem 2.5.1 that proceeds by constructing rational curves on An

k/G
was thus given in [CT00]. See also [Kol00], [Kol03], [MB01] for generalisations.

Unfortunately, no method for the systematic construction of rational curves on rationally
connected varieties over Q is known; more generally, the various methods on which all
known proofs of Theorem 2.5.1 rely fall short of solving any case of the regular inverse Galois
problem over a given number field. As of today, all known constructions of realisations of
finite groups as regular Galois groups over Q exploit more or less ad hoc ideas. One of the
most successful approaches is the rigidity method, initiated by Shih, Fried, Belyi, Matzat
and Thompson in the 1970’s and the 1980’s, which we discuss next, in §§2.6–2.7.

4It is not immediately clear that the article [Pop96] establishes Theorem 2.5.1 as we have stated it,
without assuming the field to be perfect: in our definition of the regular inverse Galois problem, the sought-
for field extension of k(t) was required to admit a smooth projective model, which could fail over imperfect
fields. However, in any case, Theorem 2.5.1 as we have stated it is proved in [MB01, Théorème 1.1].

5Theorem 2.5.1 (at least for perfect large fields, see the previous footnote) also follows from the results
of Harbater [Har87], see [Har95, §4.5].
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Remark 2.5.3. In practice, the rigidity method is particularly useful for realising finite
simple groups. Considering the regular inverse Galois problem for various classes of non-
simple groups, especially central extensions, also leads to interesting challenges, better dealt
with by other methods. We refer the reader to the work of Mestre [Mes90, Mes94, Mes98],
who solved it for the central extensions of An for all n, as well as for SL2(F7) and for
the unique nontrivial central extension of the Mathieu group M12 by Z/2Z (starting from
known regular realisations of PSL2(F7) and of M12). To put these results into perspective,
let us note that Noether’s problem has negative answers, over Q, for the unique nontrivial
central extensions of A6 and of A7 by Z/2Z (Serre [GMS03, Theorem 33.25]).

2.6. Hurwitz spaces. Even though Hurwitz spaces are not necessary for the description
and the implementation of the rigidity method, their introduction makes the theory rather
transparent; in addition, they are indeed indispensable for some of its refinements. Hurwitz
spaces are moduli spaces of smooth projective irreducible covers of the projective line. We
shall consider them only in characteristic 0. In addition, we shall restrict attention to
the moduli space of G-covers; the term “G-cover” is another name for the regular Galois
extensions of k(t) with group G that we have been considering since the beginning of §2:

Definition 2.6.1. Let G be a finite group. Let k be a field. A G-cover over k is a
smooth, proper, geometrically irreducible curve C over k endowed, on the one hand, with
a finite morphism π : C → P1

k such that the corresponding extension of function fields
k(C)/k(t) is Galois, and, on the other hand, with an isomorphism G ∼−→ Gal(k(C)/k(t)).
(In particular G acts faithfully on C and the morphism π−1(U) → U induced by π is a
G-torsor for any dense open subset U ⊂ P1

k above which π is étale.)

The group of automorphisms of any G-cover, i.e. the group of automorphisms of C that
respect not only the morphism π but also the given isomorphism G ∼−→ Gal(k(C)/k(t)), is
the centre of G. We shall assume, until the end of §2, that G has trivial centre. This is
not too serious a restriction (as any finite group is a quotient of a finite group with trivial
centre, see [FV91, Lemma 2]) and it will ensure that our moduli space is a variety rather
than a stack (as the objects that we want to classify have no nontrivial automorphism).

To prepare for the statement of the next theorem, we need to introduce some notation.
When k has characteristic 0, the branch locus of π : C → P1

k is by definition the smallest
reduced 0-dimensional subvariety B of P1

k such that π is étale over P1
k \B. Its degree is the

cardinality of B(k̄), where k̄ denotes an algebraic closure of k. For any integer r ≥ 1, we
denote by U r ⊂ (P1

Q)r the locus of r-tuples with pairwise distinct components, and by Ur

the quotient of U r by the natural action of the symmetric group Sr. Thus Ur is a smooth
variety over Q, and for any field k of characteristic 0, the set Ur(k) can be identified with
the set of reduced 0-dimensional subvarieties of P1

k of degree r, i.e. with the set of subsets

of P1(k̄) of cardinality r that are stable under Gal(k̄/k).

Theorem 2.6.2 (Fried and Völklein [FV91]). Let G be a finite group with trivial centre and
r ≥ 1 be an integer. With G and r, one can canonically associate a smooth variety HG,r

over Q such that for any field k of characteristic 0, the set HG,r(k) is the set of isomorphism
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classes of G-covers over k whose branch locus has degree r. It is equipped with a finite étale
morphism ρ : HG,r → Ur that maps the isomorphism class of a G-cover to its branch locus.

The variety HG,r is called a Hurwitz space.
A modern approach to Theorem 2.6.2 consists in defining G-covers not just over fields,

as in Definition 2.6.1, but more generally over schemes; one then proves that the resulting
moduli functor on the category of schemes of characteristic 0 is representable, by HG,r.
This is the approach adopted by Wewers [Wew98], who works more generally over Z (with
tame covers) and without assuming that the centre of G is trivial (thus obtaining a moduli
stack HG,r). See [RW06].

