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I. Introduction.

Let 81 and B> be fixed real constants. Suppose B is Brownian motion on the real line
issuing from 0. Associated with the equation

t t
(1.1) Xt(:l?) =x+ B+ (1 / ds 1(Xs($)S0) + 52/ ds 1(Xs(:1:)>0)a
0 0

for x € R and ¢ > 0, is a stochastic flow. It has been shown by Bass and Burdzy [3],
and we will also demonstrate below, that on the filtered probability space (€2, (B)i>0,P),
where {B;,t > 0} denotes the natural filtration generated by B, there exists a random
flow of homeomorphisms of the real line (X;,¢ > 0) such that for each z and ¢ the above
equation holds. For all ¢ the map x — X(z) is increasing with continuous and strictly
positive derivative which we denote as DX;(z). Because of the discontinuity in the drift
term of equation (1.1) the map X; cannot be expected to be C2 or better, see e.g. [6], [11]
for some general references.

The main result of this paper is the description of the law of the map Xr(-) for
a natural family of stopping times 7. This description takes a form very similar to the
classical Ray-Knight theorems concerning the occupation density of Brownian motion taken
at certain stopping times. We will find that £+ — DXr(z) is a diffusion process and
determine its generator which is closely related to the hypergeometric equation.

Before proceeding let us clarify the elementary relationship existing between equation
(1.1) and the presentation used by Bass and Burdzy [3]. For an arbitrary z put X, =
Xi(z) — By and B, = —B,, then we have

(1.2) %z{ﬁl it X <B g —u
dt B2 if X: > By
We have said that that we are going to describe the law of (DXr(z), z € R). Such
a result admits two other important interpretations by virtue of the following two results.
The first completes a result due to Bass-Burdzy [3] — however they chose to take a different
definition of local time leading to the appearance of a factor of 2.

Proposition 1.1. With probability one there exists a bicontinuous process (L¥;x € R, t >
0) such that for every « the process (L¥;t > 0) is the semimartingale local time at zero for
(X¢(z),t > 0). Moreover

0X:

(1.3) DXy(z) = 5t(z) = exp ((,5'2 - ,31)Lf).

Thus we will obtain descriptions of families of local times at various stopping times-
but note that the family is indexed by the starting point not (as is usually the case) the
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level at which the local time accrued, see also [2] and [5]. However there is a natural way
to relate these local times to the occupation measure of a single process. For any ¢ the
map X; is bijective and so there is a unique (random) z such that X;(z) = 0 — we denote
this by X;*(0).

Proposition 1.2. Almost surely, the process (X; '(0);t > 0) admits a bicontinuous oc-
cupation density (pf,t > 0,z € R) determined by

(1.4) [ rxonas= [ ae s ot

for any bounded test function f. In fact, we have pf = k(L¥), for x € R,¢ > 0, and

(B2—B1)t_1 .
%a if B # Po,
(1.5) O RS £>0

Ea if 51 = 527

In this paper the process (X; '(0),t > 0) plays a natural role in the study of the flow
X; more precisely, we shall study the filtration generated by its excursions below a varying
level. The analysis is similar to the standard situation related to Brownian motion case
(cf. [9, 14], see also [16, 17]). The process (X; '(0),¢ > 0) merits a more complete study,
in particular, it is not expected to be a semimartingale (in contrast with the structure of
a flow of smooth maps, see [11]).

Here, we consider two kinds of stopping times:

(1.6) T(a) o inf{t > 0: Xy(a) = 0} = inf{t > 0: X;1(0) = a}, a €R,

(1.7) 7r(a) o inf{t > 0:L{ > r}, r > 0.

We shall describe the laws of the local times processes (L%, z € R) at times T' of the
form T = T'(a) and T = 7,(a), for different values of the parameters 8; and f2. Recall
(1.5) for ().

Theorem 1.1 (Transient and Recurrent cases). Let $; > 0 and fix a < 0. The
process (L;Jé'lf), z > 0) is a time inhomogeneous diffusion starting from 0 with infinitesimal
generator:

d? d
(1.8) 26(6) 275 + 2(11(099_) _ 51m(£)) 2 LeR,.
The process (L;Jé'lf), T > a‘) is absorbed at 0. If additionally B2 > 0 (transient case), L%, is
exponentially distributed with parameter (s; conditioning on {L% = r}, (Lgo, T > O) and
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(Lgom, x> O) are two independent diffusions starting from r, with infinitesimal generators
respectively given by:

4
de

02 d d?
oz 2B 260+ 2(1 - ﬁm(ﬁ))

(1.9) 2k(¢) TR

LeRy.

(L%,,x > 0) is absorbed at 0.

Remark 1.1. By using a different method, Bass and Burdzy [3] have obtained (1.9) in
the case 81 > B2 > 0. For every fixed z > 0,

L* has the same law of LY, which is in fact the stationary distribution of the diffusion
(L3Z,z > 0). By transience we mean here X;(z) — oo, as ¢ — oo, for every & € R. The
case that X;(x) — —oo as t — oo (iff £1 < 0 and B3 < 0) follows by symmetry. The reason
why we take a < 0 is to ensure T'(a) < oo, with probability one.

Theorem 1.2 (Recurrent case). Suppose 81 > 0> fs. Fixr >0 and b € R. The two
processes (Lb"'(b),x > 0) and (Lb = 0) are independent (inhomogeneous) diffusions,

both starting from r and absorbed at 0, with respective infinitesimal generators:

d? d
(1.10) 26(0) 25+ 2(Logazsr = Bin(l)) 75, LER,.
1.11 2k (L —d2 21 d /
(1.11) ( )d£2 + ( (o<z<b+) + Bak(£ )) L €ER,.

