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Some questions about rational points

Let X be a smooth projective surface over a number field k, and
f : X → P1

k a morphism whose fibers are genus 1 curves.

If f has a section, what can one say about the ranks of the elliptic
curves Xx = f −1(x), x ∈ P1(k)?

In general, can one decide whether X (k) 6= ∅? When does the Hasse
principle hold? Density of X (k) in X for the Zariski topology?
(Assume f has at most two multiple fibers.)
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Some answers (Zariski density)

Theorem (Várilly-Alvarado, 2011)
Let X be the degree 1 del Pezzo surface over Q defined by
w2 = z3 + ax6 + by6 in P(1, 1, 2, 3). Assume Tate–Shafarevich groups of
elliptic curves over Q with j-invariant 0 are finite. If 3ab 6∈ Q?2, then
X (Q) is dense in X.

(X is birationally equivalent to an isotrivial elliptic surface; study variation
of root number)

Theorem (Logan, McKinnon, van Luijk, 2010)
Let a, b, c, d ∈ Q? such that abcd ∈ Q?2. Let X ⊂ P3

Q be defined by
ax4 + by4 + cz4 + dw4 = 0. If X has a rational point outside of the
48 lines and the coordinate hyperplanes, then X (Q) is dense in X.

(Geometric construction using the two pencils of curves of genus 1 on X .)
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Some more answers (existence and Zariski density)
A series of papers

Swinnerton–Dyer (1995),

Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
Heath-Brown (1999),
Bender and Swinnerton-Dyer (2001),
Colliot-Thélène (2001),
Swinnerton-Dyer (2000),
Swinnerton-Dyer (2001),
Skorobogatov and Swinnerton-Dyer (2005),
Wittenberg (2007)

establish the existence and Zariski-density of rational points for X under
various hypotheses on f : X → P1

k , most of them assuming two major
conjectures:

Finiteness of

Tate–Shafarevich groups of elliptic curves;

2-primary (or 3-primary) torsion subgroup of Tate–Shafarevich
groups of elliptic curves;

Schinzel’s hypothesis.
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Schinzel’s hypothesis

Hypothesis (H)
Let f1, . . . , fs ∈ Z[t] be irreducible polynomials with positive leading
coefficients.

Assume no integer > 1 divides
∏s

i=1 fi(m) for all m ∈ Z.
Then {

m ∈ Z; f1(m), . . . , fs(m) are all prime
}

is infinite.

Case s = 1, deg(f1) = 1: Dirichlet’s theorem.
Homogeneous version established for binary cubic forms ax3 + by3
(Heath-Brown, Moroz).
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Sample results obtained by this method

Theorem (Swinnerton-Dyer, 2001)
Assume #X{3} <∞ for elliptic curves over number fields. Let
a0, . . . , a4 ∈ Q∗. Assume the threefold X ⊂ P4

Q defined by

a0x30 + a1x31 + a2x32 + a3x33 + a4x34 = 0

has points everywhere locally. Then it has a rational point.

Theorem (–, 2007)
Assume Schinzel’s hypothesis, and #X{2} <∞. Let k be a number field
and X ⊂ P5

k be a smooth intersection of two quadrics. Assume X has
points everywhere locally. Then X has a rational point.
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Sample results obtained by this method

Theorem (Swinnerton-Dyer, 2000)
Assume Schinzel’s hypothesis, and #X{2} <∞.

Let a0, . . . , a3 ∈ Q∗,
such that a0a1a2a3 ∈ Q?2. Assume a0a1a2a3 6∈ Q?4 and ±aiaj 6∈ Q?2 for
any i 6= j . Then the surface X ⊂ P3

Q defined by

a0x40 + a1x41 + a2x42 + a3x43 = 0

has a rational point if there is no algebraic Brauer–Manin obstruction.
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Main theorem

Setup:

X smooth projective surface over a number field k,
f : X → P1

k morphism whose generic fiber Xη is a genus 1 curve, and
whose singular fibers are reduced,
Eη the Jacobian of Xη (elliptic curve over K = k(t)).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, –)
Assume Eη[2](K ) ' Z/2Z× Z/2Z and Xη is a 2-covering of Eη.
Assume Eη has good or multiplicative reduction at every point of P1

k .
Assume Schinzel’s hypothesis and #X{2} <∞.
Assume Condition (D) holds.
Then X (k) 6= ∅ as soon as there is no algebraic Brauer–Manin obstruction
(and X (k) is dense in X if in addition f has no section).
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Strategy for the proof
Setup: f : X → P1

k proper with reduced fibers, and generic fiber Xη a genus 1 curve over K = k(t),

the Jacobian Eη of Xη has good or multiplicative reduction at every point of P1
k ,

Eη [2](K) = Z/2Z× Z/2Z and Xη is a 2-covering of Eη .

