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Abstract. We study the distribution of extensions of a number field k with
fixed abelian Galois group G, from which a given finite set of elements of k

are norms. In particular, we show the existence of such extensions. Along the
way, we show that the Hasse norm principle holds for 100% of G-extensions of
k, when ordered by conductor. The appendix contains an alternative purely
geometric proof of our existence result.
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1. Introduction

Let k be a number field. In this paper we are interested in the images of the
norm maps NK/k : K∗ → k∗ for finite field extensions K/k. Specifically, given
an element α ∈ k∗ and a finite group G, does there exist an extension K/k with
Galois group G such that α is a norm from K? We are able to answer this
question positively if one restricts to abelian extensions of k. Furthermore, in
the abelian setting, we prove the existence of such an extension from which a
given finite set of elements of k∗ are norms.

Theorem 1.1. Let k be a number field, G a finite abelian group and A ⊂ k∗

a finitely generated subgroup. Then there exists an abelian extension K/k with
Galois group G such that every element of A is a norm from K.

As an application, we obtain the following corollary.

Corollary 1.2. Let k be a number field, G a finite abelian group and S a finite
set of places of k. Then there exists an abelian extension K/k with Galois group
G such that every S-unit of k is a norm from K.

We prove Theorem 1.1 by counting the collection of abelian extensions under
consideration; we obtain an asymptotic formula for the number of such extensions
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of bounded conductor, and show explicitly that the leading constant in this
formula is non-zero. In particular, we prove the existence of infinitely many
extensions with the desired properties. The strategy of proving existence via
counting is widely used in analytic number theory, for example in the context of
the Hardy–Littlewood circle method. Our proof of Theorem 1.1 seems to be the
first case where it is implemented for number fields. Our methods even allow us
to prove existence of such an extension K/k which satisfies any finite collection
of admissible local conditions (Corollary 4.12).

Before we can explain these more general results, we must introduce some
notation. Fix a choice of algebraic closure k of k and let G be a finite abelian
group. By a G-extension of k, we mean a surjective continuous homomorphism
ϕ : Gal(k/k) → G. This corresponds to choosing an extension k ⊂ K ⊂ k̄
together with an isomorphism Gal(K/k) ∼= G. Keeping track of the isomorphism
with G simplifies the set-up and the counting. It has no qualitative effect on the
results; forgetting the choice of isomorphism merely scales all the counting results
by | Aut(G)|. We writeG-ext(k) for the set of allG-extensions of k. Given ϕ ∈ G-
ext(k), we write Kϕ for the corresponding number field, and Φ(ϕ) for the norm
of the conductor of Kϕ (viewed as an ideal of k). Moreover, we write A∗

Kϕ
for

the ideles of the number field Kϕ. We are interested in the counting functions

N(k,G,B) = #{ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B},
Nloc(k,G,A, B) = #{ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B,A ⊂ NKϕ/k A∗

Kϕ
}, (1.1)

Nglob(k,G,A, B) = #{ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B,A ⊂ NKϕ/kK
∗
ϕ}.

The first counts all G-extensions ϕ of k of bounded conductor, the second
counts only those for which every element of A is everywhere locally a norm, the
third only those for which every element of A is a global norm.

An asymptotic formula for N(k,G,B) was first obtained by Wood in [49],
building on numerous special cases. In this paper we obtain asymptotic formulae
for the other counting functions. Our formulae are stated in terms of the invariant
̟(k,G,A) which we now define.

Definition 1.3. Let k be a number field, G a finite abelian group, and A ⊂ k∗

a finitely generated subgroup. For d ∈ Z≥1, let kd = k(µd,
d
√

A). We define

̟(k,G,A) =
∑

g∈Gr{idG}

1

[k|g| : k]
,

where |g| denotes the order of g in G and idG ∈ G is the identity element.

Theorem 1.4. Let k be a number field, G a non-trivial finite abelian group, and
A ⊂ k∗ a finitely generated subgroup. Then

Nglob(k,G,A, B) ∼ ck,G,AB(logB)̟(k,G,A)−1

as B → ∞, for some ck,G,A > 0.

This theorem gives an asymptotic formula for the number of G-extensions from
which every element of A is a global norm. It is natural to ask how the number
of such extensions compares with the total number N(k,G,B) of G-extensions of
k of conductor bounded by B. We observe that N(k,G,B) = Nglob(k,G, {1}, B)
and note that in this case the formula of Theorem 1.4 agrees with [49, Thm. 3.1].
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Example 1.5. In the special case where G = Z/2Z and α ∈ k∗rk∗2, we compute
̟(k,Z/2Z, 〈α〉) = 1/2 and thus Nglob(k,Z/2Z, 〈α〉, B) ∼ ck,Z/2Z,〈α〉B(logB)−1/2.
When compared to the asymptotic N(k,Z/2Z, B) ∼ ck,Z/2ZB, this shows that
for 100% of quadratic extensions of k the number α is not a norm.

The next theorem generalises this observation. It says that, unless we are in a
very special case, for 100% of G-extensions of k not all elements of A are norms.

Theorem 1.6. Let k be a number field, G a non-trivial finite abelian group of
exponent e, and A ⊂ k∗ a finitely generated subgroup. Then the following are
equivalent:

(1) limB→∞
Nglob(k,G,A,B)

N(k,G,B)
> 0;

(2) A ⊂ k(µd)
∗d for all d | e;

(3) A ⊂ k∗e
v for all but finitely many places v of k.

There is a nice cohomological way to interpret the condition (3) in Theorem 1.6
via certain Tate–Shafarevich groups (see §4.6). Together with some class field
theory, this will allow us to deduce the following result.

Corollary 1.7. Let A ⊂ k∗ be a finitely generated subgroup and let e be the
exponent of G. Then the limit

lim
B→∞

Nglob(k,G,A, B)

N(k,G,B)
(1.2)

(i) only depends on the image Ak∗e of A in k∗/k∗e;
(ii) equals one if A ⊂ k∗e;

(iii) is zero for all but finitely many finite subgroups Ak∗e ⊂ k∗/k∗e;
(iv) is zero for all finitely generated subgroups A 6⊂ k∗e if and only if the

extension k(µ2r)/k is cyclic, where 2r is the largest power of 2 dividing e.

Condition (iv) holds for example if 8 ∤ e or µe ⊂ k∗. Our next result shows
that if G is cyclic then in order to have

0 < lim
B→∞

Nglob(k,G,A, B)

N(k,G,B)
< 1,

for some choice of A, the field k must have more than one prime lying above 2.

Theorem 1.8. Let k be a number field, let A ⊂ k∗ be a finitely generated sub-
group, and let G be a finite cyclic group. Suppose that k has only one prime lying
above 2. Then the following are equivalent:

(1) limB→∞
Nglob(k,G,A,B)

N(k,G,B)
> 0;

(2) every element of A is a global norm from every G-extension of k.

A necessary condition for an element of k to be a global norm is that it is a
norm everywhere locally. However, this is not a sufficient condition in general
due to possible failures of the Hasse norm principle (HNP). Nevertheless, to
prove Theorem 1.4, we reduce to the case of everywhere local norms via the
following theorem, which shows that, when ordered by conductor, “most” abelian
extensions satisfy the Hasse norm principle.
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Theorem 1.9. Let k be a number field, G a finite abelian group, and A ⊂ k∗ a
finitely generated subgroup. Then

lim
B→∞

#{ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B,A ⊂ NKϕ/k A∗
Kϕ
, Kϕ fails the HNP}

Nloc(k,G,A, B)
= 0.

In particular Theorem 1.9 implies that

lim
B→∞

Nglob(k,G,A, B)

Nloc(k,G,A, B)
= 1.

Theorem 1.4 can thus be proved via an asymptotic formula for Nloc(k,G,A, B),
which we obtain in Theorem 4.1. We prove Theorem 1.9 using a purely local
criterion for failure of the Hasse norm principle (Proposition 4.2). Taking A =
{1} in Theorem 1.9, we obtain the following result.

Corollary 1.10. Let k be a number field and G a finite abelian group. Then 100%
of G-extensions of k, ordered by conductor, satisfy the Hasse norm principle.

Corollary 1.10 stands in stark contrast to the results of [20], where a dichotomy
occurs when counting by discriminant: in op. cit. we showed that for certain finite
abelian groups G a positive proportion of G-extensions can fail the Hasse norm
principle, when ordered by discriminant. This contrasting behaviour illustrates
the fact, already observed by Wood in [49], that counting by conductor often leads
to more natural statements than counting by discriminant. In fact, after seeing
the results we obtained in [20] when counting extensions ordered by discriminant,
Wood remarked that the dichotomy we had observed should disappear when
ordering by conductor, and conjectured the statement of Corollary 1.10.

There are two reasons why it seems quite difficult to prove Theorem 1.1 when
counting by discriminant, rather than conductor. Firstly, the condition that
every element of A is a norm everywhere locally may be only rarely satisfied
and, in the setting of [20, Thm. 1.4] where a positive proportion of G-extensions
fail the Hasse norm principle, it becomes challenging to show the existence of a G-
extension for which every element of A is a norm everywhere locally and the Hasse
norm principle holds. Secondly, the leading constant obtained when counting by
discriminant is very complicated, with potential for further cancellation, so it is
difficult to prove its positivity, whereas when counting by conductor we have a
simple criterion for positivity of the leading constant (see Theorem 3.1).

The counting techniques employed in this paper are fairly robust and enable us
to prove a strengthening of Theorem 1.1 in which we impose local conditions at
finitely many places. See Theorem 3.1 and Corollary 4.11 for precise statements.

Our work on the statistical behaviour of the Hasse norm principle brings to-
gether two major areas of modern number theory: namely, counting within fam-
ilies of number fields, and the quantitative study of the failure of local-global
principles. Notable recent papers on the statistics of number fields include [1],
[2], [4], [5], [18], [21], [27], [33] and [50]. Some significant contributions to the
study of local-global principles in families include [3], [6], [7], [8], [19], [29] and
[30]. For a summary of recent progress on counting failures of the Hasse principle,
see [9]. More specifically, the statistical behaviour of the Hasse norm principle is
examined in [10], [31] and [35]. In particular, in [35] Rome obtains an asymptotic
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formula for the number of biquadratic extensions of Q (ordered by discriminant)
which fail the Hasse norm principle. Obtaining asymptotic formulae for the
number of such failures for other classes of field extensions would seem to be an
interesting problem.

Below, we give some examples illustrating our results in a variety of settings
to demonstrate the wide range of phenomena manifested by norms in extensions
of number fields.

Examples 1.11.

(1) Take G = Z/nZ with 8 ∤ n and α ∈ k∗ not an nth power. Then Co-
rollary 1.7 implies that for 100% of all Z/nZ-extensions of k ordered by
conductor, α is not a norm. In the special case n = 2 of quadratic ex-
tensions, this result can be proved using standard techniques in analytic
number theory; all other cases are new.

(2) Take k = Q, α = 16 and G = Z/8Z. As is well known, 16 is an 8th
power in Q∗

p for all odd primes p and in R∗. It therefore follows from
Theorems 1.6 and 1.8 that 16 is a norm from every Z/8Z-extension K/Q,
despite not being an 8th power in Q.

(3) Take k = Q(
√

17), α = 16 and G = Z/8Z. Then, as above, we see that 16
is locally an 8th power at all places v such that v ∤ 2. Hence 16 is a local
norm from all Z/8Z-extensions of k at all places v ∤ 2. However, let p, q
be the two primes of k above 2. By [32, Thm. 9.2.8] there exists a Z/8Z-
extension F/k such that Fp/kp is unramified of degree 8. Therefore, 16 is
not a local norm from Fp/kp, and consequently not a global norm from
F/k. Given the existence of one such an extension, an application of [49,
Cor. 1.7] (or Theorem 3.1) yields the existence of a positive proportion of
Z/8Z-extensions K/k which are unramified of degree 8 over p, thus the
limit (1.2) is positive but not equal to 1 in this case.

Let us explain in more detail why [32, Thm. 9.2.8] applies here but
not in the previous example. Recall that a place v of a number field
L is said to split (or decompose) in an extension M/L if there exist at
least two distinct places of M above v. All places of Q apart from 2
split in the non-cyclic extension Q(µ8)/Q, so that (Q, 8,ΩQ \ {2}) is a
so-called special case and [32, Thm. 9.2.8] does not apply in example (2).
However, in example (3), q is non-split in k(µ8)/k: both p and q are
totally ramified in k(µ8)/k, since 2 is split in k/Q and totally ramified
in Q(µ8)/Q. Therefore, (k, 8,Ωk \ {p}) is not a special case and [32,
Thm. 9.2.8] can be applied in example (3).

(4) Take k = Q, α = 52 andG = (Z/2Z)2. A simple argument (cf. Lemma 4.4)
shows that 52 is a norm everywhere locally from every biquadratic ex-
tension of Q. By Theorem 1.9, it is thus a global norm from 100% of
biquadratic extensions of Q ordered by conductor. However, 52 is not a
global norm from K = Q(

√
13,

√
17) (failure of the Hasse norm principle

[11, p. 360, Exercise 5.3]). Therefore, it is not true that 52 is a global
norm from every biquadratic extension of Q.
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Remark 1.12. A simple application of local class field theory (Lemma 4.4)
shows that every element of k∗e is everywhere locally a norm from every G-
extension of k, where e denotes the exponent of G. Using this, one can show
that in our results, the assumption that A is a finitely generated subgroup of k∗

can be replaced by the weaker assumption that the image of A in k∗/k∗e is finite.
We have chosen to make the stronger assumption as it simplifies the exposition
and some technical aspects of the proofs.

We finish with a simple example which solves the problem analogous to The-
orem 1.1 for field extensions of degree n with maximal Galois group.

Example 1.13. Let α ∈ Q∗ and n ≥ 3. Then the polynomial

xn + cxn−1 + tx+ (−1)nα

has Galois group Sn over Q(t) for all but finitely many c ∈ Q (see [26, Satz
1]). Therefore, Hilbert’s irreducibility theorem implies that for infinitely many
specialisations t ∈ Q, the Galois group is Sn, and α is clearly a norm from such
an extension, being the product of the roots of the defining polynomial.

1.1. Methodology and structure of the paper. In §2 we recall some of the
theory of frobenian functions from Serre’s book [41, §3.3], in order to help analyse
the Dirichlet series which arise in this paper.

