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YONATAN HARPAZ AND OLIVIER WITTENBERG

Abstract. We construct an analogue of the classical descent theory of Colliot-Thélène
and Sansuc in which algebraic tori are replaced with finite supersolvable groups. As
an application, we show that rational points are dense in the Brauer–Manin set for
smooth compactifications of certain quotients of homogeneous spaces by finite super-
solvable groups. For suitably chosen homogeneous spaces, this implies the existence of
supersolvable Galois extensions of number fields with prescribed norms, generalising work
of Frei–Loughran–Newton.

1. Introduction

Let X be a smooth and irreducible variety over a number field k. The study of
rational points on X often begins by embedding the set X(k) diagonally into the product
X(kΩ) =

∏

v∈Ω X(kv), where Ω denotes the set of places of k and kv the completion of k
at v. We endow X(kΩ) with the product of the v-adic topologies. The weak approximation
property, that is, the density of X(k) in X(kΩ), frequently fails. Following Manin [Man71],
one can attempt to explain such failures by considering the Brauer–Manin set X(kΩ)Brnr(X),
defined as the set of elements of X(kΩ) that are orthogonal, with respect to the Brauer–
Manin pairing, to the unramified Brauer group Brnr(X) of X. We recall that Brnr(X) is
the subgroup of Br(X) formed by those classes that extend to any (equivalently, to some)

smooth compactification of X, and that the Brauer–Manin set X(kΩ)Brnr(X) is a closed

subset of X(kΩ) that satisfies the inclusions X(k) ⊆ X(kΩ)Brnr(X) ⊆ X(kΩ) (see [Sko01,
§5.2]). A conjecture of Colliot-Thélène predicts that the Brauer–Manin set is enough to
fully account for the gap between the topological closure of X(k) and X(kΩ) when X is
rationally connected—that is, when for any algebraically closed field extension K of k, two
general K-points of X can be joined by a rational curve over K:

Conjecture 1.1 ([CT03]). Let X be a smooth and rationally connected variety over a

number field k. The set X(k) is a dense subset of X(kΩ)Brnr(X).

Though this conjecture is wide open in general, it has been established in several special
cases. One approach is via the theory of descent developed by Colliot-Thélène and Sansuc.
To explain it, let us assume for the moment that X is proper. Given an algebraic torus T
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over k, this theory considers torsors Y → X under T . The type of such a torsor is the
isomorphism class of the torsor obtained from it by extending the scalars from k to an
algebraic closure k̄ of k; a type, in this context, is defined to be an isomorphism class of
torsors over Xk̄, under Tk̄, that is invariant under Gal(k̄/k). Torsors Y → X under T are
classified, up to isomorphism, by the étale cohomology group H1

ét(X,T ), and types are the

elements of the abelian group H1
ét(Xk̄, Tk̄)

Gal(k̄/k). As X is proper, these groups fit into the
exact sequence

H1(k, T ) → H1
ét(X,T ) → H1

ét(Xk̄, Tk̄)Gal(k̄/k) → H2(k, T ) → H2
ét(X,T )(1.1)

induced by the Hochschild–Serre spectral sequence. As can be seen from this sequence,
if a type comes from a torsor Y → X defined over k, then the isomorphism class of this
torsor is unique up to a twist by an element of H1(k, T ). In general, not every type comes

from a torsor over k: the map H1
ét(X,T ) → H1

ét(Xk̄, Tk̄)
Gal(k̄/k) need not be surjective. It

is surjective if X(k) 6= ∅, as the map H2(k, T ) → H2
ét(X,T ) then possesses a retraction.

The following foundational theorem fully describes the algebraic Brauer–Manin set
X(kΩ)Br1,nr(X) in terms of the arithmetic of torsors under a torus, of a given type, over X.

By definition X(kΩ)Br1,nr(X) is the subset of X(kΩ) consisting of those collections of local
points that are orthogonal, with respect to the Brauer–Manin pairing, to the algebraic
unramified Brauer group Br1,nr(X) = Ker

(

Brnr(X) → Br(Xk̄)
)

.

Theorem 1.2 (Colliot-Thélène–Sansuc [CTS87]). Let X be a smooth, proper and geomet-
rically irreducible variety over a number field k such that Pic(Xk̄) is torsion-free. Let T be

an algebraic torus over k. Let λ ∈ H1
ét(Xk̄, Tk̄)

Gal(k̄/k). Then

X(kΩ)Br1,nr(X) =
⋃

f :Y→X

f
(

Y (kΩ)Br1,nr(Y )
)

,(1.2)

where f : Y → X ranges over the isomorphism classes of torsors Y → X of type λ. In
particular, if Y (k) is a dense subset of Y (kΩ)Br1,nr(Y ) for every torsor Y → X of type λ,

then X(k) is a dense subset of X(kΩ)Br1,nr(X).

As X is assumed to be proper in Theorem 1.2, one has Br1,nr(X) = Br1(X). The group
Br1,nr(Y ), on the other hand, may be smaller than Br1(Y ), since Y is not proper.

It is by now understood that Theorem 1.2 still holds if Pic(Xk̄) is allowed to contain
torsion (see e.g. [Wei16]). When Pic(Xk̄) is torsion-free, however, there exists a privileged
type of torsors over X: denoting by T ′ the algebraic torus over k with character group
Pic(Xk̄), there is a canonical isomorphism H1

ét(Xk̄, T
′

k̄
) = End(Pic(Xk̄)); the torsors

Y ′ → X under T ′ whose type is classified by the identity endomorphism of Pic(Xk̄)
are called universal torsors. They enjoy the special property that Pic(Y ′

k̄
) = 0. By the

Hochschild–Serre spectral sequence, it follows that the natural map Br(k) → Br1(Y ′) is

surjective, so that Y ′(kΩ)Br1,nr(Y ′) = Y ′(kΩ). As a consequence, Theorem 1.2 effectively

reduces the statement that X(k) is dense in X(kΩ)Br1,nr(X) to the (in principle simpler)
weak approximation property for the universal torsors of X. This approach was fruitfully
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carried out in many special cases, notably for Châtelet surfaces in the influential two-
part work [CTSSD87a, CTSSD87b], and later for various other types of varieties [HBS02,
CTHS03, BM17, BMS14, DSW15, Sko15].

We note that even though Theorem 1.2 is stated and proved in [CTS87] only in the case
of universal torsors, the general case follows. Indeed, for any T and λ as in Theorem 1.2,
the type λ determines a morphism T ′ → T , so that any universal torsor Y ′ → X factors
through a torsor Y → X of type λ, and the image of Y ′(kΩ) = Y ′(kΩ)Br1,nr(Y ′) in Y (kΩ) is

then contained in Y (kΩ)Br1,nr(Y ) by the projection formula.
The classical theory of descent of Colliot-Thélène and Sansuc allows one to neatly capture

the algebraic part of the Brauer–Manin obstruction in terms of universal torsors and their
local points. Formulated as above, it admits, however, a limitation: when the strategy
consisting in applying Theorem 1.2 to verify Conjecture 1.1 for a given X works, one finds
that a stronger claim than Conjecture 1.1 is in fact being proved, namely, the density of
X(k) not only in X(kΩ)Brnr(X) but also in the larger set X(kΩ)Br1,nr(X). The two sets

X(kΩ)Brnr(X) and X(kΩ)Br1,nr(X) coincide for geometrically rational varieties, but among
rationally connected varieties it does happen that X(k) fails to be dense in the larger
one (see [Har96, §2], [DLAN17, Example 5.4]), thus limiting the scope of applicability of
the method. A way to overcome this issue was suggested in [HW20], where the following
variant of Theorem 1.2 is proved—to be precise, Theorem 1.3 results from combining
[HW20, Théorème 2.1] in the proper case with [Sko01, Theorem 6.1.2 (a)]:

Theorem 1.3 ([HW20]). Let X be a smooth, proper and geometrically irreducible variety

over a number field k. Let T be an algebraic torus over k. Let λ ∈ H1
ét(Xk̄, Tk̄)

Gal(k̄/k).
Then

X(kΩ)Brnr(X) =
⋃

f :Y→X

f
(

Y (kΩ)Brnr(Y )
)

,(1.3)

where f : Y → X ranges over the isomorphism classes of torsors Y → X of type λ. In
particular, if Y (k) is a dense subset of Y (kΩ)Brnr(Y ) for every torsor Y → X of type λ,

then X(k) is a dense subset of X(kΩ)Brnr(X).

The theorems discussed so far admit generalisations to open varieties in which X(kΩ) is
replaced with the space of adelic points X(Ak), and Brnr(X) with the larger group Br(X);
for instance, Theorem 1.2 was generalised in the work of Wei [Wei16], which builds on
[Sko01, Theorem 6.1.2] and on [HS13, Proposition 8.12], and later in the work of Cao,
Demarche and Xu [CDX19, Theorem 1.2]. We shall not consider such generalisations
in this article. Theorems 1.2 and 1.3 can also be extended to open varieties while
keeping focus on the set X(kΩ) and on the group Brnr(X). In particular, it follows
from [HS13, Proposition 8.12, Corollary 8.17], from Harari’s “formal lemma” [CTS21,
Theorem 13.4.3] and from [HW20, Théorème 2.1], as in the proof of [HW20, Corollaire 2.2],
that the statements of Theorem 1.2 and Theorem 1.3 remain valid without the properness
assumption, provided one assumes, in the case of Theorem 1.3, that the quotient of Brnr(X)
by the subgroup of constant classes is finite (as is the case when X is rationally connected),
and provided one replaces, on the one hand, the notion of type due to Colliot-Thélène and
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Sansuc by that of extended type introduced by Harari and Skorobogatov [HS13], and on
the other hand, the right-hand sides of the asserted equalities by their topological closure
in X(kΩ). Thus, for instance, the equality (1.3) becomes

X(kΩ)Brnr(X) =
⋃

f :Y→X

f
(

Y (kΩ)Brnr(Y )
)

,(1.4)

where M denotes the topological closure of a subset M of X(kΩ).
Pursuing the line of thought explored in [HW20], the goal of the present article is to prove

an analogue of Theorem 1.3 in the case where the torus T is replaced with a supersolvable
finite group. We shall adapt the notion of a type to the non-abelian setting as follows: for a
smooth and geometrically irreducible variety X, we define a finite descent type on X to be
a variety Ȳ over k̄ equipped with a finite étale map Ȳ → Xk̄ such that the composed map