Remark 1.2. In the case #1 = B2 > 0, Theorems 1.1-2 give the classical Ray-Knight
theorems for Brownian motion with a non—negative drift, see e.g. Norris et al. [14].

In the bifurcation case (81 < 0 and B3 > 0), Bass and Burdzy [3] showed there exists
a unique (random) critical level £ € R such that with probability one,

— 00, if x>€
(1.12) Xi(x) {—> —00, if  z<¢, t— oo
hits 0 infinitely often, if x=¢

It turns out that with probability one, 7,.(§) < oo, for every r > 0. We have

Theorem 1.3 (Bifurcation). Suppose 81 < 0 and B2 > 0. Fix r > 0. We have

23152 ox
B1 — P

(1.13) P(g e da) /da = D ( — 28501 450 — 2,6’1a]1(a<0)).
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Conditioning on {£ = a}, the processes (La"'m),x > 0) and (LZ:(z),x > 0) are two in-

7r(a
dependent (inhomogeneous) diffusions starting from r and absorbed at 0, with respective

infinitesimal generator given by:

(1.14) 2m(£)—2 + 2(]1 e<a-) + 08 H(ﬁ)) — LeR;.
dﬁz (0<z<a™) ! dﬁ’

(1.15) 2m(£)—2 + 2(]1 +y — B H(ﬁ)) — LeRy.
102 (0<z<at) 2 Tk

Moreover, conditioning on {¢ = a}, (L3¢, > 0) and (L% ®,z > 0) are two indepen-
dent (inhomogeneous) diffusions, with infinitesimal generators given by (1.14) and (1.15)
respectively.

Remark 1.3. Conditioning on {{ = a}, L% = oo and it is more convenient to consider
(1/DXoo(a + z),z > 0) and (1/DXo(a — z),z > 0) (recalling (1.3)), which are two
independent Jacobi type diffusions, starting from 0, see (1.18) below. Theorem 1.3 could
be obtained using a time reversal argument from Theorem 1.2, but this will not be presented
in this paper.

Each of the above theorems can be expressed as a description of z € R — D Xr(x) as
a diffusion. More precisely, for x — L7. associated with a generator

d? d
1.16 2(8) 2 2( ¢ )—,
(1.16) K(O) S +2( + 7m0 &
with 71,72 € R being two constants, elementary computations show that x — DXr(z)
given by (1.3) has generator
2 d

(1.17) 2(B2 — 1) (€ — 1)% + 2ﬁ((72 + B2 = )l —1) +71(B2 — 51)) -

The range of DXr(z) is determined as follows: DXr(z) = 1if B2 = f1; DXr(z) € [1,00)
if B2 > B1 and DXT(w) S (0, 1] if s < f1.
Also, the process & — 1/DXr(z) is a diffusion with generator

(1.18) 2(Bs — B1)e(1 — z)j—; + 2((/32 —B1— 7)1 =€) —y1(B2 — /31)£) %

These latter processes, sometimes called Jacobi processes, are well-known and play an
important role in many models of genetic frequencies, see for example [8]. They have also
appeared in Ray-Knight type theorems before, see [21]. This is no strange coincidence —
there is a connection between the flow we are considering here and the problem of describing
the trajectory taken by Brownian motion conditional on knowing its occupation measure
at some stopping time — see also Aldous [1]. This connection will be explored elsewhere.
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The rest of this paper is organized as follows: In Section 2, we prove the existence of
the flow of homeomorphisms associated with (1.1) and Propositions 1.1-2. In Section 3,
using Tanaka’s formula, we study the filtration generated by the excursions of X ~1(0) and
prove Theorems 1.1 and 1.2, whereas Section 4 is devoted to the study of the bifurcation
case, and to the proof of Theorem 1.3. In Section 5, we prove a result of the differentiability
of one-dimensional flow with non-smooth coefficients. In Section 6, we consider a simple
change of measure for the flow.

Acknowledgements. We are very grateful to Nathalie Eisenbaum, Jean Jacod and Marc
Yor for helpful discussions. We thank an anonymous referee for her/his comments and
suggestions.

2. Removal of drift and Tanaka’s formula

Define
2.1) sl Lo ye?y i a<0
' f(f dy e—262y if x>0
(22) 2 E (X W) £20, yeT= (s(—00), 5(o0),

where s~! denotes the inverse of s, which is the scale function of X;(z). Therefore,

¢
(2.3) ZW=v+ [ o(ZWw)dB., wel 120,
0
with
dof o 1,0 [1—2B12 it 2<0
(2.4) o(z) = s'(s (z))—{1_252z f 250 z el

Observe that for each y € I, the explosion time of (2.3) inf{t > 0 : Z;(y) ¢ I} = o0
with probability one, and that ¢ is a Lipschitz function. According to a continuity result
due to Neveu (cf. Meyer [13, Theorem 1] and Uppman [20]), there exists a version of
(Z(y),t > 0,y € I) such that with probability one, (t,y) € Ry x I — Zi(y) € I is
continuous, and for all y € I, the process Z.(y) satisfies (2.3). We shall make use of this
bicontinuous version of Z, which in view of (2.1)-(2.2), determines a bicontinuous version
of X.



Lemma 2.1. Fix 1,82 € R. With probability one, we have

(2.5) Z(y1) < Zs(y2), Vit>0, Yy <o, y1,Yy2 € 1.

0Z, (y)
oy

where N def _ fg (28117, (4)<0) + 2821z, (4)>0)) B is bicontinuous in (t,y) € Ry x R.

1
(2.6) = exp (Ngf - 5<Ny>t), Vyel, t>0,

In view of (2.1)-(2.2) and Lemma 2.1, we deduce easily from (1.1) the surjectivity on
R of X;(-) for each ¢ > 0. Hence, X is a C'-homeomorphism flow on R.