We note that Hurwitz spaces were first contemplated by Hurwitz [Hur91], and, with
a functorial point of view, by Fulton [Ful69]. However, these authors only considered
(non-Galois) covers with “simple” ramification, i.e. such that all ramification points have
ramification index 2 and no two of them lie over the same branch point. This is insufficient
for the purposes of the regular inverse Galois problem (see Example 2.4.2).

Let us come back to our motivation. It is tautological that for any finite group G with
trivial centre, the regular inverse Galois problem admits a positive answer for G over Q

if and only if there exists an integer r ≥ 1 such that HG,r(Q) 6= ∅. For the question of
the existence of a rational point on one of the varieties HG,r to be tractable, one needs, in
turn, some understanding of their geometry.

The varieties HG,r can be described in a very explicit combinatorial fashion, at least
geometrically, thanks to the finite étale morphism ρ : HG,r → Ur given by Theorem 2.6.2.
Let us pick up the notation ni∗r(G) introduced in Corollary 2.3.2 and write nir(G) ⊆ ni∗r(G)
for the subset formed by the conjugacy classes of those r-tuples (g1, . . . , gr) such that
none of the gi’s is equal to 1. It then follows from (the proof of) Corollary 2.3.2 that the
fibre of ρ above any complex point of Ur can be identified with nir(G). In addition, the
fundamental group of Ur(C) admits a down-to-earth presentation (as a quotient of the
Artin braid group by one relation) and its action on nir(G) can also be made explicit (see
[FV91, §1.3]). Thus, for instance, the task of describing the irreducible components of the
variety (HG,r)Q̄ becomes equivalent to that of computing the orbits of a certain action of

the braid group on nir(G). Unfortunately, as r increases, even this “simple” task quickly
becomes computationally infeasible for modern computers (see e.g. [Hä22]).

2.7. The rigidity method. This method consists in cleverly identifying irreducible
components of HG,r that contain rational points for somehow “trivial” reasons. To explain
it, we need to refine the étale covering ρ that appears in Theorem 2.6.2.

2.7.1. Algebraic local monodromy. Let k be a field of characteristic 0. Let π : C → P1
k be

a G-cover over k. Let bi ∈ P1(k) be a rational branch point. Let X ⊂ P1
k be a dense open

subset over which π is étale.
Under the assumption that k is a subfield of C, we have associated with π and bi, in §2.3,

a canonical conjugacy class of G, namely the conjugacy class of the element gi appearing in
Corollary 2.3.2. This is the “local monodromy” of π at bi. We recall that it is the image, by
a surjection π1(X(C), x) ։ G that is well-defined up to conjugation, of the conjugacy class
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of a local counterclockwise loop around bi. To make this topological definition fit in with
the moduli picture of Theorem 2.6.2 and in particular to understand how it behaves with
respect to the action of the group of automorphisms of k, we need to make it algebraic.

We do this as follows. Let k̄ be an algebraic closure of k. The completion k̄(t)bi
of k̄(t) at

the discrete valuation defined by bi is isomorphic to the field of formal power series k̄((u)),

whose algebraic closure is the field of Puiseux series
⋃

n≥1 k̄((u1/n)). By Kummer theory,

the absolute Galois group of k̄(t)bi
is canonically isomorphic to Ẑ(1)k̄ = lim←−n≥1

µn(k̄).

The inclusion of fields k̄(t) →֒ k̄(t)bi
induces a continuous homomorphism in the reverse

direction, well-defined up to conjugation, between their absolute Galois groups; hence it
induces a continuous homomorphism Ẑ(1)k̄ → G, well-defined up to conjugation by an

element of G. This conjugacy class of homomorphisms Ẑ(1)k̄ → G is the analogue of the gi

from Corollary 2.3.2. We call it the algebraic local monodromy of π at bi.

Remarks 2.7.2. (i) When k is a subfield of C, one can use the generator ζn = e2iπ/n

of µn(k̄) to identify Ẑ(1)k̄ with Ẑ as topological groups (i.e. disregarding Galois actions).
The algebraic local monodromy of π at bi then becomes identified with a conjugacy class
of G. One verifies that through this identification, the algebraic local monodromy of π
at bi coincides with the conjugacy class of gi from Corollary 2.3.2.

(ii) The natural action of Gal(k̄/k) on Ẑ(1)k̄ induces an action of Gal(k̄/k) on the set

of conjugacy classes of homomorphisms Ẑ(1)k̄ → G. It therefore makes sense to consider

the conjugates, under this action of Gal(k̄/k), of the algebraic local monodromy of π at bi.
(We recall that bi ∈ P1(k).) This feature of the algebraic point of view plays a crucial
rôle in the rigidity method. It is not visible on the topological side of the identification of
Remark 2.7.2 (i), except when k = R. Indeed, in this case, complex conjugation acts by

multiplication by −1 on Ẑ(1)k̄, hence maps the algebraic local monodromy of π at bi to its
“inverse”; while on the topological side, it sends a local counterclockwise loop around bi to
a local clockwise loop around bi, and hence again it maps the conjugacy class of gi to the
conjugacy class of g−1

i .
(iii) For an arbitrary field k of characteristic 0, the choice of a topological generator of

the procyclic group Ẑ(1)k̄ should be thought of as an algebraic analogue of the choice of
an orientation of the punctured unit disc (an insight of Grothendieck, see [Del73, (2.1)]),
as is illustrated by Remark 2.7.2 (ii).