In §3 we prove our main technical result, Theorem 3.1. This is a general the-
orem for counting abelian extensions with local conditions imposed. To prove
this we study the analytic properties of the Dirichlet series corresponding to
our counting functions. We achieve this with the help of the harmonic analysis
techniques developed in our earlier paper [20]. In our case, however, the ana-
lysis is more difficult as the singularities of our Dirichlet series will be branch
point singularities, rather than poles, in general; this is reflected in the fact that
̟(k,G,A) in Theorem 1.4 can be a non-integral rational number. This section
is the technical heart of the paper and is dedicated to the proof of Theorem 3.1.

Let us emphasise once more that we prove Theorem 1.1 by first counting the
extensions of interest and then showing that the leading constant obtained is
positive. Our situation presents an interesting difficulty, however: the leading
constant we obtain is not an Euler product but a sum of Euler products and,
in general, cancellation within these sums may occur for some choices of local
conditions. For example, a famous theorem of Wang [47] says that there is no
Z/8Z-extension of Q which realises the unramified extension of Q2 of degree 8;
in this case Wright observed in [51, p. 48] that the Euler products appearing
in the leading constant cancel out. We have to carefully analyse these sums of
Euler products and explicitly show that no cancellation occurs in our case.

In §4, we prove the major results stated in the introduction via suitable ap-
plications of Theorem 3.1 combined with Galois-cohomological techniques. At
the end of §4 we also give a generalisation of Theorem 1.1 which allows one to
impose local conditions on the abelian extension K/k at finitely many places.

The appendix (by Yonatan Harpaz and Olivier Wittenberg) contains a purely
geometric proof of Theorem 1.1. It uses descent and a version of the fibration
method developed in [24] to show that the Brauer–Manin obstruction controls the
failure of weak approximation on a certain auxiliary variety. The existence of the
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required abelian extension is then shown using a version of Hilbert’s irreducibility
theorem due to Ekedahl [17] (see also [42, §§3.5–3.6]).

1.2. Notation and conventions. We fix a number field k throughout the paper
and use the following notation:

A∗ the ideles of k
A∗
L the ideles of a finite extension L of k

Ok the ring of integers of k
Ωk the set of all places of k
OS the S-integers of k
v a place of k
kv the completion of k at v
Ov the ring of integers of kv. For v | ∞, by convention Ov := kv
Fv the residue field at a finite place v
qv the cardinality of the residue field at a finite place v
ζk(s) the Dedekind zeta function of k.

For locally compact abelian groups A and B, we use the following notation:

Hom(A,B) the group of continuous homomorphisms from A to B,
equipped with the compact-open topology

A∧ the Pontryagin dual of A, A∧ := Hom(A, S1)
〈·, ·〉 the natural pairing A ×A∧ → S1.

All finite groups are viewed as topological groups with the discrete topology.
For a place v of k, a finite abelian group G, and χ ∈ Hom(k∗

v, G), we denote
by Φv(χv) the reciprocal of the v-adic norm of the conductor of Kerχv. For
every χ ∈ Hom(A∗/k∗, G), we let Φ(χ) be the reciprocal of the idelic norm of
the conductor of the kernel of χ; this equals the norm Φ(ϕ) of the conductor of
the sub-G-extension ϕ corresponding to χ via the global Artin map.

Let K/k be an extension of number fields and α ∈ k∗. We say that α is a
(global) norm from K if α ∈ NK/kK

∗. We say that α is a local norm at v from K
if α ∈ ∏

w|v NKw/kv
K∗
w ⊂ k∗

v ; if K/k is Galois this is equivalent to the existence
of some place w | v of K such that α ∈ NKw/kv

K∗
w.

If F is a field which contains d distinct dth roots of unity and A ⊂ F ∗ is a
finitely generated subgroup, then we denote by F ( d

√
A) the splitting field of the

polynomials xd − α, where α runs over a set of generators of A.
For a subgroup A ⊂ k∗ and a place v of k, we denote by Av the image of A in

k∗
v .
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shop Rational Points 2017 held at Franken-Akademie Schloss Schney. Sub-
stantial progress was made when the third author visited the other two at the
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enthal and Cecília Salgado at Hotel Hacienda Los Laureles, Oaxaca. We are
very grateful to the organisers of both workshops, to the funding bodies, and to
the staff at all three places for providing us with excellent working conditions.
We thank the anonymous referee for a meticulous reading of an earlier draft of
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2. Frobenian functions

For the proofs of our main results, we will require some of the theory of
frobenian functions, as can be found in Serre’s book [41, §3.3]. Recall that a
class function on a group is a function which is constant on conjugacy classes.

Definition 2.1. Let k be a number field and ρ : Ωk → C a function on the set
of places of k. Let S be a finite set of places of k. We say that ρ is S-frobenian
if there exist

(a) a finite Galois extension K/k, with Galois group Γ, such that S contains
all places which ramify in K/k, and

(b) a class function ϕ : Γ → C,

such that for all v 6∈ S we have

ρ(v) = ϕ(Frobv),

where Frobv ∈ Γ denotes a Frobenius element of v. We say that ρ is frobenian if
it is S-frobenian for some S. A subset of Ωk is called (S-)frobenian if its indicator
function is (S-)frobenian.

In Definition 2.1, we adopt a common abuse of notation (see [41, §3.2.1]), and
denote by Frobv ∈ Γ the choice of some element of the Frobenius conjugacy class
at v; note that ϕ(Frobv) is well defined as ϕ is a class function.

We define the mean of ρ to be

m(ρ) =
1

|Γ|
∑

γ∈Γ

ϕ(γ) ∈ C.

Example 2.2. Let f ∈ k[x] be a (not necessarily irreducible) polynomial. Then
the set

{v ∈ Ωk : f(x) has a root in kv}
is frobenian. Indeed, take K to be the splitting field of f . Then for a place v
which is unramified in K, the polynomial f has a root in kv if and only if Frobv
acts with a fixed point on the roots of f over k̄; the set of such elements is a
conjugacy invariant subset of the Galois group Γ.

We require the following result on the zeta function of a frobenian function.
Throughout the paper, we write qv for the size of the residue field at a finite
place v. Moreover, for any place v, let ζk,v(s) be the Euler factor of ζk(s) at v if
v is non-archimedean, and ζk,v(s) = 1 otherwise.

Proposition 2.3. Let S be a finite set of places of k containing all archimedean
places and let ρ be an S-frobenian function. Assume that |ρ(v)| < qv holds for
all v /∈ S. Then the Euler product

F (s) =
∏

v/∈S

(
1 +

ρ(v)

qsv

)
(2.1)
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has the form

F (s) = ζ
m(ρ)
k (s)G(s), Re s > 1, (2.2)

for a function G(s) that is holomorphic in a region

Re s > 1 − c

log(| Im s| + 3)
, (2.3)

for some c = cρ > 0, and satisfies in this region the bound

|G(s)| ≪ρ (1 + | Im s|)1/2. (2.4)

Moreover,

lim
s→1

(s− 1)m(ρ)F (s) = (Ress=1ζk(s))
m(ρ)

∏

v/∈S

1 + ρ(v)q−1
v

ζk,v(1)m(ρ)

∏

v∈S

1

ζk,v(1)m(ρ)
, (2.5)

and the limit in (2.5) is non-zero.

Proof. First, note that the Euler factors 1 + ρ(v)q−s
v are holomorphic on C and

non-zero for Re s ≥ 1, as |ρ(v)| < qv by assumption. Next, recall that the
irreducible characters of a finite group Γ form a basis for the space of complex
class functions of Γ [22, Prop. 2.30]. In particular, if ϕ : Γ → C is the class
function associated to ρ, then we may write

ϕ =
∑

χ

λχχ

where λχ ∈ C and the sum runs over the irreducible characters of Γ. For Re s > 1,
we find that

F (s) =
∏

v/∈S

(
1 +

∑
χ λχχ(Frobv)

qsv

)
= G1(s)

∏

χ

L(χ, s)λχ ,

where L(χ, s) denotes the Artin L-function of χ and G1(s) is a holomorphic
function with absolutely convergent Euler product on Re s > 1/2, which is non-
zero on Re s ≥ 1.

For the trivial character χ = 1, we have L(1, s) = ζk(s). Since λ
1

= m(ρ), we
get the equality (2.2) with

G(s) = G1(s)
∏

χ 6=1

L(χ, s)λχ .

By the Brauer induction theorem [11, Thm. VIII.7, p. 225], we may decompose
each remaining L(χ, s) as a product of Z-powers of Hecke L-functions of non-
trivial Hecke characters of subfields of K. Hence, we assume from now on that
each L(χ, s) is an entire Hecke L-function (for some possibly different number
field). By [28, Thm. 5.35], L(χ, s) respects a zero-free region of the form (2.3),
for some c < 1/4 that may depend on χ. Since there are only finitely many
characters to consider, we can find a constant c that works for all of them.
Decreasing c further, we obtain a bound

log |L(χ, s)| ≪ log log(| Im s| + 3),

valid in the region (2.3) (cf. [38, p.230]). Using this bound and the fact that
|G1(s)| ≪ρ 1 in Re s ≥ 3/4 due to the absolute convergence of its Euler product,
it is simple to verify that G(s) satisfies (2.4).
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To verify (2.5), we start with the following fact, which is well known at least in
the classical case of Dirichlet L-functions: for non-trivial χ, the Euler product of
L(χ, s) converges for s = 1 and takes the value L(χ, 1). To see this, observe that
logL(χ, s) can be defined for Re s > 1 as a Dirichlet series, use the prime number
theorem for L(χ, s) (see [28, Thm. 5.13]) and partial summation to verify that
this Dirichlet series converges for s = 1, and apply Abel’s theorem.

Since G1(s) has an absolutely convergent Euler product for Re s > 1/2, this
shows that the Euler product of ζk(s)

−m(ρ)F (s) = G(s) does indeed converge at
s = 1 and takes the value

G(1) = lim
s→1

ζk(s)
−m(ρ)F (s) = (Ress=1ζk(s))

−m(ρ) lim
s→1

(s− 1)m(ρ)F (s).

Recalling our assumption that |ρ(v)| < qv, it is clear that the right-hand side of
(2.5) is non-zero. �

Remark 2.4.

(1) Note that frobenian functions are bounded; thus the condition |ρ(v)| < qv
in Proposition 2.3 is always satisfied for all but finitely many v.

(2) The conclusion (2.5) may fail if one includes the places v ∈ S in the
Euler product in Proposition 2.3. To see this, take k = Q, ρ(2) = −2 and
ρ(p) = 0 for p 6= 2; this is frobenian with K = Q and S = {2}. Then the
Euler factor

1 − 2

2s

has a zero at s = 1, despite the fact that m(ρ) = 0.
(3) The conclusion (2.5) can fail to hold for some innocuous looking Dirichlet

series. Consider for example F (s) = ζ(2s− 1)/ζ(s). Then lims→1 F (s) =
1/2, but

∏
p lims→1(1 − p−s)/(1 − p−2s+1) = 1.

3. Counting with local conditions

All of the main counting results in this paper are obtained from a more general
counting result, which we present in this section. To state this result we require
some notation.

3.1. Statement of the result. Let G be a finite abelian group, let F be a
field and F̄ a separable closure of F . We define a sub-G-extension of F to be a
continuous homomorphism Gal(F̄ /F ) → G. A sub-G-extension corresponds to
a pair (L/F, ψ), where L/F is a Galois extension inside F̄ and ψ is an injective
homomorphism Gal(L/F ) → G.

For each place v of the number field k, we fix an algebraic closure k̄v and
compatible embeddings k →֒ k̄ →֒ k̄v and k →֒ kv →֒ k̄v.

Hence, a sub-G-extension ϕ of k induces a sub-G-extension ϕv of kv at every
place v. For each place v of k, let Λv be a set of sub-G-extensions of kv. For
Λ := (Λv)v∈Ωk

we are interested in the function

N(k,G,Λ, B) := # {ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B, ϕv ∈ Λv∀v} , (3.1)

which counts those G-extensions of k of bounded conductor which satisfy the
local conditions imposed by Λ at all places v. (Here Φ is as in §1.2.)
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In general, it is difficult to say anything about the counting function given in
(3.1), especially when there are infinitely many local conditions imposed. Even
in the case when one imposes finitely many conditions, the set being counted
may be empty, as explained in §1.1. Our main technical result imposes arbitrary
conditions at finitely many places, but at the remaining places we only impose
those conditions which force every element of A to be a local norm.

Theorem 3.1. Let k be a number field, G a non-trivial finite abelian group, and
A ⊂ k∗ a finitely generated subgroup. Let S be a finite set of places of k and for
v ∈ S let Λv be a non-empty set of sub-G-extensions of kv. For v /∈ S we let Λv

be the set of sub-G-extensions of kv determined by those extensions of local fields
L/kv for which every element of A is a local norm from L/kv. Let Λ := (Λv)v∈Ωk

.
Then there exist ck,G,Λ ≥ 0 and δ = δ(k,G,A) > 0 such that

N(k,G,Λ, B) = ck,G,ΛB(logB)̟(k,G,A)−1 +O(B(logB)̟(k,G,A)−1−δ), B → ∞,

where ̟(k,G,A) is as in Definition 1.3. Moreover we have ck,G,Λ > 0 if there
exists a sub-G-extension of k which realises the given local conditions for all
places v.

The leading constant ck,G,Λ in this theorem is given by a finite sum of Euler
products (see Theorem 3.22 for an explicit expression). Our condition for posit-
ivity is only the existence of some sub-G-extension of k which realises the given
local conditions; we do not require the existence of a genuine G-extension of
k, so we do not need to assume that the set of G-extensions being counted is
non-empty to deduce the positivity of the constant. This means that one need
only look for an extension with possibly smaller Galois group to prove positivity
of the constant; we use this trick to great effect when proving Theorem 1.1.

We illustrate how one applies Theorem 3.1 in some simple cases. Firstly, one
counts the total number of G-extensions of k by applying Theorem 3.1 with
A = {1} and no local conditions, i.e. taking Λv to be the set of all sub-G-
extensions of kv for all places v. These local conditions are realised by the sub-
G-extension given by the trivial extension k/k. For a more interesting example,
consider the case A = {1} and the trivial local conditions Λv = {1} for v ∈ S,
which are again realised by the trivial extension k/k. This gives the following
corollary. (Note that we do not need to avoid the places above 2.)

Corollary 3.2. Let S be a finite set of places. Then a positive proportion of
G-extensions of k, ordered by conductor, are completely split at all places in S.

The rest of this section is dedicated to the proof of Theorem 3.1. All implied
constants in the O and ≪ notation are allowed to depend on k,G,A and Λ.