Ȳ → Xk̄ → X is Galois, in the sense that the function field extension k̄(Ȳ )/k(X) is Galois;

and we define a torsor of type Ȳ to be an étale map Y → X such that the Xk̄-schemes

Yk̄ and Ȳ are isomorphic. A torsor of type Ȳ is then naturally a torsor under a finite

group scheme over k whose group of k̄-points is the finite group Aut(Ȳ /Xk̄) canonically

associated with the type Ȳ (although the group scheme itself is not canonically associated
with Ȳ ). Any finite descent type determines not only a finite group Ḡ = Aut(Ȳ /Xk̄) but

also an outer Galois action Gal(k̄/k) → Out(Ḡ) on Ḡ. We say that a finite descent type Ȳ
is supersolvable if Ḡ admits a filtration

{1} = Ḡ0 ⊆ Ḡ1 ⊆ · · · ⊆ Ḡn = Ḡ

such that each Ḡi is a normal subgroup of Ḡ stable under the outer Galois action, and each
successive quotient Ḡi+1/Ḡi is cyclic. We say that it is rationally connected if Ȳ , as a variety

over k̄, is rationally connected (in the sense made explicit just before Conjecture 1.1).
Our main result in this article is the following:

Theorem 1.4 (supersolvable descent, see Theorem 3.1). Let X be a smooth and geometri-
cally irreducible variety over a number field k. Let Ȳ be a rationally connected supersolvable
finite descent type on X. Then

X(kΩ)Brnr(X) =
⋃

f :Y→X

f
(

Y (kΩ)Brnr(Y )
)

,(1.5)

where f : Y → X ranges over the isomorphism classes of torsors Y → X of type Ȳ . In
particular, Conjecture 1.1 holds for X if it holds for Y for every torsor Y → X of type Ȳ .

It is now crucial that X is not assumed proper in the statement of Theorem 1.4: indeed,
the hypothesis that Ȳ is rationally connected implies that Xk̄ is rationally connected, and
proper smooth rationally connected varieties are simply connected and hence do not possess
nontrivial finite descent types.

Theorem 1.4 can be used to prove Conjecture 1.1 for quotient varieties Y/G where G is a
finite supersolvable group acting freely on a quasi-projective rationally connected variety Y ,
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when Conjecture 1.1 is already known for Y and for all of its twists. In particular, the
following case of Conjecture 1.1 can be proved via supersolvable descent (see Example 3.4):

Corollary 1.5. Let Y be a homogeneous space of a connected linear algebraic group L with
connected geometric stabilisers. Suppose that a finite supersolvable group G acts on L (as an
algebraic group) and on Y (as a homogeneous space of L, compatibly with its action on L),
and that the action on Y is free. Then Conjecture 1.1 holds for the variety X = Y/G.

As an application, we prove the following generalisation of a theorem of Frei, Loughran
and Newton [FLN22]:

Corollary 1.6. Let k be a number field and A ⊂ k∗ be a finitely generated subgroup. Let G
be a supersolvable finite group. Then there exists a Galois extension K/k with Galois group
isomorphic to G such that every element of A is a norm from K. Moreover, given a finite
set of places S of k, one can require that the places of S split in K.

More applications are described in §4.

1.1. Notation and terminology. We fix once and for all a field k of characteristic 0 and
an algebraic closure k̄ of k. A variety is a separated scheme of finite type over a field.
Somewhat unconventionally, we shall say that a variety X over k is rationally connected
if the smooth proper varieties over k̄ that are birationally equivalent to Xk̄ are rationally
connected in the sense of Campana, Kollár, Miyaoka and Mori (see [Kol96, Chapter IV]).
If X is a smooth irreducible variety over k, we denote by Brnr(X) ⊆ Br(X) the unramified
Brauer group of k(X)/k (see [CTS21, §6.2]).

The words “torsor”, “action”, “homogeneous space” will refer to left torsors, left actions,
left homogeneous spaces, unless indicated otherwise. An outer action of a profinite group Γ
on a discrete group H is a continuous group homomorphism Γ → Out(H), where we endow
the group Out(H) of outer automorphisms of H with the topology induced by the compact-
open topology on Aut(H).

When G is an algebraic group over k, we denote by H1(k,G) the first non-abelian Galois
cohomology pointed set (see [Ser94]). When we write [σ] for an element of this set, we
mean that σ is a cocycle representing the cohomology class [σ].

When k is a number field, we denote by Ω the set of places of k and by kv the completion
of k at v ∈ Ω. For any variety X over k, we let X(kΩ) =

∏

v∈Ω X(kv), endow this set with
the product of the v-adic topologies, and when X is smooth and irreducible, we denote by
X(kΩ)Brnr(X) ⊆ X(kΩ) the Brauer–Manin set (see [Sko01, §5.2]).

1.2. Acknowledgment. We are grateful to David Harari, to Dasheng Wei and to the
referee for their comments on a first version of this article.

2. Finite descent types

We recall that k denotes a field of characteristic 0. We fix, until the end of §2, a smooth
and geometrically irreducible variety X over k.
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2.1. Finite descent types and torsors. If G is a finite étale group scheme over k and
Y → X is a torsor under G such that Y is geometrically irreducible over k, the function
field extension k̄(Y )/k(X) is Galois (with Galois group G(k̄) ⋊ Gal(k̄/k)). This remark
motivates the following definition.

Definition 2.1. A finite descent type on X is an irreducible finite étale Xk̄-scheme Ȳ that

is Galois over X (i.e. such that the function field extension k̄(Ȳ )/k(X) is Galois).

Equivalently, a finite descent type on X is an irreducible finite étale Galois Xk̄-scheme Ȳ

such that the natural morphism Aut(Ȳ /X) → Gal(k̄/k) is surjective.

Definition 2.2. Given a finite descent type Ȳ on X, a torsor of type Ȳ is an X-scheme Y
such that the Xk̄-schemes Yk̄ and Ȳ are isomorphic.

Although Definition 2.2 does not make reference to a group scheme, the name “torsor” is
justified by the remark that any torsor Y → X of type Ȳ in the above sense is canonically
a torsor under the finite étale group scheme G over k defined by G(k̄) = Aut(Yk̄/Xk̄).

We warn the reader, though, that two torsors of type Ȳ are not, in general, torsors under
isomorphic group schemes: the underlying finite group is always isomorphic to Aut(Ȳ /Xk̄),

but the action of Gal(k̄/k) on Aut(Ȳ /Xk̄) depends, in general, on the choice of Y → X.

As we shall see in Proposition 2.4 (ii), it is nevertheless true that two torsors of type Ȳ are
torsors under group schemes that are inner forms of each other.

Let Ȳ be a finite descent type on X. The short exact sequence of profinite groups

1 → Aut(Ȳ /Xk̄) → Aut(Ȳ /X) → Gal(k̄/k) → 1(2.1)

induces a continuous outer action of Gal(k̄/k) on the finite group Ḡ = Aut(Ȳ /Xk̄). This

outer action, together with the natural action of Gal(k̄/k) on the scheme Xk̄, induces, in

turn, a continuous action of Gal(k̄/k) on the pointed set H1
ét(Xk̄, Ḡ) of isomorphism classes

of torsors under Ḡ over Xk̄ (notation justified by [Mil80, Chapter III, Corollary 4.7]). With

respect to this action, the class of the Ḡ-torsor Ȳ → Xk̄ is invariant.
The next two propositions provide a group-theoretic point of view on Definition 2.2 in

terms of the short exact sequence (2.1). When we speak of a splitting of (2.1), we shall
always mean a continuous homomorphism Gal(k̄/k) → Aut(Ȳ /X) which is a section of the
projection Aut(Ȳ /X) → Gal(k̄/k).

Proposition 2.3. Let Ȳ be a finite descent type on X.

(i) Splittings of (2.1) are in one-to-one correspondence with isomorphism classes of
torsors Y → X of type Ȳ endowed with an Xk̄-isomorphism ι : Yk̄

∼−→ Ȳ .

(ii) Splittings of (2.1) up to conjugation by Aut(Ȳ /Xk̄) are in one-to-one correspondence

with isomorphism classes of torsors Y → X of type Ȳ .

(iii) Splittings of (2.1) exist if X(k) 6= ∅.

Proof. Assertion (i) results from the fact that such pairs (Y, ι) correspond to subextensions
k(X) ⊂ L ⊂ k̄(Ȳ ) such that L ∩ k̄ = k and k̄(Ȳ ) = Lk̄, and from Galois theory.
Assertion (ii) follows from (i). For (iii), see [Wit18, Proposition 2.5]. �
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Proposition 2.4. Let Ȳ be a finite descent type on X and set Ḡ = Aut(Ȳ /Xk̄).

(i) Let us fix a pair (Y, ι) as in Proposition 2.3 (i) corresponding to a splitting s of (2.1).
Let G be the finite étale group scheme over k defined by G(k̄) = Ḡ, with the continuous
action of Gal(k̄/k) on Ḡ by conjugation through s. Then the natural action of Ḡ on Ȳ
descends to an action of G on the X-scheme Y , making it a torsor under G.

(ii) Let us fix another pair (Y ′, ι′), corresponding to another splitting s′ of (2.1). Let G′

denote the corresponding group scheme, as in (i). Let σ be the cocycle

s′s−1 : Gal(k̄/k) → G(k̄).

There are compatible canonical isomorphisms of k-group schemes G′ ≃ Gσ and of
X-schemes Y ′ ≃ Y σ, where Gσ denotes the inner twist of the group scheme G by σ
and Y σ the twist of the torsor Y by σ (see [Sko01, Lemma 2.2.3]).

Proof. Both assertions follow from unwinding the correspondence of Proposition 2.3 (i)
and noting that the natural action of Gal(k̄/k) on the scheme Yk̄ coincides with the action

obtained by transport of structure, via ι, from the action of Gal(k̄/k) on Ȳ given by s. �

Remark 2.5. Let us assume that Ḡ is abelian. In this case, the outer action of Gal(k̄/k)
on Ḡ induced by (2.1) is an actual action, thanks to which Ḡ canonically descends to a finite
étale group scheme G over k. In addition, any torsor Y → X of type Ȳ is canonically a
torsor under G since any two Xk̄-isomorphisms Yk̄

∼−→ Ȳ give rise to the same isomorphism

Aut(Ȳ /Xk̄) ≃ Aut(Yk̄/Xk̄). Thus, the abelian situation is summarised by the natural map

H1
ét(X,G) → H0(k,H1

ét(Xk̄, Ḡ)),(2.2)

which appears in the Hochschild–Serre spectral sequence and which sends the isomorphism
class of a G-torsor over X to (the isomorphism class of) its type. We see, in particular, that
the terminology of Definition 2.2 is consistent with the one introduced by Colliot-Thélène
and Sansuc [CTS87, §2] in the theory of descent under groups of multiplicative type, as
well as with the notion of extended type of Harari and Skorobogatov [HS13] in the finite
case.

