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Intersections of two quadrics

Focus today:

X ⊂ Pn
k smooth complete intersection of two quadrics over k, i.e.

q(x0, . . . , xn) = q′(x0, . . . , xn) = 0.

A bit of geometry:

n = 3: curve of genus 1 (including all elliptic curves)
n = 4: del Pezzo surface of degree 4 (all of them)
n = 5: Fano threefold (..., Reid, Donagi, Cassels, Wang, ...).
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Rationality

X smooth projective variety over a field k.

X is rational ⇔ ∃ birational map Pdim(X)
k 99K X

⇔ k(X )/k is purely transcendental

Proposition
If X is a curve, then X is rational ⇔ X (k) 6= ∅ and g(X ) = 0.

Example
X ⊂ P3

k smooth complete intersection of two quadrics
⇒ X curve of genus 1: not rational.



Rationality in dimension 2

Theorem (Swinnerton-Dyer, 1970; Manin, Iskovskikh, 1979)
Let k be a field and X ⊂ P4

k a smooth intersection of two quadrics. Then:
X is rational ⇔ X (k) 6= ∅ and Xk̄ contains a line that meets none of its

conjugates under Aut(k̄/k).

Today, rationality completely understood for smooth proper surfaces
(Castelnuovo, Segre, Manin, Iskovskikh).



Rationality in higher dimension

Still very mysterious despite major progress since the 1970’s.

1 Noether–Fano method
(Manin–Iskovskikh for surfaces, quartic threefolds; ...),

2 unramified cohomology
(Artin–Mumford, Bogomolov–Saltman, Colliot-Thélène–Ojanguren, ...)

3 intermediate Jacobians
(Clemens–Griffiths, Beauville, Murre, ...),

4 degeneration methods
(Kollár, Voisin, ...).

Theorem (Clemens–Griffiths, 1972)
Let X ⊂ P4

C be a smooth cubic threefold. Then X is not rational.
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Theorem (Clemens–Griffiths, 1972)

Let X ⊂ P4
C be a smooth cubic threefold. Then X is not rational.

Tool: intermediate Jacobian.

X smooth projective threefold over C with h1,0 = h3,0 = 0
 J principally polarised abelian variety over C

J is built from the Hodge structure H3(X (C),Z):

J(C) = H2(X ,Ω1)
Im (H3(X (C),Z))

Clemens and Griffiths prove:
1 X is any rational threefold ⇒ J is a Jacobian of a curve
2 X is a cubic in P4

C ⇒ J is not a Jacobian of a curve
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Clemens–Griffiths over non-closed fields

Method adapted to non-closed fields (BW, 2019).

Example/Theorem (BW, 2019)
The affine threefold defined by x2 + y2 + z4 + w4 = 1 is

1 rational over C,
2 unirational over R,
3 but not rational over R.



Intersections of two quadrics in P5
k

Theorem (Swinnerton-Dyer, 1970; Manin, Iskovskikh, 1979)

Let k be a field and X ⊂ P4
k a smooth intersection of two quadrics. Then:

X is rational⇔ X(k) 6= ∅ and Xk̄ contains a line that meets none of its conjugates under Aut(k̄/k).

Theorem (BW, 2019)
Let k be a field and X ⊂ P5

k a smooth intersection of two quadrics. Then:
X is rational ⇔ X contains a line of P5

k .

History:
In 2014, question raised by Auel, Bernardara, Bolognesi, for special k such as k = C(t).
In 2019, conjectured by Kuznetsov and Prokhorov and proved for k = R by Hassett and
Tschinkel, building on our previous work on rationality via intermediate Jacobians and on
Krasnov’s topological classification of X(R).
Underlying tools later applied by Kuznetsov and Prokhorov to other Fano threefolds.
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Theorem (BW, 2019)

Let k be a field and X ⊂ P5
k a smooth intersection of two quadrics. Then X is rational⇔ X contains a line of P5

k .

Corollary (inseparable counterexamples to the Lüroth problem)
There exist a purely inseparable extension of fields k ′/k and a smooth
projective threefold X over k such that

X is unirational (over k) and Xk′ is rational (over k ′), but
X is not rational (over k).

Example
Let k = κ((t)) and k ′ = κ((

√
t)) with κ algebraically closed of

characteristic 2, and choose a, b, c ∈ κ pairwise distinct.

X :
{
tx0x1 + x2x3 + x4x5 = 0
t(x20 + ax0x1 + x21 ) + (x22 + bx2x3 + x23 ) + (x24 + cx4x5 + x25 ) = 0
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Plan for rest of the talk

Theorem (BW, 2019)

Let k be a field and X ⊂ P5
k a smooth intersection of two quadrics. Then X is rational⇔ X contains a line of P5

k .