3.2. The set of places S. To prove Theorem 3.1, we are free to increase the
size of S if we wish. Henceforth, we will assume that S contains all archimedean
places of k and all places of k lying above the primes p ≤ |G|, that A ⊂ O∗

S, and
that OS has trivial class group.

The reader should note that many of the formulae which follow are only valid
for finite sets of places S which satisfy these conditions. For example, in the
case where k = Q, G = Z/8Z, A = {1}, S = ∅, the expression for the leading
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constant in Theorem 3.22 does not hold. To compute ck,G,Λ in this instance, we
may take S = {∞, 2, 3, 5} instead.

3.3. Dirichlet series. To prove Theorem 3.1 we study the associated Dirichlet
series

FΛ(s) =
∑

ϕ∈G-ext(k)

fΛ(ϕ)

Φ(ϕ)s
, (3.2)

with fΛ the indicator function of those sub-G-extensions ϕ ∈ Hom(Gal(k̄/k), G)
for which ϕv ∈ Λv for all v ∈ Ωk. Hence, fΛ is the product of the local indicator
functions fΛv

of Λv. As |fΛ(ϕ)| ≤ 1, this Dirichlet series defines a holomorphic
function on Re s > 1. (This follows from [49, Lem. 2.10], but also from the
analysis later in this paper.)

3.3.1. Möbius inversion. Recall that a G-extension of k is a surjective continuous
homomorphism ϕ : Gal(k̄/k) → G. The condition that ϕ be surjective is difficult
to deal with, hence we perform a Möbius inversion to remove it. Let µ be
the Möbius function on isomorphism classes of finite abelian groups. That is,
µ(G) = 0 if G has a cyclic subgroup of order pn with p a prime and n ≥ 2,
µ(G1 ×G2) = µ(G1)µ(G2) if G1 and G2 have coprime order, and µ((Z/pZ)n) =
(−1)npn(n−1)/2 for a prime p and n ∈ Z≥0. Let f be a function on the subgroups
of G. For subgroups H ⊂ G, we consider the function

g(H) =
∑

J⊂H

f(J),

where the sum runs over all subgroups J ⊂ H . The Möbius inversion formula
for finite abelian groups [16] states that

f(G) =
∑

H⊂G

µ(G/H)g(H). (3.3)

Lemma 3.3. We have

FΛ(s) =
∑

H⊂G

µ(G/H)
∑

ϕ∈Hom(Gal(k̄/k),H)

fΛ(ϕ)

Φ(ϕ)s
.

Proof. Sorting the sub-H-extensions ϕ : Gal(k̄/k) → H by their images, we get

∑

J⊂H

∑

ϕ∈J-ext(k)

fΛ(ϕ)

Φ(ϕ)s
=

∑

ϕ∈Hom(Gal(k̄/k),H)

fΛ(ϕ)

Φ(ϕ)s
.

Call the right-hand side g(H) and apply Möbius inversion (3.3). �

We now consider the contribution to FΛ(s) of each subgroup H in turn. The
contribution from H = {1} is either 0 or 1. From now on we focus on the
contributions of the non-trivial subgroups H .
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3.3.2. Class field theory. Via global class field theory, we make the identification

Hom(Gal(k̄/k), H) = Hom(A∗/k∗, H). (3.4)

The canonical isomorphism (3.4) is induced by the global Artin map A∗/k∗ →
Gal(kab/k). Using this isomorphism, we consider fΛ now as a function on
Hom(A∗/k∗, H). For every χ ∈ Hom(A∗/k∗, H), let Φ(χ) be the reciprocal of
the idelic norm of the conductor of the kernel of χ, which is precisely the norm of
the conductor of the sub-H-extension corresponding to χ. Together with Lemma
3.3, this discussion shows the following:

Lemma 3.4. We have

FΛ(s) =
∑

H⊂G

µ(G/H)
∑

χ∈Hom(A∗/k∗,H)

fΛ(χ)

Φ(χ)s
.

Hence, in our analysis of FΛ(s) we can now focus on the inner sums

∑

χ∈Hom(A∗/k∗,H)

fΛ(χ)

Φ(χ)s
.

Our counting problem fits very well within the class-field-theoretic framework.
For each place v ∈ Ωk, we use local class field theory (specifically, the local Artin
map k∗

v → Gal(kab
v /kv)) to make the identification

Hom(Gal(k̄v/kv), H) = Hom(k∗
v, H).

Thus, we consider Λv as a subset of Hom(k∗
v , H). By the compatibility of local

and global class field theory, we still have fΛ =
∏
v fΛv

, with fΛv
the indicator

function of Λv.

Lemma 3.5. Let v /∈ S and let χv ∈ Hom(k∗
v , G). Then

fΛv
(χv) = 1 ⇔ Av ⊂ Kerχv.

Proof. Let ϕv be the sub-G-extension of kv associated to χv. By local class field
theory we have

Kerχv = NKϕv/kv
K∗
ϕv
,

where Kϕv
is the extension field of kv associated to ϕv. However, as v /∈ S, by

assumption in Theorem 3.1 we have fΛv
(χv) = 1 if and only if every element of

A is a local norm from Kϕv
; the result follows. �

3.4. Harmonic analysis. To deal with the sums

∑

χ∈Hom(A∗/k∗,H)

fΛ(χ)

Φ(χ)s

we shall use a version of the Poisson summation formula from harmonic analysis.
The theory relevant to us was worked out in detail in [20, §3] when counting by
discriminant. The same theory transfers almost verbatim to show the validity of
the Poisson summation formula for counting by conductor.

However, for the purposes of Theorem 3.1, our case is special enough that we
merely require a simplified version of the Poisson summation formula that can
be proved using only character orthogonality for finite abelian groups. We may
therefore forego some of the general theory from [20, §3] and proceed in a more
explicit manner. We first recall the set-up for the harmonic analysis.
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3.4.1. Fourier transforms. The group Hom(A∗/k∗, H) is locally compact. Its
Pontryagin dual is naturally identified with A∗/k∗ ⊗ H∧ (see [20, §3.1]). We
denote the associated pairing by 〈·, ·〉 : Hom(A∗/k∗, H) × (A∗/k∗ ⊗ H∧) → S1.
Similarly, the Pontryagin dual of Hom(k∗

v, H) is naturally identified with k∗
v⊗H∧,

and we also denote the relevant Pontryagin pairing by 〈·, ·〉. For each place v, we
equip the finite group Hom(k∗

v, H) with the unique Haar measure dχv such that

vol(Hom(k∗
v/O∗

v, H)) = 1.

If v is non-archimedean, this is |H|−1 times the counting measure; for archimedean
v, recalling our convention that Ov = kv, we obtain the counting measure. The
product of these measures yields a well-defined measure dχ on Hom(A∗, H).
We say that an element of Hom(k∗

v, H) is unramified if it lies in the subgroup
Hom(k∗

v/O∗
v, H), i.e. if it is trivial on O∗

v , and that it is tamely ramified if it is
ramified and trivial on 1 + πvOv.

The function fΛ/Φ
s is a product of local functions fΛv

/Φs
v on Hom(k∗

v, H),
where Φv(χv) is the reciprocal of the v-adic norm of the conductor of Kerχv.
For v /∈ S, these local functions take only the value 1 on the unramified elements
by our choice of S and Lemma 3.5, and thus fΛ/Φ

s extends to a well-defined and
continuous function on Hom(A∗, H). We define its Fourier transform to be

f̂Λ,H(x; s) =
∫

χ∈Hom(A∗,H)

fΛ(χ)〈χ, x〉
Φ(χ)s

dχ,

where x = (xv)v ∈ A∗ ⊗ H∧. Similarly, for xv ∈ k∗
v ⊗ H∧ we have the local

Fourier transform

f̂Λv,H(xv; s) =
∫

χv∈Hom(k∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

dχv.

For Re s ≫ 1, the global Fourier transform exists and defines a holomorphic
function in this domain, and there is an Euler product decomposition

f̂Λ,H(x; s) =
∏

v

f̂Λv,H(xv; s). (3.5)

3.4.2. The local Fourier transforms. Let v ∈ Ωk and xv ∈ k∗
v ⊗H∧.

Lemma 3.6. The local Fourier transform f̂Λv,H(xv; s) is holomorphic on C and

satisfies f̂Λv,H(xv; s) ≪k,H 1 on Re s ≥ 0. Moreover f̂Λv,H(1; s) > 0 for s ∈ R.

Proof. We prove the result when v is non-archimedean, the case of archimedean
v being analogous. By our choice of measures, we have

f̂Λv,H(xv; s) =
1

|H|
∑

χv∈Hom(k∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

. (3.6)

This finite sum clearly defines a holomorphic function on C. If Re s ≥ 0 then
the sum is ≪k,H 1, since every summand is bounded absolutely and the number
of summands is ≪k,H 1. For the last part, we have

f̂Λv,H(1; s) =
1

|H|
∑

χv∈Λv

1

Φv(χv)s
.
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For v ∈ S the set Λv is non-empty by assumption. For v /∈ S the set Λv is
again non-empty, as it always contains the trivial homomorphism k∗

v → H by
Lemma 3.5. For s ∈ R, we therefore obtain a finite non-empty sum of positive
real numbers, which is positive. �

Now let v be non-archimedean. Choosing a uniformiser of kv identifies k∗
v/O∗

v

with Z and gives a splitting of the exact sequence

1 → O∗
v → k∗

v → k∗
v/O∗

v → 1. (3.7)

This implies that the sequence

1 → Hom(k∗
v/O∗

v , H) → Hom(k∗
v , H) → Hom(O∗

v, H) → 1

is split exact. Thus

f̂Λv ,H(xv; s) =
1

|H|
∑

ψv∈Hom(k∗
v/O∗

v ,H)

∑

χv∈Hom(O∗
v ,H)

fΛv
(ψvχv)〈ψvχv, xv〉

Φv(χv)s
, (3.8)

since ψv is unramified and hence Φ(ψvχv) = Φv(χv).

Lemma 3.7. Let v /∈ S. Then fΛv
is Hom(k∗

v/O∗
v, H)-invariant and, in partic-

ular, fΛv
(ψv) = 1 for all ψv ∈ Hom(k∗

v/O∗
v, H).

Proof. Let χv ∈ Hom(k∗
v, H) and let ψv ∈ Hom(k∗

v/O∗
v, H). We use the criterion

from Lemma 3.5. We have Av ⊂ O∗
v ⊂ Kerψv. Therefore Av ⊂ Kerψvχv if and

only if Av ⊂ Kerχv, whence fΛv
(ψvχv) = fΛv

(χv), as required. With χv = 1,
this also shows the second assertion. �

In the statement of the following lemma, note that the natural map O∗
v⊗H∧ →

k∗
v ⊗ H∧ is injective, as the sequence (3.7) is split exact. Therefore, we may

naturally view O∗
v ⊗H∧ as a subgroup of k∗

v ⊗H∧.

Lemma 3.8. Let v /∈ S. Then

f̂Λv ,H(xv; s) =





∑

χv∈Hom(O∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

, if xv ∈ O∗
v ⊗H∧,

0, otherwise.

Proof. From (3.8) and Lemma 3.7 we have

f̂Λv,H(xv; s) =
1

|H|
∑

χv∈Hom(O∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

∑

ψv∈Hom(k∗
v/O∗

v ,H)

〈ψv, xv〉.

Now character orthogonality gives

∑

ψv∈Hom(k∗
v/O∗

v ,H)

〈ψv, xv〉 =





| Hom(k∗
v/O∗

v, H)|, if xv ∈ O∗
v ⊗H∧,

0, otherwise.

Indeed, the subgroup O∗
v ⊗H∧ ⊂ k∗

v ⊗H∧ is naturally identified with the Pontry-
agin dual of Hom(k∗

v/O∗
v, H). The result now follows on noting that k∗

v/O∗
v

∼= Z
and hence | Hom(k∗

v/O∗
v, H)| = |H|. �
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3.4.3. Poisson summation. We now prove the version of Poisson summation that
we will require. In the statement, we view O∗

S ⊗ H∧ as a subgroup of k∗ ⊗ H∧

as follows: we have the exact sequence

0 → O∗
S → k∗ → P (OS) → 0 (3.9)

where P (OS) denotes the group of non-zero principal fractional ideals of OS .
Since P (OS) is a free abelian group, we have Tor(P (OS), H∧) = 0. Therefore
applying (·) ⊗H∧ to (3.9) we find that the map O∗

S ⊗H∧ → k∗ ⊗H∧ is injective,
as required.

Proposition 3.9. For Re s > 1 the Fourier transform f̂Λ,H(·; s) exists and
defines a holomorphic function on this domain. Moreover, we have the Pois-
son formula

∑

χ∈Hom(A∗/k∗,H)

fΛ(χ)

Φ(χ)s
=

1

|O∗
k ⊗H∧|

∑

x∈O∗
S

⊗H∧

f̂Λ,H(x; s), Re s > 1. (3.10)

Note that the group O∗
S ⊗ H∧ is finite by Dirichlet’s S-unit theorem; in par-

ticular the right-hand sum is finite.

Proof. Let x ∈ O∗
S ⊗ H∧. Let xv denote its image in k∗

v ⊗ H∧. Recall that
we have normalised our Haar measures on Hom(k∗

v , H) to be |H|−1 times the
counting measure for non-archimedean v, and equal to the counting measure
for archimedean v. We let Sf be the set of non-archimedean places in S. Now
Lemma 3.8 and (3.5) give

f̂Λ,H(x; s) =
1

|H||Sf|

∏

v∈S

∑

χv∈Hom(k∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

∏

v/∈S

∑

χv∈Hom(O∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

=
1

|H||Sf|

∑

χ∈Hom(A∗
S
,H)

fΛ(χ)〈χ, x〉
Φ(χ)s

where A∗
S =

∏
v∈S k

∗
v ×∏

v/∈S O∗
v . We now change the order of summation in the

right-hand sum of (3.10) to obtain

∑

x∈O∗
S

⊗H∧

f̂Λ,H(x; s) =
1

|H||Sf|

∑

χ∈Hom(A∗
S
,H)

fΛ(χ)

Φ(χ)s
∑

x∈O∗
S

⊗H∧

〈χ, x〉.

