Rational points of surfaces fibered into curves of genus 1

Olivier Wittenberg

CNRS and École normale supérieure, Paris

Arithmetic of abelian varieties in families EPFL, November 12th, 2012

Let X be a smooth projective surface over a number field k, and $f: X \to \mathbf{P}_k^1$ a morphism whose fibers are genus 1 curves.

- Let X be a smooth projective surface over a number field k, and $f: X \to \mathbf{P}_k^1$ a morphism whose fibers are genus 1 curves.
 - If f has a section, what can one say about the ranks of the elliptic curves $X_x = f^{-1}(x)$, $x \in \mathbf{P}^1(k)$?

- Let X be a smooth projective surface over a number field k, and $f: X \to \mathbf{P}_k^1$ a morphism whose fibers are genus 1 curves.
 - If f has a section, what can one say about the ranks of the elliptic curves $X_x = f^{-1}(x)$, $x \in \mathbf{P}^1(k)$?
 - In general, can one decide whether $X(k) \neq \emptyset$?

- Let X be a smooth projective surface over a number field k, and $f: X \to \mathbf{P}_k^1$ a morphism whose fibers are genus 1 curves.
 - If f has a section, what can one say about the ranks of the elliptic curves $X_x = f^{-1}(x)$, $x \in \mathbf{P}^1(k)$?
 - In general, can one decide whether X(k) ≠ Ø? When does the Hasse principle hold?

- Let X be a smooth projective surface over a number field k, and $f: X \to \mathbf{P}_k^1$ a morphism whose fibers are genus 1 curves.
 - If f has a section, what can one say about the ranks of the elliptic curves $X_x = f^{-1}(x)$, $x \in \mathbf{P}^1(k)$?
 - In general, can one decide whether X(k) ≠ Ø? When does the Hasse principle hold? Density of X(k) in X for the Zariski topology?

- Let X be a smooth projective surface over a number field k, and $f: X \to \mathbf{P}_k^1$ a morphism whose fibers are genus 1 curves.
 - If f has a section, what can one say about the ranks of the elliptic curves $X_x = f^{-1}(x)$, $x \in \mathbf{P}^1(k)$?
 - In general, can one decide whether X(k) ≠ Ø? When does the Hasse principle hold? Density of X(k) in X for the Zariski topology? (Assume f has at most two multiple fibers.)

Theorem (Várilly-Alvarado, 2011)

Let X be the degree 1 del Pezzo surface over \mathbf{Q} defined by $w^2 = z^3 + ax^6 + by^6$ in $\mathbf{P}(1, 1, 2, 3)$. Assume Tate–Shafarevich groups of elliptic curves over \mathbf{Q} with j-invariant 0 are finite. If $3ab \notin \mathbf{Q}^{\star 2}$, then $X(\mathbf{Q})$ is dense in X.

Theorem (Várilly-Alvarado, 2011)

Let X be the degree 1 del Pezzo surface over \mathbf{Q} defined by $w^2 = z^3 + ax^6 + by^6$ in $\mathbf{P}(1, 1, 2, 3)$. Assume Tate–Shafarevich groups of elliptic curves over \mathbf{Q} with j-invariant 0 are finite. If $3ab \notin \mathbf{Q}^{\star 2}$, then $X(\mathbf{Q})$ is dense in X.

(X is birationally equivalent to an isotrivial elliptic surface; study variation of root number)

Theorem (Várilly-Alvarado, 2011)

Let X be the degree 1 del Pezzo surface over \mathbf{Q} defined by $w^2 = z^3 + ax^6 + by^6$ in $\mathbf{P}(1, 1, 2, 3)$. Assume Tate–Shafarevich groups of elliptic curves over \mathbf{Q} with *j*-invariant 0 are finite. If $3ab \notin \mathbf{Q}^{\star 2}$, then $X(\mathbf{Q})$ is dense in X.

(X is birationally equivalent to an isotrivial elliptic surface; study variation of root number)

Theorem (Logan, McKinnon, van Luijk, 2010)

Let $a, b, c, d \in \mathbf{Q}^*$ such that $abcd \in \mathbf{Q}^{*2}$. Let $X \subset \mathbf{P}^3_{\mathbf{Q}}$ be defined by $ax^4 + by^4 + cz^4 + dw^4 = 0$. If X has a rational point outside of the 48 lines and the coordinate hyperplanes, then $X(\mathbf{Q})$ is dense in X.

Theorem (Várilly-Alvarado, 2011)

Let X be the degree 1 del Pezzo surface over \mathbf{Q} defined by $w^2 = z^3 + ax^6 + by^6$ in $\mathbf{P}(1, 1, 2, 3)$. Assume Tate–Shafarevich groups of elliptic curves over \mathbf{Q} with j-invariant 0 are finite. If $3ab \notin \mathbf{Q}^{\star 2}$, then $X(\mathbf{Q})$ is dense in X.

(X is birationally equivalent to an isotrivial elliptic surface; study variation of root number)

Theorem (Logan, McKinnon, van Luijk, 2010)

Let $a, b, c, d \in \mathbf{Q}^*$ such that $abcd \in \mathbf{Q}^{*2}$. Let $X \subset \mathbf{P}^3_{\mathbf{Q}}$ be defined by $ax^4 + by^4 + cz^4 + dw^4 = 0$. If X has a rational point outside of the 48 lines and the coordinate hyperplanes, then $X(\mathbf{Q})$ is dense in X.

(Geometric construction using the two pencils of curves of genus 1 on X.)

A series of papers

Swinnerton–Dyer (1995),

A series of papers

- Swinnerton–Dyer (1995),
- Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
- Heath-Brown (1999),
- Bender and Swinnerton-Dyer (2001),
- Colliot-Thélène (2001),
- Swinnerton-Dyer (2000),
- Swinnerton-Dyer (2001),
- Skorobogatov and Swinnerton-Dyer (2005),
- Wittenberg (2007)

A series of papers

- Swinnerton–Dyer (1995),
- Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
- Heath-Brown (1999),
- Bender and Swinnerton-Dyer (2001),
- Colliot-Thélène (2001),
- Swinnerton-Dyer (2000),
- Swinnerton-Dyer (2001),
- Skorobogatov and Swinnerton-Dyer (2005),
- Wittenberg (2007)

establish the existence and Zariski-density of rational points for X under various hypotheses on $f: X \to \mathbf{P}_k^1$,

