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1 Introduction

The Schinzel hypothesis essentially claims that finitely many irreducible polynomials
in one variable over Z simultaneously assume infinitely many prime values unless
there is an obvious reason why this is impossible.

We prove that under a restriction on the characteristic and a smoothness as-
sumption, finitely many irreducible polynomials in one variable over the ring Fq[t]
assume simultaneous prime values after a sufficiently large extension of the field of
constants.

1.1 The Schinzel hypothesis over Z

Let f1(x), . . . , fr(x) be irreducible polynomials with coefficients in Z. Assume that
the leading coefficient of every fi(x) is positive and that for each prime p, there
exists an integer xp such that no fi(xp) is divisible by p. Then f1(x), . . . , fr(x) are
simultaneously prime for infinitely many integer values of x.
In its present generality, this conjecture was first stated in [12].

1.2 The Schinzel hypothesis over Fq[t]

A naïve analogon to the Schinzel hypothesis over the coefficient ring Fq[t] can be
formulated as follows:

Let f1(x), . . . , fr(x) be non-constant polynomials in Fq[t, x] which are irre-
ducible in Fq(t)[x] and assume that for each prime p of Fq[t], there is an xp in Fq[t]

∗The first author acknowledges financial support provided by the Japan Society for the Promo-
tion of Science (JSPS) as well as through the European Community’s Human Potential Programme
under contracts HPRN-CT-2000-00120 [AAG] and HPRN-CT-2000-00114 [GTEM].
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such that no fi(xp) is divisible by p. Then f1(x), . . . , fr(x) are simultaneously
prime for infinitely many values of x in Fq[t].

In this form, the hypothesis is known to be false; counterexamples are described
in [3], one of them being the following: With p the characteristic of Fq, choose an
integer b with 1 < b < 4q and (b, p(q−1)) = 1 (e.g., b = 2q−1). Let f(x) = x4q + tb.
Then f(g) is reducible for all g ∈ Fq[t] (see [3, Section 4]).

In [1], Bateman and Horn formulated a quantitative version of the Schinzel hy-
pothesis, which specifies the conjectural proportion of integers for which the poly-
nomials assume prime values.

In [3, (1.2),(1.8)], Conrad, Conrad and Gross presented an analogue to the
Bateman–Horn conjecture for the case of one polynomial over Fq[t], supported by
good agreement with numerical evidence. As for the qualitative case, this conjecture
implies that the naïve function field version of the Schinzel hypothesis enunciated
above does in fact hold for one separable polynomial.

For polynomials with coefficients in either Z or Fq[t], Dirichlet’s theorem about
primes in arithmetic progressions and its analogue for function fields is the only case
in which the Schinzel hypothesis is known to hold; see [10] or [11, Theorem 4.7] for
the case of Fq[t]. Note that in that case of one polynomial of degree 1, these results
amount to the quantitative statements of the conjectures of Bateman–Horn and of
Conrad, Conrad and Gross, respectively.

The goal of this note is to prove the following theorem.

Theorem 1.1. Let Fq be a finite field of characteristic p and cardinality q. Let
f1, . . . , fn ∈ Fq[t, x] be irreducible polynomials whose total degrees deg(fi) satisfy
p ∤ deg(fi)(deg(fi) − 1) for all i. Assume that the curves Ci ⊂ P

2
Fq

defined as the
Zariski closures of the affine curves

fi(t, x) = 0

are smooth. Then, for any sufficiently large s ∈ N, there exist a, b ∈ Fqs such that
the polynomials f1(t, at+ b), . . . , fn(t, at+ b) ∈ Fqs [t] are all irreducible.

Acknowledgements: A preliminary manuscript about this topic, written solely
by the first author, contained some gaps; he is grateful to Jean-Louis Colliot-
Thélène, Jürgen Klüners and Sir Peter Swinnerton-Dyer for pointing them out.

We had very useful discussions about the contents of this paper with Jean-Louis
Colliot-Thélène; previous versions benefited from comments made by Ido Efrat,
Bert van Geemen, Pierre Dèbes, Moshe Jarden, and Fumiharu Kato. We also
thank Keith Conrad for corresponding with us about the results contained in [3]
and Ofer Gabber for pointing out that Lemma 2.3 could be used instead of [13,
Proposition 4.4.6].