As A∗
S and A∗

S/O∗
S are locally compact groups and their subgroups of nth

powers are closed, an application of [20, Lem. 3.2] gives canonical isomorph-
isms of abelian groups Hom(A∗

S, H) ∼= (A∗
S ⊗H∧)∧ and Hom(A∗

S/O∗
S, H) ∼=

(A∗
S/O∗

S ⊗H∧)∧. Therefore, we can view an element χ ∈ Hom(A∗
S, H) as a

character of A∗
S ⊗ H∧. It is easily seen that χ induces the trivial character on

O∗
S ⊗ H∧ if and only if χ ∈ Hom(A∗

S/O∗
S, H). Thus, we may apply character

orthogonality to find that

∑

x∈O∗
S

⊗H∧

〈χ, x〉 =





|O∗
S ⊗H∧|, if χ ∈ Hom(A∗

S/O∗
S, H),

0, otherwise.

We therefore obtain
∑

x∈O∗
S

⊗H∧

f̂Λ,H(x; s) =
|O∗

S ⊗H∧|
|H||Sf|

∑

χ∈Hom(A∗
S
/O∗

S
,H)

fΛ(χ)

Φ(χ)s
.
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Dirichlet’s S-unit theorem gives a (non-canonical) isomorphism O∗
S

∼= O∗
k × ZSf ,

whereby
|O∗

S ⊗H∧|
|H||Sf|

= |O∗
k ⊗H|.

Moreover, as OS has trivial class group, the natural map A∗
S/O∗

S → A∗/k∗ is an
isomorphism [49, Lem. 2.8]. The result now easily follows. �

3.5. Analytic continuation of the Fourier transforms. We now use the
Poisson formula to study the analytic behaviour of the Dirichlet series under
consideration. To do so, we shall calculate explicitly the local Fourier transforms
for v /∈ S. Fix some subgroup H of G. By a slight abuse of notation, for
xv ∈ k∗

v ⊗ H∧ we write xv ∈ Av ⊗ H∧ to express that xv is in the image of the
(not necessarily injective) map Av ⊗H∧ → k∗

v ⊗H∧.

Lemma 3.10. Let v /∈ S and let xv ∈ O∗
v ⊗H∧. Then

f̂Λv ,H(xv; s) =





1 + (| Hom(F∗
v/(A mod v), H)| − 1)q−s

v , if xv ∈ Av ⊗H∧,

1 − q−s
v , if xv /∈ Av ⊗H∧.

Proof. An element χv ∈ Hom(O∗
v, H) is unramified if and only if it is trivial.

Furthermore, since v /∈ S and our assumptions on S in §3.2, the ramification is
tame and hence for non-trivial characters χv ∈ Hom(O∗

v , H), we have Φv(χv) =
qv. Therefore, by Lemmas 3.5 and 3.8 we have

f̂Λv,H(xv; s) =
∑

χv∈Hom(O∗
v ,H)

fΛv
(χv)〈χv, xv〉
Φv(χv)s

= 1 +
∑

χv∈Hom(O∗
v ,H)

χv 6=1

fΛv
(χv)〈χv, xv〉

qsv

= 1 + q−s
v

∑

χv∈Hom(O∗
v ,H)

χv 6=1
Av⊂Kerχv

〈χv, xv〉

= 1 − q−s
v + q−s

v

∑

χv∈Hom(O∗
v ,H)

Av⊂Kerχv

〈χv, xv〉. (3.11)

We claim that the natural map

Hom(F∗
v/(A mod v), H) → {χv ∈ Hom(O∗

v, H) : Av ⊂ Kerχv} (3.12)

is an isomorphism. To see this, recall that Hensel’s lemma yields a split short
exact sequence

1 → 1 + pv → O∗
v → F∗

v → 1,

where pv denotes the maximal ideal of Ov. Applying Hom(·, H), we obtain

1 → Hom(F∗
v, H) → Hom(O∗

v, H) → Hom(1 + pv, H) → 1.

The kernel of a continuous homomorphism 1 + pv → H contains 1 + pnv for some
n ∈ N, and the successive quotients in the filtration 1+pv ⊃ 1+p2

v ⊃ · · · ⊃ 1+pnv
each have order |Ov/pv| = qv (see [39, Prop. IV.2.6]). Consequently, the quotient
(1 + pv)/(1 + pnv ) has order a power of qv. Now recall that we assumed in §3.2
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that gcd(qv, H) = 1. Therefore, any continuous homomorphism 1 + pv → H is
trivial. It follows that Hom(F∗

v, H) = Hom(O∗
v, H).

Moreover, A mod v lies in the kernel of a homomorphism F∗
v → H if and only

if Av lies in the kernel of the induced homomorphism O∗
v → H ; whence (3.12) is

an isomorphism as claimed.
Orthogonality of characters now gives

∑

χv∈Hom(O∗
v ,H)

A⊂Kerχv

〈χv, xv〉 =





| Hom(F∗
v/(A mod v), H)|, if xv ∈ Av ⊗H∧,

0, otherwise.

Inputting this into (3.11), the result follows. �

To study the analytic behaviour of the global Fourier transforms f̂Λ,H(x; s),
we use the theory of frobenian functions from §2.

Lemma 3.11. Let e be the exponent of H. Consider a function dA,H : Ωk → C
which for all v /∈ S satisfies

dA,H(v) = max{d ∈ Z : d divides gcd(e, qv − 1) and A mod v ⊂ F∗d
v }.

Then

(1) dA,H is S-frobenian, and
(2) for v /∈ S, we have | Hom(F∗

v/(A mod v), H)| = |H [dA,H(v)]|.
Proof. (1) For every d | e, consider the number field kd = k(ζd,

d
√

A). The subset

Σd = Gal(ke/kd) r
⋃

d′| e
d

d′ 6=1

Gal(ke/kdd′) ⊂ Gal(ke/k)

is a union of conjugacy classes, since each Gal(ke/kd) is normal in Gal(ke/k).
The sets Σd for d | e form a partition of Gal(ke/k). Let ϕ : Gal(ke/k) → C be
the class function that takes the constant value d on Σd, for all d | e. We claim
that dA,H(v) = ϕ(Frobv) for all v /∈ S, so in particular it is S-frobenian.

Note that Frobv ∈ Σd if and only if d is the largest divisor of e such that v
splits completely in kd/k. Equivalently, d is the largest divisor of e such that
d | qv − 1 and xd − α has a root in kv for all α ∈ A. By Hensel’s lemma, this is
equivalent to d = dA,H(v), and thus ϕ(Frobv) = dA,H(v), as desired.

(2) Let m be the largest divisor of qv − 1 such that A mod v ⊂ F∗m
v . Then

A mod v = F∗m
v , and thus F∗

v/(A mod v) ∼= Z/mZ. Hence

| Hom(F∗
v/(A mod v), H)| = | Hom(Z/mZ, H)| = | Hom(Z, H [m])|

= |H [m]| = |H [gcd(m, e)]| = |H [dA,H(v)]|. �

Lemma 3.12. Let x ∈ O∗
S ⊗H∧. Then the set

{v ∈ Ωk : xv ∈ Av ⊗H∧}
is S-frobenian. In the special case H∧ = Z/eZ, on identifying k∗ ⊗ H∧ with
k∗/k∗e, this set equals



v ∈ Ωk : the polynomial

∏

α∈A/Ae

(te − xα) has a root in kv



 . (3.13)
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Note that the group A/Ae is finite. Moreover, our slight abuse of notation
is harmless, as whether or not the polynomial appearing in (3.13) has a root is
independent of the choice of representative of each element of A/Ae.

Proof. To prove this we choose a presentation of H∧. We then work coordinate-
wise on H∧, using the fact that the intersection of finitely many frobenian sets
is frobenian. Thus, we reduce to the case H∧ = Z/eZ. Here we have O∗

S ⊗H∧ =
O∗
S/O∗e

S . For x ∈ O∗
S, we have to show that the set

{v ∈ Ωk : xv ∈ Avk
∗e
v }

is S-frobenian. However, we have xv ∈ Avk
∗e
v if and only if xvαv ∈ k∗e

v for some
αv ∈ Av (depending on v). We find that the set in question is the set of places
v such that the equation

∏

α∈A/Ae

(te − xα) = 0

has a solution in kv; this set is frobenian (see Example 2.2). As x is an S-unit,
it is easily seen that this is S-frobenian for our choice of S in §3.2. �

Corollary 3.13. Let x ∈ O∗
S ⊗H∧. Then the function

v 7→




| Hom(F∗
v/(A mod v), H)| − 1, if xv ∈ Av ⊗H∧,

−1, if xv /∈ Av ⊗H∧,

is S-frobenian.

Proof. The product or sum of two S-frobenian functions is clearly S-frobenian
(in Definition 2.1 one takes the compositum of the relevant field extensions).
Moreover, the complement of a S-frobenian set is S-frobenian. The result there-
fore follows from Lemmas 3.11 and 3.12. �

Definition 3.14. We denote by ̟(k,H,A, x) the mean of the S-frobenian func-
tion described in Corollary 3.13.

We now compare ̟(k,H,A, x) with ̟(k,H,A), as defined in Definition 1.3.

Lemma 3.15. We have ̟(k,H,A, x) ≤ ̟(k,H,A) for all x ∈ O∗
S ⊗ H∧.

Moreover, ̟(k,H,A, 1) = ̟(k,H,A).

Proof. As clearly ̟(k,H,A, x) ≤ ̟(k,H,A, 1), the first assertion follows imme-
diately from the second. So let us prove the second assertion. By Corollary 3.13
and Lemma 3.11, we see that ̟(k,H,A, 1) is the mean of an S-frobenian func-
tion ρ with ρ(v) = | Hom(F∗

v/(A mod v), H)|−1 = |H [dA,H(v)]|−1 for all v /∈ S.
With the notation of the proof of Lemma 3.11, the corresponding class function
on Gal(ke/k) is given by σ 7→ |H [ϕ(σ)]| − 1. Hence,

̟(k,H,A, 1) =
1

[ke : k]

∑

σ∈Gal(ke/k)

(|H [ϕ(σ)]| − 1) =
1

[ke : k]

∑

d|e

(|H [d]| − 1)|Σd|.
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By inclusion-exclusion, we get |Σd| =
∑
c| e

d
µ(c) | Gal(ke/kcd)|, and thus

̟(k,H,A, 1) =
∑

d|e

(|H [d]| − 1)
∑

c| e
d

µ(c)

[kcd : k]
=
∑

f |e

1

[kf : k]

∑

d|f

(|H [d]| − 1)µ(f/d)

= −1 +
∑

f |e

1

[kf : k]

∑

d|f

|H [d]|µ(f/d)

= −1 +
∑

f |e

#{g ∈ H : |g| = f}
[kf : k]

= ̟(k,H,A). �

Recall that ζk,v(s) is the Euler factor of ζk(s) at a non-archimedean place v.
If v is archimedean, then we let ζk,v(s) = 1.

Proposition 3.16. Let x ∈ O∗
S ⊗H∧. Then the Fourier transform satisfies

f̂Λ,H(x; s) = ζk(s)
̟(k,H,A,x)G(x; s), Re s > 1,

where G(x; s) is holomorphic in the region (2.3), for some c > 0, and satisfies
(2.4). Moreover, we have

lim
s→1

(s− 1)̟(k,H,A,x)f̂Λ,H(x; s) = (Ress=1ζk(s))
̟(k,H,A,x)

∏

v∈Ωk

f̂Λv ,H(xv; 1)

ζk,v(1)̟(k,H,A,x)
.

In the case x = 1, this limit is non-zero.

Proof. We consider the Euler product expansion of f̂Λ,H(x; s) from (3.5), where
the Euler factors at v /∈ S were determined in Lemma 3.10. By Corollary 3.13
and our assumptions on S, we may apply Proposition 2.3 to obtain

F (s) :=
∏

v/∈S

f̂Λv,H(xv; s) = ζk(s)
̟(k,H,A,x)H(x; s),

with a function H(x; s) that is holomorphic in a region (2.3) and satisfies the
bound (2.4). By Lemma 3.6, we may multiply H(x; s) by the Euler factors

f̂Λv,H(xv; s) for v ∈ S while still preserving these properties (possibly for a smaller
c > 0 in (2.3)). Finally, the explicit form of the limit follows from (2.5) which,
together with Lemma 3.6, also shows that the limit is non-zero if x = 1. �

3.6. The asymptotic formula in Theorem 3.1. We now bring all our tools
together to prove the first part of Theorem 3.1. Recall from Lemma 3.4 that
we performed a Möbius inversion to obtain a sum over the subgroups H of G.
Moreover, in Proposition 3.9 we used Poisson summation to understand the inner
sums from Lemma 3.4. In summary,

FΛ(s) =
∑

H⊂G

µ(G/H)

|O∗
k ⊗H∧|

∑

x∈O∗
S

⊗H∧

f̂Λ,H(x; s), Re s > 1, (3.14)

where FΛ is the Dirichlet series from (3.2). Furthermore, we described the ana-

lytic properties of the Fourier transforms f̂Λ,H(x; s) in Proposition 3.16.

By Lemma 3.10, we can expand each of the Euler products f̂Λ,H(x; s) as a
Dirichlet series

f̂Λ,H(x; s) =
∑

n∈Z≥1

an(H, x)

ns
, (3.15)
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with coefficients an(H, x) ∈ C.

Lemma 3.17. Let H ⊂ G be a subgroup, let x ∈ O∗
S ⊗ H∧, and let an(H, x) be

the Dirichlet coefficient from (3.15). Then
∑

n≤B

an(H, x) = cH,xB(logB)̟(k,H,A,x)−1 +O(B(logB)̟(k,H,A,x)−2),

where

cH,x =
1

Γ(̟(k,H,A, x))
lim
s→1

(s− 1)̟(k,H,A,x)f̂Λ,H(x; s).

Proof. Let start by recalling that for every δ > 0 there is a value of c = c(δ) > 0
such that |ζk(s)/ζ(s)| ≪δ (| Im s| + 3)δ for all s in the region (2.3). Indeed, in
the case Re(s) ≥ 2 a stronger bound follows directly from the fact that the Euler
product of ζk(s)/ζ(s) converges absolutely. In the compact region defined by
| Im(s)| ≤ 2 and 1 − c/ log(| Im s| + 3) ≤ Re s ≤ 2 for some small enough c, the
function ζk(s)/ζ(s) is holomorphic and thus bounded. It remains to consider
the case | Im s| ≥ 2, where we stay away from the poles at s = 1. It is well
known that ζ(s) 6= 0 and |1/ζ(s)| ≪ log | Im s| for small enough c (e.g. [46,
(3.11.8)]). Sufficient upper bounds for |ζk(s)| follow from standard convexity
bounds (e.g. [28, Theorem 5.30]).