Proof of Lemma 2.1. (2.5) follows from [22, Theorem 1.1]. The differentiability of Z;(-)
is well-known in the case that ¢’ is Holder continuous (see e.g. Kunita [11, Theorem 3.1]),
but here ¢’ has a discontinuity at 0. The condition on ¢ can be weakened because of the
simple structure of R'; the proof of (2.6) is given in Section 5. 0

Applying Tanaka’s formula to X.(z), we have

t t
- - 1
(2.7) Xt (:E) = —/ ]1(Xs(:1:)§0)st - 51/ ]I(Xs(m)sg)ds + ELf,
0 0

t t
1
(2.8) X (@) =a"+ /0 I(x, (@)>0)dBs + 52/0 Iix,@>0ds + 5 L,

where here, we can take (2.7) or (2.8) as a definition of local times (Lf) appeared in
Proposition 1.1. L¥ is the (semimartingale) local time at 0 up to ¢ of X.(z).

Proof of Propositions 1.1 and 1.2. Recall (2.2) and let ydéfs(x) € I. Using Lemma
2.1 and the fact that {Z;(y) < 0} = {Xs(z) < 0}, we get

1 ' t
NY — 5 (V) = —25 /0 1(x, ()<0)dBs — 267 /0 L(x, (z)<0)ds

t t
— 20> / 1(x,(s)>0)dBs — 253 / 1(x,(z)>0)d8
0 0

2.9) = (B — BULE + 261 (X7 (0) — 57) — 262(X (2) — 27),
which in view of (2.6) and (2.1) yields (1.3) and that (L) is bicontinuous. Proposition
1.1 is proven.

To show Proposition 1.2, notice that for o > z; € R, we deduce from (1.3), (1.1)
together with the monotonicity that

/ 2 dy exp ((/32 — 51)Lil) = X¢(wo) — X¢(21)

x1 .

(2.10) = (2 — 1)+ (B2 — /31)/0 ds L(x,(21)<0< X, (22))
¢

(2.11) = (z2 — x1) + (B2 — 51)/0 dS]l(mngs_l(O)<m2)’
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which in view of the continuity of (L), implies (1.4)—(1.5). 0

3. Transient and Recurrent cases

Throughout this section, we suppose f; > 0. There are only two possibilities:

(3.1) Transient case: if B2 > 0 (and B; > 0), then I = (—o0, ﬁ), and with probability
one, for every z € R, we have X;(z) — oo as t — oo; hence X; '(0) — —o0, a.s.

(3.2) Recurrent case: if 82 < 0 (and f; > 0), then I = R, and X;(z) is recurrent; hence
with probability one, X;!(0) = 0 infinitely often as ¢ — oo.

Firstly, we study the filtration generated by the excursions of X ~1(0) below a varying
level. For t > 0 and x € R, define

¢ ¢
def
(33) At(:l?) = /0 dS]l(Xs(:z:)>0) = /0 dS]l(X;1(0)<:1:)’
(3.4) as(z) &ef inf{s > 0: As;(z) > t},
(3.5) Ex E 0{Xo,0)(@), t 20} =0 {X7}, (0), t >0},

where the equality in (3.5) will be demonstrated below in the proof of Lemma 3.1 (cf.
(3.9)). Notice that in the transient and recurrent cases (3.1) and (3.2), ay(z) is almost
surely finite, and &, is well-defined. The following key lemma enables us to understand
the martingales related to (&, z € R):

Lemma 3.1. (£,,z € R) is an increasing family of o-fields. Furthermore, for every z € R
and H € L?(&;), there exists a (B;,t > 0)-predictable process (hy,t > 0) such that

o0

o0
(3.6) H=EH + /0 hs U(x, (z)>0) dBs = EH + /0 hs Lix 10y <z) B

and E [;° h?]l(x—l(o)<m)d3 < 00, where (B;,t > 0) denotes the natural filtration generated
by {Bt,t > 0}

Proof of Lemma 3.1. For notational convenience, we write in this proof ¥; = X;*(0) for
t > 0. (3.6) is folklore for the filtration generated by Brownian excursions below a varying
level, and it follows easily from the use of Tanaka’s formula and time-change (see e.g. [9]
and [14] together with their references), here we prove (3.6) by using the same idea. Fix
z € R. Using Dambis-Dubins-Schwarz’ continuous martingale representation theorem (cf.
[15, Theorem V.1.6]), we deduce from (2.8) that

1
(3.7) 0 < Xoy(0) (@) = X3 0y (@) = & + 7(2) + Bat + 5La t>0,

a(z)’
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where v;(x) def foat(m) 1(x,(z)>0)dBs, for t > 0, is a Brownian motion. Applying Sko-
rokhod’s lemma (cf. [15, Lemma VI.2.1]) gives

1 +
(3.8) L2y = swp (o —y(@)=Bas) ,  t20,

2 0<s<t

which implies that £ C o{v(z),t > 0}, and the reverse inclusion follows from (3.7), since
t = LF, , Is the semimartingale local time at zero of ¢ — X,,(;)(2). Hence we have
Ex = o{v(z),t > 0}, and (3.6) follows from the representation theorem for Brownian
filtration (cf. [15, Proposition V.3.2]) and from the time-change oy (z).

