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Abstract. This note gives an explicit example of transcendental Brauer-Manin obstruction to weak
approximation. It has two features which the only previously known example of such obstruction did
not have: the class in the Brauer group which is responsible for the obstruction is divisible, and the
underlying algebraic variety is an elliptic surface.

1. Introduction

Let Br(X) denote the cohomological Brauer group H2
ét(X,Gm) of a scheme X . Let k be a number

field and k be an algebraically closed extension of k. A class in the Brauer group of a projective smooth
variety X over k is said to be algebraic if it belongs to the kernel of the restriction map Br(X)→ Br(X

k
),

transcendental otherwise; this property does not depend on the choice of k. For any prime number ℓ, the
ℓ-primary part of the Brauer group over C fits into an exact sequence

0 (Qℓ/Zℓ)
b2−ρ Br(XC){ℓ} H3(X(C),Z){ℓ} 0,

where b2 and ρ respectively denote the second Betti number and the Picard number of XC, and M{ℓ}
denotes the ℓ-primary part of M . Although this sequence does prove the non-triviality of Br(XC) in
many cases, e.g. when X is a K3 surface, transcendental classes are in general difficult to exhibit.

Almost all known instances of Brauer-Manin obstruction are thus explained by algebraic classes, the
only exceptions being Harari’s examples [4] with conic bundles over P2

Q. Besides, in the particular case of
pencils of curves of genus 1, results on the Hasse principle have been obtained only under the assumption
that the 2-primary part of the Brauer group be “vertical”, and therefore algebraic (see [3], §4.7). The
rôle of transcendental elements in the Brauer-Manin obstruction thus seems worthy of investigation. In
this note we present an example of transcendental Brauer-Manin obstruction to weak approximation for
an elliptic K3 surface over Q, where “elliptic” means that it possesses a fibration in curves of genus 1,
with a section, over P1

Q. It should be noted that the class of order 2 which we will exhibit in Br(XC)

enjoys the property of being divisible (because H3(X(C),Z) = 0 for a K3 surface), which was not the
case in Harari’s examples.

2. Preliminaries: 2-descent and the Brauer group of an elliptic curve

The subscript in Hiét will be dropped, as we will only use étale cohomology. If G is an abelian group
(resp. group scheme), nG will denote the n-torsion subgroup ofG. Let k be a perfect field of characteristic
different from 2. The Hilbert symbol of a pair of elements f, g ∈ k⋆ will be denoted (f, g); it is the class of
a quaternion algebra in 2Br(k). When X is a geometrically integral variety over k and L is an extension
of k, L(X) will denote the function field of XL. The canonical morphism Br(X)→ Br(k(X)) is injective
if in addition X is regular; this fact will be used without further mention. Let E be an elliptic curve
over k whose 2-torsion points are rational. Fix an isomorphism of k-group schemes (Z/2Z)2 ∼−→ 2E. The
kernel of the evaluation map at the zero section Br(E)→ Br(k) will be denoted Br0(E).

Lemma 2.1. The group Br0(E) is canonically isomorphic to H1(k,E).
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Proof. Let us write the Leray spectral sequence for the structure morphism f : E → Spec(k) and the
étale sheaf Gm. Since f⋆Gm = Gm, R1f⋆Gm = E ⊕Z and Rqf⋆Gm = 0 for q > 1 by Tsen’s theorem, we
get an exact sequence

Br(k) Br(E) H1(k,E) H3(k,Gm) H3(E,Gm).

The zero section induces retractions of Br(k) → Br(E) and of H3(k,Gm) → H3(E,Gm), hence the
lemma. �

The Kummer sequence

0 2E E
z 7→2z

E 0,

together with the previous lemma and the chosen isomorphism (Z/2Z)2 ∼−→ 2E, yields the exact sequence

(1) 0 E(k)/2E(k)
δ

(k⋆/k⋆2)2 γ

2Br0(E) 0.