Write ̟ = ̟(k,H,A, x). Let G(x; s) be as in Proposition 3.16, and let the
constant c be small enough to ensure that ζ(s) 6= 0, ζk(s) 6= 0, and |ζk(s)/ζ(s)|̟ ≪
(| Im s|+3)1/4 for all s in the region (2.3). Then the function h(s) := ζk(s)

̟/ζ(s)̟,
defined on Re s > 1 via the binomial series applied to the Euler factors, has
an analytic continuation to the region (2.3). Hence, the function H(x; s) =
h(s)G(x; s) is holomorphic and satisfies H(x; s) ≪ (| Im s| + 3)3/4 in the re-

gion (2.3). Since f̂Λ,H(x; s) = ζ(s)̟H(x; s), we may apply the Selberg–Delange
method in the form of [45, Thm. II.5.2] (with N = 0) to obtain the required
asymptotic. (For the sequence (bn)n required in [45, Thm. II.5.2], we take the
coefficients an(H, 1). One can observe directly from the definition of the Euler

factors f̂Λv,H(xv; s) that these coefficients satisfy an(H, 1) ≥ |an(H, x)|.) �

Let us note that the leading term will come from H = G.

Lemma 3.18. Let H ⊂ G be a proper subgroup. Then ̟(k,H,A) < ̟(k,G,A).

Proof. Follows immediately from Definition 1.3. �

We are now finally in the position to prove the required asymptotic formula.

Proposition 3.19. Write ̟ = ̟(k,G,A). There exists δ = δ(k,G,A) > 0
such that

N(k,G,Λ, B) = ck,G,ΛB(logB)̟−1 +O(B(logB)̟−1−δ),

where

ck,G,Λ =
1

Γ(̟)|O∗
k ⊗G|

∑

x∈O∗
S

⊗G∧

̟(k,G,A,x)=̟

lim
s→1

(s− 1)̟f̂Λ,G(x; s).
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Proof. By (3.14) and (3.15), the Dirichlet coefficients fn of FΛ(s) satisfy

fn =
∑

H⊂G

µ(G/H)

|O∗
k ⊗H∧|

∑

x∈O∗
S

⊗H∧

an(H, x).

Since N(k,G,Λ, B) =
∑
n≤B fn, the proposition now follows from Lemmas 3.15,

3.17, and 3.18. �

This proves the asymptotic formula in Theorem 3.1. Next, we study the
leading constant.

3.7. Formula for the leading constant. To calculate the leading constant,
we first need to understand exactly which elements of O∗

S ⊗ H∧ give rise to the
leading singularity in the Poisson sum (Proposition 3.9).

Lemma 3.20. Let

X (k,G,A) = {x ∈ k∗ ⊗G∧ : xv ∈ Av ⊗G∧ for all but finitely many v}.
Then X (k,G,A) is finite and

X (k,G,A) = {x ∈ O∗
S ⊗G∧ : xv ∈ Av ⊗G∧ for all v /∈ S}.

Proof. It is enough to prove the result for G∧ a cyclic group of prime power order.
Henceforth, let G∧ = Z/qZ, where q = pr is a prime power. We view X (k,G,A)
as a subgroup of k∗/k∗q.

First, we claim that the image of X (k,G,A) in k(µq)
∗/k(µq)

∗q is equal to the
image of A. One containment is clear, as A ⊗ G∧ ⊂ X (k,G,A). For the other,

let K = k(µq,
q
√

A), so K = kq in the notation of Definition 1.3. Let Kv be the
completion of k at a choice of place of K above v. The image of X (k,G,A) in
k(µq)

∗/k(µq)
∗q is contained in the following set:

{x ∈ k(µq)
∗/k(µq)

∗q : xv ∈ K∗q
v for all but finitely many v} .

As µq ⊂ K, an application of the Chebotarev density theorem shows that this
set equals (k(µq)

∗ ∩ K∗q)/k(µq)
∗q (this also follows from Lemma 4.9). On the

other hand, Kummer theory shows that (k(µq)
∗ ∩ K∗q)/k(µq)

∗q is equal to the
image of A in k(µq)

∗/k(µq)
∗q, and the claim is proved. In particular, the image

X (k,G,A) in k(µq)
∗/k(µq)

∗q is finite, as A is finitely generated.
Next, the map k∗/k∗q → k(µq)

∗/k(µq)
∗q is none other than the restriction

map H1(k, µq) → H1(k(µq), µq), which has kernel H1(Gal(k(µq)/k), µq). By
[32, Prop. 9.1.6], we have H1(Gal(k(µq)/k), µq) = 0 unless we are in the spe-
cial case where p = 2, r ≥ 2 and Q(µ2r) ∩ k is real. In this special case,
H1(Gal(k(µ2r)/k), µ2r) ∼= Z/2Z. In particular, the kernel of the natural map
k∗/k∗q → k(µq)

∗/k(µq)
∗q is finite, and hence the finiteness of X (k,G,A) follows

from the finiteness of its image in k(µq)
∗/k(µq)

∗q.
We now show that X (k,G,A) ⊂ O∗

S ⊗ G∧; the rest follows from the fact
that our condition is S-frobenian (see Lemma 3.12). Let x ∈ k∗ be such that
its image in k∗/k∗q is in X (k,G,A). By the argument above, the image of x
in k(µq)

∗/k(µq)
∗q is in (k(µq)

∗ ∩ K∗q)/k(µq)
∗q. In particular, x = yq for some

y ∈ K∗. By our assumptions in §3.2 that A ⊂ O∗
S and that S includes all primes

dividing |G|, the extension K/k is unramified at all v /∈ S. Therefore, for all
v /∈ S, the valuation ordv(x) = ordv(y

q) is divisible by q. Consequently, the
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fractional ideal xOS is the qth power of some fractional ideal I of OS. By our
assumption in §3.2 that OS has trivial class group, I = zOS for some z ∈ k∗.
Therefore, x = uzq for some u ∈ O∗

S. This completes the proof. �

Lemma 3.21. Let x ∈ O∗
S ⊗ G∧. Then ̟(k,G,A, x) = ̟(k,G,A) if and only

if x ∈ X (k,G,A).

Moreover f̂Λv,G(xv; 1) = f̂Λv,G(1; 1) for x ∈ X (k,G,A) and v /∈ S.

Proof. Let x ∈ X (k,G,A). It follows from the definition, S-frobeniality, Corol-
lary 3.13, and Lemma 3.15 that ̟(k,G,A, x) = ̟(k,G,A). The equality of
Fourier transforms follows from Lemma 3.10 and Lemma 3.20.

So assume that x /∈ X (k,G,A). Let v /∈ S be such that xv /∈ Av ⊗G∧. Then

−1 < | Hom(F∗
v/(A mod v), G)| − 1

as this group always contains the trivial homomorphism. The result now follows
from the fact that the function in Corollary 3.13 is S-frobenian. �

These lemmas show that the leading singularity comes from finitely many
terms which are independent of S and our choice of local conditions for v ∈ S.
This makes applications much easier when one is varying S (we require such
applications for the proof of Theorem 1.9).

Theorem 3.22. Retain the assumptions of Theorem 3.1 and the additional as-
sumptions on the finite set of places S from §3.2. Let X (k,G,A) be as in Lemma
3.20 and let Sf be the set of non-archimedean places in S. Write ̟ = ̟(k,G,A).
Then

ck,G,Λ =
(Ress=1ζk(s))

̟

Γ(̟)|O∗
k ⊗G||G||Sf|

∏

v/∈S




∑

χv∈Hom(O∗
v ,G)

Av⊂Kerχv

1

Φv(χv)


 ζk,v(1)−̟

×




∑

χ∈Hom

(∏
v∈S

k∗
v,G

)

χv∈Λv∀v∈S

1
∏
v∈S Φv(χv)ζk,v(1)̟

∑

x∈X (k,G,A)

∏

v∈S

〈χv, xv〉



,

where the product over v /∈ S is non-zero.

Proof. From Proposition 3.16, Proposition 3.19, and Lemma 3.21, we get the
leading constant

ck,G,Λ =
(Ress=1ζk(s))

̟

Γ(̟)|O∗
k ⊗G|

∑

x∈X (k,G,A)

∏

v

f̂Λv,G(xv; 1)

ζk,v(1)̟
.

We have f̂Λv,G(xv; 1) = f̂Λv,G(1; 1) for x ∈ X (k,G,A) and v /∈ S by Lemma
3.21, and these factors are non-zero by Lemma 3.6. The explicit expressions
for v /∈ S follow from Lemma 3.8. For v ∈ S, we simply apply directly the
definition of the local Fourier transforms from §3.4.1 (see (3.6) for a formula in
the non-archimedean case) and change the order of summation. �
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Note that the expression for ck,G,Λ is independent of S, for any S which satisfies
the assumptions of §3.2.

Remark 3.23. In the special case A = {1}, our constant agrees with the con-
stant which Wood obtains in [49, Thm. 3.1], up to the factor (Ress=1ζk(s))

̟(k,G,A).
This factor is missing from Wood’s paper: in the proof of [49, Thm. 3.1], she
mistakenly uses the equality lims→1(s − 1)ζK(s) = 1, which holds for K = Q
but does not hold in general (the residue is given by the analytic class number
formula). Thus the right-hand side of [49, Thm. 3.1] should contain an additional
factor of (Ress=1ζK(s))wK,C .

Remark 3.24. Let Ĝ = Hom(G∧,Gm) denote the Cartier dual of G∧. Then

X(k, Ĝ) = Ker(k∗⊗G∧ → A∗⊗G∧). An examination of the proof of Lemma 3.20
gives the bounds

|X(k, Ĝ) · (A ⊗G∧)| ≤ |X (k,G,A)| ≤ |2G∧/4G∧||A ⊗G∧|.
The following examples show that either bound can be sharp.

For the lower bound, take k = Q, A = {1} and G∧ = Z/4Z. Then A⊗G∧ = 1,

X (k,G, {1}) = X(k, Ĝ) = 0, and |2G∧/4G∧| = 2.
For the upper bound, take k = Q, A = {±1} and G∧ = Z/4Z. Then one

checks that X (Q,Z/4Z, {±1}) = 〈±1,±4〉, despite the fact that X(Q, µ4) = 0.
An example where both bounds coincide is given by taking A = {1} and

G∧ = Z/2Z. One easily sees that in this case X (k,G, {1}) is trivial.

3.8. Positivity of the leading constant. To finish the proof of Theorem 3.1,
we need to show that ck,G,Λ > 0 if there exists some sub-G-extension which
realises all the given local conditions. It suffices to consider the contributions
from v ∈ S to the explicit expression given in Theorem 3.22, as the factors at
v /∈ S are clearly non-zero. By character orthogonality we have

∑

x∈X (k,G,A)

∏

v∈S

〈χv, xv〉 =





|X (k,G,A)| if
∏
v∈S χv is trivial on X (k,G,A),

0 otherwise.

In particular, this sum is non-negative for all χ ∈ Hom(
∏
v∈S k

∗
v , G). Hence, it

suffices to show the existence of some χ such that this sum is non-zero. However,
we have assumed the existence of a sub-G-extension ϕ which realises all the local
conditions. Let ψ : A∗/k∗ → G be the associated homomorphism coming from
class field theory. Note that

∏
v〈ψv, xv〉 = 1 for all x ∈ k∗ ⊗G∧, hence

∏

v∈S

〈ψv, xv〉 =
∏

v/∈S

1

〈ψv, xv〉
.

It therefore suffices to show that

〈ψv, xv〉 = 1 for all v /∈ S and all x ∈ X (k,G,A). (3.16)

However, for x ∈ X (k,G,A) we have xv ∈ Av⊗G∧ for all v /∈ S, by Lemma 3.20.
Moreover, by assumption every element of A is a local norm fromKϕ for all v /∈ S,
thus Av ⊂ Kerψv for all v /∈ S by Lemma 3.5. The claim (3.16) follows, which
completes the proof of Theorem 3.1. �
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4. Proof of results

We now apply Theorem 3.1 in various ways to prove the results from the
introduction.

4.1. Asymptotic formula for everywhere local norms. We first derive an
asymptotic formula for Nloc(k,G,A, B) (see (1.1)) using Theorem 3.1.

Theorem 4.1. We have

Nloc(k,G,A, B) = ck,G,A,locB(logB)̟(k,G,A)−1 +O(B(logB)̟(k,G,A)−1−δ)

as B → ∞, for some ck,G,A,loc > 0 and some δ = δ(k,G,A) > 0.

Proof. For all v ∈ Ωk, let Λv be the set of sub-G-extensions of kv corresponding
to those extensions L/kv for which every element of A is a local norm from
L/kv. Thus, in this setting Λ = (Λv)v∈Ωk

is determined by A. We clearly have
Nloc(k,G,A, B) = N(k,G,Λ, B). It therefore suffices to show that the leading
constant in Theorem 3.1 is positive. To do so, we need to exhibit some sub-
G-extension of k for which every element of A is everywhere locally a norm.
However, the trivial extension k/k is such an extension. �

4.2. Proof of Theorem 1.9. As cyclic extensions always satisfy the Hasse norm
principle, we may assume that G is non-cyclic. We use the following criterion for
failure of the Hasse norm principle in the abelian setting, which was originally
pointed out to us by Melanie Matchett Wood. (We use the notation from §3.1.)

Proposition 4.2. Let ϕ be a G-extension of k. Then ϕ fails the Hasse norm
principle if and only if there exists a proper subgroup Υ ⊂ ∧2(G) that contains
the image of the natural map

∏

v

∧2(Imϕv) → ∧2(G).

Proof. Let K be the number field determined by ϕ. Recall that the failure of the
Hasse norm principle is measured by the Tate–Shafarevich group

X(k,R1
K/kGm) := Ker

(
H1(k,R1

K/kGm) →
∏

v

H1(kv,R
1
K/kGm)

)
,

where R1
K/kGm denotes the associated norm 1 torus, see [34, §6.3]. This group

is finite by [34, Prop. 6.9]. As K/k is Galois, a theorem of Tate [34, Thm. 6.11]
(see also [36, Ex. 5.6]) implies that there is an exact sequence

0 → Hom(X(k,R1
K/kGm),Q/Z) → H3(G,Z) →

∏

v

H3(Imϕv,Z).

However, as G is abelian, we have a well-known canonical isomorphism

H3(G,Z) ∼= Hom(∧2(G),Q/Z)

(see e.g. [20, Lem. 6.4]). Using this and applying Hom(·,Q/Z), we therefore
obtain the exact sequence

∏

v

∧2(Imϕv) → ∧2(G) → X(k,R1
kϕ/k Gm) → 0. (4.1)

Thus, failure of the Hasse norm principle is equivalent to the first map in (4.1)
failing to be surjective. �

25



Therefore, to prove Theorem 1.9, it suffices to show the following.