A series of papers

- Swinnerton–Dyer (1995),
- Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
- Heath-Brown (1999),
- Bender and Swinnerton-Dyer (2001),
- Colliot-Thélène (2001),
- Swinnerton-Dyer (2000),
- Swinnerton-Dyer (2001),
- Skorobogatov and Swinnerton-Dyer (2005),
- Wittenberg (2007)

establish the existence and Zariski-density of rational points for X under various hypotheses on $f : X \to \mathbf{P}_k^1$, most of them assuming two major conjectures:

A series of papers

- Swinnerton-Dyer (1995),
- Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
- Heath-Brown (1999),
- Bender and Swinnerton-Dyer (2001),
- Colliot-Thélène (2001),
- Swinnerton-Dyer (2000),
- Swinnerton-Dyer (2001),
- Skorobogatov and Swinnerton-Dyer (2005),
- Wittenberg (2007)

establish the existence and Zariski-density of rational points for X under various hypotheses on $f : X \to \mathbf{P}_k^1$, most of them assuming two major conjectures:

• Finiteness of Tate-Shafarevich groups of elliptic curves;

A series of papers

- Swinnerton-Dyer (1995),
- Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
- Heath-Brown (1999),
- Bender and Swinnerton-Dyer (2001),
- Colliot-Thélène (2001),
- Swinnerton-Dyer (2000),
- Swinnerton-Dyer (2001),
- Skorobogatov and Swinnerton-Dyer (2005),
- Wittenberg (2007)

establish the existence and Zariski-density of rational points for X under various hypotheses on $f : X \to \mathbf{P}_k^1$, most of them assuming two major conjectures:

• Finiteness of 2-primary (or 3-primary) torsion subgroup of Tate–Shafarevich groups of elliptic curves;

A series of papers

- Swinnerton-Dyer (1995),
- Colliot-Thélène, Skorobogatov and Swinnerton-Dyer (1998),
- Heath-Brown (1999),
- Bender and Swinnerton-Dyer (2001),
- Colliot-Thélène (2001),
- Swinnerton-Dyer (2000),
- Swinnerton-Dyer (2001),
- Skorobogatov and Swinnerton-Dyer (2005),
- Wittenberg (2007)

establish the existence and Zariski-density of rational points for X under various hypotheses on $f : X \to \mathbf{P}_k^1$, most of them assuming two major conjectures:

- Finiteness of 2-primary (or 3-primary) torsion subgroup of Tate–Shafarevich groups of elliptic curves;
- Schinzel's hypothesis.

Hypothesis (H)

Let $f_1, \ldots, f_s \in \mathbf{Z}[t]$ be irreducible polynomials with positive leading coefficients.

Hypothesis (H)

Let $f_1, \ldots, f_s \in \mathbf{Z}[t]$ be irreducible polynomials with positive leading coefficients.

Then

$$\{m \in \mathbf{Z}; f_1(m), \ldots, f_s(m) \text{ are all prime}\}$$

is infinite.

Hypothesis (H)

Let $f_1, \ldots, f_s \in \mathbf{Z}[t]$ be irreducible polynomials with positive leading coefficients. Assume no integer > 1 divides $\prod_{i=1}^{s} f_i(m)$ for all $m \in \mathbf{Z}$. Then

$$\{m \in \mathbf{Z}; f_1(m), \ldots, f_s(m) \text{ are all prime}\}$$

is infinite.

Hypothesis (H)

Let $f_1, \ldots, f_s \in \mathbf{Z}[t]$ be irreducible polynomials with positive leading coefficients. Assume no integer > 1 divides $\prod_{i=1}^{s} f_i(m)$ for all $m \in \mathbf{Z}$. Then

$$\{m \in \mathbf{Z}; f_1(m), \ldots, f_s(m) \text{ are all prime}\}$$

is infinite.

Case s = 1, deg $(f_1) = 1$: Dirichlet's theorem.

Hypothesis (H)

Let $f_1, \ldots, f_s \in \mathbf{Z}[t]$ be irreducible polynomials with positive leading coefficients. Assume no integer > 1 divides $\prod_{i=1}^{s} f_i(m)$ for all $m \in \mathbf{Z}$. Then

$$\{m \in \mathbf{Z}; f_1(m), \dots, f_s(m) \text{ are all prime}\}$$

is infinite.

Case s = 1, deg $(f_1) = 1$: Dirichlet's theorem.

Homogeneous version established for binary cubic forms $ax^3 + by^3$ (Heath-Brown, Moroz).

Theorem (Swinnerton-Dyer, 2001)

Assume #III{3} < ∞ for elliptic curves over number fields. Let $a_0, \ldots, a_4 \in \mathbf{Q}^*$. Assume the threefold $X \subset \mathbf{P}^4_{\mathbf{Q}}$ defined by

$$a_0x_0^3 + a_1x_1^3 + a_2x_2^3 + a_3x_3^3 + a_4x_4^3 = 0$$

has points everywhere locally. Then it has a rational point.

Theorem (Swinnerton-Dyer, 2001)

Assume #III{3} < ∞ for elliptic curves over number fields. Let $a_0, \ldots, a_4 \in \mathbf{Q}^*$. Assume the threefold $X \subset \mathbf{P}^4_{\mathbf{Q}}$ defined by

$$a_0x_0^3 + a_1x_1^3 + a_2x_2^3 + a_3x_3^3 + a_4x_4^3 = 0$$

has points everywhere locally. Then it has a rational point.

Theorem (-, 2007)

Assume Schinzel's hypothesis, and $\#III\{2\} < \infty$. Let k be a number field and $X \subset \mathbf{P}_k^5$ be a smooth intersection of two quadrics. Assume X has points everywhere locally. Then X has a rational point.

Theorem (Swinnerton-Dyer, 2000)

Assume Schinzel's hypothesis, and $\#\mathrm{III}\{2\}<\infty.$

Theorem (Swinnerton-Dyer, 2000)

Assume Schinzel's hypothesis, and $\# III\{2\} < \infty$. Let $a_0, \ldots, a_3 \in \mathbf{Q}^*$, such that $a_0a_1a_2a_3 \in \mathbf{Q}^{*2}$. Assume $a_0a_1a_2a_3 \notin \mathbf{Q}^{*4}$ and $\pm a_ia_j \notin \mathbf{Q}^{*2}$ for any $i \neq j$. Then the surface $X \subset \mathbf{P}^3_{\mathbf{Q}}$ defined by

$$a_0x_0^4 + a_1x_1^4 + a_2x_2^4 + a_3x_3^4 = 0$$

has a rational point if there is no algebraic Brauer-Manin obstruction.

Setup:

Setup:

• X smooth projective surface over a number field k,

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,
- E_{η} the Jacobian of X_{η} (elliptic curve over K = k(t)).