The important fact to verify is that &£, is non-decreasing in x € R, but it suffices to
show the equality in (3.5), i.e. (recalling Y. = X~1(0))

(3.9) Er = O'{Yat(m), t > 0},

since by time-change (remarking that oy (z) = inf{s > 0: [ Iy, <z)du > t}), the o-fields
of the RHS of (3.9) are always increasing in z.
To show (3.9), using Proposition 1.2, we have

¢
(3.10) KLY () = lm — [ dsly_ccv, ., <y) y < x.

ag (x) e—=0y €

Since X,(Y,) = 0, we deduce from (1.3) and (1.4) that

(3:11)  Xg,@)(7) = Xoy@) (#) = Xay(o) Yau(a) = / dy(1+ (B2 — BL)K(LY, 1))

Yo, ()

showing that £, C 0{Yy, (), t > 0}. To prove the reverse relation, it suffices to show

(3.12) {Ya,2) <y} = {Xa,(2)(y) >0} is E;-measurable , y <.

To this end, applying (2.10) to z; défy, To df o and ¢ replaced by oy(x) gives

t
(3'13) Xat(:z:) (y) =Yy—x + Xat(:z:) (17) + (51 - 52) / ]I(Xau(w)(y)sg) du, t Z 0.
0

The process t — X, (5)() is a continuous semimartingale (cf. (3.7)-(3.8)), therefore using
Zvonkin [24]’s method (cf. also [19]), the equation (3.13) has the pathwise uniqueness, and
(3.12) follows, which completes the proof of (3.9), as desired. 0

Recall (1.6)—(1.7). The following results (Lemmas 3.2 and 3.3) constitute the core of
the proofs of Theorems 1.1 and 1.2.



Lemma 3.2 (f; > 0). Fix a < 0. The process z € [a,00) = [, T(a) ]1(a<Xs (0)<z) 4Bs
is an £z-adapted continuous martingale with increasing process x — fa T(a)) dy. Fur-
thermore, in the transient case 2 > 0, the same conclusion holds if we replace T'(a) by
00.

Remark 3.1. Except for the case 8o > (1 = 0, fo T(a) ]1(a<X;1(0)<m) dB, is a square-
integrable martingale.

Proof of Lemma 3.2. Let z > a. Observe that Xp(g)(x) > 0. It follows from (2.7) that

_ _ T(a) T(a) 1 m
(3.14) 0= Xp,)(2) =27 - /0 Lix;1(0)20)08s = P /0 Lix;t >0 ® + 511

Using (3.14) for L%, | — L% | together with Proposition 1.2 gives
T(a) T(a)

T(a) z
(3.15) Ly = 2(a” —27) — 2 L ,<x-1 (0)y<z) 3B 2,31 k(L T(a))d
0

Now, we show that fT(a) ]1(a<X;1(0)<m) dB, and Lﬁq(a) are £,-measurable. In fact, in view
of (3.15), (3.3) and Proposition 1.2, it suffices to show that Ap(,(z) is £;-measurable.
Recall (3.4). Observe that for ¢ > 0,

{Ar)(@) <8} = {T(0) Sau(e)} = {_in X;'(0) <a} ={ inf X7, (0) <a},

which is £;-measurable by using (3.9), as desired.
def T(a)

Write M, fo ]1(a<Xs (0)<2)
integrable, we would deduce easily from Lemma 3.1 that (Mg, > a) is a martingale. In
fact, for y > & > a and for every bounded &,-measurable variable H, it follows from (3.6)
that

oo T(a)
E(H (My ~ Mw)) = E((EH +/0 hall(x 1 (0)<a) 4Bs) /0 lesxz @< dBS) =0

yielding the martingale property. Furthermore, x — M, is continuous (see (3 15)), and

dB, in this proof. If we have proven that M, is

its increasing process is given by (M), = fOT(a) Lcx-1(0)<s) 48 = [T k(LY T(a ))dy by
Proposition 1.2. This can be immediately obtained by using the following well-known

(2™ = M) o ™

method: Considering a sequence of subdivisons A, = (zy ' = < T = Y),

with |A,| % sup1<z<]n ™ — 2{™ | - 0 as n — co. It is easy to see that
, [T
Z ((Mmgn) _Mmgi)l) _/0 ]l(mgi)ng (0)<m("))ds)
An
T(a) s
=22 /0 4Bs Biym) <x 7 0)<al) /0 ABu Lo <x7 0)<a ™)
Ap
2y, An| =0,



as desired (cf. Bouleau [4]). Let us show that E|M,| < co. We distinguish two possi-
ble cases, B2 > 1 > 0 and 1 > fB2. If 54 > B2, it follows from Proposition 1.2 that
fOT(a L x-1(0y<s) 98 = [T k(L 7)) < 525 ﬂ (z — a), implying in view of Doob’s in-
equality that EM2 < oo.

It remains to treat the case f2 > (1 > 0. We have from (2.8) that

tAT (a)

1
(3.16) EXt-'/_\T(a) (a) =zt + 52E/() ]I(X;1(0)<m) ds + EELf/\T(a)-

On the other hand, we deduce from (2.11) that

tAT (a)
(3.17) Xt/\T(a)( ) r—a + (52 - 51) / ]1(a<X;1(0)<:1:) dS,
0 i

since X;ar(q)(a) < 0. In view of (3.16) and (3.17), we have

51E /0 ]].(aSXs—l(O)<m) dS + EELtm/\T(lI) S a_ - 1[7_,
which yields, by letting ¢ — oo and using (3.15) that E‘ T(a) ]1(a<XS_1(0)<$)dBS‘ < 00, as
desired. The case 33 > 0 with T'(a) replaced by 0o can be proven in the same way. 0

Lemma 3.3 (recurrent case). Assuming 1 > 0 and B2 < 0. Fixb € R and r > 0.
The process © € [b,00) — for(b) 1< x-1(0)<z) @Bs is an Ey-adapted continuous square-
integrable martingale with increasing process x — [, (LY (b)) dy.