2.2. Supersolvability. The notion of supersolvability for finite groups endowed with an
outer action of Gal(k̄/k), first introduced in [HW20, Définition 6.4], plays a central rôle in
the present article. We recall it below.

Definition 2.6. A finite group Ḡ endowed with an outer action of Gal(k̄/k) is said to be
supersolvable if there exist an integer n and a sequence

{1} = Ḡ0 ⊆ Ḡ1 ⊆ · · · ⊆ Ḡn = Ḡ

of normal subgroups of Ḡ such that for all i ∈ {1, . . . , n}, the quotient Ḡi/Ḡi−1 is cyclic

and the subgroup Ḡi is stable under the outer action of Gal(k̄/k). (A normal subgroup
is said to be stable under an outer automorphism if it is stable under any automorphism
that lifts the given outer automorphism. This is independent of the choice of the lift.)
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A finite descent type Ȳ on X is said to be supersolvable if the finite group Aut(Ȳ /Xk̄),

endowed with the outer action of Gal(k̄/k) induced by (2.1), is supersolvable in this sense.
When the integer n is fixed, we say that Ḡ, or Ȳ , is supersolvable of class n.

3. Supersolvable descent

We are now in a position to state and prove our main theorem. We say that a finite
descent type Ȳ on X is rationally connected if Ȳ is a rationally connected variety over k̄
in the sense of §1.1.

Theorem 3.1. Let X be a smooth and geometrically irreducible variety over a number
field k. Let Ȳ be a rationally connected supersolvable finite descent type on X. Then

X(kΩ)Brnr(X) =
⋃

f :Y→X

f
(

Y (kΩ)Brnr(Y )
)

,(3.1)

where f : Y → X ranges over the isomorphism classes of torsors Y → X of type Ȳ and M
denotes the topological closure of a subset M of X(kΩ).

Remarks 3.2. (i) The existence of a rationally connected finite descent type on X,
assumed in Theorem 3.1, implies that X itself is rationally connected.

(ii) When X is rationally connected, the statement of Theorem 3.1 can be expected to
hold for an arbitrary finite descent type Ȳ on X. Indeed, the equality (3.1) would result
from Conjecture 1.1 (see [Wit18, Proposition 2.5]).

(iii) By Proposition 2.3 (ii) and Proposition 2.4, the equality (3.1) can be reformulated
as the following two-part statement:

• if X(kΩ)Brnr(X) 6= ∅, then the natural outer action of Gal(k̄/k) on Ḡ = Aut(Ȳ /Xk̄) can
be lifted to an actual continuous action, in such a way that if G denotes the resulting
finite étale group scheme over k, the Ḡ-torsor Ȳ → Xk̄ descends to a G-torsor f : Y → X;

• fixing such G and Y and denoting by fσ : Y σ → X the twist of the torsor f : Y → X
by a cocycle σ, one has an equality

X(kΩ)Brnr(X) =
⋃

[σ]∈H1(k,G)

fσ
(

Y σ(kΩ)Brnr(Y σ)
)

.

The proof of Theorem 3.1 will be given in §§3.2–3.3, first in the case where G is cyclic
in §3.2 and then in the general case in §3.3. Before going into the proof, let us illustrate
Theorem 3.1 with the following special case. We say that a finite étale group scheme G
over k is supersolvable if G(k̄) is supersolvable in the sense of Definition 2.6 with respect to
the natural outer action of Gal(k̄/k) (which happens in this case to be an actual action).

Corollary 3.3. Let Y be a smooth, quasi-projective rationally connected variety over a
number field k. Let G be a supersolvable finite étale group scheme over k, acting freely on Y .
Let X = Y/G denote the quotient. If Conjecture 1.1 holds for Y σ for all [σ] ∈ H1(k,G),
then it holds for X.
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Proof. The projection Y → X is a G-torsor, hence Yk̄ is a supersolvable finite descent type
on X, as remarked at the beginning of §2.1. The conclusion now follows from Theorem 3.1,
in view of Remark 3.2 (iii). �

Example 3.4. Suppose that Y is a homogeneous space of a connected linear algebraic
group L with connected geometric stabilisers, and that the finite supersolvable group G
acts compatibly on L as an algebraic group and on Y as a homogeneous space of L,
with the action on Y being free. For each [σ] ∈ H1(k,G), the twisted variety Y σ is then a
homogeneous space of the twisted algebraic group Gσ, with connected geometric stabilisers.
As such, the variety Y σ satisfies Conjecture 1.1, according to Borovoi [Bor96]. It now
follows from Corollary 3.3 that Conjecture 1.1 holds for the quotient variety X = Y/G. It
should be noted that X is not itself, in general, a homogeneous space of a linear group.
This example will play a rôle in §4.2 below.

3.1. Fibrations over tori. The proof of Theorem 3.1 rests on the fibration method via
the following theorem, which is a slightly more precise version of [HW20, Théorème 4.2 (ii)].
We recall that a variety is split if it possesses an irreducible component of multiplicity 1
that is geometrically irreducible.

Theorem 3.5 (see [HW20, Théorème 4.2 (ii)]). Let Q be a quasi-trivial torus over a
number field k. Let Z be a smooth irreducible variety over k. Let π : Z → Q be a dominant
morphism satisfying the following assumptions:

(1) the geometric generic fibre of π is rationally connected;
(2) the fibres of π above the codimension 1 points of Q are split;
(3) the morphism πk̄ : Zk̄ → Qk̄ admits a rational section.

For any dense open subset U of Q such that π is smooth over U , and for any Hilbert
subset H of U , we have the equality

Z(kΩ)Brnr(Z) =
⋃

q∈U(k)∩H

Zq(kΩ)Brnr(Zq)(3.2)

of subsets of Z(kΩ), where Zq = π−1(q).

Hypothesis (3) of Theorem 3.5 is stronger than the hypothesis that appears in [HW20,
Théorème 4.2 (ii)]. The proof, however, only depends on the hypothesis formulated in loc.
cit.; we have opted for stating the theorem in this way for the sake of simplicity. With this
minor difference put aside, Theorem 3.5 implies and refines [HW20, Théorème 4.2 (ii)].

The exact argument used in loc. cit. to deduce [HW20, Théorème 4.2 (ii)] from [HW20,
Théorème 4.1 (ii)] also reduces Theorem 3.5 to the following theorem:

Theorem 3.6. Let Z be a smooth irreducible variety over a number field k, endowed with
a dominant morphism π : Z → An

k , for some n ≥ 1, such that

(1) the geometric generic fibre of π is rationally connected;
(2) the fibres of π above the codimension 1 points of An

k are split.
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For any dense open subset U of An
k such that π is smooth over U , and for any Hilbert

subset H of U , we have the equality

Z(kΩ)Brnr(Z) =
⋃

q∈U(k)∩H

Zq(kΩ)Brnr(Zq)(3.3)

of subsets of Z(kΩ), where Zq = π−1(q).

In turn, Theorem 3.6 is essentially contained in the work of Harari [Har94, Har97],
though its statement appears not to have been written down. We provide a short proof
based on the available literature. We shall use Theorem 3.6 only when H = U . Assuming
that H = U , however, would not lead to any significant simplification in the proof.

Proof of Theorem 3.6. Assume, first, that n = 1. By the theorems of Nagata and Hironaka,
the morphism π extends to a proper morphism π′ : Z ′ → P1

k for some smooth variety Z ′

that contains Z as a dense open subset. Applying [HWW22, Corollary 4.7, Remarks 4.8 (i)–
(ii), Corollary 6.2 (i)] to π′ now yields (3.3). For n ≥ 2, we argue by induction. Fix U

and H as in the statement of the theorem, fix a collection of local points zΩ ∈ Z(kΩ)Brnr(Z)

and fix a neighbourhood U of zΩ in Z(kΩ). We need to show the existence of q ∈ U(k)∩H

such that U ∩ Zq(kΩ)Brnr(Zq) 6= ∅.

Let p : An
k → A1

k be the first projection. For h ∈ A1
k, set Zh = (p ◦ π)−1(h) and

let πh : Zh → p−1(h) denote the restriction of π. Let U0 ⊂ A1
k be a dense open subset

over which p ◦ π is smooth, small enough that for any h ∈ U0, the generic fibre of πh is
rationally connected (see [Kol96, Chapter IV, Theorem 3.5.3]). By assumption, there exists
a closed subset of codimension ≥ 2 in An

k outside of which the fibres of π are split. After
shrinking U0, we may assume that the images, by p, of the irreducible components of this
closed subset are either dense in A1

k or disjoint from U0. For h ∈ U0, the fibres of πh above
the codimension 1 points of p−1(h) are then split. After further shrinking U0, we may also
assume that p−1(h) ∩ U 6= ∅ for every h ∈ U0.

By [HW16, Lemma 8.12], there exists a Hilbert subset H0 ⊂ A1
k such that for every

h ∈ U0(k) ∩H0, the set H ∩ p−1(h) contains a Hilbert subset, say Hh, of p−1(h) = An−1
k .

Let η denote the generic point of A1
k. The generic fibre of p ◦ π is endowed with a map

to An−1 with rationally connected generic fibre, hence it is itself rationally connected (see
[GHS03, Corollary 1.3]). The closed fibres of p ◦ π are each endowed with a map to An−1

whose generic fibre is, by assumption, split; hence they are themselves split. By the case
n = 1 of Theorem 3.6 applied to p◦π, we deduce the existence of h ∈ U0(k)∩H0 such that

U ∩ Zh(kΩ)Brnr(Zh) 6= ∅. By the induction hypothesis, we can then apply Theorem 3.6

to πh and finally deduce the existence of q ∈ U(k) ∩Hh such that U ∩Zq(kΩ)Brnr(Zq) 6= ∅.
As Hh ⊂ H, this completes the proof. �

3.2. Cyclic descent. We now establish Theorem 3.1 in the case where Ḡ = Aut(Ȳ /Xk̄)
is a cyclic group. Since most of the proof works in a slightly greater generality, we only
assume, for now, that Ḡ is an abelian group (and drop the supersolvability assumption
on Ȳ ). We shall restrict to the cyclic case only at the end of §3.2.
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As Ḡ is abelian, the exact sequence (2.1) induces a continuous action of Gal(k̄/k) on Ḡ.
Let G be the finite étale group scheme over k defined by G(k̄) = Ḡ. In the next lemma, the
symbol B(X) denotes the subgroup of Brnr(X) consisting of the locally constant classes
(i.e. the classes whose image in Br(Xkv

) comes from Br(kv) for all v ∈ Ω).