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,
- E_{η} the Jacobian of X_{η} (elliptic curve over K = k(t)).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (and X(k) is dense in X if in addition f has no section).

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,
- E_{η} the Jacobian of X_{η} (elliptic curve over K = k(t)).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, –) Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} .

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (and X(k) is dense in X if in addition f has no section).
Main theorem

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,
- E_{η} the Jacobian of X_{η} (elliptic curve over K = k(t)).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} . Assume E_{η} has good or multiplicative reduction at every point of \mathbb{P}_{k}^{1} .

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (and X(k) is dense in X if in addition f has no section).

Main theorem

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,
- E_{η} the Jacobian of X_{η} (elliptic curve over K = k(t)).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} . Assume E_{η} has good or multiplicative reduction at every point of \mathbb{P}_{k}^{1} . Assume Schinzel's hypothesis and $\# \mathrm{III}\{2\} < \infty$.

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (and X(k) is dense in X if in addition f has no section).

Main theorem

Setup:

- X smooth projective surface over a number field k,
- *f* : X → P¹_k morphism whose generic fiber X_η is a genus 1 curve, and whose singular fibers are reduced,
- E_{η} the Jacobian of X_{η} (elliptic curve over K = k(t)).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} . Assume E_{η} has good or multiplicative reduction at every point of \mathbb{P}_{k}^{1} . Assume Schinzel's hypothesis and $\# III \{2\} < \infty$. Assume Condition (D) holds.

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (and X(k) is dense in X if in addition f has no section).

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

• the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,

• $E_{\eta}[2](K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} .

Strategy to find rational points on X:

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

• the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,

• $E_{\eta}[2](K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} .

Strategy to find rational points on X:

• Find $x \in \mathbf{P}^1(k)$ such that $X_x = f^{-1}(x)$ is a smooth genus 1 curve with points everywhere locally.

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

• the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,

• $E_{\eta}[2](K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} .

Strategy to find rational points on X:

• Find $x \in \mathbf{P}^1(k)$ such that $X_x = f^{-1}(x)$ is a smooth genus 1 curve with points everywhere locally. Thus X_x defines a class $[X_x]$ in

$$\operatorname{III}(k, E_x) = \operatorname{Ker}\Big(H^1(k, E_x)
ightarrow \prod_{v \in \Omega} H^1(k_v, E_x)\Big)$$

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

• the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,

• $E_{\eta}[2](K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} .

Strategy to find rational points on X:

• Find $x \in \mathbf{P}^1(k)$ such that $X_x = f^{-1}(x)$ is a smooth genus 1 curve with points everywhere locally. Thus X_x defines a class $[X_x]$ in

$$\operatorname{III}(k, E_x) = \operatorname{Ker}\Big(H^1(k, E_x) \to \prod_{v \in \Omega} H^1(k_v, E_x)\Big)$$

Observe By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that in addition III(k, E_x)[2] is generated by [X_x].

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

• the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,

•
$$E_{\eta}[2](K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
 and X_{η} is a 2-covering of E_{η} .

Strategy to find rational points on X:

• Find $x \in \mathbf{P}^1(k)$ such that $X_x = f^{-1}(x)$ is a smooth genus 1 curve with points everywhere locally. Thus X_x defines a class $[X_x]$ in

$$\operatorname{III}(k,E_x) = \operatorname{Ker}\Big(H^1(k,E_x) o \prod_{v \in \Omega} H^1(k_v,E_x)\Big)$$

- Objective By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that in addition III(k, E_x)[2] is generated by [X_x].
- Because the Cassels–Tate pairing $\operatorname{III}(k, E_x) \times \operatorname{III}(k, E_x) \to \mathbf{Q}/\mathbf{Z}$ is alternating and non-degenerate, the order of $\operatorname{III}(k, E_x)[2]$ is a square.

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

• the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,

•
$$E_{\eta}[2](K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
 and X_{η} is a 2-covering of E_{η} .

Strategy to find rational points on X:

• Find $x \in \mathbf{P}^1(k)$ such that $X_x = f^{-1}(x)$ is a smooth genus 1 curve with points everywhere locally. Thus X_x defines a class $[X_x]$ in

$$\operatorname{III}(k,E_x) = \operatorname{Ker}\Big(H^1(k,E_x) o \prod_{v \in \Omega} H^1(k_v,E_x)\Big)$$

- By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that in addition III(k, E_x)[2] is generated by [X_x].
- Because the Cassels–Tate pairing III(k, E_x) × III(k, E_x) → Q/Z is alternating and non-degenerate, the order of III(k, E_x)[2] is a square. Hence III(k, E_x)[2] = 0, hence X_x(k) ≠ Ø.

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

- the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,
- E_η[2](K) = Z/2Z × Z/2Z and X_η is a 2-covering of E_η,
- there are $x \in \mathbf{P}^1(k)$ such that X_x is smooth and has points everywhere locally.
- ② By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that III(k, E_x)[2] is generated by [X_x].

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

- the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,
- E_η[2](K) = Z/2Z × Z/2Z and X_η is a 2-covering of E_η,
- there are $x \in \mathbf{P}^1(k)$ such that X_x is smooth and has points everywhere locally.
- ② By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that III(k, E_x)[2] is generated by [X_x].

Instead of searching for an x with small Tate–Shafarevich group $III(k, E_x)[2]$, find a small Selmer group $Sel_2(k, E_x)$.

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

- the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,
- E_η[2](K) = Z/2Z × Z/2Z and X_η is a 2-covering of E_η,
- there are $x \in \mathbf{P}^1(k)$ such that X_x is smooth and has points everywhere locally.
- ② By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that III(k, E_x)[2] is generated by [X_x].

Instead of searching for an x with small Tate–Shafarevich group $III(k, E_x)[2]$, find a small Selmer group $Sel_2(k, E_x)$.

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t),

- the Jacobian E_{η} of X_{η} has good or multiplicative reduction at every point of \mathbf{P}_{k}^{1} ,
- E_η[2](K) = Z/2Z × Z/2Z and X_η is a 2-covering of E_η,
- there are $x \in \mathbf{P}^1(k)$ such that X_x is smooth and has points everywhere locally.
- ② By "performing a 2-descent on E_x while letting x vary", find an x ∈ P¹(k) such that III(k, E_x)[2] is generated by [X_x].

Instead of searching for an x with small Tate–Shafarevich group $III(k, E_x)[2]$, find a small Selmer group $Sel_2(k, E_x)$.