This research was carried out while the first author was staying at the University
of Pavia and Collegio Ghislieri, the University of Padova, at Ben-Gurion University
of the Negev, the Hebrew University of Jerusalem, with the major part having been
done at Kyoto University. To all these institutions, he expresses his gratitude for
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Notations. We denote by |S| the cardinality of a set S and by S(S) the symmetric
group on S. Let k be a field and X be a k-scheme. If k′ is a field extension of k,
the scheme X ×Spec(k) Spec(k′) will often be denoted Xk′ . We write κ(x) for the
residue field of x ∈ X , and κ(X) for the function field of X when X is integral.
Finally, when Y is an X-scheme, AutX(Y ) denotes the group of X-automorphisms
of Y .
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2 A preliminary result about generic covers of P
1

If k is a field, a finite k-scheme X will be said to have at most one double point
if n(X) ≥ r(X) − 1, where r(X) and n(X) respectively denote the rank and the
geometric number of points of X .

The following definition was introduced by Hurwitz [7] in his proof of connect-
edness of the moduli spaces for curves of genus g over C.

Definition 2.1. A finite morphism f : C → P
1
k is called generic if f−1(x) has at

most one double point for all x ∈ P
1
k.

Note that if the characteristic of k is not 2, f is generic and C is an integral curve,
then f is separable (in the sense that the field extension κ(C)/κ(P1

k) is separable).

Proposition 2.2. Let C be a regular, complete, geometrically irreducible curve over
a field k, endowed with a finite separable generic morphism f : C → P

1
k. Let C′ be

a regular, complete, irreducible curve over k, and g : C′ → C be a finite morphism.
Assume that the finite extension κ(C′)/κ(P1

k) is a Galois closure of the subextension
κ(C)/κ(P1

k). We denote respectively by G and H the Galois groups of κ(C′)/κ(P1
k)

and κ(C′)/κ(C). Then C′ is geometrically irreducible over k and the morphism

G −→ S(H\G)

induced by right multiplication is an isomorphism. Moreover, all the ramification
indices of κ(C′)/κ(P1

k) are ≤ 2.

Proof. Let k′ denote the algebraic closure of k in κ(C′). We denote respectively by
G′ and H ′ the subgroups ofG defined by the subfields κ(P1

k′ ) and κ(Ck′) of κ(C′), so
that we have a canonical commutative diagram as follows, where the labels indicate
the Galois groups of the generic fibres:

Ck′ P1
k′

C′

H′ G′

H G

C P
1
k

Let us endow H\G (resp. H ′\G′) with the action of G (resp. G′) by right multi-
plication. The equality H ∩ G′ = H ′ of subgroups of G yields a natural injective
G′-equivariant map H ′\G′ → H\G, which is even bĳective since |H\G| and |H ′\G′|
are both equal to deg(f). Hence a commutative square

G′ S(H ′\G′)

G S(H\G),

where the horizontal arrows are induced by right multiplication. The bottom hori-
zontal arrow is injective, in virtue of the equality

⋂

a∈G aHa
−1 = 1, itself a conse-

quence of the hypothesis that κ(C′)/κ(P1
k) is a Galois closure of κ(C)/κ(P1

k). For
the first part of the proposition, it only remains to be shown that the top horizon-
tal arrow is surjective; indeed, this will imply not only that the bottom horizontal
arrow is an isomorphism, but also that G′ = G, hence k′ = k, which is equivalent
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to C′ being geometrically irreducible over k. The second part will follow from the
first once we know that all ramification indices of κ(C′)/κ(P1

k′) are ≤ 2.
We shall now make use of the following classical result. A very similar lemma

is stated and proven in [13, Proposition 4.4.6].

Lemma 2.3. Let X be a regular, complete, geometrically irreducible curve over
a field K, endowed with a finite and generically Galois morphism X → P

1
K with

group G. Then G is generated by the inertia subgroups above closed points of P
1
K

and their conjugates.

Proof. Let H ⊆ G denote the normal subgroup generated by the inertia subgroups
and their conjugates. The map X → P

1
K can be factored as X → Y → P

1
K , where

Y is a regular, complete, irreducible curve over K whose function field is the subfield
of κ(X) fixed by H . The curve Y is geometrically irreducible over K, since X is,
and it follows from Lemma 5.1 that it is étale over P

1
K ; therefore Y = P

1
K (see [6,

IV.2.5.3]), hence H = G.