Theorem 4.3. Let Υ ⊂ ∧2(G) be a proper subgroup. Then

lim
B→∞

#
{
ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B,A ⊂ NKϕ/k A∗

Kϕ
,∧2(Imϕv) ⊂ Υ ∀v

}

Nloc(k,G,A, B)
= 0.

Note that in Theorem 4.3, and henceforth, we abuse notation by writing
∧2(Imϕv) ⊂ Υ to mean that the image of the natural map ∧2(Imϕv) → ∧2(G)
is contained in Υ, despite the fact that this map is not injective in general.

We prove Theorem 4.3 via an application of Theorem 3.1. Note, however, that
one cannot apply Theorem 3.1 directly, as the local conditions imposed at the
infinitely many places will not be compatible with the assumptions of Theorem
3.1. We therefore apply Theorem 3.1 to a suitable finite set of places, which we
then allow to increase.

4.2.1. Proof of Theorem 4.3. Let S0 be a finite set of places of k satisfying the
conditions of §3.2, which we consider as being fixed. Let T be a finite set of
places of k which is disjoint from S0. Eventually, we will consider what happens
as T increases. Let S = S0 ∪ T .

We consider the local conditions Λv given by

{ϕv ∈ Hom(Gal(k̄v/kv), G) : Av ⊂ NKϕv/kv
(K∗

ϕv
)}, v /∈ T ;

{ϕv ∈ Hom(Gal(k̄v/kv), G) : Av ⊂ NKϕv/kv
(K∗

ϕv
),∧2(Imϕv) ⊂ Υ}, v ∈ T.

We denote the collection of such conditions by ΛT . Note that we clearly have

#

{
ϕ ∈ G-ext(k) :

Φ(ϕ) ≤ B,A ⊂ NKϕ/k A∗
Kϕ
,

∧2(Imϕv) ⊂ Υ ∀v

}

Nloc(k,G,A, B)
≤ N(k,G,ΛT , B)

Nloc(k,G,A, B)

for all B. Applying Theorem 3.1 gives

lim
B→∞

N(k,G,ΛT , B)

Nloc(k,G,A, B)
=

ck,G,ΛT

ck,G,A,loc

where ck,G,A,loc > 0 by Theorem 4.1. To prove Theorem 4.3 it therefore suffices
to show that

lim
S0∪T→Ωk

ck,G,ΛT

ck,G,A,loc
= 0 (4.2)

where as explained we consider S0 as fixed and T as increasing and disjoint
from S0. We do this using the explicit expression for the leading constant given
in Theorem 3.22. We let e be the exponent of G. We require the following
elementary observation.

Lemma 4.4. Let α ∈ k∗. If v is such that α ∈ k∗e
v , then α is a local norm at v

from every sub-G-extension of k.

Proof. Let K be an extension of k with Galois group isomorphic to a subgroup
of G and v a place of k such that α ∈ k∗e

v . Let Kv be the completion of k at a
choice of place of K above v. Then local class field theory yields

k∗
v/NKv/kv

K∗
v

∼= Gal(Kv/kv) →֒ G.
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Now G has exponent e, whereby the group k∗
v/NKv/kv

K∗
v has exponent dividing

e. It follows that an eth power in k∗
v is a local norm. �

We now obtain the following bounds.

Lemma 4.5. Let ke = k(µe,
e
√

A). Then

ck,G,ΛT

ck,G,A,loc
≤

∏

v∈T
v completely split in ke/k

∑
χv∈Hom(k∗

v ,G)
∧2(Imχv)⊂Υ

1
Φv(χv)

∑
χv∈Hom(k∗

v ,G)
1

Φv(χv)

.

Proof. The factors in Theorem 3.22 cancel out in the quotient ck,G,ΛT
/ck,G,A,loc,

except those at places v ∈ S. By Lemma 3.20, we have

X (k,G,A) = {x ∈ O∗
S0

⊗G∧ : xv ∈ Av ⊗G∧ for all v /∈ S0}
(this statement holds for any set of places satisfying the assumptions of §3.2).
Moreover, for v ∈ T any element of Av is a local norm at v by our choice of Λv;
it follows that 〈χv, xv〉 = 1 for χv ∈ Λv as in Theorem 3.22, hence

∑

x∈X (k,G,A)

∏

v∈S

〈χv, xv〉 =
∑

x∈X (k,G,A)

∏

v∈S0

〈χv, xv〉.

Therefore, we can split off Euler factors for all v ∈ T from the term involving
S, while the remaining sum over Hom(

∏
v∈S0

k∗
v , G) is the same in ck,G,ΛT

and
ck,G,A,loc. We have obtained the equality

ck,G,ΛT

ck,G,A,loc
=
∏

v∈T

∑
χv∈Λv

1
Φv(χv)∑

χv∈Hom(k∗
v,G)

Av⊂Kerχv

1
Φv(χv)

.

The quotient of each local factor is at most 1, so to obtain an upper bound we
may just consider those places v ∈ T which are completely split in ke/k. For
such places every element of A is an eth power in k∗

v , hence the condition that
they are local norms is automatic by Lemma 4.4. The result follows. �

We will make use of the following fact from [20, Lem. 6.9]. Here, we use the
term bicyclic for a non-cyclic group that is a direct sum of two cyclic groups.

Lemma 4.6. Let G be a finite abelian non-cyclic group. Then there exists a
finite collection of bicyclic subgroups Gi ⊂ G for i ∈ I such that the natural map

⊕

i∈I

∧2(Gi) → ∧2(G)

is an isomorphism.

As Υ ⊂ ∧2(G) is a proper subgroup, there exists some i such that ∧2(Gi) 6⊂ Υ.
Fix this i and write Gi

∼= Z/nZ × Z/mZ where n,m | e. Let v ∈ T be a

place of k which is completely split in the extension k(µe,
e
√

A). There exists
a Gi-extension of kv: simply adjoin an nth root of a uniformiser to the unique
unramified extension of kv of degree m. Thus, by local class field theory, there
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exists χv ∈ Hom(k∗
v , G) such that Imχv = Gi. In particular we have ∧2(Imχv) 6⊂

Υ. For such places v we find that

#{χv ∈ Hom(k∗
v, G) : ∧2(Imχv) ⊂ Υ, χv ramified}

< #{χv ∈ Hom(k∗
v , G) : χv ramified}.

Let av = #{χv ∈ Hom(k∗
v, G) : χv ramified}. Recall that tamely ramified χv

have conductor qv and there are |G| unramified G-characters. Using Lemma 4.5,
it follows that

ck,G,ΛT

ck,G,A,loc
≤

∏

v∈T
v completely split in ke

|G| + av−1
qv

+O
(

1
q2

v

)

|G| + av

qv
+O

(
1
q2

v

)

=
∏

v∈T
v completely split in ke

(
1 − 1

|G|qv
+O

(
1

q2
v

))

However this diverges to 0 as S0 ∪ T → Ωk since

−
∑

v completely split in ke

1

qv

diverges by the Chebotarev density theorem. This proves (4.2) and completes
the proof of Theorem 4.3, hence the proof of Theorem 1.9. �

Remark 4.7. Lemma 4.6 is the first part of the statement of [20, Lem. 6.9].
Unfortunately the second part of the statement [20, Lem. 6.9] is false (this claims
that if the exponent of ∧2(G) divides a prime p, then all the Gi may chosen
isomorphic to (Z/pZ)2). A counterexample is given by the group G = Z/2Z ×
Z/4Z and the subgroup G1 = Z/2Z × Z/2Z; here the induced map

Z/2Z = ∧2(G1) → ∧2(G) = Z/2Z

is trivial. This mistake in [20, Lem. 6.9] has various consequences for [20] which
will be addressed in a forthcoming corrigendum.

4.3. Proof of Theorem 1.4. Follows from Theorems 4.1 and 1.9. �

4.4. Proof of Theorem 1.1. Follows immediately from Theorem 1.4. �

4.5. Proof of Theorem 1.6. The implication (3)⇒(1) in Theorem 1.6 fol-
lows from Lemma 4.4, Theorem 3.1 and Theorem 1.9, as clearly ̟(k,G,A) =
̟(k,G, {1}) in this case (we are only imposing finitely many local conditions).
The implication (1)⇒(2) is clear from Definition 1.3 and Theorem 1.4. For the
remaining implication (2)⇒(3), we note that (2) clearly implies that

Av ⊂ k∗d
v for all d | e and all v ∤ ∞ with qv ≡ 1 mod d. (4.3)

Moreover, we have the following elementary observation.

Lemma 4.8. Let e ∈ Z≥1, let α ∈ k∗, and let v be a place of k such that
e, α ∈ O∗

v. Let d = gcd(e, qv − 1). If α ∈ k∗d
v then α ∈ k∗e

v .

Proof. As α ∈ k∗d
v and α is a unit, its image in the residue field lies in F∗d

v .
However, as d = gcd(e, qv − 1), we have F∗d

v = F∗e
v . The result therefore follows

from Hensel’s lemma. �
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Hence, the remaining implication (2)⇒(3) in Theorem 1.6 follows immediately
from (4.3) and Lemma 4.8. �

4.6. Proof of Corollary 1.7. Let α ∈ A and consider αβe for some β ∈ k∗. By
Lemma 4.4, we see that βe is a norm everywhere locally from all G-extensions of
k. It follows that αβe is a norm everywhere locally from a given G-extension if
and only if α is a norm everywhere locally. Part (i) now follows from Theorem 1.9
and Theorem 4.1. Part (ii) also follows from Lemma 4.4 and Theorem 1.9.

For (iii) and (iv), we use the ω-version of Tate–Shafarevich groups. Namely,
for a finite abelian group scheme M over k we let

Xω(k,M) = {c ∈ H1(k,M) : cv = 0 ∈ H1(kv,M) for all but finitely many v}.
By Kummer theory we have H1(L, µe) = L∗/L∗e for any field L of characteristic
0. Therefore Part (iii) of Theorem 1.6 is equivalent to

Ak∗e ⊂ Xω(k, µe).

The key observation is now the following.

Lemma 4.9. Let k be a number field, let e ∈ Z≥1 and let 2r be the largest power
of 2 dividing e. Then Xω(k, µe) = 0, unless the extension k(µ2r)/k is non-cyclic,
where we have Xω(k, µe) ∼= Z/2Z.

Proof. Follows immediately from [32, Thm. 9.1.11]. �

The remaining parts of Corollary 1.7 now follow from Lemma 4.9. �

Remark 4.10. Even though we have Nloc(k,G,A, B) = Nloc(k,G,A〈βe〉, B) and
Nglob(k,G,A, B) ∼ Nglob(k,G,A〈βe〉, B), we can still have Nglob(k,G,A, B) 6=
Nglob(k,G,A〈βe〉, B). For example, take k = Q, G = (Z/2Z)2,A = {1}, and
β = 5 (see Example 1.11(4)).

4.7. Proof of Theorem 1.8. The implication (2) ⇒ (1) is self-evident. So sup-

pose that limB→∞
Nglob(k,G,A,B)

N(k,G,B)
> 0. Then by Theorem 1.6 there exists a cofinite

set of places T ⊂ Ωk such that A ⊂ k∗e
v for all v ∈ T . By [32, Thm. 9.1.11],

Ker
(
k∗/k∗e →

∏

v∈T

k∗
v/k

∗e
v

)
= Ker

(
k∗/k∗e →

∏

v∈T∪{v∤2}

k∗
v/k

∗e
v

)

so we may assume that T contains all v ∤ 2. Let p be the unique prime of k
lying above 2. Let χ : Gal(k̄/k) → G be a G-extension and let α ∈ A. Then
at all places v 6= p, the cyclic algebra (χ, α) over k has local invariant zero,
because α is a local norm at v by Lemma 4.4. Now the Albert–Brauer–Hasse–
Noether Theorem [32, Thm. 8.1.17] shows that (χ, α) has local invariant zero at
p, meaning that α is also a local norm at p. Therefore, all elements of A are
everywhere local norms from all G-extensions of k. But G is cyclic, hence every
G-extension satisfies the Hasse norm principle; (2) now follows. �

4.8. Variants of Theorems 1.1 and 1.4. We finish with some variants of our
results, which allow one to impose local conditions at finitely many places. Our
first result is a variant of Theorem 1.4, and follows immediately from Theorem
3.1 and Theorem 1.9.
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Corollary 4.11. Retain the assumptions of Theorem 3.1. Assume further that
every element of A is a local norm from every extension in Λv for all v, and that
there exists a sub-G-extension of k which realises the given local conditions for
all places v. Then

#{ϕ ∈ G-ext(k) : Φ(ϕ) ≤ B, ϕv ∈ Λv ∀v, A ⊂ NKϕ/kK
∗
ϕ}

= ck,G,ΛB(logB)̟(k,G,A)−1(1 + o(1)),

for some leading constant ck,G,Λ > 0.

From this we immediately obtain the following strengthening of Theorem 1.1.

Corollary 4.12. Let k be a number field, S a finite set of places of k, G a finite
abelian group, and A ⊂ k∗ a finitely generated subgroup. Let ψ be a sub-G-
extension of k such that every element of A is everywhere locally a norm from
Kψ. There exists a G-extension ϕ of k such that every element of A is a global
norm from Kϕ and such that ϕv = ψv for all v ∈ S.

Remark 4.13. Taking ψ to correspond to the trivial extension k/k, we find the
existence of an extension K/k with Galois group G such that every element of
A is a norm from K and such that K is completely split at all places of S.

Appendix A. An algebro-geometric point of view on Theorem 1.1

by Yonatan Harpaz and Olivier Wittenberg

We give, in this appendix, an algebro-geometric proof of Theorem 1.1, based
on a combination of the descent and fibration methods in the formulation they
are given in [24]. The main argument is described in §§A.1–A.3. In §A.4 we
show that the refinement of Theorem 1.1 formulated in Corollary 4.12 can also
be deduced in this manner by proving a certain verticality result on the Brauer
groups of the varieties in question. This verticality uses in an essential way
the fact that G is abelian. In §A.5 we show that when G is not abelian, the
statement of Corollary 4.12 is false, by constructing a counterexample in the
form of an explicit 2-group. Nonetheless, as we show in the upcoming work [25],
Theorem 1.1 does hold for 2-groups (and more generally for nilpotent groups,
even for supersolvable groups).

Let us fix, for the whole of §§A.1–A.4, a finite abelian group G, a field k of
characteristic 0, a finite collection α1, . . . , αm ∈ k∗ and an algebraic closure k̄
of k. In §§A.1–A.3, we assume that k is a number field.