Notation:

• S a large enough finite set of places of k;

- S a large enough finite set of places of k;
- \mathcal{O}_S the ring of *S*-integers of *k*;

- S a large enough finite set of places of k;
- \mathcal{O}_S the ring of *S*-integers of *k*;
- $\mathcal{M} = \{ M \in \mathbf{P}_k^1; E_\eta \text{ has bad reduction at } M \};$

- S a large enough finite set of places of k;
- \mathcal{O}_S the ring of *S*-integers of *k*;
- $\mathcal{M} = \{ M \in \mathbf{P}_k^1; E_\eta \text{ has bad reduction at } M \};$
- for $M \in \mathbf{P}^1_k$ a closed point, $\widetilde{M} \subset \mathbf{P}^1_{\mathscr{O}_S}$ is its Zariski closure.

Notation:

- S a large enough finite set of places of k;
- \mathcal{O}_S the ring of *S*-integers of *k*;
- $\mathcal{M} = \{ M \in \mathbf{P}_k^1; E_\eta \text{ has bad reduction at } M \};$
- for $M \in \mathbf{P}_k^1$ a closed point, $\widetilde{M} \subset \mathbf{P}_{\mathscr{O}_S}^1$ is its Zariski closure.

Definition

A point $x \in \mathbf{P}^1(k)$ is *S*-admissible if $x \in \mathbf{A}^1(\mathcal{O}_S)$ and $\tilde{x} \cap \widetilde{M}$ is reduced and has cardinality 1 for each $M \in \mathcal{M}$.

Notation:

- S a large enough finite set of places of k;
- \mathcal{O}_S the ring of *S*-integers of *k*;
- $\mathcal{M} = \{ M \in \mathbf{P}_k^1; E_\eta \text{ has bad reduction at } M \};$
- for $M \in \mathbf{P}^1_k$ a closed point, $\widetilde{M} \subset \mathbf{P}^1_{\mathscr{O}_S}$ is its Zariski closure.

Definition

A point $x \in \mathbf{P}^1(k)$ is *S*-admissible if $x \in \mathbf{A}^1(\mathscr{O}_S)$ and $\widetilde{x} \cap \widetilde{M}$ is reduced and has cardinality 1 for each $M \in \mathscr{M}$.

Proposition (Serre)

Assuming Schinzel's hypothesis, S-admissible points are dense in $\prod_{v \in S \cap \Omega_f} \mathbf{P}^1(k_v)$.

First step: fibers with points everywhere locally

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t).

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} . Assume E_{η} has good or multiplicative reduction at every point of \mathbb{P}_{k}^{1} . Assume Schinzel's hypothesis and $\# III \{2\} < \infty$. Assume Condition (D) holds.

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (moreover X(k) is dense in X if in addition f has no section).

First step: fibers with points everywhere locally

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t).

The implication "no algebraic Brauer–Manin obstruction to the existence of a rational point \Rightarrow there exists $x \in \mathbf{P}^1(k)$ such that X_x is smooth and has points everywhere locally", under Schinzel's hypothesis, is now standard and has nothing to do with curves of genus 1. We do not discuss it, and instead prove:

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} . Assume E_{η} has good or multiplicative reduction at every point of \mathbb{P}_{k}^{1} . Assume Schinzel's hypothesis and $\# \mathrm{III}\{2\} < \infty$. Assume Condition (D) holds.

Then $X(k) \neq \emptyset$ as soon as there is no algebraic Brauer–Manin obstruction (moreover X(k) is dense in X if in addition f has no section).

First step: fibers with points everywhere locally

Setup: • $f: X \to \mathbf{P}_k^1$ proper with reduced fibers, and generic fiber X_η a genus 1 curve over K = k(t).

The implication "no algebraic Brauer–Manin obstruction to the existence of a rational point \Rightarrow there exists $x \in \mathbf{P}^1(k)$ such that X_x is smooth and has points everywhere locally", under Schinzel's hypothesis, is now standard and has nothing to do with curves of genus 1. We do not discuss it, and instead prove:

Theorem (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer, -)

Assume $E_{\eta}[2](K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and X_{η} is a 2-covering of E_{η} . Assume E_{η} has good or multiplicative reduction at every point of \mathbb{P}_{k}^{1} . Assume Schinzel's hypothesis and $\# III\{2\} < \infty$. Assume Condition (D) holds. Then $X(k) \neq \emptyset$ as soon as there is an *S*-admissible $x \in \mathbb{P}^{1}(k)$ such that X_{x} is smooth and has points everywhere locally (moreover X(k) is dense in X if in addition f has no section).

Back to second step: lifting 2-coverings Notation:

•
$$\mathscr{U}_{\mathscr{O}_{S}} = \mathbf{A}^{1}_{\mathscr{O}_{S}} \setminus (\bigcup_{M \in \mathscr{M}} \widetilde{M}); \quad U = \mathscr{U}_{\mathscr{O}_{S}} \otimes_{\mathscr{O}_{S}} k = \mathbf{A}^{1}_{k} \setminus \mathscr{M};$$

Notation:

•
$$\mathscr{U}_{\mathscr{O}_{S}} = \mathbf{A}^{1}_{\mathscr{O}_{S}} \setminus \left(\bigcup_{M \in \mathscr{M}} \widetilde{M} \right); \quad U = \mathscr{U}_{\mathscr{O}_{S}} \otimes_{\mathscr{O}_{S}} k = \mathbf{A}^{1}_{k} \setminus \mathscr{M};$$

• $E \to \mathscr{U}_{\mathscr{O}_S}$ abelian scheme extending E_η ;

•
$$\mathscr{U}_{\mathscr{O}_{S}} = \mathbf{A}^{1}_{\mathscr{O}_{S}} \setminus (\bigcup_{M \in \mathscr{M}} \widetilde{M}); \quad U = \mathscr{U}_{\mathscr{O}_{S}} \otimes_{\mathscr{O}_{S}} k = \mathbf{A}^{1}_{k} \setminus \mathscr{M};$$

- $E \to \mathscr{U}_{\mathscr{O}_S}$ abelian scheme extending E_η ;
- w_M is the place of k(M) defined by $\widetilde{x} \cap \widetilde{M}$, for $M \in \mathscr{M}$;

•
$$\mathscr{U}_{\mathcal{O}_{S}} = \mathbf{A}^{1}_{\mathcal{O}_{S}} \setminus (\bigcup_{M \in \mathscr{M}} \widetilde{M}); \quad U = \mathscr{U}_{\mathcal{O}_{S}} \otimes_{\mathcal{O}_{S}} k = \mathbf{A}^{1}_{k} \setminus \mathscr{M};$$

- $E \to \mathscr{U}_{\mathscr{O}_S}$ abelian scheme extending E_η ;
- w_M is the place of k(M) defined by $\widetilde{x} \cap \widetilde{M}$, for $M \in \mathcal{M}$;
- v_M is the place of k below w_M ; set $S(x) = S \cup \{v_M; M \in \mathcal{M}\}$.