We shall need explicit descriptions of the maps δ and γ. First choose distinct p, q ∈ k⋆ such that the
Weierstrass equation

(2) y2 = x(x− p)(x − q)

defines E and the points P = (p, 0) and Q = (q, 0) are respectively sent to (1, 0) and (0, 1) via 2E
∼−→

(Z/2Z)2. It is well-known (see e.g. [9], p. 281) that δ(M) = (x(M) − q, x(M) − p) for M ∈ E(k) if
M 6∈ 2E(k), that δ(P ) = (p− q, p(p− q)) and that δ(Q) = (q(q − p), q − p).

Proposition 2.2. Let f, g ∈ k⋆. The classes of the quaternion algebras (x−p, f) and (x−q, g) ∈ Br(k(E))
actually belong to Br0(E), and γ(f, g) = (x− p, f) + (x− q, g).

Proof. By symmetry, it is enough to prove that γ(f, 1) = (x − p, f) in Br(k(E)). Choose a separable

closure k of k and let Gk be its Galois group over k. Likewise, choose a separable closure k(E) of k(E) and
let Gk(E) be its Galois group over k(E). It follows from the Hochschild-Serre spectral sequence, Tsen’s

theorem and Hilbert’s theorem 90 that the inflation map H2(k, k(E)⋆) → Br(k(E)) is an isomorphism.

Let ρ : H1(k,E) → H2(k, k(E)⋆/k
⋆
) denote the composition of the canonical isomorphism H1(k,E)

∼−→
H1(k,Pic(E

k
)) and the boundary of the exact sequence

0 k(E)⋆/k
⋆ Div(E

k
) Pic(E

k
) 0.

As shown in the annexe of [2], the diagram

Br(k) Br(E)
θ

⋂

H1(k,E)

−ρ
Br(k(E))

≀

Br(k) H2(k, k(E)⋆) H2(k, k(E)⋆/k
⋆
)

commutes, where θ denotes the map which stems from the Leray spectral sequence (see lemma 2.1). This

enables us to carry out cocycle calculations for determining the image of γ(f, 1) in H2(k, k(E)⋆/k
⋆
). We

shall use the standard cochain complexes. Let χf : Gk → Z be the map with image in {0, 1} whose
composition with the projection Z → Z/2Z is the quadratic character associated with f ∈ k⋆/k⋆2 =
H1(Gk,Z/2Z). The image of (f, 1) in H1(k,E) is represented by the 1-cocycle a : σ 7→ χf (σ)P . If
M ∈ E(k), let [M ] denote the corresponding divisor on E

k
. The 1-cochain with values in Div(E

k
) defined

by σ 7→ χf (σ)([P ] − [0]) is a lifting of a. Its differential (σ, τ) 7→ (χf (σ) + χf (τ) − χf (στ))([P ] − [0]) is,

as expected, a 2-cocycle with values in k(E)⋆/k
⋆
, which we may rewrite as (σ, τ) 7→ (x − p)χf (σ)χf (τ); it
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represents the image of γ(f, 1) in H2(k, k(E)⋆/k
⋆
). Since x− p is invariant under Gk, the same formula

defines a 2-cocycle on Gk with values in k(E)⋆. We thus end up with a 2-cocycle

b : Gk(E) ×Gk(E) −→ k(E)
⋆

(σ, τ) 7−→ (x− p)χf (σ)χf (τ)

which represents the image of γ(f, 1) in Br(k(E)), at least modulo Br(k), where χm now denotes the
lifting with values in {0, 1} of the quadratic character on k(E) associated with m ∈ k(E)⋆. (Note
that k is separably closed in k(E), so that Gk identifies with a quotient of Gk(E).) Choose a square

root s of x − p in k(E). Dividing b by the differential of the 1-cochain σ 7→ sχf (σ) gives the 2-cocycle
(σ, τ) 7→ (−1)χx−p(σ)χf (τ), which does represent the image of the cup-product (x−p)∪f by the composite
map H1(k(E),Z/2Z)⊗2 → H2(k(E),Z/2Z)→ Br(k(E)).