Strategy to find rational points on X :

1 Find x ∈ P1(k) such that Xx = f −1(x) is a smooth genus 1 curve
with points everywhere locally. Thus Xx defines a class [Xx ] in

X(k,Ex ) = Ker
(
H1(k,Ex )→

∏
v∈Ω

H1(kv ,Ex )
)

2 By “performing a 2-descent on Ex while letting x vary”, find an
x ∈ P1(k) such that in addition X(k,Ex )[2] is generated by [Xx ].

3 Because the Cassels–Tate pairing X(k,Ex )×X(k,Ex )→ Q/Z is
alternating and non-degenerate, the order of X(k,Ex )[2] is a square.
Hence X(k,Ex )[2] = 0, hence Xx (k) 6= ∅.
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More on second step: finding small Selmer groups
Setup: f : X → P1

k proper with reduced fibers, and generic fiber Xη a genus 1 curve over K = k(t),

the Jacobian Eη of Xη has good or multiplicative reduction at every point of P1
k ,

Eη [2](K) = Z/2Z× Z/2Z and Xη is a 2-covering of Eη ,

there are x ∈ P1(k) such that Xx is smooth and has points everywhere locally.

2 By “performing a 2-descent on Ex while letting x vary”, find an x ∈ P1(k)
such that X(k,Ex )[2] is generated by [Xx ].

Instead of searching for an x with small Tate–Shafarevich group
X(k,Ex )[2], find a small Selmer group Sel2(k,Ex ).
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� _

��
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� _

��

0
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k∗/k∗2 × k∗/k∗2
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Admissible points

Notation:

S a large enough finite set of places of k;
OS the ring of S-integers of k;
M = {M ∈ P1

k ; Eη has bad reduction at M};
for M ∈ P1

k a closed point, M̃ ⊂ P1
OS

is its Zariski closure.

Definition
A point x ∈ P1(k) is S-admissible if x ∈ A1(OS) and x̃ ∩ M̃ is reduced
and has cardinality 1 for each M ∈M .

Proposition (Serre)
Assuming Schinzel’s hypothesis, S-admissible points are dense in∏

v∈S∩Ωf
P1(kv ).
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First step: fibers with points everywhere locally
Setup: f : X → P1

k proper with reduced fibers, and generic fiber Xη a genus 1 curve over K = k(t).

The implication “no algebraic Brauer–Manin obstruction to the existence
of a rational point ⇒ there exists x ∈ P1(k) such that Xx is smooth and
has points everywhere locally”, under Schinzel’s hypothesis, is now
standard and has nothing to do with curves of genus 1. We do not discuss
it, and instead prove:

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, –)
Assume Eη[2](K ) ' Z/2Z× Z/2Z and Xη is a 2-covering of Eη.
Assume Eη has good or multiplicative reduction at every point of P1

k .
Assume Schinzel’s hypothesis and #X{2} <∞.
Assume Condition (D) holds.
Then X (k) 6= ∅ as soon as there is no algebraic Brauer–Manin obstruction
(moreover X (k) is dense in X if in addition f has no section).
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Back to second step: lifting 2-coverings
Notation:

UOS = A1
OS
\
(⋃

M∈M M̃
)
; U = UOS ⊗OS k = A1

k \M ;
E → UOS abelian scheme extending Eη;
wM is the place of k(M) defined by x̃ ∩ M̃, for M ∈M ;
vM is the place of k below wM ; set S(x) = S ∪ {vM ; M ∈M }.

Note the elliptic curve Ex has good reduction outside S(x), hence

Sel2(k,Ex ) ⊆ H1(OS(x),Ex [2]) ⊆ H1(k,Ex [2]).

Key proposition
For any S-admissible x ∈ P1(k), the evaluation map

evx : H1(UOS ,E [2]
)
→ H1(OS(x),Ex [2]

)
is an isomorphism.
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Lifting 2-coverings, II
Key proposition
For any S-admissible x ∈ P1(k), the evaluation map

evx : H1(UOS ,E [2]
)
→ H1(OS(x),Ex [2]

)
is an isomorphism.

H1(K ,Eη[2])⋃ Sel2(k,Ex )⋂
H1(UOS ,E [2]) ∼

evx // H1(OS(x),Ex [2])

For α ∈ H1(UOS ,E [2]), the corresponding 2-covering (Yα)η of Eη extends
to a smooth projective surface Yα → P1

k .

Conclusion: for any S-admissible x ∈ P1(k),

Sel2(k,Ex ) =
{
α(x) ; α ∈ H1(UOS ,E [2]) such that (Yα)x (Ak) 6= ∅

}
.
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Local study of the fibers of the Yα’s
Fix α. Let Y = Yα. For v 6∈ S and xv ∈ P1(kv ), when is Yxv (kv ) 6= ∅?