A.1. Statements. Let us choose an embedding G →֒ SLn(k) for some n ≥ 1.
Let SLn and Gm implicitly denote the corresponding algebraic groups over k.
For any α ∈ k∗, let T α ⊂ ∏

g∈GGm denote the subvariety whose k̄-points are the

maps t : G → k̄∗ such that
∏
g∈G t(g) = α. Thus T α is a (trivial) torsor under

the (trivial) torus T 1.
Let Y = SLn × T α1 × · · · × T αm. Let G act on SLn by right multiplication, on

T α (for any α) by the right action (t · γ)(γ′) = t(γγ′), and on Y by the resulting
diagonal right action. As G acts freely on SLn, it acts freely on Y ; hence, letting
X = Y/G, the quotient map π : Y → X is a G-torsor.
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The fibre of π above any rational point of X is a G-torsor over Spec(k), say
Spec(K), where K is an étale k-algebra endowed with elements β1, . . . , βm ∈ K∗

such that NK/k(βi) = αi for all i. Namely βi is the restriction to the fibre in
question of the invertible function (s, t1, . . . , tm) 7→ ti(1) on Y , where 1 denotes
the identity element of G. If the algebra K is a field, then K/k is Galois with
group G, since it is a G-torsor. Thus, all we need to do, to show Theorem 1.1, is
to prove that there exists x ∈ X(k) such that π−1(x) is irreducible. Letting X ′

denote a smooth compactification of X (i.e. any smooth and proper variety con-
taining X as a dense open subset), we shall in fact prove the following theorem.

Theorem A.1. The set X ′(k) is dense in the Brauer–Manin set X ′(Ak)
Br(X′).

We note that X ′(Ak)
Br(X′) is non-empty since so is X(k); indeed, even Y (k) is

non-empty. The desired result now follows from Theorem A.1:

Corollary A.2. The set of x ∈ X(k) such that π−1(x) is irreducible is dense in
the (non-empty) Brauer–Manin set X ′(Ak)

Br(X′).

Proof. This is essentially an application of a theorem of Ekedahl [17, Thm. 1.3]
(also discussed and proved in [42, §§3.5–3.6]). What Ekedahl really shows in [17]
is that for any finite étale morphism π : Y → X between geometrically irreducible
varieties over k and for any finite set S of places of k, there exist a finite set S ′ of
places of k, disjoint from S, and a collection (x′

v)v∈S′ ∈ ∏
v∈S′ X(kv) such that for

any x ∈ X(k) close enough to (x′
v)v∈S′ for the product topology on

∏
v∈S′ X(kv),

the scheme π−1(x) is irreducible. Theorem A.1 implies Corollary A.2 in view of
this statement and of the remark that the Brauer–Manin set is open in X ′(Ak)
as X is geometrically unirational (see [48, Remarks 2.4 (i)–(ii)]). �

As we have seen, Corollary A.2 implies Theorem 1.1. In a less immediate way,
it also implies Corollary 4.12. Indeed, noting that any sub-G-extension of k, in
the terminology of §3.1, arises as the fibre of the quotient map SLn → SLn/G
above a rational point of SLn/G (see [40, Ch. I, §5.4, Cor. 1] and recall that
H1(k, SLn) is a singleton by Hilbert’s Theorem 90), we see that Corollary 4.12
follows from combining Corollary A.2 with Proposition A.3 below.

Proposition A.3. Let B = SLn/G and b ∈ B(k). Let f : X → B be the map
induced by the first projection Y → SLn. Let Ω denote the set of places of k. Let
(xv)v∈Ω ∈ ∏

v∈Ω X(kv). If f(xv) = b for all v ∈ Ω, then (xv)v∈Ω ∈ X ′(Ak)
Br(X′).

We shall prove Theorem A.1 in §§A.2–A.3 and Proposition A.3 in §A.4.

A.2. Descent. To prove Theorem A.1, we first perform a descent, in the sense of
Colliot-Thélène and Sansuc [14], to reduce ourselves to studying the arithmetic of
hopefully simpler auxiliary varieties. If V is a variety over k, we denote by k̄[V ]∗

the group of global invertible functions on V ⊗k k̄.

Proposition A.4. We have k̄[X]∗ = k̄∗.

Proof. We first remark that there is a canonical exact sequence of abelian groups

0 → k̄∗ → k̄[Y ]∗ → (Z[G]/Z)m → 0 (A.1)
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whose arrows are equivariant with respect to the actions of Gal(k̄/k) and of G;
indeed, Rosenlicht’s lemma (see [13, Lem. 10]) shows that

k̄[Y ]∗/k̄∗ = k̄[SLn]∗/k̄∗ ⊕ k̄[T α1 ]∗/k̄∗ ⊕ · · · ⊕ k̄[T αm]∗/k̄∗, (A.2)

while it is well known that k̄[SLn]∗ = k̄∗ and that k̄[T α]∗/k̄∗, for any α ∈ k∗, is
the character group of the torus under which T α is a torsor. On the other hand,
by the exact sequence

0 → Z → Z[G] → Z[G]/Z → 0 (A.3)

and by the vanishing of H1(G,Z), we have H0(G,Z[G]/Z) = 0. We can now
deduce from (A.1) that k̄[X]∗ = (k̄[Y ]∗)G = k̄∗. �

Set Ĝ = Hom(G, k̄∗). We recall that the type of the G-torsor π : Y → X is,
by definition, the isomorphism class of π ⊗k k̄ : Y ⊗k k̄ → X ⊗k k̄ as a G-torsor
over X ⊗k k̄ and that it can be identified, thanks to Proposition A.4, with a
homomorphism λ : Ĝ → Pic(X ⊗k k̄). (See [24, (3.3)], for this (standard) identi-
fication.) The homomorphism λ is injective as G is finite and Y is geometrically
connected (see [44, p. 40, Exercise 2]).

Let us denote by ν : T̂ →֒ Pic(X ′⊗kk̄) the inverse image of λ : Ĝ →֒ Pic(X⊗kk̄)
by the restriction map Pic(X ′ ⊗k k̄) → Pic(X ⊗k k̄). As in [24, (3.1)], we have a
short exact sequence of Gal(k̄/k)-modules

0 // Q̂ // T̂ // Ĝ // 0, (A.4)

where Q̂ is a permutation Gal(k̄/k)-module, and, dually, a short exact sequence

1 // G // T // Q // 1 (A.5)

of commutative algebraic groups over k, where Q is a quasi-trivial torus and G is
viewed as a constant k-group. We note that T is a torus since Pic(X ′⊗k k̄)tors = 0
(see [37, Prop. 1]).

As X ′(k) 6= ∅, there exists a torsor over X ′, under T , of type ν (see [44,
Cor. 2.3.9]). Applying [24, Cor. 2.2]1 to such a torsor, we now see that in order
to prove Theorem A.1, it suffices to prove that rational points are dense in the
Brauer–Manin set for a smooth compactification of any torsor over X ′, under T ,
of type ν.

A.3. Fibration. By [24, Prop. 3.1], which we can apply since k̄[X]∗ = k̄∗ (see
Proposition A.4), any torsor over X ′, under T , of type ν contains an open sub-
set W admitting a smooth map p : W → Q whose fibres over the rational points
of Q are torsors over X, under G, of type λ. In order to prove that rational
points are dense in the Brauer–Manin set for a smooth compactification of W ,
we shall first prove that the base Q and the fibres of p over the rational points
of Q satisfy this property, then solve the “fibration problem” to deduce it for W .

The variety Q is rational over k since it is a quasi-trivial torus, so the assertion
on the base is trivial. The fibre of p above any rational point of Q is in fact a

1All of the Brauer groups that appear in Corollaire 2.2 of [24] are unramified Brauer groups,
hence this corollary is really a statement about Brauer–Manin sets of smooth compactifications
of torsors, even though smooth compactifications do not figure explicitly in it.
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twist Y σ of Y by a 1-cocycle σ ∈ Z1(k,G), since two torsors of a given type can
only differ by such a twist. As G acts diagonally on Y = SLn × T α1 × · · · × T αm ,
we have Y σ = (SLn)σ × (T α1)σ × · · · × (T αm)σ. On the one hand, we have
(SLn)σ ≃ SLn since H1(k, SLn) is a singleton (Hilbert’s Theorem 90); hence
(SLn)σ is rational over k. On the other hand, for any α ∈ k∗, the variety (T α)σ is
a torsor under the torus (T 1)σ. All in all Y σ is birationally equivalent to a torsor
under a torus over k. We conclude that for any smooth compactification Z of a
fibre of p above a rational point of Q, the set Z(k) is indeed dense in Z(Ak)

Br(Z)

(see [44, Thm. 6.3.1], [12, Prop. 6.1 (iii)]).
A positive solution to the fibration problem for fibrations into rationally con-

nected varieties over a quasi-trivial torus is obtained in [24, Th. 4.2 (ii)] under
the assumption that a rational section exists over k̄. (The existence of such a
rational section ensures that the hypothesis of loc. cit. is satisfied, as shown in
[43, Lem. 1.1(b)].) Fortunately, this last condition holds in our situation.

Proposition A.5. The generic fibre of p ⊗k k̄ : W ⊗k k̄ → Q ⊗k k̄ possesses a
rational point.

Proof. This generic fibre is a twist of Y ⊗k k̄(Q) by a 1-cocycle σ ∈ Z1(k̄(Q), G).
Arguing as above, we see that it has a rational point if and only if (T αi ⊗k k̄(Q))σ

has a rational point for each i. Writing αi as a |G|-th power in k̄∗ determines a
G-invariant k̄-point of T αi, hence aG-equivariant isomorphism T αi⊗kk̄ = T 1⊗kk̄.
Thus (T αi ⊗k k̄(Q))σ is isomorphic to (T 1 ⊗k k̄(Q))σ, a variety which certainly
has a rational point since it is a torus. �

Applying [24, Th. 4.2 (ii)] to a suitable compactification of p therefore com-
pletes the proof of Theorem A.1.

A.4. Verticality of the Brauer group. It remains to prove Proposition A.3.
As X ′(Ak)

Br(X′) is closed in X ′(Ak), we are free to replace xv, for v outside of
an arbitrarily large finite set of places of k, with another kv-point of the same
fibre of f . In particular, we may assume that (xv)v∈Ω is an adelic point of this
fibre. We may then view it as an adelic point of X. As such, it is orthogonal, for
the Brauer–Manin pairing X(Ak)×Br(X) → Q/Z, to f ∗Br(B). Proposition A.3
therefore results from the following purely algebraic statement, in which k is
allowed to be an arbitrary field of characteristic 0.

Proposition A.6. Viewing Br(X ′) and f ∗Br(B) as subgroups of Br(X), one
has an inclusion Br(X ′) ⊆ f ∗Br(B).

Proof. Let V be a smooth compactification of the generic fibre V 0 of f . As V 0 is
a torsor under a torus over k(B) split by the extension k(SLn)/k(B), as V 0 ⊗k k̄
is a torsor under a torus over k̄(B) split by the extension k̄(SLn)/k̄(B) and as
the natural map Gal(k̄(SLn)/k̄(B)) → Gal(k(SLn)/k(B)) is an isomorphism, the
following well-known lemma implies that the pull-back map

Br(V )/f ∗Br(k(B)) → Br(V ⊗k k̄)/f ∗Br(k̄(B))

is injective.
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Lemma A.7. Let T be a torus over a field K, with character group T̂ , split by a
finite Galois extension L/K. For any smooth and proper variety V over K con-
taining a torsor under T as a dense open subset, there is a canonical embedding
Coker(Br(K) → Br(V )) →֒ H2(Gal(L/K), T̂ ).

Proof. Let L̄ denote a separable closure of L and V 0 the open subset in question.
As Br(V ⊗K L̄) = 0 and Br(L) ։ Br(V ⊗K L), the Hochschild–Serre spectral
sequence provides an embedding of Coker(Br(K) → Br(V )) into the kernel of
the restriction map H1(K,Pic(V ⊗K L̄)) → H1(L,Pic(V ⊗K L̄)), that is, into
H1(Gal(L/K),Pic(V ⊗K L)). On the other hand, the exact sequence

0 → T̂ → Div(V \V 0)⊗KL(V ⊗K L) → Pic(V ⊗K L) → 0

(see [44, p. 130]) embeds this group into H2(Gal(L/K), T̂ ). �

As f is smooth and surjective, we have f ∗Br(k(B)) ∩ Br(X ′) ⊆ f ∗Br(B) as
subgroups of Br(k(X)). It follows that the pull-back map

Br(X ′)/
(
Br(X ′) ∩ f ∗Br(B)

)
→ Br(X ′ ⊗k k̄)/

(
Br(X ′ ⊗k k̄) ∩ f ∗Br(B ⊗k k̄)

)

is injective as well. Thanks to this injectivity, we now see that in order to prove
Proposition A.6, we may assume that k is algebraically closed.

The generic fibre of the natural map X → (T α1 × · · · × T αm)/G is a left
torsor under SLn, hence is isomorphic to SLn (Hilbert’s Theorem 90). It follows
that X is stably birationally equivalent to (T α1 × · · · × T αm)/G. This variety is
isomorphic to (T 1 × · · · × T 1)/G when k is algebraically closed, as we have seen
in the proof of Proposition A.5. In addition, the unramified Brauer group of
(T 1 × · · · × T 1)/G vanishes when k is algebraically closed, by Saltman’s formula
[15, Thm. 8.7] and by the next lemma. Hence Br(X ′) = 0 in this case.

Lemma A.8. Let BG denote the set of subgroups of G generated by two elements.
For any finite abelian group G and for M = Z[G]/Z or M = Q/Z, the product
of restriction maps H2(G,M) → ∏

H∈BG
H2(H,M) is injective.