Let us consider the cover C′ → P
1
k′ . It is generically Galois with group G′. Let

I ⊆ G′ be the inertia subgroup of G′ associated with a point of C′ whose image by
f ◦ g will be denoted x. By Lemma 5.1, the geometric number of points of f−1(x)
is |H ′\G′/I|. Moreover, the rank of f−1(x) is |H ′\G′|. The hypothesis that f−1(x)
has at most one double point thus leads to the inequality

|H ′\G′/I| ≥ |H ′\G′| − 1,

thereby proving that every non-trivial inertia subgroup of G′ has order 2 and acts
as a transposition on H ′\G′. Applying Lemma 2.3 to X = C′ and K = k′ now
yields that G′ is generated by elements which act on H ′\G′ as transpositions. The
image of G′ → S(H ′\G′) is therefore a transitive subgroup of S(H ′\G′) which is
generated by transpositions; but the only such subgroup is S(H ′\G′) itself (see [13,
Lemma 4.4.4]), hence the result. �

3 Proof of Theorem 1.1

To prove Theorem 1.1, we may and will assume that the polynomials (fi)1≤i≤n are
pairwise non-proportional. Let F denote an algebraic closure of Fq. The symbol Fqs

will now be understood to refer to the unique subfield of F with cardinality qs.
Let M0 ∈ P

2(Fq) denote the point at infinity with coordinates x = 1, t = 0.

Proposition 3.1. There exists a non-empty open subset U ⊂ P
2
Fq

\ {M0}, disjoint

from Ci for all i ∈ {1, . . . , n}, such that every line D in P
2
F

which meets U satisfies
the following properties:

1. For all i ∈ {1, . . . , n}, the scheme-theoretic intersection (Ci)F∩D has at most
one double point (as a finite F-scheme).

2. The line D is not tangent to more than one of the curves (Ci)F, i ∈ {1, . . . , n}.

Proof. It is enough to prove that there are finitely many lines D in P
2
F

not satisfying
the above properties. Indeed, once this is known, we can take for U any non-empty
open subset disjoint from the curves Ci and from all these lines.

We shall use the duality theory of plane curves. To every irreducible plane
curve C ⊂ P

2 over some field is associated an irreducible curve C⋆ ⊂ (P2)⋆, called
its dual, together with a canonical rational map ρ : C 99K C⋆, called the Gauss
map, which sends a smooth point of C to its tangent line. Here (P2)⋆ denotes the
dual projective plane. The reader is referred to [9] for an overview of this theory, of
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which we shall only use the following two results. Firstly, the Monge-Segre-Wallace
criterion (see [9, p. 169]) ensures that the equality C⋆⋆ = C of closed subsets
of P

2 holds as soon as ρ is separable. Secondly, it follows from Corollaire 3.5.0 and
Corollaire 3.2.1 of [8] that if ρ is separable, then there are only finitely many lines D
in P

2 such that the scheme-theoretic intersection C ∩D does not have at most one
double point.

Let us apply these results to the smooth curves (Ci)F ⊂ P
2
F

. A line in P
2
F

which
is tangent to more than one of the curves (Ci)F, i ∈ {1, . . . , n}, corresponds to a
point in (Ci)

⋆
F
∩ (Cj)

⋆
F

for distinct i, j. Now if the Gauss maps ρi : Ci → C⋆
i and

ρj : Cj → C⋆
j are separable, this intersection is finite. Indeed, the curves C⋆

i and
C⋆

j being irreducible, they would otherwise be equal; but the separability of ρi and
ρj implies that C⋆⋆

i = Ci and C⋆⋆
j = Cj , and we have assumed that Ci 6= Cj .