Notation:

•
$$\mathscr{U}_{\mathscr{O}_{S}} = \mathbf{A}^{1}_{\mathscr{O}_{S}} \setminus (\bigcup_{M \in \mathscr{M}} \widetilde{M}); \quad U = \mathscr{U}_{\mathscr{O}_{S}} \otimes_{\mathscr{O}_{S}} k = \mathbf{A}^{1}_{k} \setminus \mathscr{M};$$

- $E \to \mathscr{U}_{\mathscr{O}_S}$ abelian scheme extending E_{η} ;
- w_M is the place of k(M) defined by $\widetilde{x} \cap \widetilde{M}$, for $M \in \mathcal{M}$;
- v_M is the place of k below w_M ; set $S(x) = S \cup \{v_M; M \in \mathcal{M}\}$.

Note the elliptic curve E_x has good reduction outside S(x), hence

$$\operatorname{Sel}_2(k, E_x) \subseteq H^1(\mathscr{O}_{S(x)}, E_x[2]) \subseteq H^1(k, E_x[2]).$$

Notation:

•
$$\mathscr{U}_{\mathscr{O}_{S}} = \mathbf{A}^{1}_{\mathscr{O}_{S}} \setminus (\bigcup_{M \in \mathscr{M}} \widetilde{M}); \quad U = \mathscr{U}_{\mathscr{O}_{S}} \otimes_{\mathscr{O}_{S}} k = \mathbf{A}^{1}_{k} \setminus \mathscr{M};$$

- $E \to \mathscr{U}_{\mathscr{O}_S}$ abelian scheme extending E_{η} ;
- w_M is the place of k(M) defined by $\tilde{x} \cap \widetilde{M}$, for $M \in \mathcal{M}$;
- v_M is the place of k below w_M ; set $S(x) = S \cup \{v_M; M \in \mathcal{M}\}$.

Note the elliptic curve E_x has good reduction outside S(x), hence

$$\operatorname{Sel}_2(k, E_x) \subseteq H^1(\mathscr{O}_{\mathcal{S}(x)}, E_x[2]) \subseteq H^1(k, E_x[2]).$$

Key proposition

For any S-admissible $x \in \mathbf{P}^1(k)$, the evaluation map

$$\operatorname{ev}_{x}: H^{1}(\mathscr{U}_{\mathscr{O}_{S}}, E[2]) \to H^{1}(\mathscr{O}_{S(x)}, E_{x}[2])$$

is an isomorphism.

Key proposition

For any S-admissible $x \in \mathbf{P}^1(k)$, the evaluation map

$$\operatorname{ev}_{x}: H^{1}(\mathscr{U}_{\mathscr{O}_{S}}, E[2]) \to H^{1}(\mathscr{O}_{S(x)}, E_{x}[2])$$

is an isomorphism.

Key proposition

For any S-admissible $x \in \mathbf{P}^1(k)$, the evaluation map $\operatorname{ev}_x : H^1(\mathscr{U}_{\mathscr{O}_S}, E[2]) \to H^1(\mathscr{O}_{S(x)}, E_x[2])$

is an isomorphism.

$$\begin{array}{c} H^{1}(K, E_{\eta}[2]) & \operatorname{Sel}_{2}(k, E_{x}) \\ \bigcup & \bigcap \\ H^{1}(\mathscr{U}_{\mathscr{O}_{S}}, E[2]) \xrightarrow{\operatorname{ev}_{x}} H^{1}(\mathscr{O}_{S(x)}, E_{x}[2]) \end{array}$$

Key proposition

For any S-admissible $x \in \mathbf{P}^1(k)$, the evaluation map $\operatorname{ev}_x : H^1(\mathscr{U}_{\mathscr{O}_S}, E[2]) \to H^1(\mathscr{O}_{S(x)}, E_x[2])$

is an isomorphism.

$$\begin{array}{c} H^{1}(K, E_{\eta}[2]) & \operatorname{Sel}_{2}(k, E_{x}) \\ \bigcup & \bigcap \\ H^{1}(\mathscr{U}_{\mathscr{O}_{S}}, E[2]) \xrightarrow{\operatorname{ev}_{x}} H^{1}(\mathscr{O}_{S(x)}, E_{x}[2]) \end{array}$$

For $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$, the corresponding 2-covering $(Y_\alpha)_\eta$ of E_η extends to a smooth projective surface $Y_\alpha \to \mathbf{P}^1_k$.

Key proposition

For any S-admissible $x \in \mathbf{P}^1(k)$, the evaluation map $\operatorname{ev}_x : H^1(\mathscr{U}_{\mathscr{O}_S}, E[2]) \to H^1(\mathscr{O}_{S(x)}, E_x[2])$

is an isomorphism.

$$\begin{array}{c} H^{1}(K, E_{\eta}[2]) & \operatorname{Sel}_{2}(k, E_{x}) \\ \bigcup & \bigcap \\ H^{1}(\mathscr{U}_{\mathscr{O}_{S}}, E[2]) \xrightarrow{\operatorname{ev}_{x}} H^{1}(\mathscr{O}_{S(x)}, E_{x}[2]) \end{array}$$

For $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$, the corresponding 2-covering $(Y_\alpha)_\eta$ of E_η extends to a smooth projective surface $Y_\alpha \to \mathbf{P}^1_k$.

Conclusion: for any S-admissible $x \in \mathbf{P}^1(k)$,

$$\operatorname{Sel}_2(k, E_x) = \Big\{ \alpha(x); \, \alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2]) \text{ such that } (Y_\alpha)_x(\mathbf{A}_k) \neq \varnothing \Big\}.$$

Local study of the fibers of the Y_{α} 's Fix α . Let $Y = Y_{\alpha}$. For $v \notin S$ and $x_v \in \mathbf{P}^1(k_v)$, when is $Y_{x_v}(k_v) \neq \emptyset$? Local study of the fibers of the Y_{α} 's Fix α . Let $Y = Y_{\alpha}$. For $v \notin S$ and $x_v \in \mathbf{P}^1(k_v)$, when is $Y_{x_v}(k_v) \neq \emptyset$?