We have now proved that γ(f, 1) = (x − p, f) in Br(k(E))/Br(k), but the equality holds in Br(k(E))
since (x− p, f) = (y2/(x− p)3, f) evaluates to 0 at the zero section. �

3. An actual example

The reader is referred to [4] for the definitions of weak approximation, Brauer-Manin obstruction,
residue maps and unramified Brauer group.

Let Ω denote the set of places of Q. Define the polynomials p, q ∈ Q[t] by p(t) = 3(t− 1)3(t+ 3) and
q(t) = p(−t). It will be useful to notice that p(t) − q(t) = 48t. Let E be the elliptic curve over Q(t)
defined by (2). Denote by E its minimal proper regular model over P1

Q (see [8]); it is a smooth surface

over Q endowed with a proper flat morphism f : E → P1
Q whose generic fibre is isomorphic to E. A

geometric fibre of f is either smooth or is a union of rational curves whose intersection numbers may be
computed with Tate’s algorithm [10]. One finds the following reduction types, in Kodaira’s notation [5]:
I2 above t = 0, t = 3 and t = −3; I6 above t = 1, t = −1 and t =∞; the other fibres are smooth. Recall
that a fibre of type In has n irreducible components (Ci)16i6n, with (Ci.Ci+1) = 1, (C1.Cn) = 1 and
(Ci.Cj) = 0 if n− 1 > |j − i| > 1. Put

A = γ(6t(t+ 1), 6t(t− 1)) = (x− p, 6t(t+ 1)) + (x− q, 6t(t− 1)) ∈ Br(E).

Proposition 3.1. The class A ∈ Br(E) belongs to the subgroup Br(E ).

Proof. Let v be a discrete rank 1 valuation on Q(E ) whose restriction to Q is trivial, and κ be its
residue field. We shall prove that A has trivial residue at v. Let us choose a uniformiser π of v and
put z̃ = zπ−v(z) for z ∈ Q(E )⋆. It will be convenient to denote by V : Q(E )⋆ → Z × κ⋆ the group
homomorphism z 7→ (v(z), [z̃]), where [u] denotes the class in κ of u ∈ Q(E ) if v(u) = 0. For f, g ∈ Q(E )⋆,
the residue of the quaternion algebra (f, g) at v is given by the tame symbol formula

∂v(f, g) = (−1)v(f)v(g)

[

fv(g)

gv(f)

]

= (−1)v(f)v(g)
[

f̃
]v(g) [

g̃
]v(f) ∈ κ⋆/κ⋆2.

Note that it only depends on V (f) and V (g). Furthermore, if V (f) is a double, i.e. if v(f) is even and f̃
is a square modulo π, then ∂v(f, g) = 1. These remarks will be used implicitly throughout the proof.

Lemma 3.2. The class (−p, 6t(t+ 1)) + (−q, 6t(t− 1)) ∈ Br(Q(t)) is unramified over P1
Q.

Proof. The residue at a closed point of P1
Q other than t = α for α ∈ {−3,−1, 0, 1, 3,∞} is obviously

trivial. It is straightforward to check that the remaining residues are also trivial. �

Let us now turn to showing that ∂v(A) = 1. As A is invariant under t 7→ −t, we may assume
v(p) 6 v(q). If v(x) < v(p), then V (x− p) = V (x− q) = V (x), from which we deduce thanks to (2) that
V (x− p) and V (x− q) are doubles. If v(x) > v(q), then V (x− p) = V (−p) and V (x− q) = V (−q), hence
the result by lemma 3.2. From now on, we may and will therefore assume v(p) 6 v(x) 6 v(q).