Proof of Lemma 3.3. It is easy to see that fOTT(b) 1

this is well-known in the case $; = B2 = 0 (i.e. the standard Brownian motion case) and
. " (b

in the case of 8; > (35, we have from Proposition 1.2 that fOT ®) Ly x1 (0)<z) 95 < <55 ﬂ2
as desired. The remaining claims can be proven in exactly the same way as in the proof

of Lemma 3.2. 0

(<X (0)<z) dB, is in L2, in fact,

Proof of Theorem 1.1. In view of Lemma 3.2 and (3.15), we have that

(3.18) Ly =2(a" —z7) - 2/a ‘/H(Lg,(a)) aw, — 251/a H(qu(a))dy, z > a,

for some (&,)-Brownian motion W. This equation admits a unique solution in law (cf.
[18, Corollary 10.1.2]). Hence (1.8) follows.

Now, we consider the transient case that 81 > 0 and B3 > 0. Let x > a with an
arbitrary but fixed ¢ < 0. By applying (2.7) to X, (z) — X, (a) and letting ¢ — oo, we
obtain

o0 o0
L3 =L +2(a” —27) - 2/0 Lacx; (0)<a) #Bs — 251 /0 Lacx; (0)<a) 35
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which in veiw of Lemma 3.2 and Proposition 1.2 yield that

(3.19) L =L% +2(a —2/ \/R(LL) dW (y —2,31/ v/ K(LL) dy,

with some (&;)-Brownian motion W hence W is independent of &,. Since a is arbitrary,
it follows from (3.19) that {L% ,z € R} is a diffusion with generator given by (1.9).

Finally, it is elementary to verify that the exponentional distribution of parameter 3,
is the unique stationary distribution of the diffusion (L3 ®,x > 0). To end the proof of
Theorem 1.1, it suffices to

show that for every fixed a < 0, L% has the same distribution of L. Let X, (z) &f XutT(a) (X;(la)( x)
for u > 0,z € R, then Xisa copy of the flow X. Observe that L% equals the local time
at zero of ()?u(O), 0 < u < 00), hence LY aw L%, completing the proof. 0

Proof of Theorem 1.2. Consider first > b. Since X, )(z) > X, ) (b) = 0, we have
from (2.7) that

7 (b) 7 (b) 1
0=X_@@)=2" - /0 Lix;1 (0)>2)4Bs = Bu /0 Lix; 105098 + 517, @)

which, by considering Lfr(b) — L’;T(b), implies that

7r(b) T
(320) L2 4 =r+2(b"—27) -2 Lo x:1(0)<a)@Bs =261 | w(LY )dy,
0 b

whereas using Lemma 3.3

(3.21) LZ gy =r+2(b" —2/ EEE ) AWy, — 2,6'1/ K(LY (),

with some (€,)-Brownian motion W, independent of &,. ;From this, (1.10) follows, and
{L? T2 b} is independent of {L? NI b}. Finally, remark that (1.11) follows from

(1.10) and the following symmetry property: precisely, let Xt( ) = —Xt( z),t >0,z €R
and define Lf, 7r(a) related to X in the same way as L?,7.(a) are to X. Therefore, X is a
recurrent flow associated with (—f2, —f1) in the same way as X is with (81, 82). We have

{fﬂ” 5y © > —b} = {L7 ), < b}, and the desired result follows. 0

4. Bifurcation case

Throughout this section, we suppose that 8; < 0 < 3. The existence of the critical
level ¢ involved in (1.12) can be proven quickly as follows: Recall (2.1)—(2.3). Since
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s(—o0) =1/(2B1) > —oo and s(oc0) = 1/(282) < oo, we have that for every z € R, almost
surely, either X;(xz) — oo or X¢(z) — —oo. From this fact, together with the increasing
property in z of X;(x), we deduce easily the existence and uniqueness of a critical level
¢ verifying the two first properties in (1.12). The recurrence of X.(¢) is shown by (4.5)
below.

We deal with this random level ¢ by describing the flow conditional on {{ = a} with
a € R (in fact, this is equivalent to enlargement of filtration, see e.g. Yor [23] and the
references therein for the latter). Using the scale function s defined in (2.1), we have

(e <) =2 i 1t = )

_ s(z) — s(=00)

s(00) — s(—00)

1+ L2622 if 5 >0
(4.1) —{ 8261 =y

B2 =21z ifz<0 (@),

yielding (1.13). For fixed ¢ > 0, put X, (z) dzefXHu(Xt_l(x)) for u > 0, then X is a copy
of the flow X, and independent of B;. Consequently, we have

P(g <z| Bt) - P(ulggo)?u(xt(z)) - \Bt) = h(Xi(z)), t>0,z€R
Hence, we have from (1.3) that
(4.2) P(s € da | Bt) Jdz = K (Xy(z)) DX4(z) = K (Xs(z)) exp (B2 — B)LE).

Fix o € R and write P* for the law of the flow X conditioned on {£ = a}, which is given
by the h-transform as follows:

dpe

e af M (X (@)DXe(a)

(43) 5, O

The following result describes the law of the conditioned flow X under P¢:
Lemma 4.1. Fix a € R. There exists a (P*, B, ¢t > 0)-Brownian motion (ﬁt,t > 0) such
that with probability one, for all x € R and t > 0, we have

t t
Xi(x)=x+4 By + 1 / Lix,(z)<0)ds + B2 / 1(x,(2)>0)ds
0 0

t t
(44) — 251 / ]I(Xs (a)SO)dS - 252/ ]I(Xs(u,)>0)d3.
0 0

12



Consequently, we have under P* that

— 00, if T >a
(4.5) X (x) {—) —00, if z<a , t — 00, a.s.
recurrent, if r=a

In particular, under P?, lim;_,, Y; — a, a.s., and a is the recurrent point for Y.