We are thus reduced to proving that the maps ρi are all separable. As the
curves Ci are smooth, Euler’s formula shows that the Gauss maps ρi can be ex-
tended to morphisms ri : P

2 → P
2. An application of the projection formula for

intersections [6, A.1, A4] then gives

ri⋆(Ci.r
⋆
iD) = (ri⋆Ci).D,

where D is a line in the target space P
2. The equations of ri now show that r⋆

iD
has degree deg(Ci) − 1. By definition of ri⋆, we have ri⋆Ci = deg(ρi)C

⋆
i and so

Bézout’s theorem implies the following formulae:

deg(Ci) (deg(Ci) − 1) = deg(ρi) deg(C⋆
i ).

The hypothesis on the total degrees of the polynomials fi now implies that deg(ρi)
is prime to p, hence ρi is separable. �

Let U ⊂ P
2
Fq

be given by Proposition 3.1 and s0 ∈ N be large enough so that
U(Fqs) 6= ∅ for all s ≥ s0. Let s ∈ N be a sufficiently large integer; for the time
being, this means that s ≥ s0, but another condition on s will be introduced later.
For the sake of clarity, we will henceforth denote the field Fqs by k. Fix M ∈ U(k)
and denote by ϕi : (Ci)k → P

1
k the k-morphism obtained by composing the inclusion

(Ci)k ⊂ P
2
k\{M} with the morphism P

2
k\{M} → P

1
k defined by projection fromM .

The morphism ϕi is finite of degree deg(fi) and is generic, since M ∈ U . Being
generic, it is separable (note that the hypotheses of Theorem 1.1 imply that p 6= 2);
therefore there exists a smooth, complete, connected curve C′

i over k and a finite
morphism C′

i → (Ci)k, such that the induced field extension κ(C′
i)/κ(P

1
k) is a Galois

closure of κ((Ci)k)/κ(P1
k). Let us write, for simplicity, K = κ(P1

k), Ki = κ(C′
i),

Gi = Gal(Ki/K) and Hi = Gal(Ki/κ((Ci)k)). Proposition 2.2 now shows that for
all i ∈ {1, . . . , n}, the curve C′

i is geometrically connected over k, the group Gi is
canonically isomorphic to S(Hi\Gi) and the ramification indices of Ki/K are ≤ 2.

Let Ri ⊂ P
1
k denote the branch locus of the morphism C′

i → P
1
k.

Proposition 3.2. The subsets Ri ⊂ P
1
k for i ∈ {1, . . . , n} are pairwise disjoint.

Proof. We shall need the following well-known lemma, which is a direct consequence
of Lemma 5.1.

Lemma 3.3. Let E/K be a finite separable extension of global fields, and let L be
a Galois closure of E/K. Then a finite place of K is unramified in E if and only
if it is unramified in L.

The lemma shows that Ri is also the branch locus of the morphism (Ci)k → P
1
k.

An F-point of Ri ∩Rj therefore gives rise to a line in P
2
F

which is both tangent to
(Ci)F and (Cj)F, and which contains M . As M ∈ U , there is no such line if i 6= j,
hence the proposition. �
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Let L denote the ring K1 ⊗K · · · ⊗K Kn.

Proposition 3.4. The ring L is a field, and k is separably closed in L.

Proof. For j ∈ {0, . . . , n}, let us write Lj for the K-algebra K1 ⊗K · · · ⊗K Kj

and prove that Lj is a field in which k is separably closed, by induction on j. The
case j = 0 is trivial, as L0 = K. Assume now that j > 0 and that Lj−1 is a
field in which k is separably closed. Let Ω be a field containing F, Lj−1 and Kj .
Consider the subfield Ej ⊂ Ω defined as the intersection of the composita FLj−1

and FKj. Being a finite extension of FK, it is the function field of a connected finite
cover of P

1
F

. Proposition 3.2 now shows that this cover is unramified; a connected
finite étale cover of P

1
F

is necessarily trivial, hence Ej = FK. As FKj is Galois
and FLj−1 is finite over FK, this is enough to imply that FLj−1 and FKj are
linearly disjoint subfields of Ω over FK; in other words, FLj−1 ⊗FK FKj is a field.
We have FLj−1 = F⊗kLj−1 and FKj = F⊗kKj since k is separably closed in Lj−1

and in Kj, hence FLj−1 ⊗FK FKj = F⊗k Lj . As this ring is a field, k is separably
closed in Lj. �

Let C′ denote a smooth complete connected curve over k with function field L.
There is a natural finite morphism ψ : C′ → P

1
k, which is generically Galois and

therefore separable. We denote by g the genus of C′, by G the group Gal(L/K),
by N the degree of ψ, and by (x, L/K) the Artin symbol of the extension L/K
above a closed point x ∈ P

1
k which does not ramify in L. We would now like to find

a rational point of P
1
k above which the fibre of ψ is integral. To this end, we resort

to an effective version of the Čebotarev theorem for function fields, due to Geyer
and Jarden. The following is a weak consequence of [5, Proposition 13.4].