To begin with, suppose v(p) < v(q). In this case, either v(t − 3) > 0 or v(t + 1) > 0. If v(x) = v(q),
then V (x− p) = V (−p), hence ∂v(A) = ∂v(−q(x− q), 6t(t− 1)) by lemma 3.2; but with a look at (2), one
finds that both v(−q(x− q)) and v(6t(t−1)) are even. Suppose now v(x) < v(q). It follows from (2) that
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V (x− p) is a double, hence ∂v(A) = ∂v(x− q, 6t(t− 1)) = ∂v(x, 6t(t− 1)). If v(x) is even or if [6t(t− 1)]
is a square in κ, which happens if v(t − 3) > 0, we get ∂v(A) = 1. If on the other hand v(t + 1) > 0 and
v(x) is odd, then [6t(t− 1)] = 12, which (2) shows to be a square in κ.

We are now left with the case v(p) = v(q) = v(x). If v(t) = 0, then v(t − 3) = v(t − 1) = v(t + 1) =
v(t + 3) = 0, so v(6t(t + 1)) = v(6t(t − 1)) = 0 and it suffices to prove that v(x − p) and v(x − q)
are even, which follows from (2) and the equality v(p) = v(x) = v(q) = v(p − q) = 0. If v(t) < 0, then
V (6t(t+1)) = V (6t(t−1)), so that ∂v(A) = ∂v(x, 6t(t+1)), which is trivial since both v(x) = v(p) = 4v(t)
and v(6t(t + 1)) are even. Suppose finally that v(t) > 0. If v(x − p) < v(t), then V (x − p) = V (x − q)
since v(p− q) = v(t), and ∂v(A) = ∂v(x− p, (t+ 1)(t− 1)) = ∂v(x− p,−1); if v(x− p) = 0, the residue is
obviously trivial, and if v(x − p) > 0, which means that [x̃] = [p̃] = −9, (2) shows that −1 is a square in
κ. We therefore assume v(x − p) > v(t), which still leads to [x̃] = [p̃] = −9. As v(p− q) = v(t), at least
one of v(x − p) and v(x − q) is equal to v(t). In either case, (2) implies that v(x − p) + v(t) is even, so
(−9)v(t)(−1)v(x−p) is a square, hence ∂v(A) = ∂v(x, 6t(t− 1)) + ∂v(x− p, (t+ 1)(t− 1)) is trivial. �

We shall now prove the following.

Theorem 3.3. The class A ∈ Br(E ) is transcendental and yields a Brauer-Manin obstruction to weak

approximation on the projective smooth surface E over Q.

Proof. Let us first deal with the second part of the assertion. A glance at equation (2) shows that E has
a Q2-point M2 with coordinates x = 1 and t = 2. (Indeed, this equation defines an affine surface over
Q endowed with a morphism to P1

Q whose smooth locus identifies with an open subset of E .) Using the

formula given in [7], Ch. XIV, §4, one easily checks that A(M2) is non-trivial. Now choose N ∈ E (Q) in
the image of the zero section and let Mv ∈ E (Qv) be equal to N for any v ∈ Ω \ {2}. This defines an
adelic point (Mv)v∈Ω. The class A(N) ∈ Br(Q) is trivial since A ∈ Br0(E); consequently, the evaluation
of A at (Mv)v∈Ω is non-trivial, which is an obstruction to weak approximation.

It remains to be shown thatA is transcendental. The exact sequence (1) reduces this to the computation
of E(C(t))/2E(C(t)).

Lemma 3.4. The surface E is a K3 surface.

Proof. The topological Euler-Poincaré characteristic e(EC) of EC can be expressed in terms of that of
the fibres and that of the base ([1], p. 97, prop. 11.4), which leads to e(EC) = 24. Let χ(OE ) denote
the Euler-Poincaré characteristic of the coherent sheaf OE . The canonical bundle KE of E is simply
f⋆O(χ(OE ) − 2) (see [1], p. 162, cor. 12.3); in particular it has self-intersection 0, hence χ(OE ) = 2
by Noether’s formula. We have now proved the triviality of KE . That H1(E ,OE ) = 0 follows from
χ(OE ) = 2 and Serre duality. �

Lemma 3.5. The elliptic curve E has Mordell-Weil rank 0 over C(t).