2.7.3. Factoring ρ. The natural action of Gal(Q̄/Q) on the finite set Homcont

(
Ẑ(1)Q̄, G

)

of continuous homomorphisms Ẑ(1)Q̄ → G induces a continuous action of Gal(Q̄/Q) on
the quotient of this finite set by the conjugation action of G. As the functor

(
reduced 0-dimensional varieties over Q

)
→
(

finite sets endowed with a
continuous action of Gal(Q̄/Q)

)
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that sends a variety Z to the set Z(Q̄) is an equivalence of categories, we can canonically
associate with G a reduced 0-dimensional variety CG over Q such that

CG(Q̄) = Homcont

(
Ẑ(1)Q̄, G

)
/(conjugation by G),

compatibly with the natural continuous actions of Gal(Q̄/Q) on both sides. One then has
a canonical Gal(k̄/k)-equivariant identification

CG(k̄) = Homcont

(
Ẑ(1)k̄, G

)
/(conjugation by G)

for any field k of characteristic 0, with algebraic closure k̄.
Given a G-cover π : C → P1

k over a field k of characteristic 0 and a rational branch point
b ∈ P1(k), the algebraic local monodromy of π at b defined in §2.7.1 is thus an element of
CG(k). More generally, if b ∈ P1

k is an arbitrary branch point of π (i.e. a closed point, not
necessarily rational), applying the definition of §2.7.1 to the G-cover over k(b) obtained
from π by scalar extension from k to k(b) and to the rational branch point of this G-cover
induced by b, we obtain an element of CG(k(b)), which we still call the algebraic local
monodromy of π at b. Viewing this element as a morphism Spec(k(b)) → CG and writing
the branch locus B ⊂ P1

k of π as the disjoint union, over the points b ∈ B, of the schemes
Spec(k(b)), we thus obtain a morphism of varieties B → CG. We call it the algebraic local
monodromy morphism of π.

For any r ≥ 1, we denote by V r ⊂ (P1
Q×CG)r the inverse image of U r by the projection

(P1
Q×CG)r → (P1

Q)r, and by Vr the quotient of V r by the natural action of the symmetric
group Sr. We have thus produced an étale covering ν : Vr → Ur of smooth varieties over Q.
For any field k of characteristic 0, the set Vr(k) can be identified with the set of reduced
0-dimensional subvarieties of P1

k × CG of degree r that map isomorphically to their image
in P1

k, or, what is the same, to the set of reduced 0-dimensional subvarieties B of P1
k of

degree r endowed with a morphism B → CG.
For any field k of characteristic 0, associating with each G-cover its branch locus together

with its algebraic local monodromy morphism provides us with a map HG,r(k) → Vr(k).
When k = Q(I) is the function field of a connected component I of HG,r, the image of the
generic point of I by this map gives rise to a rational map I 99K Vr. Being a rational map
between étale coverings of the normal variety Ur, it is in fact a morphism. By letting I vary
over all connected components of HG,r, we obtain, in this way, a morphism ρ′ : HG,r → Vr

such that ρ = ν ◦ ρ′.
Let Cl(G) denote the set of conjugacy classes of G. Remark 2.7.2 (i) and (the proof of)

Corollary 2.3.2 together imply the following explicit description of the complex fibres of ρ′:

Proposition 2.7.4. Let B ⊂ P1
C be a reduced 0-dimensional subvariety of degree r. Write

B = {b1, . . . , br}. Let C = (C1, . . . , Cr) be an r-tuple of nontrivial conjugacy classes of G,
viewed as a map B(C)→ CG(C) via the identification CG(C) = Cl(G) of Remark 2.7.2 (i).
Then the fibre of ρ′ above the point of Vr(C) defined by B and C can be identified with
the quotient niCr (G) of the set of r-tuples (g1, . . . , gr) ∈ Gr satisfying the following three
conditions by the action of G on this set by simultaneous conjugation:
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(1) g1 · · · gr = 1;
(2) g1, . . . , gr generate G;
(3) gi ∈ Ci for all i ∈ {1, . . . , r}.

Proof. This would be a direct consequence of the quoted references if we knew that for a
field k of characteristic 0 (here k = C), the map HG,r(k) → Vr(k) induced by ρ′ sends
the isomorphism class of any G-cover over k to its algebraic local monodromy morphism.
By the definition of ρ′, this is true for those G-covers whose branch locus is “generic”, in
the sense that it is a point of Ur(k) lying over the generic point of the variety Ur over Q

(i.e. when viewed as a morphism Spec(k) → Ur, its image is the generic point). Thus,
Proposition 2.7.4 holds when B is “generic”. As ρ′ is a morphism between étale coverings
of Ur, the validity of Proposition 2.7.4 for arbitrary B follows. �

2.7.5. Rational points of CG. Viewing Q̄ as a subfield of C, Remark 2.7.2 (i) also induces
an identification CG(Q̄) = Cl(G). Via this identification, the natural action of Gal(Q̄/Q)

on CG(Q̄) gives rise to the action of Gal(Q̄/Q) on Cl(G) given by the formula σ(g) = g−χ(σ)

for σ ∈ Gal(Q̄/Q) and g ∈ G, where χ : Gal(Q̄/Q) ։ Ẑ∗ denotes the cyclotomic character.
As a consequence, the set CG(Q) of rational points of CG gets identified with the set of
rational conjugacy classes of G in the following sense:

Definition 2.7.6. A conjugacy class C of a finite group G is rational if for every g ∈ C
and every integer n ≥ 1 prime to the order of g, the element gn belongs to C.