Theorem 3.5. Let c be a conjugacy class in G. We denote by P (L/K, c) the
set of rational points x ∈ P

1(k) outside the branch locus of C′ → P
1
k such that

c = (x, L/K). Then one has

|P (L/K, c)| ≥
1

N

(

qs − (N + 2g)qs/2 −Nqs/4 − 2(g +N)
)

. (1)

Some preparation is in order before applying Theorem 3.5: to be able to deduce
from it that P (L/K, c) is non-empty as soon as s is chosen large enough, we need
to make sure that the right-hand side of (1) does grow when s goes to infinity. For
instance, it suffices to establish that N and g are bounded independently of M
and s. The integer N is obviously independent of the choices made: it is equal to
∏n

i=1(deg(fi)!). We shall actually prove that g is also independent of M and s.
As C′ is geometrically connected over k, Hurwitz’s theorem [6, IV.2.4] enables

us to express g in terms of the ramification divisor of C′ → P
1
k. The finite extension

L/K is tamely ramified, since its ramification indices are ≤ 2 and p 6= 2; we can
therefore write the ramification divisor in terms of the ramification indices. We
finally obtain the equality

g − 1 +N =
N

2

n
∑

i=1

deg(Ri), (2)

where Ri ⊂ P
1
k is now considered as a finite k-scheme with its reduced subscheme

structure. Hurwitz’s theorem applied to the finite morphism (Ci)k → P
1
k yields

deg(Ri) = 2gi − 2 + 2 deg(fi), (3)

where gi denotes the genus of Ci. By combining equations (2) and (3), we end up
with

g − 1 +N = N

n
∑

i=1

(gi − 1 + deg(fi)), (4)
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hence the claim: g is independent of M and s.
We can therefore assume that the right-hand side of (1) is ≥ 2, by demanding

that s be sufficiently large. The canonical isomorphism G = G1 × · · · × Gn =
S(H1\G1)×· · ·×S(Hn\Gn) allows us to choose an element σ ∈ G whose projection
in Gi acts transitively on Hi\Gi for every i ∈ {1, . . . , n}. Let x0 ∈ P

1(k) be the
point corresponding to the line in P

2
k passing through M and M0. Theorem 3.5 now

ensures the existence of a rational point x ∈ P
1(k) outside

⋃n
i=1 Ri, distinct from x0,

and such that σ = (x, L/K). As the image of (x, L/K) in Gi is (x,Ki/K), it follows
from Lemma 5.1 and the definition of σ that ϕ−1

i (x) is irreducible. Moreover, the
k-scheme ϕ−1

i (x) is étale since x 6∈ Ri, and hence it is integral. That x 6= x0

implies that there exist a, b ∈ k such that for every i ∈ {1, . . . , n}, the scheme
Spec(k[t]/(fi(t, at + b))) is an open subscheme of ϕ−1

i (x); as the latter scheme is
integral, the polynomials f1(t, at+ b), . . . , fn(t, at+ b) must be irreducible.

4 Application

The following problem was posed in [4]:
Problem: Let f(t, x) ∈ Fq[t, x] be irreducible and set g(t) = f(t, at+ b). Count

(or estimate) the number of pairs (a, b) ∈ Fq × Fq such that g(t) is irreducible
over Fq.

As a partial solution of this problem, we have

Proposition 4.1. Let Fq be a finite field of characteristic p and cardinality q. Let
f ∈ Fq[t, x] be an irreducible polynomial whose total degree d satisfies p ∤ d(d − 1).
Assume that the curve C ⊂ P

2
Fq

defined as the Zariski closure of the affine curve

f(t, x) = 0

is smooth and that q > 9(d(d−1)d!+2)2. Then the polynomial f(t, at+b) ∈ Fq[t] is

irreducible for at least 1
d!(q−

d4

2 )(q−3(d(d−1)d!+2)q1/2−d!) pairs (a, b) ∈ Fq×Fq.