Lemma 3.7. If X(kΩ)B(X) 6= ∅, then Ȳ → Xk̄ descends to a torsor f : Y → X under G.

Proof. Under this assumption, Colliot-Thélène and Sansuc have shown that the natural
map H2(k,G) → H2

ét(X,G) is injective (combine [CTS87, Proposition 2.2.5] for X with
[Wit08, Theorem 3.3.1] for a smooth compactification of X; we note that in the case of a
smooth, proper, rationally connected variety, the quoted theorem from [Wit08] goes back
to [CTS87], see [BCTS08, §2.3, Remark]). By the Hochschild–Serre spectral sequence, it
follows that the natural map H1

ét(X,G) → H0(k,H1
ét(Xk̄, Gk̄)) is surjective. �

Lemma 3.8. Over any field, any algebraic group of multiplicative type R fits into a short
exact sequence 1 → R → T → Q → 1 where T is a torus and Q is a quasi-trivial torus.

Proof. The character group M of R fits into a short exact sequence of Galois modules
0 → K → L → M → 0 with K and L torsion-free and finitely generated as abelian
groups; one can even choose L to be a permutation Galois module. Doing the same with
Hom(K,Z) and then dualising, one finds that K also fits into an exact sequence of Galois
modules 0 → K → P → C → 0 with C torsion-free and P permutation. Let S = L⊕K P
be the amalgamated sum relative to K. The exact sequence 0 → L → S → C → 0 shows
that S is torsion-free. Dualising the short exact sequence 0 → P → S → M → 0 therefore
provides the desired resolution. �

Let us fix a torsor f : Y → X as in Lemma 3.7 and a resolution

1 → G → T → Q → 1(3.4)

given by Lemma 3.8 applied to R = G. Let Z = Y ×G
k T be the contracted product of Y

and T under G (i.e. the quotient of Y ×kT by the action of G given by g ·(y, t) = (gy, g−1t)).
Let g : Z → X and π : Z → Q be the morphisms induced by the two projections.

Let us also fix a collection of local points xΩ ∈ X(kΩ)Brnr(X) and a neighbourhood U

of xΩ in X(kΩ). We shall show that

U ∩ fσ
(

Y σ(kΩ)Brnr(Y σ)
)

6= ∅(3.5)

for some [σ] ∈ H1(k,G). By Remark 3.2 (iii), this will prove the desired equality (3.1).
To this end, we apply [HW20, Corollaire 2.2] to g. This yields a [τ ] ∈ H1(k, T ) such that

U ∩gτ
(

Zτ (kΩ)Brnr(Zτ )
)

6= ∅. As the torus Q is quasi-trivial, Hilbert’s Theorem 90 implies

that H1(k,Q) = 0; the cohomology class [τ ] can therefore be lifted to some [σ0] ∈ H1(k,G)
and we may assume that the cocycle σ0 lifts τ . After replacing Y with Y σ0 , which has the
effect of replacing Z with Zτ , we may then assume that [τ ] is the trivial class, i.e. that

U ∩ g
(

Z(kΩ)Brnr(Z)
)

6= ∅.
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To conclude the proof that (3.5) holds for some [σ] ∈ H1(k,G), we shall now exploit the
structure of a fibration over a quasi-trivial torus given by the morphism π : Z → Q. For
any field extension k′/k and any q ∈ Q(k′), we let Zq = π−1(q), which we view as a torsor
under G, over Xk′ , via g. The inverse image Tq of q by the projection T → Q is a torsor

under G, over k′, whose cohomology class [σ] in H1(k′, G) is the image of q by the boundary
map of the exact sequence (3.4). As Z = Y ×G

k T , we have Zq = Y ×G
k Tq and hence Zq

and Y σ are isomorphic as torsors under G, over Xk′ . Taking for k′ an algebraically closed
field extension of k(Q) and for q a geometric generic point of Q, it follows, first, that the
geometric generic fibre of π is isomorphic to a variety obtained from Ȳ by an extension
of scalars. By our assumption on Ȳ , we deduce that the generic fibre of π is rationally
connected. Taking k′ = k, it also follows that

g
(

Zq(kΩ)Brnr(Zq)
)

= fσ
(

Y σ(kΩ)Brnr(Y σ)
)

(3.6)

for every q ∈ Q(k), where [σ] ∈ H1(k,G) is the image of q by the boundary map of (3.4).
In view of (3.6), we will be done if we show the equality

Z(kΩ)Brnr(Z) =
⋃

q∈Q(k)

Zq(kΩ)Brnr(Zq)(3.7)

of subsets of Z(kΩ). Thus, the problem that we need to solve has been reduced to the
question of making the fibration method work for π : Z → Q, a fibration over a quasi-
trivial torus whose generic fibre is rationally connected and all of whose fibres are split
(even geometrically integral). When Ḡ is cyclic, a positive answer is given by Theorem 3.5,
thanks to the next lemma.

Lemma 3.9. If Ḡ is a cyclic group, the morphism πk̄ : Zk̄ → Qk̄ admits a rational section.

Proof. If Ḡ is cyclic, one can fit the exact sequence (3.4) over k̄ and the Kummer exact
sequence into a commutative diagram as pictured below:

1 // Gk̄
//

≀

��

Tk̄

��

// Qk̄

��

// 1

1 // µn,k̄
// Gm,k̄

×n
// Gm,k̄

// 1.

(3.8)

As the right-hand side square of (3.8) is cartesian, so is the square obtained by applying
the functor Y ×G

k − to it. Hence πk̄ : Zk̄ → Qk̄ comes, by a dominant base change, from the

morphism π0 : Y ×G
k Gm,k̄ → Gm,k̄ induced by the multiplication by n map Gm,k̄ → Gm,k̄.

In particular, it suffices to check that π0 admits a rational section. Now, the proper models
of the geometric generic fibre of π0 are rationally connected, since πk̄ and π0 have the same
geometric generic fibre. As the target of π0 is a curve over an algebraically closed field of
characteristic 0, the Graber–Harris–Starr theorem [GHS03, Theorem 1.1], combined with
[Kol96, Chapter IV, Theorem 6.10], does imply the existence of a rational section of π0. �
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3.3. Proof of Theorem 3.1 in the general case. We assume that Ȳ is a supersolvable
finite descent type on X of class n and argue by induction on n. If n = 0, there is nothing
to prove. Assume that n > 0 and that the statement of Theorem 3.1 holds for supersolvable
finite descent types of class n− 1.

Let Ḡ = Aut(Ȳ /Xk̄) and let {1} = Ḡ0 ⊆ Ḡ1 ⊆ · · · ⊆ Ḡn = Ḡ be a filtration satisfying

the requirements of Definition 2.6. The subgroup Ḡn−1 of Aut(Ȳ /X) is normal since it is

stabilised by the outer action of Gal(k̄/k) on Ḡ induced by (2.1). Thus Ȳ ′ = Ȳ /Ḡn−1 is a

finite descent type on X. As Aut(Ȳ ′/Xk̄) = Ḡn/Ḡn−1 is cyclic, we can apply the case of
Theorem 3.1 already established in §3.2, and deduce that

X(kΩ)Brnr(X) =
⋃

f ′:Y ′→X

f
(

Y ′(kΩ)Brnr(Y ′)
)

,(3.9)

where f ′ : Y ′ → X ranges over the isomorphism classes of torsors Y ′ → X of type Ȳ ′.

Lemma 3.10. Let f ′ : Y ′ → X be a torsor of type Ȳ ′ and ι : Y ′

k̄
∼−→ Ȳ ′ be an isomorphism

of Xk̄-schemes. Viewing the scheme Ȳ as a Y ′

k̄
-scheme via ι, it is a supersolvable finite

descent type on Y ′ of class n− 1.

Proof. As Ȳ is Galois over X, it is Galois over Y ′. Moreover, the commutative diagram

1 // Ḡ // Aut(Ȳ /X) // Gal(k̄/k) // 1

1 // Ḡn−1
//

∪

Aut(Ȳ /Y ′)

∪
// Gal(k̄/k) // 1

shows that the outer action of Gal(k̄/k) on Ḡn−1 coming from the bottom row stabilises the

subgroups Ḡ1, . . . , Ḡn−2 of Ḡn−1, since these subgroups are stable under the outer action

of Gal(k̄/k) on Ḡ coming from the top row. �

For any torsor f ′ : Y ′ → X of type Ȳ ′ and for any Xk̄-isomorphism ι : Y ′

k̄
∼−→ Ȳ ′,

Lemma 3.10 and the induction hypothesis imply the equality

Y ′(kΩ)Brnr(Y ′) =
⋃

f ′′:Y→Y ′

f ′′

(

Y (kΩ)Brnr(Y )
)

(3.10)

of subsets of Y ′(kΩ), where f ′′ : Y → Y ′ ranges over the isomorphism classes of torsors
Y → Y ′ of type Ȳ (viewing Ȳ as a Y ′

k̄
-scheme via ι). Now for any such f ′, ι and f ′′, the

composition f ′ ◦ f ′′ : Y → X is a torsor of type Ȳ . Hence combining (3.9) with (3.10)
yields (3.1). This completes the proof of Theorem 3.1.

4. Applications

We now discuss applications of supersolvable descent to rational points on homogeneous
spaces and to Galois theory, pursuing and expanding the investigations of [HW20]. Unless
otherwise noted, the field k will be assumed in §4 to be a number field.
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4.1. Homogeneous spaces of linear algebraic groups. In Theorem 4.5 below, we
apply supersolvable descent to the validity of Conjecture 1.1 for homogeneous spaces of
linear algebraic groups. Additional notation and terminology that is useful for dealing
with stabilisers of geometric points on such homogeneous spaces will first be introduced
in §4.1.1. Theorem 4.5 is stated in §4.1.2 and proved in §4.1.3.