For simplicity, assume the singular fibers of f : X → P1
k are of type I2.

Then the singular fibers of Y → P1
k are of type I2 or 2I2. For M ∈M , let

KM,Y /k(M) be the quadratic (or trivial) extension which splits YM .

If x̃v ∩
(⋃

M∈M M̃
)

= ∅ (in P1
Ov
) and xv ∈ A1(Ov ), then Yxv is a smooth

curve of genus 1 with good reduction, so Yxv (kv ) 6= ∅.

If x̃v ∩ M̃ is reduced and has cardinality 1 for some M ∈M (thus defining
a place w of k(M) above v), then the reduction of Yxv mod v is the
reduction of YM mod w . Thus Yxv (kv ) = ∅ if YM is not reduced, and if
YM is reduced, then
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a place w of k(M) above v), then the reduction of Yxv mod v is the
reduction of YM mod w . Thus Yxv (kv ) = ∅ if YM is not reduced, and if
YM is reduced, then

Yxv (kv ) 6= ∅⇐⇒ w splits in KM,Y ⇐⇒ invv AM,Y (xv ) = 0

where AM,Y ∈ Br(k(t)) is AM,Y = Coresk(M)/k (KM,Y /k(M), t − tM)︸ ︷︷ ︸
∈Br(k(M)(t))(tM ∈ k(M) is the coordinate of M in A1

k).
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Making the Selmer group smaller

Pick an S-admissible x ∈ P1(k) such that Xx (Ak) 6= ∅. If Sel2(k,Ex ) is
generated by Ex (k)/2Ex (k) and by the class of Xx , then we are done.
Otherwise Sel2(k,Ex ) contains another class, say α(x) for some
α ∈ H1(UOS ,E [2]). Let Y = Yα. Thus Yx (Ak) 6= ∅. It follows from the
local study of Yx at vM that YM is reduced for any M ∈M .

Suppose there is an M0 ∈M such that KM0,Y /k(M0) is quadratic (i.e.,
not trivial).

Pick a place w0 of k(M0) which is inert in KM0,Y , of degree 1 over a place
v0 6∈ S of k. Pick xv0 ∈ P1(kv0) such that x̃v0 ∩ M̃0 = {w0} in P1

Ov0
.

Let S+ = S ∪ {v0}. Let x+ ∈ P1(k) be S+-admissible, close to x at
v ∈ S, close to xv0 at v = v0. Then Yx+(kv0) = ∅.

Claim: ev−1x+ (Sel2(k,Ex+)) ⊆ ev−1x (Sel2(k,Ex )).

(If claim proved, finished: the inclusion must be strict since Yx+(Ak) = ∅.)
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Setup: f : X → P1
k proper with reduced fibers; generic fiber Xη a 2-covering of its Jacobian Eη ;

v0 place of k below a place w0 of k(M0) inert in KM0,Y , where Y = Yα, α ∈ H1(UOS , E [2]);
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Let β ∈ H1(UOS ,E [2]). If (Yβ)x (Ak) = ∅, then (Yβ)x+(Ak) = ∅? Yes.
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Summary

Thus the new Selmer group is strictly smaller. Recall: we started with a
class in Sel2(k,Ex ), wrote it as α(x) for an α ∈ H1(UOS ,E [2]), and made
the following assumption on the singular fibers of Y = Yα → P1

k :

Suppose there is an M0 ∈M such that KM0,Y /k(M0) is quadratic (i.e.,
not trivial).

To ensure Xx+(Ak) 6= ∅, we want w0 to split in KM0,X . Thus we need:

Suppose there is an M0 ∈M such that KM0,Y /k(M0) does not embed
into KM0,X/k(M0).

Condition (D) in the case of reduction type I2
For any 2-covering Yη of Eη with good reduction above U, there exists an
M ∈M such that either the fiber YM is double or KM,Y /k(M) does not
embed into KM,X/k(M), unless the curve Yη is isomorphic to Xη or to Eη.
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Variants

Starting with a family of elliptic curves f : E → P1
k , find infinitely

many fibers with small Selmer group, hence small Mordell–Weil
group. Application to elliptic curves over k(t) of elevated rank.

Conversely, if f : X → P1
k has no section, find infinitely many

x ∈ P1(k) for which rk(Ex (k)) > rk(Eη(K )).

If f : X → P1
k does not satisfy Condition (D), find many x ∈ P1(k)

such that Xx (Ak) 6= ∅ and [Xx ] is orthogonal to X(k,Ex )[2] for the
Cassels–Tate pairing. (Uses the full Brauer group of X .) Replace
Condition (D) with higher descents?
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