2.7.7. Rational points of Vr. Here is a simple way to exhibit rational points of Vr. Let
b1, . . . , br ∈ P1(Q) be pairwise distinct. Let B = {b1, . . . , br}. The rational points of Vr

lying above the rational point of Ur defined by B are exactly the r-tuples of rational points
of CG, i.e. they are the r-tuples of rational conjugacy classes of G.

2.7.8. Rational points of HG,r. The morphism ρ′ : HG,r → Vr is an étale covering. As
such, it has a degree, which is a locally constant function on Vr. This function is not
constant on Vr in general—unlike the degree of ρ, which is constant, equal to the cardinality
of nir(G), as we have seen in §2.6. A connected component of Vr over which ρ′ has degree 1,
i.e. over which ρ′ restricts to an isomorphism, is said to be rigid.

It is a trivial but fruitful observation, which forms the basis of the rigidity method, that
the existence of a rational point of a rigid connected component of Vr implies the existence
of a rational point of HG,r.

By Proposition 2.7.4, the rigidity of a connected component can be verified by computing
the set niCr (G) associated with its complex points. This motivates the following definition:

Definition 2.7.9. An r-tuple C = (C1, . . . , Cr) of nontrivial conjugacy classes of G is rigid
if the set niCr (G) defined in Proposition 2.7.4 has cardinality 1.

2.7.10. Summing up. We thus arrive at a down-to-earth condition that implies that the
rational points of Vr constructed in §2.7.7 can be lifted to rational points of HG,r.

Theorem 2.7.11. Let G be a finite group with trivial centre. Let r ≥ 1 be an integer. If
there exists a rigid r-tuple C = (C1, . . . , Cr) of nontrivial rational conjugacy classes of G,
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then for any pairwise distinct b1, . . . , br ∈ P1(Q), the Q-point of Ur defined by {b1, . . . , br}
can be lifted to a Q-point of HG,r. In particular, the regular inverse Galois problem admits
a positive solution for G over Q.

Theorem 2.7.11 represents the base case of the rigidity method. It admits many variants;
for instance, one can allow non-rational branch points. (Pro: this weakens the condition
that the prescribed conjugacy classes be rational; con: these conjugacy classes cannot be
chosen independently of one another any longer.) One could also work over a number field
other than Q, which would simultaneously weaken the conclusion of the theorem and the
rationality assumption on the conjugacy classes Ci.

Even just the above base case is already unreasonably effective: the hypothesis of
Theorem 2.7.11 has been shown to be satisfied, with r = 3, for at least 10 of the 26 sporadic
simple groups, including the monster (by Thompson) and the baby monster (by Malle and
Matzat); see [MM18, Chapter II, §9]. As another example, the variant of Theorem 2.7.11
in which r = 3 and b1 is rational while b2 and b3 are conjugate quadratic points of the
projective line can be applied to PSL2(Fp) for all primes p such that 2 or 3 is not a square
modulo p (see [Ser07, §8.3.3]), thus recovering the positive answer to the regular inverse
Galois problem over Q for this infinite family of groups that had been obtained by Shih
using modular curves rather than the rigidity method.

When the rigidity method is applicable, it is in principle possible to deduce from it an
explicit polynomial that realises the desired regular Galois extension of Q(t) (see [MM18,
Chapter II, §9]). This has some limits in practice (e.g. for the monster group, the degree of
the polynomial cannot have less than 20 digits) but it leads to interesting computational
challenges (see e.g. [BW21]).

3. Grunwald’s problem and the Brauer–Manin obstruction

3.1. Looking for rational points. Despite its successes, the rigidity method, discussed
in §2.7, often fails to be applicable. For instance, it fails, in general, for p-groups; indeed,
the regular inverse Galois problem is still open for most p-groups over Q, even though the
inverse Galois problem itself is known to have a positive answer, over any number field,
for all p-groups—and more generally, for all solvable groups, by a celebrated theorem of
Shafarevich (see [NSW08, Chapter IX, §6]). In other words, after learning, in §1, that the
quotient variety An

k/G can fail to be rational or even retract rational, we now find ourselves
unable, at least in practice, to salvage the Hilbert–Noether method by constructing rational
curves in An

k/G over which to apply Hilbert’s irreducibility theorem, as envisaged at the
beginning of §2.1. This leads us to our next question: letting Y ⊆ An

k denote the locus
where G acts freely, can we directly construct rational points of Y/G above which the fibre
of the quotient map Y → Y/G is irreducible? An approach put forward by Colliot-Thélène
consists in noting that Ekedahl’s Theorem 1.3.5 reduces this question, in full generality,
to the problem of finding rational points on Y/G subject to certain weak approximation
conditions. In particular, if the variety Y/G satisfies weak approximation off a finite set of
places of k, then the inverse Galois problem has a positive answer for G over k. Such a weak
approximation property can be proved unconditionally in some cases; for instance, under
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the assumptions of the following remarkable theorem from [Neu79], in which no place of k
is excluded:

Theorem 3.1.1 (Neukirch). Let k be a number field. Let G be a finite solvable group,
acting linearly on An

k for some n ≥ 1. Let Y ⊆ An
k be the locus where G acts freely. Let

X = Y/G. Assume that the order of G and the number of roots of unity contained in k
are coprime. Then X satisfies weak approximation, i.e. the set X(k) is dense in X(kΩ).
In particular, Grunwald’s problem admits a positive answer for G over k, for any finite
subset S ⊂ Ω.

We recall that Grunwald’s problem is Problem 1.1.1. Without the assumption on the
order of G, the conclusion of this theorem can fail, as we have seen in Proposition 1.6.2.

The validity of the weak approximation property is a problem of general interest that
makes sense, and has been studied, for arbitrary smooth varieties. As we shall now explain,
the tools that have been developed for its study on arbitrary smooth varieties turn out to
be useful also in the special case of the quotient Y/G.

3.2. Brauer–Manin obstruction. A general mechanism, introduced by Manin [Man71]
and now called the Brauer–Manin obstruction, explains, in some cases, why the weak
approximation property fails for certain varieties over number fields. Let us recall it briefly.
(For details, see [CTS21, §13.3].) Let X be a smooth variety over a number field k. Let
Brnr(X) denote its unramified Brauer group (see §1.6.5). We let X(kΩ) =

∏
v∈Ω X(kv) and

endow this set with the product of the v-adic topologies.
The Brauer–Manin set X(kΩ)Brnr(X) is the set of all families (xv)v∈Ω ∈ X(kΩ) such that∑
v∈Ω invv β(xv) = 0 for all β ∈ Brnr(X). Here β(xv) ∈ Br(kv) denotes the evaluation of β

at xv, and invv : Br(kv) →֒ Q/Z is the invariant map from local class field theory. (To make
sense of the sum, one checks that only finitely many of its terms are nonzero.) Manin’s
fundamental observation is that the image of the diagonal embedding X(k) →֒ X(kΩ) is
contained in the Brauer–Manin set, as a consequence of the reciprocity law of global class
field theory. Thus, we have a sequence of inclusions

X(k) ⊆ X(kΩ)Brnr(X) ⊆ X(kΩ).(3.2.1)

As X(kΩ)Brnr(X) is a closed subset of X(kΩ), the weak approximation property, i.e. the

density of X(k) in X(kΩ), can hold only if X(kΩ)Brnr(X) = X(kΩ). When this last equality
fails, one says that there is a Brauer–Manin obstruction to weak approximation on X.

3.3. Reinterpreting the Grunwald–Wang theorem. Let us come back to the variety
X = Y/G considered in §3.1: G is a subgroup of Sn, which acts on An

k by permuting the
coordinates, and Y ⊆ An

k is the locus where G acts freely. As Grunwald’s problem has
a negative answer for G = Z/8Z and k = Q (see Proposition 1.6.2) and as Y → X is a
versal G-torsor (see Example 1.5.2), the variety X cannot satisfy the weak approximation
property in this case, according to Proposition 1.5.5. Hence a natural question: is there
a Brauer–Manin obstruction to weak approximation on X when G = Z/8Z and k = Q?
The answer is yes by the following theorem, which states, more precisely, that the weak
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approximation property on X is fully controlled by the Brauer–Manin obstruction as soon
as G is abelian.

Theorem 3.3.1 (Voskresenskĭı, Sansuc). Let k be a number field. Let G be a finite abelian
group, acting linearly on An

k for some n ≥ 1. Let Y ⊆ An
k be the locus where G acts freely.

Let X = Y/G. The set X(k) is dense in X(kΩ)Brnr(X).

Theorem 3.3.1 can be found in the literature by combining [Vos98, §7.2, Theorem] with
[San81, Corollaire 8.13]. We shall explain a proof of it in §3.8 below.

Returning to an arbitrary finite group G and keeping k, Y and X as above, it is a general
fact that the density of X(k) in X(kΩ)Brnr(X) implies the existence of a finite subset S0 ⊂ Ω
such that X satisfies weak approximation off S0. When such an S0 exists, a refinement of
the arguments underlying the proof of Proposition 1.5.5 leads to the following conclusion (a
point of view advocated in [Che95] and in [Har07, §1.2]): fully solving Grunwald’s problem
for G over k is in fact equivalent to describing the closure of X(k) inside X(kΩ). Thus,
the Grunwald–Wang theorem, which indeed fully solves Grunwald’s problem when G is
abelian, can now be viewed, in retrospect, as the combination of Theorem 3.3.1 with an
explicit computation of the Brauer–Manin set X(kΩ)Brnr(X) when G is abelian.