4.1.1. Outer Galois actions and σ-algebraic maps. We first introduce σ-algebraic maps,
following Borovoi [Bor93, §1.1].

Definition 4.1. Given a field automorphism σ of k̄, a σ-algebraic map between two
varieties V , W over k̄ is a morphism of schemes f : V → W that makes the square

V
f

//

εV

��

W

εW

��

Spec(k̄)
Spec

(

σ−1

)

// Spec(k̄)

commute, where εV and εW are the structure morphisms of V and W . Equivalently, if σ∗W
denotes the variety over k̄ with underlying scheme W and structure morphism Spec(σ)◦εW ,
a σ-algebraic map f : V → W is a morphism of varieties V → σ∗W .

A σ-algebraic map is generally not a morphism of varieties. Nonetheless, any σ-algebraic
map f : V → W induces a map f∗ : V (k̄) → W (k̄), since the sets V (k̄) and W (k̄) can be
identified with the sets of closed points of the schemes V and W . We shall say that a map
V (k̄) → W (k̄) is σ-algebraic if it coincides with f

∗
for a σ-algebraic map f : V → W , and

that it is algebraic if it is σ-algebraic with σ = Idk̄.

Remarks 4.2. (i) If V and W are non-empty varieties over k̄, a morphism of schemes
f : V → W can be a σ-algebraic map for at most one automorphism σ of k̄.

(ii) As Spec
(

τ−1
)

◦ Spec
(

σ−1
)

= Spec
(

σ−1τ−1
)

= Spec
(

(τσ)−1
)

, precomposing a
τ -algebraic map with a σ-algebraic map yields a τσ-algebraic map. In particular, the
class of σ-algebraic maps is closed under composition with algebraic maps.

(iii) If V = V0 ×k Spec(k̄) for a variety V0 over k, then for any σ ∈ Gal(k̄/k), the
morphism of schemes f : V → V given by IdV0

×k Spec
(

σ−1
)

is a σ-algebraic map. The

map f∗ : V (k̄) → V (k̄) that it induces is v 7→ σ(v).
(iv) Let V = V0 ×k Spec(k̄) for a variety V0 over k and U be an irreducible finite étale

V -scheme. Let ρ : Aut(U/V0) → Gal(k̄/k) denote the natural map, which factors through
Aut(V/V0) = Gal(k̄/k). Then a : U → U is a ρ(a)-algebraic map for any a ∈ Aut(U/V0).

We recall that if X is a (left) homogeneous space of a connected linear algebraic group L
over k and if Hx̄ ⊂ Lk̄ denotes the stabiliser of a point x̄ ∈ X(k̄), viewed as an algebraic

group over k̄, the exact sequence

1 → Hx̄(k̄) → Gx̄ → Gal(k̄/k) → 1,(4.1)

where Gx̄ =
{

(ℓ, σ) ∈ L(k̄) ⋊ Gal(k̄/k) ; ℓσ(x̄) = x̄
}

, induces a continuous outer action of

the profinite group Gal(k̄/k) on the discrete group Hx̄(k̄) (see [DLA19, §2.3]). Thus, the
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discrete group Hx̄(k̄) receives a continuous outer action of Gal(k̄/k) while the algebraic
group Hx̄ is only defined over k̄. The notion of σ-algebraic map allows one to reconcile this
outer action with the algebraic structure of Hx̄, as shown by the following proposition.

Proposition 4.3. Let σ ∈ Gal(k̄/k). Any group automorphism of Hx̄(k̄) that represents
the outer action of σ is induced by a σ-algebraic map Hx̄ → Hx̄.

Proof. Let (ℓ, σ) ∈ Gx̄. The automorphism m 7→ ℓσ(m)ℓ−1 of L(k̄), being the composition
of the σ-algebraic map m 7→ σ(m) with the algebraic map m 7→ ℓmℓ−1, is itself σ-algebraic
(see Remarks 4.2 (ii)–(iii)), i.e. it equals f∗ for a σ-algebraic map f : Lk̄ → Lk̄. As f∗

stabilises Hx̄(k̄) and as Hx̄ is a reduced closed subscheme of Lk̄, the scheme morphism f
stabilises Hx̄. As the resulting scheme morphism g : Hx̄ → Hx̄ is a σ-algebraic map and as
the automorphism g∗ coincides with conjugation by (ℓ, σ), the proposition is proved. �

Corollary 4.4. Let H0
x̄ denote the connected component of the identity in Hx̄. The outer

action of Gal(k̄/k) on Hx̄(k̄) induced by (4.1) stabilises H0
x̄(k̄) and hence induces an outer

action of Gal(k̄/k) on the finite group π0(Hx̄).

Proof. This follows from Proposition 4.3, as any scheme morphism Hx̄ → Hx̄ that preserves
the identity point must stabilise the open subscheme H0

x̄. �

4.1.2. Statement. We now formulate Theorem 4.5, our main application of supersolvable
descent to homogeneous spaces of linear algebraic groups, and discuss its first consequences.

Theorem 4.5. Let X be a homogeneous space of a connected linear algebraic group L over
a number field k. Let x̄ ∈ X(k̄). Let Hx̄ denote the stabiliser of x̄ and N ⊂ Hx̄ be a normal
algebraic subgroup of finite index satisfying the following two assumptions:

(1) the outer action of Gal(k̄/k) on Hx̄(k̄) induced by (4.1) stabilises N(k̄);
(2) the quotient Hx̄(k̄)/N(k̄) is supersolvable in the sense of Definition 2.6, with respect to

the outer action of Gal(k̄/k) on Hx̄(k̄)/N(k̄) induced by (4.1).

Let Y range over the homogeneous spaces of L over k that satisfy the following condition:

(⋆) there exist an L-equivariant map Y → X and a lifting ȳ ∈ Y (k̄) of x̄ whose stabiliser,
as an algebraic subgroup of Lk̄, is equal to N .

If Conjecture 1.1 (resp. the implication Y (kΩ)Brnr(Y ) 6= ∅ ⇒ Y (k) 6= ∅) holds for all

such Y , then Conjecture 1.1 holds for X (resp. then X(kΩ)Brnr(X) 6= ∅ ⇒ X(k) 6= ∅).

Remark 4.6. The weaker statement obtained by allowing Y to range over all homogeneous
spaces of L over k whose geometric stabilisers are isomorphic to N as algebraic groups over k̄
is sufficient for the applications of Theorem 4.5 considered in this article.

When N = H0
x̄, the first hypothesis of Theorem 4.5 is satisfied, by Corollary 4.4. On the

other hand, Conjecture 1.1 holds for homogeneous spaces of L with connected geometric
stabilisers, by a theorem of Borovoi (see [Bor96, Corollary 2.5]). Thus, we deduce:

Corollary 4.7. Let X be a homogeneous space of a connected linear algebraic group L
over a number field k. Let x̄ ∈ X(k̄). Assume that the group of connected components of
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the stabiliser of x̄ is supersolvable in the sense of Definition 2.6, with respect to the outer
action of Gal(k̄/k) given by Corollary 4.4. Then Conjecture 1.1 holds for X.

Corollary 4.7 simultaneously generalises Borovoi’s theorem mentioned above (where
the geometric stabilisers are connected) and [HW20, Théorème B] (where the geometric
stabilisers are finite and supersolvable). In fact, even in the particular case of finite and
supersolvable geometric stabilisers, Corollary 4.7 strictly generalises [HW20, Théorème B],
as it relaxes all hypotheses on the ambient linear group L, assumed in loc. cit. to be semi-
simple and simply connected. What is more, when L is semi-simple and simply connected,
Corollary 4.7 can be used to ensure the validity of Conjecture 1.1 even in cases where the
geometric stabilisers are not supersolvable, as the following example shows.

Example 4.8. Assume that L is semi-simple and simply connected. Then, by a theorem
of Borovoi, Conjecture 1.1 holds for all Y as in Theorem 4.5 if N is abelian (see
[Bor96, Corollary 2.5]). Thus, Theorem 4.5 implies the validity of Conjecture 1.1 for
any homogeneous space of L whose geometric stabilisers are extensions of a supersolvable
finite group by an abelian algebraic subgroup (compatibly with the outer Galois action, as
stated in Theorem 4.5 (1)–(2)).

Combining Theorem 4.5 with the work of Neukirch [Neu79] also yields Conjecture 1.1 for
homogeneous spaces of SLn whose geometric stabilisers can be written, compatibly with
the outer action of Gal(k̄/k), as extensions of a supersolvable finite group by a solvable
finite group whose order is coprime to the number of roots of unity in k.

Non-solvable examples where Theorem 4.5 can be applied will be discussed in §4.1.4.

4.1.3. Proof of Theorem 4.5. Set Ȳ = Lk̄/N . We view Ȳ as an Xk̄-scheme through the
projection

Ȳ = Lk̄/N → Lk̄/Hx̄ = Xk̄.(4.2)

This projection is a torsor under Hx̄/N , so that there is a natural short exact sequence

1 → N(k̄) → Hx̄(k̄)
ϕ
−→ Aut(Ȳ /Xk̄) → 1.(4.3)

Explicitly, the map ϕ sends any ℓ ∈ Hx̄(k̄) to the automorphism of the variety Ȳ over k̄
which on k̄-points, i.e. on the quotient set L(k̄)/N(k̄), is given by mN(k̄) 7→ mℓ−1N(k̄).

For the statement of the next lemma, we recall that N(k̄) is a normal subgroup of the
middle term Gx̄ of (4.1), as a consequence of assumption (1) of Theorem 4.5.

Lemma 4.9. The Xk̄-scheme Ȳ is a finite descent type on X. In addition, the short exact
sequence (2.1) can be identified with the sequence obtained from (4.1) by replacing the first
two terms of (4.1) with their quotients by the normal subgroup N(k̄).

Proof. Let σ ∈ Gal(k̄/k) and ℓ ∈ L(k̄) be such that ℓσ(x̄) = x̄. By assumption (1) of
Theorem 4.5, the automorphism m 7→ ℓσ(m)ℓ−1 of L(k̄) stabilises the subgroup N(k̄). We
deduce that the σ-algebraic map L(k̄) → L(k̄), m 7→ σ(m)ℓ−1 induces a σ-algebraic map
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Ȳ (k̄) → Ȳ (k̄). The latter is the top horizontal arrow of a commutative square

Ȳ (k̄) //

��

Ȳ (k̄)

��

X(k̄) // X(k̄)

(4.4)

whose lower horizontal arrow is the σ-algebraic map m 7→ σ(m) and whose vertical arrows
are given by m 7→ mx̄ (i.e. are induced by (4.2)). As the horizontal arrows are σ-algebraic
and the vertical ones are algebraic, the square (4.4) is induced on closed points by a
commutative square of schemes

Ȳ //

��

Ȳ

��

Xk̄

IdX ×kSpec
(

σ−1

)

// Xk̄

(4.5)

whose horizontal arrows are σ-algebraic maps and both of whose vertical arrows are the
projection (4.2). Hence the top horizontal arrow is an automorphism of the X-scheme Ȳ .