Proof. Let ρ(EC) be the Picard number of EC and R be the subgroup of the Néron-Severi group NS(EC)
spanned by the zero section and the irreducible components of the fibres. As follows from the output
of Tate’s algorithm, R has rank 20. On the other hand, ρ(EC) 6 20 since E is a K3 surface. The
Shioda-Tate formula

ρ(EC) = rank(E(C(t))) + rank(R)

thus yields the result. �

This lemma shows that the F2-vector space E(C(t))/2E(C(t)) has dimension 2. Now the classes
δ(P ) = (t, t(t − 1)(t+ 3)) and δ(Q) = (t(t + 1)(t− 3), t) are independent over F2, hence span the whole
kernel of γ. On the other hand (t(t + 1), t(t − 1)) is evidently not a combination of δ(P ) and δ(Q), so
that A has non-zero image in Br(C(E )) and is therefore transcendental. �

Remark 3.6. It is actually true that A(M) = 0 in Br(Q) for all M ∈ E (Q). This is a consequence of
the global reciprocity law and the fact that A vanishes on E (Qv) for all v ∈ Ω\{2}, which can be checked
by a tedious computation.



TRANSCENDENTAL BRAUER-MANIN OBSTRUCTION ON A PENCIL OF ELLIPTIC CURVES 5

Remark 3.7. It is possible to determine 2Br(E ) completely if one is willing to compute explicit equations
for E . This involves blowing up the singular surface given by equation (2) a sufficient number of times.
Alternatively, one may observe that all fibres have type In (in other words, E → P1

Q is semi-stable),

and then use the equations given by Néron in this case in [6], §III. Either way one finds that 2Br(E ) is
spanned by A modulo 2Br(Q) after writing out all possible residues of a general class γ(f, g). On the
other hand, the 2-torsion subgroup of the Brauer group of a complex K3 surface with Picard number
20 has rank 2 over F2, so 2Br(EC) is strictly larger than 2Br(E )/2Br(Q). It turns out that 2Br(EC) is
spanned by A and the class of the quaternion algebra (x, t), which unexpectedly belongs to Br(Q(E ))

and only gets unramified after extension of scalars to Q(
√
−1,
√

3).

Remark 3.8. In the semi-stable case, a computer program was written to carry out the calculations
alluded to in the previous paragraph, as they often get quite lengthy. Its source code is available on
request.

Acknowledgements

The author is most grateful to J-L. Colliot-Thélène for sharing unpublished notes on the topic (which
contain in particular the statement of proposition 2.2), and would also like to thank him for his encour-
agements and many helpful conversations during the course of this research.

References

1. W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete
(3), vol. 4, Springer-Verlag, Berlin, 1984.

2. J-L. Colliot-Thélène and J-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2,
175–229.

3. J-L. Colliot-Thélène, A. N. Skorobogatov, and Sir Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus

one whose Jacobians have rational 2-division points, Invent. math. 134 (1998), no. 3, 579–650.
4. D. Harari, Obstructions de Manin transcendantes, Number theory (Paris, 1993–1994), London Math. Soc. Lecture Note

Ser., vol. 235, Cambridge Univ. Press, Cambridge, 1996, pp. 75–87.
5. K. Kodaira, On compact analytic surfaces II, Ann. of Math. (2) 77 (1963), 563–626.
6. A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ.

Math. No. 21 (1964).
7. J-P. Serre, Corps locaux, Hermann, Paris, 1968.
8. I. R. Shafarevich, Lectures on minimal models and birational transformations of two dimensional schemes, Notes by

C. P. Ramanujam, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, No. 37, Tata Institute
of Fundamental Research, Bombay, 1966.

9. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New
York, 1992.

10. J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable,
IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975, pp. 33–52, Lecture Notes
in Math., Vol. 476.

UMR 8628, Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France

E-mail address: olivier.wittenberg@ens.fr (or olivier.wittenberg@normalesup.org)