For simplicity, assume the singular fibers of $f : X \to \mathbf{P}_k^1$ are of type I₂. Then the singular fibers of $Y \to \mathbf{P}_k^1$ are of type I₂ or 2I₂. For $M \in \mathcal{M}$, let $K_{M,Y}/k(M)$ be the quadratic (or trivial) extension which splits Y_M .
For simplicity, assume the singular fibers of $f : X \to \mathbf{P}_k^1$ are of type I₂. Then the singular fibers of $Y \to \mathbf{P}_k^1$ are of type I₂ or 2I₂. For $M \in \mathcal{M}$, let $K_{M,Y}/k(M)$ be the quadratic (or trivial) extension which splits Y_M .

If $\widetilde{x_{\nu}} \cap (\bigcup_{M \in \mathscr{M}} \widetilde{M}) = \emptyset$ (in $\mathbf{P}^{1}_{\mathscr{O}_{\nu}}$) and $x_{\nu} \in \mathbf{A}^{1}(\mathscr{O}_{\nu})$, then $Y_{x_{\nu}}$ is a smooth curve of genus 1 with good reduction, so $Y_{x_{\nu}}(k_{\nu}) \neq \emptyset$.

For simplicity, assume the singular fibers of $f : X \to \mathbf{P}_k^1$ are of type I_2 . Then the singular fibers of $Y \to \mathbf{P}_k^1$ are of type I_2 or $2I_2$. For $M \in \mathcal{M}$, let $K_{M,Y}/k(M)$ be the quadratic (or trivial) extension which splits Y_M .

If $\widetilde{x_{\nu}} \cap (\bigcup_{M \in \mathscr{M}} \widetilde{M}) = \emptyset$ (in $\mathbf{P}^{1}_{\mathscr{O}_{\nu}}$) and $x_{\nu} \in \mathbf{A}^{1}(\mathscr{O}_{\nu})$, then $Y_{x_{\nu}}$ is a smooth curve of genus 1 with good reduction, so $Y_{x_{\nu}}(k_{\nu}) \neq \emptyset$.

If $\widetilde{x_v} \cap \widetilde{M}$ is reduced and has cardinality 1 for some $M \in \mathscr{M}$ (thus defining a place w of k(M) above v), then the reduction of $Y_{x_v} \mod v$ is the reduction of $Y_M \mod w$.

For simplicity, assume the singular fibers of $f : X \to \mathbf{P}_k^1$ are of type I_2 . Then the singular fibers of $Y \to \mathbf{P}_k^1$ are of type I_2 or $2I_2$. For $M \in \mathcal{M}$, let $K_{M,Y}/k(M)$ be the quadratic (or trivial) extension which splits Y_M .

If $\widetilde{x_{\nu}} \cap (\bigcup_{M \in \mathscr{M}} \widetilde{M}) = \emptyset$ (in $\mathbf{P}^{1}_{\mathscr{O}_{\nu}}$) and $x_{\nu} \in \mathbf{A}^{1}(\mathscr{O}_{\nu})$, then $Y_{x_{\nu}}$ is a smooth curve of genus 1 with good reduction, so $Y_{x_{\nu}}(k_{\nu}) \neq \emptyset$.

If $\widetilde{x_v} \cap M$ is reduced and has cardinality 1 for some $M \in \mathcal{M}$ (thus defining a place w of k(M) above v), then the reduction of Y_{x_v} mod v is the reduction of Y_M mod w. Thus $Y_{x_v}(k_v) = \emptyset$ if Y_M is not reduced, and if Y_M is reduced, then

 $Y_{x_{v}}(k_{v})
eq arnothing \iff w$ splits in $K_{M,Y}$

For simplicity, assume the singular fibers of $f : X \to \mathbf{P}_k^1$ are of type I₂. Then the singular fibers of $Y \to \mathbf{P}_k^1$ are of type I₂ or 2I₂. For $M \in \mathcal{M}$, let $K_{M,Y}/k(M)$ be the quadratic (or trivial) extension which splits Y_M .

If $\widetilde{x_{\nu}} \cap (\bigcup_{M \in \mathscr{M}} \widetilde{M}) = \emptyset$ (in $\mathbf{P}^{1}_{\mathscr{O}_{\nu}}$) and $x_{\nu} \in \mathbf{A}^{1}(\mathscr{O}_{\nu})$, then $Y_{x_{\nu}}$ is a smooth curve of genus 1 with good reduction, so $Y_{x_{\nu}}(k_{\nu}) \neq \emptyset$.

If $\widetilde{x_v} \cap \widetilde{M}$ is reduced and has cardinality 1 for some $M \in \mathscr{M}$ (thus defining a place w of k(M) above v), then the reduction of $Y_{x_v} \mod v$ is the reduction of $Y_M \mod w$. Thus $Y_{x_v}(k_v) = \emptyset$ if Y_M is not reduced, and if Y_M is reduced, then

$$X'_{x_v}(k_v)
eq arnothing \iff w ext{ splits in } K_{M,Y} \iff \operatorname{inv}_v A_{M,Y}(x_v) = 0$$

where $A_{M,Y} \in Br(k(t))$ is $A_{M,Y} = Cores_{k(M)/k} \underbrace{(K_{M,Y}/k(M), t - t_M)}_{\in Br(k(M)(t))}$ $(t_M \in k(M)$ is the coordinate of M in \mathbf{A}_k^1).

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$. It follows from the local study of Y_x at v_M that Y_M is reduced for any $M \in \mathscr{M}$.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$. It follows from the local study of Y_x at v_M that Y_M is reduced for any $M \in \mathscr{M}$.

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$. It follows from the local study of Y_x at v_M that Y_M is reduced for any $M \in \mathscr{M}$.

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

Pick a place w_0 of $k(M_0)$ which is inert in $K_{M_0,Y}$, of degree 1 over a place $v_0 \notin S$ of k. Pick $x_{v_0} \in \mathbf{P}^1(k_{v_0})$ such that $\widetilde{x_{v_0}} \cap \widetilde{M}_0 = \{w_0\}$ in $\mathbf{P}^1_{\mathscr{O}_{v_0}}$.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$. It follows from the local study of Y_x at v_M that Y_M is reduced for any $M \in \mathscr{M}$.

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

Pick a place w_0 of $k(M_0)$ which is inert in $K_{M_0,Y}$, of degree 1 over a place $v_0 \notin S$ of k. Pick $x_{v_0} \in \mathbf{P}^1(k_{v_0})$ such that $\widetilde{x_{v_0}} \cap \widetilde{M}_0 = \{w_0\}$ in $\mathbf{P}^1_{\mathscr{O}_{v_0}}$.