With Gx̄ as in (4.1), let ψ : Gx̄ → Aut(Ȳ /X) denote the map that sends (ℓ, σ) to this
X-scheme automorphism of Ȳ and let ρ : Aut(Ȳ /X) → Aut(Xk̄/X) = Gal(k̄/k) denote
the natural morphism. One readily checks that ψ is a homomorphism and that the exact
sequence (4.1) fits into a commutative diagram

1 // Hx̄(k̄) //

ϕ
��

Gx̄
ψ
��

// Gal(k̄/k) // 1

1 // Aut(Ȳ /Xk̄)
// Aut(Ȳ /X)

ρ
// Gal(k̄/k),

where ϕ comes from (4.3). (The commutativity of the left square follows from the explicit
descriptions of ψ and ϕ; that of the right square follows from Remarks 4.2 (iv) and (i).)
This diagram shows that ρ is surjective, so that Ȳ is indeed a finite descent type on X.
In addition, it follows from this diagram and from the exact sequence (4.3) that the exact
sequence (2.1) can be identified as indicated in the statement of the lemma. �

Lemma 4.10. Let Y → X be a torsor of type Ȳ . There exists a unique action of L on Y
such that the morphism Y → X is L-equivariant. With respect to this action, the variety Y
is a homogeneous space of L, and there exists a lifting ȳ ∈ Y (k̄) of x̄ whose stabiliser, as
an algebraic subgroup of Lk̄, is equal to N .

Proof. This lemma is valid over any field k of characteristic 0. In order to prove it, we may
and will assume that k = k̄. Indeed, by Galois descent, the existence of the action of L on Y
follows from its existence and unicity over k̄; and all other conclusions of the lemma are
of a geometric nature. Let us write X = L/Hx̄ and fix an X-isomorphism Y ≃ Ȳ = L/N .
The existence of an action of L on Y satisfying all of the conclusions of the lemma is now
obvious, and we need only check its unicity. For the latter, the first paragraph of the proof
of [HW20, Proposition 5.1] applies verbatim (and it does not depend on the hypotheses of
semi-simplicity and simple connectedness made in loc. cit.). �
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By Lemma 4.9 and by assumption (2) of Theorem 4.5, theXk̄-scheme Ȳ is a supersolvable
finite descent type on X. Moreover, Lemma 4.10 and the final assumption of Theorem 4.5
ensure that for any torsor Y → X of type Ȳ , the set Y (k) is a dense subset of Y (kΩ)Brnr(Y )

(resp. the implication Y (kΩ)Brnr(Y ) 6= ∅ ⇒ Y (k) 6= ∅ holds). Theorem 3.1 now implies that
the set X(k) is a dense subset of X(kΩ)Brnr(X) (resp. that X(kΩ)Brnr(X) 6= ∅ ⇒ X(k) 6= ∅).
Thus, Theorem 4.5 is proved.

4.1.4. A special case: homogeneous spaces of SLn with finite stabilisers. We now spell out
a useful corollary of Theorem 4.5 in the special case where L = SLn (Corollary 4.11 below).
We shall apply it in §4.1.5 to the inverse Galois problem and to the Grunwald problem.

To prepare for the statement of Corollary 4.11, let us recall that a finite group is said
to be complete if its centre is trivial and all its automorphisms are inner. We shall say
that a finite group N is almost complete if its centre is trivial and the homomorphism
Aut(N) → Out(N) admits a section.

Corollary 4.11. Let G be a finite group equipped with an outer action of Gal(k̄/k). Let X
be a homogeneous space of SLn over a number field k, with geometric stabilisers isomorphic
to G as groups endowed with an outer action of Gal(k̄/k). Let N ⊆ G be a normal subgroup
stable under the outer action of Gal(k̄/k). Assume that the group G/N is supersolvable, in
the sense of Definition 2.6, with respect to the induced outer action of Gal(k̄/k). Then:

(i) If the finite group N is almost complete, then X(kΩ)Brnr(X) 6= ∅ ⇒ X(k) 6= ∅.
(ii) If the finite group N is almost complete and if, for any finite étale subgroup scheme Ñ

of SLn over k such that the groups Ñ(k̄) and N are isomorphic, the weak approximation
property holds for the quotient variety SLn/Ñ , then Conjecture 1.1 holds for X.

(iii) If the finite group N is complete and if, for any embedding N →֒ SLn(k), letting Ñ
denote the constant subgroup scheme of SLn with Ñ(k) = N , the weak approximation
property holds for the quotient variety SLn/Ñ , then Conjecture 1.1 holds for X.

In (ii) of Corollary 4.11, we do not require any compatibility between the Galois action
on Ñ(k̄) and the given outer Galois action on G. One could obtain a slightly more precise
statement by doing so (see Remark 4.6).

Proof of Corollary 4.11. By Theorem 4.5, it is enough to prove that for any homogeneous
space Y of SLn over k whose geometric stabilisers are isomorphic, as abstract groups, to N ,

Conjecture 1.1 holds for Y (resp. the implication Y (kΩ)Brnr(Y ) 6= ∅ ⇒ Y (k) 6= ∅) holds)
if the assumptions of (ii)–(iii) (resp. of (i)) are satisfied. We shall see that Y even satisfies
the weak approximation property (resp. that Y (k) 6= ∅ unconditionally).

Let us fix a point ȳ ∈ Y (k̄) and a group isomorphism Hȳ(k̄) ≃ N , and consider the
resulting exact sequence

1 → N → Gȳ → Gal(k̄/k) → 1,(4.6)

where Gȳ =
{

(ℓ, σ) ∈ SLn(k̄) ⋊ Gal(k̄/k) ; ℓσ(ȳ) = ȳ
}

. We endow SLn(k̄) ⋊ Gal(k̄/k) with

the product of the discrete topology on SLn(k̄) and the Krull topology on Gal(k̄/k), and Gȳ
with the induced topology, so that (4.6) becomes an exact sequence of profinite groups.
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By Lemma 4.12 below and by the hypothesis that N is almost complete, this sequence
admits a continuous homomorphic splitting s : Gal(k̄/k) → Gȳ and we can assume that
the image of s commutes with N ⊂ Gȳ if in addition N is complete. Composing s with the

projection Gȳ → SLn(k̄) yields a continuous cocycle Gal(k̄/k) → SLn(k̄). As the Galois

cohomology set H1(k,SLn) is a singleton (Hilbert’s Theorem 90), there exists b ∈ SLn(k̄)
such that s(σ) = (b−1σ(b), σ) for all σ ∈ Gal(k̄/k). The very definition of Gȳ now shows

that σ(bȳ) = bȳ for all σ ∈ Gal(k̄/k), in other words bȳ ∈ Y (k). This already proves
that Y (k) 6= ∅ and hence takes care of Corollary 4.11 (i). Let us denote by Ñ ⊂ SLn the
stabiliser of the rational point bȳ ∈ Y (k), so that Y = SLn/Ñ . As Ñ(k̄) = bHȳ(k̄)b−1, the

groups Ñ(k̄) and N are isomorphic, and Corollary 4.11 (ii) follows. Finally, the condition
that the image of s commutes with N is equivalent to σ(bhb−1) = bhb−1 for all σ ∈ Gal(k̄/k)
and all h ∈ Hȳ(k̄); therefore this condition implies that Ñ is a constant group scheme over k,
and Corollary 4.11 (iii) is proved. �

Lemma 4.12. Let N be a finite group with trivial centre. Then

(1) N is almost complete if and only if every short exact sequence of profinite groups

1 → N → G → H → 1

splits as a semi-direct product of profinite groups G ∼= N ⋊H;
(2) N is complete if and only if every short exact sequence of profinite groups

1 → N → G → H → 1

splits as a direct product of profinite groups G ∼= N ×H.

Proof. As the centre of N is trivial, the group of inner automorphisms of N can be identified
with N and we have a short exact sequence of finite groups

1 → N → Aut(N) → Out(N) → 1.(4.7)

If (4.7) splits as a semi-direct product, then N is almost complete, by definition. If (4.7)
splits as a direct product, then the outer action of Out(N) on N induced by (4.7) is trivial.
As this outer action coincides with the canonical outer action of Out(N) on N , it follows
that Out(N) is trivial, i.e. N is complete.

Conversely, let us assume that N is almost complete (resp. complete). Any short exact
sequence as in the statement of the lemma canonically fits into a commutative diagram

1 // N // G //

��

H

��

// 1

1 // N // Aut(N) // Out(N) // 1,

where the middle vertical arrow sends g ∈ G to the automorphism z 7→ gzg−1 of N . Thus,
the upper row is obtained by pull-back from the lower row, and the upper row splits as a
semi-direct (resp. direct) product if so does the lower row. �
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A full characterisation of almost complete simple groups is established in [LMM03].
These include for example all the simple alternating groups An for n 6= 6, all the sporadic
simple groups, and all Chevalley groups L(Fp)/Z(L(Fp)) where p ≥ 5 is a prime and L is a
split simple simply connected algebraic group over Fp (see [LMM03] and [Bor70, p. A-14]).
In addition, if G is a finite group all of whose composition factors are almost complete
simple groups, then G itself is almost complete, as can be seen by mimicking the proof
of [LA22, Theorem 2] and exploiting Lemma 4.12 above.

These remarks already provide many examples to which Corollary 4.11 (i) can be applied.
We now illustrate, in Corollary 4.13, cases (ii) and (iii) of Corollary 4.11.

Corollary 4.13. Let G be a finite group equipped with an outer action of Gal(k̄/k). Let
N ⊆ G be a normal subgroup stable under this outer action. Assume that the group G/N
is supersolvable, in the sense of Definition 2.6, with respect to the induced outer action
of Gal(k̄/k). Assume that one of the following two conditions holds:

(1) N is isomorphic to the symmetric group Sm with m 6= 6;
(2) N is isomorphic to the alternating group A5.

Then Conjecture 1.1 holds for any homogeneous space of SLn whose geometric stabilisers
are isomorphic, as groups endowed with an outer action of Gal(k̄/k), to G.