Proof. We unfold the proof of Theorem 1.1 for one polynomial and estimate the re-
sulting number of possible pairs (a, b), using only the simplest non-trivial estimates.

The only parts of the proof of Theorem 1.1 which depend on the size of the
finite field in relation to the degree d are the applications of Proposition 3.1 and of
Theorem 3.5. The case d = 1 being trivial, we assume d ≥ 2.

We use the notation introduced in the proof of Theorem 1.1. As mentioned in
the proof of Proposition 3.1, the Gauss map ϕ : C → C⋆ is separable. Proposition
3.5 in [8] then implies that as in characteristic 0, the number n of lines D ⊂ P

2
F

whose scheme-theoretic intersection with CF does not have at most one double
point is bounded by the number of singular points of the dual curve C⋆

F
. Since C⋆ is

irreducible of degree d(d−1), we thus obtain n ≤ pa(C⋆) = 1
2 (d(d−1)−1)(d(d−1)−

2) ≤ 1
2d

4−d+1. In particular, it follows from our assumption q > 9(d(d−1)d!+2)2

that q2 > n, hence the existence of an Fq-rational line D0 ⊂ P
2
Fq

\ {M0} whose
scheme-theoretic intersection with C has at most one double point.

Pairs (a, b) ∈ Fq × Fq such that f(t, at + b) ∈ Fq[t] is irreducible correspond
bĳectively to lines D ⊂ P

2
Fq

\ {M0} such that C ∩ D is integral. Let us denote
their number by e, and by e(M) the number of such lines which contain a given
M ∈ (D0 ∩ U)(Fq). For such an M , we have seen in Theorem 3.5 that e(M) + 1
is greater than or equal to the right-hand side of (1) with s = 1; moreover N = d!,
and (4) yields

g = 1 +
N

2
(d− 2)(d+ 1),
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whence
e(M) ≥

1

d!
(q − 3(d(d− 1)d! + 2)q1/2).

The result now follows in view of the inequalities

e ≥
∑

M∈(D0∩U)(Fq)

(e(M) − 1)

and
|(D0 ∩ U)(Fq)| ≥ q + 1 − n− d ≥ q −

1

2
d4.

�

5 Appendix

The following lemma was used several times in the proof of Theorem 1.1. It is
essentially well-known, but we state it here and include a sketch of proof for lack
of an adequate reference. It is only for technical reasons that we state it in such
generality (we need to allow X ′ to be non-connected in order to be able to reduce
to the case of a strictly Henselian base in the proof below).

Lemma 5.1. Let u : X ′ → X and f : X → B denote surjective finite flat mor-
phisms of normal schemes. Assume B is the spectrum of a discrete valuation ring.
Put f ′ = f ◦ u. Let G be a finite subgroup of AutB(X ′) such that the generic fibre
of f ′ is a torsor under G. Let m ∈ X ′ belong to the special fibre of f ′. We de-
note respectively by Dm ⊆ G and Im ⊆ G the decomposition and inertia subgroups
associated with m; in other words, Dm is the stabilizer of m and Im is the kernel
of the natural map Dm → Aut(κ(m)). Let H = G ∩ AutX(X ′). Then the double
quotient H\G/Dm is canonically in bĳection with the special fibre of f , and the
double quotient H\G/Im is canonically in bĳection with the geometric special fibre
of f .

Sketch of proof. Let us first consider the assertion about H\G/Im. To prove it, one
easily checks that B may be assumed to be strictly Henselian, by using the fact that
for any finite field extension L/k, the group Autk(L) acts freely on Spec(L ⊗k k̄),
where k̄ denotes a separable closure of k. Now the assertion about H\G/Im follows
from the one about H\G/Dm since Dm = Im.

We are thus left with the first part of the lemma. Define a map

H\G/Dm −→ f−1(f ′(m))

by sending the double class HσDm to u(σ(m)). The key ingredient for checking
that this map is indeed a bĳection is the transitivity of the action of G (resp. H)
on the fibres of f ′ (resp. u), and it is a consequence of [2, Ch. 5, §2, Th. 2]. �
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