Let $S^+ = S \cup \{v_0\}$. Let $x^+ \in \mathbf{P}^1(k)$ be S^+ -admissible, close to x at $v \in S$, close to x_{v_0} at $v = v_0$.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$. It follows from the local study of Y_x at v_M that Y_M is reduced for any $M \in \mathscr{M}$.

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

Pick a place w_0 of $k(M_0)$ which is inert in $K_{M_0,Y}$, of degree 1 over a place $v_0 \notin S$ of k. Pick $x_{v_0} \in \mathbf{P}^1(k_{v_0})$ such that $\widetilde{x_{v_0}} \cap \widetilde{M}_0 = \{w_0\}$ in $\mathbf{P}^1_{\mathscr{O}_{v_0}}$.

Let $S^+ = S \cup \{v_0\}$. Let $x^+ \in \mathbf{P}^1(k)$ be S^+ -admissible, close to x at $v \in S$, close to x_{v_0} at $v = v_0$. Then $Y_{x^+}(k_{v_0}) = \emptyset$.

Pick an S-admissible $x \in \mathbf{P}^1(k)$ such that $X_x(\mathbf{A}_k) \neq \emptyset$. If $\operatorname{Sel}_2(k, E_x)$ is generated by $E_x(k)/2E_x(k)$ and by the class of X_x , then we are done. Otherwise $\operatorname{Sel}_2(k, E_x)$ contains another class, say $\alpha(x)$ for some $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. Let $Y = Y_\alpha$. Thus $Y_x(\mathbf{A}_k) \neq \emptyset$. It follows from the local study of Y_x at v_M that Y_M is reduced for any $M \in \mathscr{M}$.

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

Pick a place w_0 of $k(M_0)$ which is inert in $K_{M_0,Y}$, of degree 1 over a place $v_0 \notin S$ of k. Pick $x_{v_0} \in \mathbf{P}^1(k_{v_0})$ such that $\widetilde{x_{v_0}} \cap \widetilde{M}_0 = \{w_0\}$ in $\mathbf{P}^1_{\mathscr{O}_{v_0}}$.

Let $S^+ = S \cup \{v_0\}$. Let $x^+ \in \mathbf{P}^1(k)$ be S^+ -admissible, close to x at $v \in S$, close to x_{v_0} at $v = v_0$. Then $Y_{x^+}(k_{v_0}) = \emptyset$.

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

(If claim proved, finished: the inclusion must be strict since $Y_{x^+}(\mathbf{A}_k) = \emptyset$.)

Olivier Wittenberg (CNRS, ENS)

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathcal{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathcal{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in Sel_2(k, E_x), \alpha(x^+) \notin Sel_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$?

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? • If $(Y_\beta)_x(k_v) = \emptyset$ for a $v \in S$:

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathcal{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? • If $(Y_\beta)_x(k_v) = \emptyset$ for a $v \in S$: OK $(x^+ v$ -adically close to x).

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?

• If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M \neq M_{0}$:

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?

• If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M \neq M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M \neq M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$ $\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M \neq M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$ $\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M \neq M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$

$$\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$$
$$\iff \operatorname{inv}_{v_{M}^{+}} A_{M,Y_{\beta}}(x^{+}) \neq 0$$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M \neq M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$

$$\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$$
$$\iff \operatorname{inv}_{v_{M}^{+}} A_{M,Y_{\beta}}(x^{+}) \neq 0$$

$$\iff (Y_{\beta})_{x^+}(k_{v_M^+}) = \varnothing$$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M = M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \emptyset \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$ $\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$

$$\Longleftrightarrow \operatorname{inv}_{v_M^+} A_{M,Y_\beta}(x^+) \neq 0 \iff (Y_\beta)_{x^+}(k_{v_M^+}) = \varnothing.$$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M = M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$ $\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$ $\iff \operatorname{inv}_{v_{M}^{+}} A_{M,Y_{\beta}}(x^{+}) + \operatorname{inv}_{v_{0}} A_{M,Y_{\beta}}(x^{+}) \neq 0$ $\iff (Y_{\beta})_{x^{+}}(k_{v_{M}^{+}}) = \varnothing.$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

- Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \varnothing$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \varnothing$?
 - If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M = M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \varnothing \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$ $\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$ $\iff \operatorname{inv}_{v_{M}^{+}} A_{M,Y_{\beta}}(x^{+}) + \operatorname{inv}_{v_{0}} A_{M,Y_{\beta}}(x^{+}) \neq 0$ $\implies (Y_{\beta})_{x^{+}}(k_{v_{0}^{+}}) = \varnothing \text{ or } (Y_{\beta})_{x^{+}}(k_{v_{0}}) = \varnothing.$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes.

• If $(Y_{\beta})_{x}(k_{\nu}) = \emptyset$ for a $\nu \in S$: OK $(x^{+} \nu$ -adically close to x).

• If
$$(Y_{\beta})_{x}(k_{v}) = \emptyset$$
 for $v = v_{M}$, $M = M_{0}$:

 $(Y_{\beta})_{x}(k_{v_{M}}) = \emptyset \iff w_{M} \text{ is inert in } K_{M,Y_{\beta}} \iff \operatorname{inv}_{v_{M}} A_{M,Y_{\beta}}(x) \neq 0$ $\iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x) \neq 0 \iff \sum_{v \in S} \operatorname{inv}_{v} A_{M,Y_{\beta}}(x^{+}) \neq 0$ $\iff \operatorname{inv}_{v_{M}^{+}} A_{M,Y_{\beta}}(x^{+}) + \operatorname{inv}_{v_{0}} A_{M,Y_{\beta}}(x^{+}) \neq 0$ $\implies (Y_{\beta})_{x^{+}}(k_{v_{1}^{+}}) = \emptyset \text{ or } (Y_{\beta})_{x^{+}}(k_{v_{0}}) = \emptyset.$

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, \mathbb{E}[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes.

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathcal{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes. Problem: must also consider β in the larger group $H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$.

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathcal{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes. Problem: must also consider β in the larger group $H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$.

Key lemma

For $\beta \in H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$, if $\beta(x^+) \in \operatorname{Sel}_2(k, E_{x^+})$, then $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$.

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathcal{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes. Problem: must also consider β in the larger group $H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$.

Key lemma

For
$$\beta \in H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$$
, if $\beta(x^+) \in \operatorname{Sel}_2(k, E_{x^+})$, then $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$.

Proof uses:

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes. Problem: must also consider β in the larger group $H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$.

Key lemma

For
$$\beta \in H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$$
, if $\beta(x^+) \in \operatorname{Sel}_2(k, E_{x^+})$, then $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$.