It should be noted that Corollary 4.13 in case (2) with G = N was first established by
Boughattas and Neftin [BN23], who gave in this way the first example of a non-abelian
simple group N such that Conjecture 1.1 holds for any homogeneous space of SLn with
geometric stabilisers isomorphic, as abstract groups, to N . We provide an alternative proof,
based on the special properties of del Pezzo surfaces of degree 5.

Proof of Corollary 4.13. If N = S2, the supersolvability of G/N implies that of G itself,
and the conclusion results from Corollary 4.7. If N = Sm with m /∈ {2, 6}, then N is
a complete group for which the Noether problem has a positive answer. In this case,
Corollary 4.11 (iii) can be applied: the variety SLn/Ñ appearing in its statement is stably
rational and therefore satisfies the weak approximation property.

It only remains to treat the case N = A5, which is an almost complete finite group. We
shall prove that Corollary 4.11 (ii) can be applied, i.e. that for any finite étale subgroup
scheme Ñ of SLn over k such that Ñ(k̄) is isomorphic to A5, the variety SLn/Ñ satisfies the
weak approximation property; in fact, we shall even prove that SLn/Ñ is stably rational.

Let Y denote the split del Pezzo surface of degree 5 over k, i.e. the blow-up of P2
k

along four rational points in general position, and fix group isomorphisms Ñ(k̄) ≃ A5

and Aut(Y ) ≃ S5 (see [Dol12, Theorem 8.5.8]). As Aut(A5) = S5, the natural action
of Gal(k̄/k) on Ñ(k̄) determines a homomorphism χ : Gal(k̄/k) → S5. Letting S5 act on A5

by conjugation, the twist by χ of the constant group scheme over k associated with A5 is Ñ .
Let Y ′ denote the twist of Y by χ. As the action of A5 on Y is S5-equivariant, it gives rise,
upon twisting, to an action of Ñ on Y ′. Let us now consider the diagonal right action of
the group scheme Ñ on SLn ×k Y and the two projections pr1 : (SLn ×k Y

′)/Ñ → SLn/Ñ
and pr2 : (SLn×k Y

′)/Ñ → Y ′/Ñ . As the generic fibre of pr2 is a torsor under the rational
algebraic group SLn, it is itself rational, by Hilbert’s Theorem 90. As the generic fibre of pr1
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is a del Pezzo surface of degree 5, it is also rational, by the work of Enriques, Manin and
Swinnerton-Dyer (see [Enr97, Man66, SD72]). The varieties SLn/Ñ and Y ′/Ñ are therefore
stably birationally equivalent. To conclude the proof, let us check that the surface Y ′/Ñ is
rational. Let Z → Y ′/Ñ denote its minimal resolution of singularities. As Y ′ is a del Pezzo
surface of degree 5, the above-cited work of Enriques, Manin and Swinnerton-Dyer implies
that Y ′ is rational and hence that Z(k) 6= ∅. On the other hand, according to Trepalin
[Tre18, end of proof of Lemma 4.5], the smooth projective surface Zk̄ is isomorphic to the

Hirzebruch surface P(OP1 ⊕ OP1(3)) over k̄. In particular K2
Z = 8 and Z is geometrically

minimal, and hence minimal. All in all Z is a minimal smooth projective geometrically
rational surface with K2

Z ≥ 5 and Z(k) 6= ∅; by the work of Iskovskikh and Manin, it
follows that it is rational (see [BW19, Proposition 4.16]), as desired. �

4.1.5. Inverse Galois problem. In the situation of Theorem 4.5, let us assume that X is the
quotient of L by a finite subgroup Γ ⊆ L(k) viewed as a constant group scheme over k, and
let x̄ be the image of 1 ∈ L(k), so that Hx̄ = Γ. Then any normal subgroup N ⊆ Γ is stable
under the (trivial) outer action of Gal(k̄/k), and the supersolvability condition on Γ/N that
appears in the statement of Theorem 4.5 reduces to the usual notion of supersolvability
for abstract groups. When in addition L = SLn, the conclusion of Theorem 4.5 implies a
positive answer to the inverse Galois problem for Γ (see [Har07, §4, Proposition 1]) and,
by a theorem of Lucchini Arteche, to the Grunwald problem outside of the finite places
of k dividing the order of Γ (see [LA19, §6]). We shall refer to this version of the Grunwald
problem as the tame Grunwald problem, following [DLAN17, §1.2]. Thus, we obtain:

Corollary 4.14. Let Γ be a finite group and N ⊂ Γ be a normal subgroup such that Γ/N is

supersolvable. Let k be a number field. Assume that the set Y (k) is dense in Y (kΩ)Brnr(Y )

for any n ≥ 1 and any homogeneous space Y of SLn over k whose geometric stabilisers
are isomorphic, as groups, to N . Then Γ is a Galois group over k and the tame Grunwald
problem has a positive solution for Γ over k.

The second assertion of the corollary means that if S is a finite set of places of k none
of which divides the order of Γ and if, for each v ∈ S, a Galois extension Kv/kv whose
Galois group can be embedded into Γ is given, then there exists a Galois extension K/k
with Galois group Γ such that for each v ∈ S, the completion of K at a place dividing v is
isomorphic, as a field extension of kv, to Kv .

When the subgroup N is assumed to be trivial, the statement of Corollary 4.14 recovers
the positive answer to the tame Grunwald problem for supersolvable finite groups obtained
in [HW20, Corollaire au théorème B]. Indeed, in this case, Hilbert’s Theorem 90 guarantees
that Y ≃ SLn, so that Y is rational over k and satisfies the weak approximation property.

Combining Corollary 4.13 for G = N = A5 (due to Boughattas and Neftin [BN23])
with Corollary 4.14 yields the following case of the tame Grunwald problem, which to our
knowledge is new:

Corollary 4.15. Let Γ = A5 ⋊G be a semi-direct product of A5 with a finite supersolvable
group G. Then Γ is a Galois group over k and the tame Grunwald problem has a positive
solution for Γ over k.
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A more precise understanding of the unramified Brauer group of SLn/Γ leads, for some
groups Γ, to a positive answer to the Grunwald problem with a smaller exceptional set of
bad primes than in the conclusion of Corollary 4.14 (see [HW20, 4th page]). If one does
not exclude any prime, however, the Grunwald problem can have a negative answer under
the assumptions of Corollary 4.14, as is well known (see [Wan48]).

4.2. Norms from supersolvable extensions. The following refinement of the inverse
Galois problem was formulated by Frei, Loughran and Newton [FLN22]: given a number
field k, a finite group G and a finitely generated subgroup A ⊂ k∗, does there exist a Galois
extension K/k such that Gal(K/k) ≃ G and A ⊂ NK/k(K

∗)? We provide a positive answer
when G is supersolvable.

Theorem 4.16. Let k be a number field and A ⊂ k∗ be a finitely generated subgroup.
Let G be a supersolvable finite group. There exists a Galois extension K/k with Galois
group isomorphic to G such that every element of A is a norm from K. Moreover, given
a finite set of places S of k, one can require that the places of S split in K.

Proof. Let us fix an embedding G →֒ SLn(k) for some n ≥ 1 and a finite system of
generators α1, . . . , αm of A. As in [FLN22, §A.1], we let Tα ⊂

∏

g∈G Gm, for α ∈ k∗, denote

the subvariety, over k, whose k̄-points are the maps t : G → k̄∗ such that
∏

g∈G t(g) = α.

Let us set Y = SLn ×Tα1 × · · · ×Tαm and L = SLn × T 1 × · · · ×T 1 (with m copies of T 1).
Let G act on the right on Tα (for any α) by (t ·g)(g′) = t(gg′). Let G act on the right on Y
and on L by the diagonal actions coming from the action just defined on the Tα, from the
right multiplication action on the copy of SLn appearing in Y , and from the trivial action
on the copy of SLn appearing in L.

Set X = Y/G. The projection π : Y → X is a right torsor under G since the action of G
on SLn by right multiplication is free. We view it as a left torsor by setting g · y = y · g−1.

Applying Corollary 3.3 as in Example 3.4 shows thatX(k) is a dense subset of X(kΩ)Brnr(X).
It follows that Ekedahl’s version of Hilbert’s irreducibility theorem, in the form spelled out
in [Har07, Lemme 1], can be applied to π. Let us fix y0 ∈ Y (k). Recall that there exists a
finite subset S0 ⊂ Ω such that any (xv)v∈Ω ∈ X(kΩ) with xv = π(y0) for all v ∈ S0 belongs

to X(kΩ)Brnr(X) (see [Wit18, Remarks 2.4 (i)–(ii)]). Let us fix such an S0, and an S as in
the statement of Theorem 4.16. By [Har07, Lemme 1], there exists x ∈ X(k) such that the
scheme π−1(x) is irreducible, with x arbitrarily close to π(y0) ∈ X(kv) for all v ∈ S.

The function field K of π−1(x) is then a Galois extension of k with group G, and the
restriction to π−1(x) of the invertible function (s, t1, . . . , tm) 7→ ti(1) on Y , where 1 denotes
the identity element of G, is an element of K∗ with norm αi. Moreover, as π is étale, the
implicit function theorem guarantees that if x is sufficiently close to π(y0) in kv for v ∈ S0,
then π−1(x) possesses a kv-point (close to y0), so that v splits in K. �

Remarks 4.17. (i) In the particular case where the group G is abelian, the existence of
Galois extensions K/k such that Gal(K/k) ≃ G and A ⊂ NK/k(K

∗) was first established

by Frei, Loughran and Newton [FLN22, Theorem 1.1], who gave a quantitative estimate
for the number of such field extensions with bounded conductor. In op. cit., Appendix, we
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offered an alternative algebro-geometric proof of their result. A third proof was later given
by Frei and Richard [FR22].

(ii) In the particular case where the group G is abelian, the proof of [FLN22, Appendix]
is simpler than the one obtained by specialising the above proof of Theorem 4.16. Indeed,
the latter chooses a filtration of G with cyclic quotients and proceeds by induction along
this filtration, while the former consists in one step only.

(iii) When formulating Theorem 4.16, one might consider local conditions at a finite set
of places S more general than the condition that these places split in K; in the abelian
case, this was done in [FLN22, Corollary 4.12], [FR22, §2.4]. Even when a Galois extension
of k with group G that satisfies the given local conditions is assumed to exist, arbitrary
local conditions cannot always be satisfied when the group G is a non-abelian finite
supersolvable group—see [FLN22, Proposition A.9] for an example. According to the proof
of Theorem 4.16, this phenomenon is fully controlled by the Brauer–Manin obstruction to
weak approximation on the variety X that appears in this proof. In particular, there always
exists a finite subset T ⊂ Ω such that arbitrary local conditions can be imposed at the
places of S as soon as S ∩ T = ∅. To identify T explicitly, however, it would be necessary
to analyse further the group Brnr(X).