General idea:
1 X any smooth projective k̄-rational threefold over k
 intermediate Jacobian J (p.p.a.v. over k)

+ torsors)

2 X rational ⇒ J can be found inside the Jacobian of curve

(+ torsors)

3 X ⊂ P5
k a smooth intersection of two quadrics

⇒ J cannot be found inside the Jacobian of curve

(+ torsors)
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Intermediate Jacobians over k

X smooth projective k̄-rational threefold over k.
k = C: Abel–Jacobi map CH2(X )alg

∼−→ J(C) (Bloch, Srinivas)
k = k̄: Murre (1983)
 an abelian variety J over k, and CH2(Xk̄)alg

∼−→ J(k̄)
descends to perfect k (Achter, Casalaina-Martin, Vial, 2017)

Murre’s definition will not descend to imperfect k.

What we do: mimic PicX/k . Define an fppf sheaf

CH2
X/k : (Sch/k)op → (Ab),

prove its representability, and construct a principal polarisation.
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Mimicking the Picard functor
To do (for X a smooth projective k̄-rational threefold over k)

Define an fppf sheaf
CH2

X/k : (Sch/k)op → (Ab)

prove its representability, and construct a principal polarisation.

Picard functor: T 7→ Pic(X × T ), then sheafify.

First idea: T 7→ CH2(X × T ). Fails: not a contravariant functor.

Better idea: K -theory. Jouanolou:

Ker
(
K0(Xk̄) rk×det×χ−−−−−−−→ Z× Pic(Xk̄)× Z

)
c2
∼
// CH2(Xk̄)

Definition
K0,X/k := the fppf sheafification of T 7→ K0(X × T ).

CH2
X/k := Ker

(
K0,X/k

rk×det×χ−−−−−−−→ Z× PicX/k × Z
)

Thus CH2
X/k(k̄) = CH2(Xk̄).
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Representability and rationality
Theorem (representability)
Let X be a smooth projective k̄-rational threefold over a field k.

1 CH2
X/k is represented by a smooth group scheme over k;

2 J = (CH2
X/k)0 is (canonically) a p.p.a.v.;

3 J(k̄) = CH2(Xk̄)alg, hence V`(J) = H3(Xk̄ ,Q`(2)) (Bloch).

Theorem (condition for rationality)
If furthermore X is rational, then

4 there exist a smooth projective curve B over k and a group scheme G
over k such that

CH2
X/k × G ' PicB/k ,

inducing an isomorphism of p.p.a.v.
(CH2

X/k)0 × G0 ' Pic0B/k .
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Beginning of the proof

To prove representability of CH2
X/k , may freely extend the scalars:

Lemma
Let F be an fppf sheaf on (Sch/k) and k ′/k be a finite extension.
If F ×k k ′ is representable by a smooth group scheme over k ′,

then F is representable by a smooth group scheme over k.

Hence may assume X rational: X L99 P3
k birational.



Beginning of the proof
Abhyankar, Cossart–Piltant (2009): can resolve indeterminacies.

X ′ = YN
h
��

// YN−1 // · · · // Y1 // Y0

X P3
k

oo

h birational morphism and Yj+1 blow-up of Zj ⊂ Yj irreducible regular.
All Yj are projective regular. For simplicity assume the Zj are curves.

CH2
Yj+1/k = CH2

Yj/k × PicZj/k (Thomason) ; CH2
P3
k/k

= Z ;

CH2
X/k

h∗ // CH2
X ′/kh∗

oo satisfy h∗h∗ = Id (Chatzistamatiou–Rülling).

 CH2
X/k×Ker(h∗) ∼−→ CH2

X ′/k
∼←− Z×

∏
PicZj/k

For rationality criterion: need to track polarisations and to prove the
non-smooth Zj do not contribute to the intermediate Jacobian.
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Back to intersections of two quadrics

X ⊂ P5
k smooth intersection of two quadrics.

F the variety of lines on X .

Theorem (classical in characteristic 6= 2)
The intermediate Jacobian of X is Pic0D/k for a unique genus 2 curve D.
There is an exact sequence

0 // Pic0D/k // CH2
X/k

δ // Z // 0

and identifications F = δ−1(1) and Pic1D/k = δ−1(2).



X ⊂ P5
k smooth intersection of two quadrics  intermediate Jacobian = Pic0D/k for a genus 2 curve D ;

0→ Pic0D/k → CH2
X/k

δ
−→ Z→ 0 ; variety of lines F = δ−1(1) ; Pic1D/k = δ−1(2).

Assume X is rational, so CH2
X/k
� � //

∏
PicBj/k

yy

for smooth projective
connected curves B1, . . . ,Bm over k, compatibly with polarisations.

May assume Pic0D/k = Pic0B1/k , and then D = B1 (Torelli).

0 // Pic0D/k� _
��

// CH2
X/k� _

��

δ // Z� _

��

// 0

0 //
∏

Pic0Bj/k
pr1
��

//
∏

PicBj/k
pr1
��

//
∏

NSBj/k
pr1
��

// 0

0 // Pic0D/k // PicD/k // Z // 0

so [F ] = n[Pic1D/k ] in H1(k,Pic0D/k) for some n.

As [Pic1D/k ] = 2[F ] and 2[Pic1D/k ] = 0, get [F ] = 0, hence F (k) 6= ∅.