3.4. Rationally connected varieties. Whether or not the abelianness hypothesis on G
can be removed from Theorem 3.3.1 is a fundamental open question. When X is an
arbitrary smooth variety possessing a rational point, the set X(k) cannot be expected to

be dense in X(kΩ)Brnr(X) without strong assumptions on the geometry of X; for instance,
Lang’s conjectures predict that for d and N such that d− 2 ≥ N ≥ 4, this density should
fail for all smooth hypersurfaces of degree d in PN that have a rational point (see [PV04,
Appendix A]). The variety X = Y/G that we have been considering in §3.1 and in §3.3,
despite not being geometrically rational for an arbitrary finite group G (see §1.6.5), still
has a reasonably tame geometry: it is unirational and therefore belongs to the class of
rationally connected varieties according to the following definition6.

Definition 3.4.1 (Campana, Kollár, Miyaoka, Mori). A smooth variety X over a field k is
said to be rationally connected if for any algebraically closed field extension K/k and any
two general K-points x0, x1 ∈ X(K), there exists a rational map f : A1

K 99K XK over K,
defined in a neighbourhood of 0 and 1, such that f(0) = x0 and f(1) = x1. (“General”
means that the set of pairs (x0, x1) satisfying the stated condition contains a dense Zariski
open subset of X(K)×X(K).)

Theorem 3.3.1 conjecturally extends to all smooth rationally connected varieties:

Conjecture 3.4.2 (Colliot-Thélène). Let X be a smooth, rationally connected variety,
over a number field k. The set X(k) is dense in X(kΩ)Brnr(X).

A number of known results towards this conjecture are listed in [Wit18]. Conjecture 3.4.2
would imply that all smooth rationally connected varieties satisfy weak approximation off

6To be precise, Definition 3.4.1 coincides with the standard definition (found, e.g., in [Kol96, Chapter IV])
only when X is proper.
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a finite set of places (see e.g. [Wit18, Remarks 2.4 (i)–(ii)]). In particular, it would imply a
positive answer to the inverse Galois problem in general, by Theorem 1.3.5 applied to the
torsor of Example 1.5.2.

A list of groups G of small order for which Conjecture 3.4.2 is still open for the variety
X = Y/G appearing in Example 1.5.2 can be found in [BN24].

3.5. Determining the Brauer–Manin set. As discussed in §3.3, Conjecture 3.4.2 in
the case X = Y/G would, more precisely, reduce Grunwald’s problem for G over k to the
computation of the Brauer–Manin set of X. Even partial knowledge of the Brauer–Manin
set can lead to concrete results, as the following theorem illustrates:

Theorem 3.5.1 (Lucchini Arteche [LA19]). Let k be a number field and G be a finite group
acting linearly on An

k . Let Y ⊆ An
k be the locus where G acts freely. Let X = Y/G. Let S0

be the set of finite places of k that divide the order of G. If X satisfies Conjecture 3.4.2,
then Grunwald’s problem admits a positive answer for G over k, for any finite subset S ⊂ Ω
disjoint from S0.

The proof of Theorem 3.5.1 consists in studying the evaluation of unramified Brauer
classes at the local points of X, so as to deduce, from the density of X(k) in X(kΩ)Brnr(X),
that X satisfies weak approximation off S0; Proposition 1.5.5 then yields the desired
statement.

The complete determination of X(kΩ)Brnr(X), for X as in the statement of Theorem 3.5.1,
is in general a difficult task. The case of a metabelian group G is investigated in [Dem21].
In general, even the computation of Brnr(X) itself is a delicate problem. Over an algebraic
closure k̄ of k, one can apply Bogomolov’s formula (Theorem 1.6.6). If the unramified
Brauer group of Xk̄ turns out to be nontrivial, one has to find out which classes of the

finite group Brnr(Xk̄) are invariant under Gal(k̄/k), and to determine the image of the

natural map Brnr(X) → Brnr(Xk̄)Gal(k̄/k); there is no general recipe for carrying this out.
The kernel of the latter map, on the other hand, is now well understood: its quotient by
the image of the natural map Br(k)→ Brnr(X) is finite and is described by a formula due
to Harari [Har07, Proposition 4]. In the most favourable cases, the combination of these
formulae can lead to the conclusion that the natural map Br(k)→ Brnr(X) is onto, so that
X(kΩ)Brnr(X) = X(kΩ) and Grunwald’s problem is then expected to have a positive solution
for G over k with no restriction on the finite subset S ⊂ Ω. See [Dem10, Remarque 7] for a
concrete example. In a different direction, by adapting the proof of Bogomolov’s formula to
non-algebraically closed ground fields, Colliot-Thélène [CT14, Corollaire 5.7] showed that

the natural map Br(k)→ Brnr(X) is onto, and hence that X(kΩ)Brnr(X) = X(kΩ), whenever
the order of G and the number of roots of unity contained in k are coprime, which explains,
a posteriori, why the Brauer–Manin obstruction plays no rôle in Neukirch’s Theorem 3.1.1.

3.6. Supersolvable groups. A finite group G is said to be supersolvable if there exists a
filtration 1 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G such that each Gi is a normal subgroup of G and
each successive quotient Gi+1/Gi is cyclic. All nilpotent groups (in particular, all p-groups)
are supersolvable. We proved, in [HW20], that Theorem 3.3.1 generalises to such groups:
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Theorem 3.6.1 (Harpaz, W.). Let k be a number field. Let G be a finite supersolvable
group, acting linearly on An

k for some n ≥ 1. Let Y ⊆ An
k be the locus where G acts freely.