The ideas underlying the proof of Theorem 4.16 can be applied to other similar problems.
To conclude the article, we explain a slightly more general framework and give one example.

We fix a number field k, a finite group G and a subgroup H ⊆ G such that the only
normal subgroup of G contained in H is the trivial subgroup, and we let G act on the
polynomial ring k

[

(xγ)γ∈G/H

]

by permuting the variables via g(xγ) = xgγ . We also fix a

non-constant invariant polynomial θ ∈ k
[

(xγ)γ∈G/H

]G
.

Let us consider a k-algebra K̃ endowed with an action of G that turns the morphism
Spec(K̃) → Spec(k) into a G-torsor. Let K = K̃H . When K̃ is a field, this amounts
to specifying a field extension K/k, with Galois closure K̃/k, together with a group
isomorphism p : G ∼−→ Gal(K̃/k) such that p(H) = Gal(K̃/K).

For z ∈ K and γ ∈ G/H, if γ̃ ∈ G stands for a lift of γ, the element γ̃(z) ∈ K̃ does not
depend on the choice of γ̃. We denote it by γ(z). For z ∈ K, substituting γ(z) for xγ in θ

yields an element of K̃ that is invariant under G and hence belongs to k. We denote it by
Nθ(z). This defines a map Nθ : K → k. For example, if θ =

∏

γ xγ (resp. θ =
∑

γ xγ), we
recover the norm (resp. trace) map from K to k.

Given a finite subset A ⊂ k, one can now ask: do there exist a field extension K/k,
a Galois closure K̃/k and an isomorphism p as above, such that A ⊂ Nθ(K)? When
H is trivial and θ =

∏

γ xγ , this is exactly the question considered in [FLN22, FR22]
and in Theorem 4.16. The proof of Theorem 4.16 extends to a positive answer to this
more general question under some assumptions on G, H and θ, which we present in
Theorem 4.18 below. To prepare for its statement, let us introduce, for α ∈ k, the affine
variety V α = Spec

(

k
[

(xγ)γ∈G/H

]

/(θ−α)
)

. As θ is invariant under G, the group G naturally
acts on V α. We set V =

∏

α∈A V
α and equip this product with the diagonal action of G.
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Theorem 4.18. Let k be a number field. Let G be a supersolvable finite group and H ⊆ G
be a subgroup such that the only normal subgroup of G contained in H is the trivial subgroup.

Let θ ∈ k
[

(xγ)γ∈G/H

]G
be a non-constant invariant polynomial. Let A ⊂ k be a finite

subset. Let V be the variety associated with H, G, θ, A as above. Let Spec(K̃0) → Spec(k)
be a G-torsor. Assume that the following conditions are satisfied:

(1) letting K0 = K̃H
0 , the inclusion A ⊂ Nθ(K0) holds;

(2) the variety V is smooth and rationally connected;
(3) for every [σ] ∈ H1(k,G), Conjecture 1.1 holds for the twisted variety V σ.

Then there exist a field extension K/k, with Galois closure K̃/k, and a group isomorphism
p : G ∼−→ Gal(K̃/k), such that p(H) = Gal(K̃/K) and A ⊂ Nθ(K). If moreover a finite
set of places S of k is given, one can require that for all v ∈ S, the kv-algebras K̃⊗k kv and
K̃0 ⊗k kv are G-equivariantly isomorphic (so that the kv-algebras K ⊗k kv and K0 ⊗k kv
are isomorphic).

Remarks 4.19. (i) If [σ0] ∈ H1(k,G) denotes the class of the torsor Spec(K̃0) → Spec(k),
the twisted variety V σ0 admits a rational point if and only if A ⊂ Nθ(K0). To explain why,
we first note that the twist of the affine space Spec

(

k
[

(xγ)γ∈G/H

])

by σ0 can be identified

with the Weil restriction RK0/kA
1
K0

. As the regular function θ on this affine space is
invariant under G, it induces a regular function on its twist. We view it as a morphism
Nθ : RK0/kA

1
K0

→ A1
k. For α ∈ A, the twist of V α by σ0 is then the fibre N−1

θ (α). The

latter possesses a rational point if and only if α ∈ Nθ(K0); hence the claim.
(ii) The group G acts faithfully, and therefore generically freely, on V . Indeed G acts

faithfully on G/H by our assumption on H, hence it also acts faithfully on k
[

(xγ)γ∈G/H

]

,

while θ − α is not a scalar multiple of xγ1
− xγ2

for any γ1, γ2 ∈ G/H.

(iii) Let V ′ be the largest open subset of V on which G acts freely. If (V ′/G)(k) 6= ∅, then
a G-torsor Spec(K̃0) → Spec(k) satisfying assumption (1) of Theorem 4.18 exists. Indeed,
for c ∈ (V ′/G)(k), twisting the G-torsor V ′ → V ′/G by its fibre Spec(K̃0) → Spec(k)
above c yields a G-torsor (V ′)σ0 → V ′/G whose total space admits rational points (namely,
rational points above c). Assumption (1) then holds by Remark 4.19 (i).

Proof of Theorem 4.18. We adapt the proof of Theorem 4.16 as follows. Fix an embedding
G →֒ SLn(k) for some n ≥ 1. Set Y = SLn × V . Let G act by right multiplication on SLn,
by the given action on V , and diagonally on Y . Set X = Y/G. Let π̃ : Y → X and
π : Y/H → X denote the quotient maps.

Lemma 4.20. There exists x0 ∈ X(k) such that π̃−1(x0) and Spec(K̃0) are G-equivariantly
isomorphic over k.

Proof. Let us consider the cartesian square

Y
π̃

//

pr
1

��

X

pr1/G
��

SLn
ρ̃

// SLn/G.
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As the set H1(k,SLn) is a singleton (Hilbert’s Theorem 90), there exists b ∈ (SLn/G)(k)
such that ρ̃−1(b) is G-equivariantly isomorphic to Spec(K̃0) (apply [Ser94, Chapitre I, §5.4,
Corollaire 1] to the inclusion G →֒ SLn(k̄)). The fibre (pr1/G)−1(b) is then isomorphic to
the twist of V by the torsor Spec(K̃0) → Spec(k). By Remark 4.19 (i), we deduce from
this and from our assumption (1) that (pr1/G)−1(b) possesses a rational point, say x0. As
π̃−1(x0) = ρ̃−1(b), the lemma is proved. �

Assumptions (2) and (3) allow us to deduce from Corollary 3.3 that X(k) is a dense

subset of X(kΩ)Brnr(X). Therefore there exists x ∈ X(k) such that the scheme π̃−1(x) is
irreducible, with x arbitrarily close to x0 ∈ X(kv) for all v ∈ S (see [Har07, Lemme 1]).
Let K̃ and K denote the function fields of π̃−1(x) and π−1(x), respectively. The field
extension K̃/k is Galois with group G, and we have Gal(K̃/K) = H by construction. By
choosing x sufficiently close to x0 for v ∈ S, we can ensure that for all v ∈ S, the kv-algebras
K̃⊗k kv and K̃0 ⊗k kv are G-equivariantly isomorphic (see [HS02, Lemma 4.6]). It remains
to check that A ⊂ Nθ(K0). For α ∈ A, composing the projection map Y → V α with the
regular function on V α given by xH (where H denotes the canonical point of G/H) yields
a regular function on Y that is invariant under H, hence descends to a regular function
on Y/H. Its restriction z ∈ K to π−1(x) satisfies Nθ(z) = α, as desired. �

Example 4.21. When θ =
∏

γ xγ and A ⊂ k∗, the varieties V α are trivial torsors under
trivial tori, so that V is rational over k and assumptions (1) and (2) of Theorem 4.18 both
hold, in view of Remark 4.19 (i), if one takes for Spec(K̃0) → Spec(k) the trivial torsor.
Assumption (3) holds as well, as the twisted varieties (V α)σ are torsors under tori (see
Example 3.4). When in addition H is the trivial subgroup, this recovers Theorem 4.16.

Example 4.22. Let k be a number field and α ∈ k∗. Then there exists a cubic extension
K/k such that the equation α = TrK/k(β

2) has a solution β ∈ K.
To see this, one applies Theorem 4.18 to the symmetric group G = S3, to the subgroup H

generated by a transposition, to θ =
∑

γ x
2
γ and to A = {α}. Let us check that its

hypotheses hold. To this end, we identify G/H with {1, 2, 3}, so that V α is the smooth
affine quadric surface defined by the equation x2

1 + x2
2 + x2

3 = α. The twisted varieties
(V α)σ ⊂ (A3

k)
σ are also smooth affine quadric surfaces, since (A3

k)
σ ≃ A3

k (Hilbert’s
Theorem 90). Smooth quadric surfaces are rationally connected and satisfy the weak
approximation property, hence assumptions (2) and (3) of Theorem 4.18 are satisfied. To
verify the existence of a torsor Spec(K̃0) → Spec(k) satisfying (1), we consider the point
(x1, x2, x3) = (0,

√

α/2,−
√

α/2). In the notation of Remark 4.19 (iii), this point belongs
to V ′(k̄) ⊂ V α(k̄) since its coordinates are pairwise distinct. As its orbit under Gal(k̄/k) is
contained in its orbit under G, we have (V ′/G)(k) 6= ∅: Remark 4.19 (iii) can be applied.

Remark 4.23. We note that the cubic extensions constructed in Example 4.22 are
non-cyclic. A cyclic cubic extension K/k such that the equation α = TrK/k(β

2) has
a solution β ∈ K need not exist: for instance, it cannot exist if α is not totally
positive. This is a situation where Theorem 4.18 does not apply because there is no
torsor Spec(K̃0) → Spec(k) satisfying its assumption (1) (taking G = Z/3Z and letting H
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be trivial). Similarly, even in the non-cyclic case, it is not always possible to ensure that
the places of a finite set S ⊂ Ω split completely in K: for instance, this cannot be achieved
if S contains a real place at which α is negative. Here (V ′/G)(k) 6= ∅, as shown in
Example 4.22, but V (k) = ∅. These two observations exhibit a marked contrast with the
situation considered in Theorem 4.16 and in Example 4.21, where V (k) 6= ∅ automatically.
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