Proof uses:

• global reciprocity law for $\alpha(x^+) \smile \beta(x^+) \in \operatorname{Br}(k)$;

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes. Problem: must also consider β in the larger group $H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$.

Key lemma

For
$$\beta \in H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$$
, if $\beta(x^+) \in \operatorname{Sel}_2(k, E_{x^+})$, then $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$.

Proof uses:

- global reciprocity law for $\alpha(x^+) \smile \beta(x^+) \in \operatorname{Br}(k)$;
- local Tate duality: E_{x+}(k_v)/2E_{x+}(k_v) and H¹(O_v, E_{x+}[2]) maximal totally isotropic subspaces of H¹(k_v, E_{x+}[2]);

- v_0 place of k below a place w_0 of $k(M_0)$ inert in $K_{M_0,Y}$, where $Y = Y_{\alpha}$, $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$;
- $x \in \mathbf{P}^1(k)$ is S-admissible, $X_x(\mathbf{A}_k) \neq \emptyset$; $x^+ \in \mathbf{P}^1(k)$ is S⁺-admissible, $S^+ = S \cup \{v_0\}$;
- $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$ satisfies $\alpha(x) \in \operatorname{Sel}_2(k, E_x), \ \alpha(x^+) \notin \operatorname{Sel}_2(k, E_{x^+}).$

Claim: $\operatorname{ev}_{x^+}^{-1}(\operatorname{Sel}_2(k, E_{x^+})) \subseteq \operatorname{ev}_x^{-1}(\operatorname{Sel}_2(k, E_x)).$

Proof.

Let $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$. If $(Y_\beta)_x(\mathbf{A}_k) = \emptyset$, then $(Y_\beta)_{x^+}(\mathbf{A}_k) = \emptyset$? Yes. Problem: must also consider β in the larger group $H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$.

Key lemma

For
$$\beta \in H^1(\mathscr{U}_{\mathscr{O}_{S^+}}, E[2])$$
, if $\beta(x^+) \in \operatorname{Sel}_2(k, E_{x^+})$, then $\beta \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$.

Proof uses:

- global reciprocity law for $\alpha(x^+) \smile \beta(x^+) \in \operatorname{Br}(k)$;
- local Tate duality: $E_{x^+}(k_v)/2E_{x^+}(k_v)$ and $H^1(\mathcal{O}_v, E_{x^+}[2])$ maximal totally isotropic subspaces of $H^1(k_v, E_{x^+}[2])$;
- reciprocity arguments, to check $(Y_{\alpha})_{x^+}(k_{\nu}) = \emptyset \Leftrightarrow \nu \in \{\nu_0, \nu_{M_0}^+\}.$

Summary

Thus the new Selmer group is strictly smaller. Recall: we started with a class in $\operatorname{Sel}_2(k, E_x)$, wrote it as $\alpha(x)$ for an $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_5}, E[2])$, and made the following assumption on the singular fibers of $Y = Y_\alpha \to \mathbf{P}_k^1$:

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).
Summary

Thus the new Selmer group is strictly smaller. Recall: we started with a class in $\operatorname{Sel}_2(k, E_x)$, wrote it as $\alpha(x)$ for an $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_5}, E[2])$, and made the following assumption on the singular fibers of $Y = Y_\alpha \to \mathbf{P}_k^1$:

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

To ensure $X_{x^+}(\mathbf{A}_k) \neq \emptyset$, we want w_0 to split in $K_{M_0,X}$.

Summary

Thus the new Selmer group is strictly smaller. Recall: we started with a class in $\operatorname{Sel}_2(k, E_x)$, wrote it as $\alpha(x)$ for an $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$, and made the following assumption on the singular fibers of $Y = Y_\alpha \to \mathbf{P}_k^1$:

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

To ensure $X_{x^+}(\mathbf{A}_k) \neq \emptyset$, we want w_0 to split in $K_{M_0,X}$. Thus we need: Suppose there is an $M_0 \in \mathscr{M}$ such that $K_{M_0,Y}/k(M_0)$ does not embed into $K_{M_0,X}/k(M_0)$.

Summary

Thus the new Selmer group is strictly smaller. Recall: we started with a class in $\operatorname{Sel}_2(k, E_x)$, wrote it as $\alpha(x)$ for an $\alpha \in H^1(\mathscr{U}_{\mathscr{O}_S}, E[2])$, and made the following assumption on the singular fibers of $Y = Y_\alpha \to \mathbf{P}_k^1$:

Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ is quadratic (i.e., not trivial).

To ensure $X_{x^+}(\mathbf{A}_k) \neq \emptyset$, we want w_0 to split in $K_{M_0,X}$. Thus we need: Suppose there is an $M_0 \in \mathcal{M}$ such that $K_{M_0,Y}/k(M_0)$ does not embed into $K_{M_0,X}/k(M_0)$.

Condition (D) in the case of reduction type I_2

For any 2-covering Y_{η} of E_{η} with good reduction above U, there exists an $M \in \mathscr{M}$ such that either the fiber Y_M is double or $K_{M,Y}/k(M)$ does not embed into $K_{M,X}/k(M)$, unless the curve Y_{η} is isomorphic to X_{η} or to E_{η} .

• Starting with a family of elliptic curves $f : E \to \mathbf{P}_k^1$, find infinitely many fibers with small Selmer group, hence small Mordell–Weil group. Application to elliptic curves over k(t) of *elevated rank*.

- Starting with a family of elliptic curves $f : E \to \mathbf{P}_k^1$, find infinitely many fibers with small Selmer group, hence small Mordell–Weil group. Application to elliptic curves over k(t) of *elevated rank*.
- Conversely, if $f : X \to \mathbf{P}_k^1$ has no section, find infinitely many $x \in \mathbf{P}^1(k)$ for which $\operatorname{rk}(E_x(k)) > \operatorname{rk}(E_\eta(K))$.

- Starting with a family of elliptic curves $f : E \to \mathbf{P}_k^1$, find infinitely many fibers with small Selmer group, hence small Mordell–Weil group. Application to elliptic curves over k(t) of *elevated rank*.
- Conversely, if $f : X \to \mathbf{P}_k^1$ has no section, find infinitely many $x \in \mathbf{P}^1(k)$ for which $\operatorname{rk}(E_x(k)) > \operatorname{rk}(E_\eta(K))$.
- If f : X → P¹_k does not satisfy Condition (D), find many x ∈ P¹(k) such that X_x(A_k) ≠ Ø and [X_x] is orthogonal to III(k, E_x)[2] for the Cassels–Tate pairing. (Uses the full Brauer group of X.) Replace Condition (D) with higher descents?