Proof. As H2(G,Q) and H2(G,Z[G]) vanish, this follows from the injectivity of
the product of restriction maps

H3(G,Z) →
∏

H∈BG

H3(H,Z). (A.6)

It is a general fact, valid for an arbitrary finite group G, that the kernel of (A.6)
remains unchanged if one replaces BG with the set of abelian subgroups of G
(see [15, Thm. 7.1]), which implies the desired injectivity when G is abelian.
Alternatively, this injectivity results from Lemma 4.6 and [20, Lem. 6.4]. �

This completes the proof of Proposition A.6. �

A.5. Nonabelian Galois groups. The descent-fibration argument described in
§A.2 and §A.3 is modelled after a similar argument appearing in [24], profiting
in addition from the favourable circumstance of G being abelian. In general, the
inductive argument of [24] is constructed to handle also nonabelian groups, as
long as they admit a suitable filtration into normal subgroups whose successive
quotients are cyclic; such groups are also known as supersolvable. Though the
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variety X considered here is more complicated than the one considered in [24],
the argument of loc. cit. can be adapted to yield the statement of Theorem 1.1
for any supersolvable G, see [25]. Interestingly enough, though, it turns out
that the stronger claim appearing in Corollary 4.12 does not hold for a general
nonabelian group G, even when G is supersolvable (indeed, even when G is a
2-group). This is due to the fact that the variety X may contain unramified
Brauer classes which are not vertical with respect to the projection f : X → B,
and which can obstruct the weak approximation of local points on X, even when
those local points lie over a rational point of B. (Such Brauer classes do not
exist in the abelian case; see Proposition A.6.) Let us now illustrate how one
can construct a nonabelian example where exactly this happens.

We shall say that a group H is weakly bicyclic if it is an extension of a cyclic
group by a cyclic group. We note that if K/k is a Galois extension with Galois
group G then the decomposition subgroups Hv ⊆ G are weakly bicyclic at every
finite place v which does not divide the order of G. Given a group G, we shall
denote by BG the set of weakly bicyclic subgroups of G (a notation compatible
with Lemma A.8 when G is abelian).

Proposition A.9. Let G be a finite 2-group satisfying the following properties:

(i) G has exponent ≤ 16.
(ii) The abelianization Gab has exponent 2 and is generated by images of

elements of G of order 2.
(iii) There exists an element ϕ ∈ H2(G,Z/2Z) whose restriction to every cyclic

subgroup of G of order 16 vanishes, whose restriction to at least one cyclic
subgroup of G of order 8 does not vanish, and whose image by the natural
map δ : H2(G,Z/2Z) → H2(G,Q/Z) belongs to, and spans, the kernel of
the product of restriction maps H2(G,Q/Z) → ∏

H∈BG
H2(H,Q/Z).

Let H ⊆ G be a cyclic subgroup of order 8 on which ϕ does not vanish. Then:

(1) There exist G-extensions K/Q which are unramified at 2 and whose de-
composition groups at 2 are conjugate to H.

(2) For every G-extension K/Q as in (1), the element 256 ∈ Q∗ is a local
norm from K at every place of Q, but not a global norm from K.

In particular, the statement of Corollary 4.12 does not hold for G with k = Q,
S = {2} and A ⊂ k∗ the subgroup generated by 256.

The proof of Proposition A.9 requires a bit of preparation. In the next lemma,
we denote by Brnr(B), Br1(B), Br1,nr(B), Br0(B) the subgroups of Br(B) consist-
ing, respectively, of unramified, algebraic, algebraic unramified, constant classes.

Lemma A.10. Let G ⊆ SLn(Q) be a finite subgroup. Let B = SLn/G.

(1) If G satisfies Condition (ii) of Proposition A.9, then Br1,nr(B) = Br0(B).
(2) If G satisfies Condition (iii) of Proposition A.9, then Brnr(B) = Br1,nr(B).

In particular, for G as in Proposition A.9, we have Brnr(B) = Br0(B).

Proof. Condition (ii) implies that for any field K, the group H1(K,Gab) is gener-
ated by elements in the image of the pointed set H1(K,G) (and even by elements
coming from H1(K,Z/2Z) via homomorphisms Z/2Z → G). The first claim then
follows, by local and global duality, from [23, Prop. 4]. Let us now explain why
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Condition (iii) implies that Brnr(B) = Br1,nr(B). For every subgroup H ⊆ G,
the Hochschild–Serre spectral sequences for the H-coverings πH : SLn → SLn/H
and SLn,Q̄ → SLn,Q̄/H , together with the inclusion of roots of unity µ∞ ⊆ Q̄∗,
give rise to a commutative diagram

Ker
(
Br(SLn/H) → Br(SLn)

)

��

H2(H,Q∗)
∼

oo

��

H2(H, µ2)oo

��
��

Ker
(
Br(SLn,Q̄/H) → Br(SLn,Q̄)

)ΓQ

H2(H, Q̄∗)ΓQ
∼

oo H2(H, µ∞)ΓQ ,
∼

oo

(A.7)

where ΓQ = Gal(Q̄/Q) is the absolute Galois group of Q. The horizontal arrows
between the first two columns are isomorphisms since Pic(SLn) = Pic(SLn,Q̄) = 0,

and the bottom right horizontal map is an isomorphism since Q̄∗/µ∞ is uniquely
divisible. In addition, the rightmost vertical map is surjective: indeed, this map
fits in the middle of the commutative diagram with exact rows

0 // Ext1(H1(H), µ2) //

��

H2(H, µ2) // //

��
��

Hom(H2(H), µ2)

≀

��

0
∼

// Ext1(H1(H), µ∞)ΓQ // H2(H, µ∞)ΓQ
∼

// Hom(H2(H), µ∞)ΓQ

determined by the universal coefficient theorem, where Ext1(H1(H), µ∞) = 0
since µ∞ is a divisible group.

We now fix a β ∈ Brnr(B) and aim to show that β is algebraic. By adding
to β a constant class, we may assume that β(πG(1)) = 0. As SLn is rational
over Q, we have Brnr(SLn) = Br0(SLn), and so π∗

Gβ = 0. Considering the
diagram (A.7) for G = H and using the surjectivity of its right vertical map,
we find βG ∈ H2(G, µ2) whose eventual image in Br(BQ̄) is the same as the
image of β. Now by Bogomolov’s formula (see, e.g., [15, Thm. 7.1]), the group
Brnr(SLn,Q̄/H) vanishes whenever H is weakly bicyclic, and so by the naturality

of (A.7), the image of βG in H2(H, µ∞) vanishes for every H ∈ BG. Since
µ∞

∼= Q/Z as abelian groups via a choice of a compatible system of roots of unity,
Condition (iii) implies that the image of βG in H2(G, µ∞) is either 0 or the image
of ϕ ∈ H2(G,Z/2) = H2(G, µ2) under the natural map H2(G, µ2) → H2(G, µ∞).
By possibly amending the choice of βG, we may assume that βG ∈ {0, ϕ}. We
then write β1 ∈ Br(B) for the image of βG, and set β2 := β−β1. By construction,
β1 (and hence also β2) vanishes when pulled back to SLn, and β2 also vanishes
when pulled back to BQ̄. In particular, β2 ∈ Ker(Br1(B) → Br1(SLn)).

Let now H ⊆ G be a cyclic subgroup of order 8 on which ϕ does not van-
ish. As β is unramified, there exists a prime p0 such that β evaluates trivially
on B(Qp) for all p > p0. Choose p > p0 such that there exists a cyclic exten-
sion L/Qp of degree 4 that does not extend to a cyclic extension of degree 8
(any p such that −1 is a square but not a 4th power modulo p will do). Em-
bed Gal(L/Qp) into H . The image of the class of L/Qp by the resulting map
H1(Qp,Gal(L/Qp)) → H1(Qp, G) is the class of the torsor π−1

G (b) for some point
b ∈ B(Qp) (see [23, §1.2]), which we fix.

By the choice of p, we have β(b) = 0. We claim that β2(b) = 0 as well. Indeed,
as β2 is algebraic and β2(πG(1)) = 0, it follows that β2 vanishes when pulled back
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to the universal torsor SLn/G
′ → B, where G′ := Ker(G → Gab) is the derived

subgroup of G. On the other hand, since Gab has exponent 2 and the subgroup
Gal(L/Qp) ⊆ H consists of elements divisible by 2, we have Gal(L/Qp) ⊆ G′.
This means that b lifts to SLn/G

′ and so β2(b) = 0. Therefore β1(b) = 0.
Let us prove that βG = 0. By contradiction, assume that βG = ϕ. Then the

restriction of βG to H is the non-trivial element of H2(H,Z/2Z) = Z/2Z, which
is the one classifying the central extension H̃ → H with H̃ cyclic of order 16.
This element restricts to the non-trivial element of H2(Gal(L/Qp),Z/2Z) for the
cyclic order 4 subgroup Gal(L/Qp) ⊆ H , and further to a non-trivial element
of H2(Qp,Z/2Z) by the assumption that L does not extend to a cyclic degree 8
extension. As β1(b) = 0, this is absurd. We conclude that βG = 0 and β = β2,
which completes the proof that Brnr(B) = Br1,nr(B). �

Proof of Proposition A.9. Fix an embedding G →֒ SLn(Q) and let B = SLn/G.
By Lemma A.10, we have Brnr(B) = Br0(G), and so the existence of aG-extension
K/Q as in (1) follows from [24, Th. B], since G is nilpotent and in particular
supersolvable. Let us choose such an extension K/Q. As 256 is positive, it is a
norm from K∞. In addition, 16 is an 8th power (and hence 256 is a 16th power)
in Qp for every odd p; indeed, one of 2,−2 or −1 is a square, and in the latter
case 2i = (1 + i)2 is a square. Since G has exponent at most 16 and 256 is a
unit outside 2, it follows that in K/Q, the element 256 is a local norm at every
odd finite place. Finally, at 2 the extension K/Q is unramified with Frobenius
element of order 8, and hence 256 = 28 is a norm from K2 as well.

It is left to show that 256 is not a global norm from K. Let us first recall some
notation used above. For α ∈ k∗, we consider the variety Xα := (SLn × T α)/G,
equipped with the projection Xα → B. Given a rational point b ∈ B(k), the
fibre of X1 → B over b is naturally isomorphic to the norm 1 torus of K/k, which
we denote by T 1

b . The fibre Xα
b of Xα → B over b is then naturally isomorphic

to the norm α torsor of T 1
b . We also recall that T̂ 1 denotes the character lattice

of T 1, which carries a natural action of G.
Let b ∈ B(Q) be such that [b] ∈ H1(Q, G) classifies the extension K/Q (see

[23, §1.2]). In order to prove that X256
b (Q) = ∅, i.e. that 256 is not a norm

from K, we shall now exhibit a Brauer–Manin obstruction on X256
b .

As G = π1(B, πG(1)), we may identify G-modules with locally constant étale

sheaves of abelian groups on B. In this way, we view T̂ 1/2T̂ 1 as an étale

sheaf on B and ϕ as an element of H1(B, T̂ 1/2T̂ 1) via the natural isomorphism

H1(B, T̂ 1/2T̂ 1) = H2(G,Z/2Z). The map p : X16 → X256 induced by the squar-
ing map T 16 → T 256 is a torsor under the 2-torsion subgroup scheme of X1 → B,
which we identify with theG-module T 1[2] = {x ∈ T 1(Q̄) : x2 = 1}; this torsor is
classified by an element ψ ∈ H1(X256, T 1[2]). We set P := ψ ∪ϕ ∈ H2(X256, µ2).
We will abusively identify P with its image in Br(X256) and consider it as a
Brauer element of order 2.

We have already seen that X256
b (Qv) 6= ∅ for any place v of Q. Let us show

that the evaluation ∑

v

invv(x
∗
vP) ∈ Q/Z

is well defined and non-zero for any collection (xv)v of local points in X256
b .
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Our assumptions on ϕ imply that we can choose, for every weakly bicyclic
subgroup H ⊆ G, a class ϕ̃H ∈ H1(H,Q/Z) whose image, under the boundary
map H1(H,Q/Z) → H2(H,Z/2Z), is the restriction ϕH ∈ H2(H,Z/2Z) of ϕ.

For any place v of Q, let Kv denote the completion of K at a place of K
dividing v. The corresponding decomposition group Dv ⊆ G is weakly bicyclic
since G is a 2-group and K2/Q2 is unramified. Letting Qv ⊆ Kϕ̃Dv

⊆ Kv denote

the intermediate cyclic extension determined by ϕ̃Dv
∈ H1(Dv,Q/Z), a direct

computation now reveals that x∗
vP = (16, Kϕ̃Dv

/Qv) ∈ Br(Qv).
Since ϕ is assumed to vanish on every cyclic subgroup of order 16, the class

ϕ̃Dv
becomes divisible by 2 when restricted to every such subgroup. Since the

exponent of G divides 16, it follows that 8ϕ̃Dv
∈ H1(Dv,Q/Z) = Hom(Dv,Q/Z)

vanishes when restricted to any cyclic subgroup of Dv, and hence vanishes; in
other words, the degree of the extension Kϕ̃Dv

/Qv divides 8. On the other hand,
as D2 is cyclic of order 8 and ϕ does not vanish when restricted to D2 we have
that ϕ̃D2

∈ H1(D2,Q/Z) ∼= Z/8Z is not divisible by 2 and so Kϕ̃D2
= K2. We

conclude that invv(x
∗
vP) = 0 for all v 6= 2 (recall that 16 is an 8th power at

such v) while inv2(x
∗
2P) = 1/2 ∈ Q/Z. �

We shall now construct a 2-group G satisfying the conditions of Proposi-
tion A.9. Let N be the group generated by 4 generators x, y, z+, z− under the
following relations:

(1) x16 = y16 = z8
+ = z8

− = 1;
(2) each of z+, z− commutes with each of x, y, z+, z−;
(3) [x, y] = z+z−.

In particular, N is a central extension of the bicyclic group Z/16Z〈x, y〉 by the
bicyclic group Z/8Z〈z+, z−〉. Let σ : N → N be the involution given by σ(x) =
x−1, σ(y) = y−1, σ(z+) = z− and σ(z−) = z+. We define G := N ⋊ Z/2Z〈σ〉 to
be the associated semi-direct product and view σ as an element of G.

It is straightforward that G satisfies Conditions (i) and (ii) of Proposition A.9.
Let us now construct an element ϕ ∈ H2(G,Z/2Z) satisfying Condition (iii).
The homomorphism ρ : N → Z/8Z which sends x, y to 0, z+ to 1 and z− to −1
intertwines the action of σ with the action of −1 : Z/8Z → Z/8Z. Consequently,
it induces a homomorphism ρ′ : G = N ⋊ Z/2Z → Z/8Z ⋊ Z/2Z =: D8 to the
dihedral group of order 16. Consider the short exact sequence

1 → Z/2Z → D16
q→ D8 → 1 (A.8)

where D16 := Z/16Z ⋊ Z/2Z is the dihedral group of order 32 and the map
q is induced by the surjective map Z/16Z → Z/8Z. Let ϕD8

∈ H2(D8,Z/2Z)
be the element classifying the central extension (A.8) and let ϕ := (ρ′)∗ϕD8

∈
H2(G,Z/2Z). We leave it to the reader to verify that ϕ has the desired properties.
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