Proof of Lemma 4.1. From (4.1)-(4.2) and (2.9) (with z = a), we get

W (Xi(a)) DXy (a)
K (a)

t t
= exp (—251 / 1(x, (a)<0)dBs — 27 / 1(x,(a)<0)ds
0 0
t t
- 252/ 1(x,(a)>0)dBs — 25%/ ]I(Xs(a)>0)d3)'
0 0

Girsanov’s transform says that

t t
(4.6) By def By + 284 / ]I(Xs (a)go)ds + 2085 / ]I(XS (a)>0)d3,
0 0

is a (P?, (B;))-Brownian motion, and (4.4) follows.

The convergence towards oo and towards —oco in (4.5) follows from the definition of
¢, and from the fact that P* = P( - |¢ = a). By taking z = a in (4.4), the recurrence of
X¢(a) follows. 0

Fix a € R and consider x > a in the sequel. We shall work under P?. Define
Ai(z), (), €, via (3.3)-(3.5). Remark that under P*, ay(x) < oo, a.s. Using (4.6) and
(2.8) by replacing ¢ by ay(x), we have

Xoy(@)(T) = X;t(m) ()
t t
1
(4.7) =zt + Wt(fﬂ) + Bat — 2,31/0 H(Xas(z)(a)SO)dS — 2,32/0 ]I(Xas(w)(a)>0)d3 + §L§t(m)’
where Wt(m) def foat(m) 1 Xs(m)>0)d§s,t > 0, is the Dambis—Dubins—thuwarz Brownian mo-
tion associated with the continuous martingale ¢ — fg 1 x,(z)>0)dBs. Notice that W@ is
a P*-Brownian motion. The following result is the key to our analysis of local times under

P* (notice that (3.6) is not useful since B is a semimartingale, but not a martingale under
P*):

Lemma 4.2. For every x > a, we have
(4.8) £ = o{W )t > 0}.

13



Hence, for H € L? (IP’”, Sm), there exists some predictable process (hs) such that

o0
~

00
(49) H=FEH + /0 hs ]I(Xs(:z:)>0) dB; = EH + /0 h ]I(X;1(0)<:1:) dB;.

Proof of Lemma 4.2. For z = a, since X, (5)(a) < 0,a.s., (4.8) follows immediately
from the Skorokhod reflection lemma for (4.7) (cf. (3.7)—(3.8)). Consider z > a and write
for simplification in this proof

def def

(4.10) & = Xat(m)(il?) > 0, e = Xat(m)(a) < &, t>0.

By using (2.10), we have by time-change that

t
(4.11) S=m+z—a+(B2— /31)/0 1, <o) ds.

We rewrite (4.7) as follows:

t
1
(4.12) 0< & =at+ W — ot +2(8, — Br) / Ln <o) ds + 5 Le(t),
0

where L¢(t) denotes the (semimartingale) local time at 0 of ¢ up to time £. Consider
(&>Mt) >, 3s a solution of the system of equations (4.11) and (4.12). It suffices to show
the pathwise uniqueness for (4.11)-(4.12), the proof is similar to the case of perturbed
Brownian motion studied by Le Gall and Yor [12]. Denote by (W}) the natural filtration
generated by W@,

Firstly, we suppose a > 0, hence ¢y = x > 0 and 79 = a. We show that there exists a
unique way to construct (&) and (7;) from the path of B. Let Hy (€) & inf{t > 0:& =0}.

For 0 <t < Hy(£), we have

t
(4.13) & =1+ W = Bat +2(Bs — 1) / Ly, <o) ds,
0
t
m=a—x+& — (B2 — /31)/ Ly, <0) ds
0
t
(4.14) =a+ W = ot + (B2 — B1) / L(y,<0) ds-
0

It is clear that the system of equations (4.13)—(4.14) admits pathwise uniqueness. In fact,
by using Zvonkin’s method for (4.14), n is the unique strong solution of (4.14), which also
shows the measurability of & with respect to W, as desired. Therefore Hi(€) is a (W)
stopping time, and o{n;, &,t < H1(€)} C Wa, (¢). If H1(€) is infinite, we have shown the
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unique way to construct £ and ), as desired. On {H;(§) < oo}, since g, ¢y = 0, we have
N, ¢) < 0, and we define Hi(n) o inf{t > Hi(€) : my = 0}.
Let i = meyarye) — M (e)r &= bovrme) — Emnie) = Gy and Wy T Wy o —

Wl(q )(g) for t > 0. W is a Brownian motion independent of Wy, (€)- Write (Wt) for the

natural filtration generated by W. Notice that for 0 < t < Hy(n) — Hy(£), we have
it = & — (B2 — B,
€= Wi+ (B2 — 2B1)t + 3 Lg(t),

(4.15)

where L~( ) denotes the local time at 0 of ¢. Hence by the Skorokhod reflecting lemma,

gt = (/32 - 251)75 + SUP0<s<t( Ws — (52 - 251)3) fof t < H1(77) - Hl(f); and
Hi(n ) Hy(§) = inf{t > 0: 7% = —nm, ¢} = inf{t > 0: & — (B2 — B1)t = —nm, e}
hence is a W stopping time. Therefore, we have shown that (7;,&,0 < ¢ < Hi(n) —
H,(§), Hi(n) — Hi(€)) are Wy, (n)—H, (¢) -Tneasurable.