Let X = Y/G. The set X(k) is dense in X(kΩ)Brnr(X).

A positive answer to the inverse Galois problem for supersolvable groups results from
this (via Theorem 1.3.5) but had already been established—more generally, for solvable
groups—by Shafarevich, as mentioned in §3.1. As discussed in §§3.3–3.5, Theorem 3.6.1
refines this positive answer by bringing information about Grunwald’s problem.

It may be that the strategy underlying the proof of Theorem 3.6.1 can be extended to
all solvable groups. It will not, however, be of any help with non-abelian simple groups; in
fact, to this day, no approach is known towards Grunwald’s problem for non-abelian simple
groups (with the exception of A5 and PSL2(F7), for which Noether’s problem itself has a
positive answer; see Example 1.4.4, [Mes05] and Corollary 1.5.7).

3.7. Descent in a nutshell. Theorem 3.6.1 can be seen as a direct application of a general
tool that is useful for proving cases of Conjecture 3.4.2, the so-called “descent” method.
We now briefly discuss it. We shall illustrate it by proving Theorem 3.3.1 in §3.8, before
indicating its applicability to other variants of the inverse Galois problem in §3.10.

To get started, we need to extend the notion of G-torsor from the case where G is a
finite abstract group (Definition 1.2.1) to the case where G is an algebraic group (i.e. a
group scheme over a field, possibly disconnected or of positive dimension).

Definition 3.7.1. Let π : Y → X be a surjective morphism between smooth varieties over
a field k of characteristic 0, with algebraic closure k̄. Let G be an algebraic group over k,
acting on Y in such a way that π is G-equivariant (for the trivial action of G on X). We
say that π is a G-torsor, or that Y is a G-torsor over X, if π is smooth and G(k̄) acts
simply transitively on the fibres of the map Y (k̄)→ X(k̄) induced by π.

Unless otherwise specified, we now let k denote an arbitrary field of characteristic 0. (For
the correct definition of a torsor without this assumption, see [Sko01, Definition 2.2.1].) As
usual, by a G-torsor over k we shall mean a G-torsor over Spec(k). When π : Y → X is
a G-torsor, the morphism π identifies X with the categorical quotient Y/G (see [MFK94,
Proposition 0.2, Proposition 0.1]).

Example 3.7.2. Hilbert’s Theorem 90, which we encountered in Example 1.5.2, is
equivalent to the following statement: for any integer n ≥ 1, any GLn-torsor over k is
isomorphic to GLn. As an easy consequence, any SLn-torsor over k is isomorphic to SLn.

Definition 3.7.3. Let X be a smooth variety over k. Let G be an algebraic group over k.
Let π : Y → X be a G-torsor. The twist of Y by a G-torsor P over k is the quotient

P Y = (P × Y )/G

of P × Y by the diagonal action of G, endowed with the natural morphism P π : P Y → X
induced by the second projection P × Y → Y and the identification Y/G = X. (We are
not claiming that P π is a G-torsor. This is true when G is commutative, not in general.
This point, which will be irrelevant for us, is discussed in [Sko01, p. 21].)
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The gist of the descent method is summarised in the following conjecture.

Conjecture 3.7.4. Let X be a smooth variety over a number field k. Let G be a linear
algebraic group over k. Let π : Y → X be a G-torsor, with Y rationally connected. Assume
that for every twist Y ′ of Y by a G-torsor over k, the set Y ′(k) is dense in Y ′(kΩ)Brnr(Y ′).

Then the set X(k) is dense in X(kΩ)Brnr(X).

Conjecture 3.7.4, and the first significant cases in which it was established, appeared in
a series of works by Colliot-Thélène and Sansuc. See [Sko01] for an account. We content
ourselves with mentioning the following positive result7, which in this form can be found
in [HW20, Corollaire 2.2].

Theorem 3.7.5 (Colliot-Thélène, Sansuc, Harpaz, W.). Conjecture 3.7.4 holds true if G
is a torus (i.e. an algebraic group such that Gk̄ ≃ Gm,k̄ × · · · ×Gm,k̄).

3.8. Sketch of proof of Theorem 3.3.1. We shall deduce Theorem 3.3.1 from The-
orem 3.7.5. (More precisely, descent will be applied to a geometrically rational variety;
Theorem 3.7.5 in the case of such varieties is due to Colliot-Thélène and Sansuc alone,
see [CTS87].)

Before starting the proof of Theorem 3.3.1, let us slightly change notation. We now
fix an embedding G →֒ SLn(k) for some n ≥ 1, let Y be the algebraic group SLn over k,
and let G act on Y by right multiplication. As the resulting variety X = Y/G is stably
birationally equivalent to the variety X of Theorem 3.3.1 (see Remark 1.5.4), and as the

density of X(k) in X(kΩ)Brnr(X) is a stable birational invariant among smooth, rationally
connected varieties (see [CTPS16, Proposition 6.1 (iii)] and [Wit18, Remark 2.4 (ii)]), this
change of notation is harmless.