Notice Hi(n) — H1(§) < oo,a.s. and &g, ;) > 0,a.s. We iterate this procedure by

defining H,(¢) & inf{t > H,_1(n) : & = 0}, and H,(n) ¥ inf{t > H,(¢) : 3 = 0}, for

n > 2 (with conventions that inf ) = co and H,(n) = oo if H,(§) = 0c). Therefore we see
that H, () is a W-stopping time, and o {&;, n¢,t < Hy(n); Ha(n)} € Wa, (-

The only thing left to verify is that lim, ., H,(7) = 0o, a.s. But this is easy, for on
{H,(n) < oo}, we have H,(n) > >_p_; (Hx(n) —Hg(€)), the sum of n iid positive variables,
hence H,(n) — oo, a.s., as desired.

The case a < 0 can be treated in the same way by considering firstly the return time
at 0 of . The details are omitted. O

Proof of Theorem 1.3. Let z > a. Using (3.20) with b = a, and (4.6), we have
7r(a) . z
(4.16) LI y=r+2(a" —z7) -2 /0 Lo<y,<z)dBs + 261 / k(LY (a)dy.
a

In view of Lemma 4.2 and (3.5), we see that f ]1(a<y <m)st is a continuous
(local) (P*, (£;))-martingale, with increasing process z — [ k( L7 (a)) dy. It follows that
{La (a), y > 0} is a diffusion with generator given by (1.14), and independent of &,. Hence
{La oy Y2 0} is independent of {LZT_(Z), y > 0}. The results about {LZT_(Z), y > 0} follow
from symmetry as done in the proof of Theorem 1.2. The process {L%Y,y € R} can be
treated in the same way. O

5. Differentiability of a real-valued flow
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Let I C R be an open interval (finite or not). Consider the following equation

(5.1) Zy(@) = z+/0 o(Z,(x))dB,, =, Zu(z) € I,

where o : I — (0, 00) is a globally Lipschitz continuous function which piecewisely belongs
to C1#, i.e. there exist j numbers a1 < a2 < ... < a; in I such that on I\{a;,1 < < 5}, ¢
exists and is uniformly Holder continuous of order 0 < o < 1. We suppose that o satisfies
Feller’s test of non-explosion (cf. Karatzas and Shreve [10, Theorem 5.5.29]) such that for
every ¢ € I, inf{t > 0: Z;(z) ¢ I} = oo with probability one.

Lemma 5.1. With probability one, we have

(5.2) %(m) = exp (M (a) - %(M(@)t), £>0, zel,

where My (x def fo )) Lz, (z)#a:,1<i<j) ABs, for (t,z) € Ry X I, admits a bicontin-
uous version.

Before the proof, we would like to say that (5.2) is well-known if o is smooth (see
e.g. Kunita [11]). In fact, we suspect that (5.2) itself, or something stronger still, is also
well-known. Unfortunately, we were not able to find it ourselves in the literature.

Proof of Lemma 5.1. Denote by U;(z) the exponential term on the RHS of (5.2). We
follow the method in Dellacherie et al. [7, pp. 369], and prove that with probability one

(5.3) (t,z) e Ry x I — U(x) is continuous,
54 | e de = [ () Z(w) do

for all h € C°(I) smooth and with compact support in I, and the desired differentiability
of Z;(-) follows. For notational simplification, we consider the case j = 1 and a; = 0, the
general case can be done in the same way without supplementary difficulties.

Firstly, we show that for T > 0 and p > 2/«, there exists a constant C, > 0 such
that for all |z|,|y| < T

(5.5) E sup [My(x) — My(y)]" < Cprr(lz—yP/* + [z — y[7).
0<t<T
Observe that |/(M.(z))s Ne| < V(M (y))¢, from this and Burkholder—

Davis-Gundy (BDG)’s inequahty, (5 5) yields in fact the same estimate for ‘\/ . -
V(M. (y))e| as for |My(z) — My(y)| in (5.5) (possibly with a larger constant C(p, T)) By
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applying Kolmogorov’s lemma to the application: z — (M.(z), /(M (x)).), we obtain the
bicontinuity (5.3).
Assuming z < y, we have from the monotonicity Z;(z) < Z;(y) that

My(z) — My(y) = /0 [z, (<o) + Lz, @)>0)] (' (Zs () — 0'(Zs(y)) dBs+

| 1 @<oczon (0'(Zu(e) = o' (Zuw) dB,
(5.6) = A (f) + M),

with obvious notation. Observe that for A;(¢), Zs(z) and Zs(y) are in the same intervals
of Holder continuity of ¢/, it may be shown by using BDG’s inequality that

(5.7) EOE?ET 1AL(8)[F < Cl(p)E(/O ds|Zs(z) — ZS(y)Pa)P/

2
S C2(p7 T) |$ - y|pa/2’

where the last estimate follows from Holder’s inequality and the known estimate that
E|Z:(x) — Zi(y)|P* = O(|x — y[P*) (this follows from the fact that o is Lipschitz, cf. Kunita
[11]). For Ax(t), we bound ¢’ by a constant and get

» ¢ p/2
E sup |As(t)] SCs(P)E(/ ds ﬂ(zs(m)50<zs(y)))
0<t<T 0

¢ p/2 ¢ p/2
< Cs(p)E(/ dsll(—sszs(mso)) +Cs(p)E(/ d311(|zs(y>—zs(m>|zs>)
0 0

b1 Z(z) - Z /2
(5'8) < C4(p) 61)/2 Esup LZ/(?I:) (ta z) + C3(p) E ( / ds | S(w) ) S(y)|)p )

where 0 < § < dg with dg fixed but sufficiently small such that inf|; <5, [o(z)| > 0, and
Lz (t,z) denotes the local time associated the continuous martingale Z.(z). Using a
BDG-type inequality for the local times (cf. [15, Theorem XI.2.4]) shows that the first
term in (5.8) is bounded by Cs(p, T)6P/2, whereas the second term is bounded as in (5.7)
by Cs(p, T)|z — y|P/2 6~P/2. Hence by taking § = min(dy, |z — y|*/2), we get the desired
estimate in (5.5) for the term M;(z) — My(y).