Recall that G, by assumption, is a finite abelian group. Let us view it as a constant
algebraic group over k. It is easy to see that G fits into a short exact sequence

1→ G→ T → Q→ 1(3.8.1)

of algebraic groups over k, where T and Q are tori and Q is quasi-trivial, i.e. the character
group Hom(Qk̄, Gm,k̄) of Q admits a basis over Z that is stable under the action of Gal(k̄/k)

(see [Ser07, Proposition 4.2.1]). Letting G act on T by translation, we now consider the
quotient W = (SLn×T )/G of SLn×T by the diagonal action, together with the morphism
π : W → X = SLn/G induced by the first projection.

The action of T on SLn × T by multiplication on the second factor induces an action
of T on W , with respect to which π is a T -torsor. According to Theorem 3.7.5 applied
to π, it will suffice, in order to complete the proof of Theorem 3.3.1, to show that for every
T -torsor P over k, the variety P W satisfies Conjecture 3.4.2.

We observe that P W = (SLn×P )/G, that the morphism p : P W → P/G induced by the
second projection is an SLn-torsor (with respect to the action of SLn on P W coming from
its action on SLn×P by left multiplication on the first factor), and that P/G is a Q-torsor
over k. By Hilbert’s Theorem 90 (see Example 3.7.2), the generic fibre of p is isomorphic

7More generally, after the writing of these notes, Conjecture 3.7.4 was proved by Nguyễn to be true as
soon as G is connected; see [Ngu24], which builds on [HW20, §2] and on Borovoi’s abelianisation technique.
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to SLn, in particular it is rational. It also follows from Hilbert’s Theorem 90 (case n = 1
of Example 3.7.2), combined with Shapiro’s lemma, that any torsor under a quasi-trivial
torus over k is rational; in particlar, the variety P/G is rational. These two remarks imply
that P W is itself rational over k. Thus, it satisfies Conjecture 3.4.2 for trivial reasons, and
Theorem 3.3.1 is proved.

3.9. Supersolvable descent. The ideas sketched in §3.8 are a starting point for the proof
of the following theorem, established in [HW24, Corollary 3.3].

Theorem 3.9.1 (Harpaz, W.). Conjecture 3.7.4 holds true if G is finite and supersolvable.

Here “supersolvable” means that G(k̄) is supersolvable in the sense recalled at the
beginning of §3.6, except that the filtration is now required, in addition, to be stable
under the action of Gal(k̄/k) on G(k̄), in case this action is not trivial.

Theorem 3.9.1 implies Theorem 3.6.1: in the notation introduced at the beginning
of §3.8, it suffices to apply Theorem 3.9.1 to the G-torsor SLn → SLn/G and to note that
any twist of SLn by a G-torsor over k is an SLn-torsor (through left multiplication), hence is
isomorphic to SLn, by Hilbert’s Theorem 90, hence is rational and satisfies Conjecture 3.4.2.

Remark 3.9.2. Theorem 3.9.1 implies in particular that Conjecture 3.7.4 holds true for
G = Z/2Z. We recall that Conjecture 3.7.4 assumes that the variety Y appearing in its
statement is rationally connected. As was pointed out to the author by Ma.nh Linh Nguyễn,
this assumption cannot be dropped, even when G = Z/2Z. Indeed, there exist examples of
double covers Y → X, where Y is a K3 surface and X is an Enriques surface over k = Q,
such that X(k) and the sets Y ′(kΩ)Brnr(Y ′) are all empty, while X(kΩ)Brnr(X) is not (see
[BBM+16, Theorem 1.2]).

3.10. Prescribed norms. Our last theorem is an application of supersolvable descent to
a variant of the inverse Galois problem of a slightly different flavour, meant to demonstrate
the flexibility of descent as a tool.

Theorem 3.10.1 ([HW24, Theorem 4.16]). Let G be a finite group. Let k be a number
field. Let α1, . . . , αm ∈ k∗. If G is supersolvable, there exists a Galois field extension K
of k such that Gal(K/k) ≃ G and α1, . . . , αm ∈ NK/k(K).

The idea of the proof is to construct, in a formal and explicit way, a G-torsor π : Y → X
together with invertible functions β1, . . . , βm on Y whose norms along π are equal to the
constant invertible functions α1, . . . , αm on X. Namely, say m = 1 for simplicity, embed G
into SLn(k) and consider the subvariety Y of SLn ×

∏
g∈G Gm consisting of all (s, (tg)g∈G)

such that
∏

g∈G tg = α1; the invertible function β1 on Y given by projection onto the Gm

factor corresponding to 1 ∈ G has the required norm. One then checks that the twists
of Y satisfy Conjecture 3.4.2 (despite not being rational in general, even when they have
a rational point and G is assumed abelian), so that Theorem 3.9.1 implies the validity of
Conjecture 3.4.2, and hence of weak approximation off a finite set of places, for X. As
X(k) 6= ∅ (indeed even Y (k) 6= ∅), it follows, by Theorem 1.3.5, that there exists x ∈ X(k)
such that π−1(x) is irreducible, i.e. gives rise to a Galois field extension K/k with group G.
Restricting β1, . . . , βm to π−1(x) yields elements of K∗ with norms α1, . . . , αm.
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In the case where G is abelian, Theorem 3.10.1 was first shown to hold by Frei, Loughran
and Newton [FLN22], who established an asymptotic estimate for the number of such K.
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