Now, we prove (5.4) by approximating of & by o, € C1*(I), and such that ¢,,(0) =
o(0), o, is bounded on I, and ¢/ (z) = o'(z) for |z| > 1/n. Consider the flow Z(™

n
associated with o, and driven by the same Brownian motion B as in (5.1). Define

U@ oo ([ oz, - L [ o) as)

0 0
which is the derivative of Z(™ (cf. [11]). Therefore (5.4) holds for (Z(™ U(™) in lieu of
(Z,U). All we need to show is that as n — oo

(5.9) B [ 10 127(@) - Zi@)dz > o
(5.10) E/I Ih(@)| [T (z) — Uy(w)|dz — 0.
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But it is standard (e.g. by using Gronwall’s inequality) to obtain that for a compact K C I,

sup E sup (Zs(")(w) — Zs(:v))2 — 0, n — 00,
€K 0<s<t

implying (5.9). Finally, since o, (z) = o'(z) for |z| > 1/n, it is easy to obtain that for
fixed 7, E [} ( (2 (x)) — 0" (Za(2)) 12, 0)20)) "ds — 0. Hence U™ (z) 25 U, (z), and
the family {U{™(z),n > 1,z € K} is uniformly integrable, since

(n) ’
sup E( sup [[Uf(@)] + |Ua(z)]])” < oo,
z€K,n>1 0<s<t

hence (5.10) follows, and which ends the whole proof. 0

6. An example of Girsanov’s transform

We shall consider in this section the recurrent case of (1.1), i.e. f1 > 0 > fa, to
ensure the finiteness of the stopping times T'(a) and 7,.(b) defined in (1.6) and (1.7). We
also exclude the Brownian case by assuming 81 > 2. Let ¢ : R — R be a Borel function
such that fR #?(z)dz < oo. Define a new probability Q via:

1 t
L B /¢ b o Bs—i/ P(X0)ds) Ty, t>0,
0

denotes the natural filtration generated by B. Observe that from Propo-

(6.1)

where (B;),.,

sition 1.2, f; $*(X71(0)ds = [ $*(2)pfdz < 55 ﬂ2 Jx #*(2)dz < o0, so that ¢ — Dy is a
uniformly integrable martingale, and Q is equivalent to P on B.,. Girsanov’s transform

tells us that there is a ((@, (Bt) t>0)-Brownian motion (ﬁt,t > O) such that

t t t
(62) Xi(z)=x+Bi+5 / Lix,(z)<0)ds + 52/ Iix,)>0ds + [ #(X77(0))ds,
0 0 0

for t > 0,2 € R. We remark that any flow satisfying (6.2) has the same law. The goal of
this section is to give a Ray-Knight theorem for the law of (L%, x € ]R) under Q. We only
state the result for T'= T'(a), the case of T' = 7,.(b) can be considered similarly.

Proposition 6.1. Assuming that f1 > 0> f2 (81 # B2) and [, ¢*(z)dz < co. Fixa < 0.
Under Q, the process (L;‘%‘m),x > 0) is a time inhomogeneous d1ﬁ"us1on starting from 0
with infinitesimal generator:

d2

(6.3) 26(t) =5

+ 2(]1(0<:1:<a ) — [51 + ¢($ + )] (ﬁ)) %7 te R—I—
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The process L“ ,& > a~ ) is absorbed at 0.
T(a)

The proof relies on the following observation (recalling that z — LT( ) is a continuous
semimartingale):

Lemma 6.1. With probability one, we have

T(a) 0 T(a)
(6.4) /0 $(X=1(0))dB, =/ gb(z)dz—ﬁl/o S(X1(0))ds — %/Rqs(z)dzL;(a).

Proof of Lemma 6.1. It suffices to prove (6.4) for ¢ a step function with compact
support of form: ¢(z) = >, Ay, <z<yiy,) Withn > 1, A € R, and —co < g1 < g2 <
.. < Ypy1 < 00. The LHS of (6.4) equals

(6.5)
n T(a) n T(a)
> /0 11X, (y)<0<X, (g:41))@Bs = D Ai /0 [1x, (5)<0) = L(X. (yir1)<0)] 4Bs-
1 i=1

i=

By using (2.8), we have

T(a)
/0 [Lix,(5)<0) = Lx(wisn)<0) ] dBs = (Y57 = Xy () — (Wig1 — X7y (Wit1))

) 1 y Yit1
—h /0 A5y, <x; ) <virn @ + 5 (L2 = Lra)):
which in view of (1.3) yields the formula (6.4) for this kind of ¢. O

Proof of Proposition 6.1. The idea is that used by Norris et al. [14]. Firstly, we have
from the fact that ¢ — D; is a uniformly integrable martingale that

dQ

(6.6) =

= Dy(a).
Baa) T'(a)

By using Lemma 6.1 and the equation (3.18) for Ly, we have

Dr(q) = exp (/aoo $(2)1/ P (ay AW2 — / ¢’ (2 2)P7(a) dz)

where we recall that (W3)z>4 is a (Sm,x > a)-Brownian motion. This in view of (6.6)
allows us to obtain the following formula of change of probability

67) L2

= exp (/: &(z) Pir(ay AWz — / 2(2) 2)PT(a) dz) x> a.
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Recall that p7.,y = k(L7 ,))- Applying Girsanov’s transform with (6.7) to (3.18) gives
that

L = 2007 —a7) =2 [\ [x@h) i, =2 [ 1+ s )ty 220,

with a ((@, Ex x> a) _Brownian motion W. This completes the proof of (6.3). 0
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