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1. Introduction.

Let 2 = {&;, ¢ € Z} be a sequence of iid variables taking values in the interval (0, 1).
We consider the random walk in random environment (RWRE) (S,,): Conditioned on each

realization of =, (S,,n > 0) is a Markov chain on Z such that Sy = 0 and

_ 1+ 1 =) &
a (s = {71 [ 50109) = (1%
where here and in the sequel, P denotes the total probability and E the associated ex-
pectation. To simplify the discussion, we also assume that there exists some constant
c€(0,1/2) such that c< ¢ <1-—c.

Solomon [25] obtained the recurrence/transience criteria:

1-¢;
&

(1.2) P((Sn) is recurrent ) =1 <<= Elog =0,

We shall only deal with the recurrent case in this note. The rate of convergence was
characterized by

Theorem A (Sinai [24]). Suppose that

(1.3) Elog S _ 0, o2 ¥ Elog? 126 0,
& &
we have
2
(1.4) R ONy,
10g2 n ’

where the limit law £ was given explicitly by Kesten [17] and Golosov [10] as follows:

(1.5) P(ﬁ € dw)/dw = %i (=" exp ( - w |w|)

See Révész [19, Part ITI] and Hughes [13] for references and studies on RWRE. There
are also many recent works, see e.g. the references in Hu and Shi [12] and Shi [23].
Here, we are interested in the logarithmic average in Sinai’s renormalization. The

main result is



Theorem 1.1. Fix a constant 0 < ¢ < 7202/8. Under (1.3), P-almost surely for every

a.e. continuous function f : R — R such that sup,¢g |f(z)]e™¢®l < oo, we have

1 i 1 Sk; a.s. »C
1. 25 Rl (=
(1.6) loglognkz?,klogkf(logzk) (f(a2))’

where the law of L is given by (1.5).

The condition on f can be weakened, see Berkes, Csiki and Horvéth [2] for the minimal
conditions on the logarithmic average of the (usual) random walk, see also Ibragimov and
Lifshits [14]. There are a huge related references on the studies of the almost sure (or
pointwise) central limit theorem for random walk and Brownian motion, see e.g. Brosamler
[3], Schatte [21], Fisher [9], Lacey and Philipp [15], and Cséki, Foldes and Révész [7]
(random walk), Csdki and Fdldes [5] (local time and additive functional), Csérgd and
Horvath [8] (rate of convergence and invariance principle). See Berkes [1] for a survey on
the almost sure central limit results.

The proof of Theorem 1.1 relies on an analysis of Brownian valley. We shall introduce
in the next section the associated diffusion in random environment, and prove the corre-
sponding result for the diffusion process. By using the Skorokhod embedding in random

environment, we give the proof of Theorem 1.1 in Section 3.

Acknowledgements. I thank Professors Endre Csaki and Zhan Shi for stimulating dis-

cussions and remarks.
2. Diffusion with random potential.

Consider a process {V(z); € R} with locally bounded trajectories which are contin-
uous from right and have limit from left. The process V plays the role of random potential.
We can formally define a process {X(¢); ¢ > 0} by the equation
o 4X(t) = dB(t) - }V'(X(O)dt

X(0)=0
where {3(¢); t > 0} is an independent one—dimensional Brownian motion independent of
V. Rigorously speaking, instead of writing the formal derivative of V' in (2.1), we should
consider X as a diffusion process (conditioning on each realization of V') with generator

1 d d
2.2 ZeV@ —(emVi) ),
(2:2) 26 dx (e dw)
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See Brox [4], Schumacher [22], Kawazu et al. [16], Tanaka [26] together with their refer-
ences.

Here, we assume the following hypothesis: On a possibly enlarged probability space,
there exists a coupling of V' and a standard two—sided Brownian motion {W(y); y € R},
and a constant ¢ > 0 such that for all n > 1,

Cs

(2.4) IP’( sup |V(z) — oW (z)|> C, logn) < Gy

with C; > 0 (1 < ¢ < 3). For instance, the well-known Komlés—Major-Tusnidy [18]
strong approximation theorem tells us that (2.4) will be satisfied for V a step function on
R defined as the partial sum of iid (bounded) variables, cf. (3.1) below.

The goal of this section is to prove the following almost sure central limit theorem for
X (¢):

Theorem 2.1. Fix a constant 0 < ¢ < n202/8. Under (2.4), P-almost surely for every

a.e. continuous function f : R — R such that sup,¢g |f(z)]e™¢®l < oo, we have

1 T odt X)), as L
(2.5) Tglog:r/z t1ogtf(1og2t)_’E(f(§))’ T — oo,

where L is defined in (1.5).

The proof of Theorem 2.1 is based on a localization argument. Firstly, we introduce
the Brownian valley. Write W, (z) défW(w) and W_(z) dzefW(—x) for z > 0 for the two
independent Brownian motions. For the sake of notational convenience, we shall write, for

any continuous process Y and all ¢ > 0

(2.6) YO sup Y(s),
(2.7) Y% inf Y(s),
(2.8) V(1) sup (¥V(s) —¥(5)).

For the Brownian motion W, define

2.9 d rdéfinft>O:W#t>r, 7> 0.
+ +

Let b4 (r) be the localization of the minimum of W over [0, d(r)]:
def

(2.10) by(r) = inf{0 <u <dy(r): Wi(s) = Wi(ds(r))}, r > 0.
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Define similarly d_(r) > 0 and b_(r) > 0, by replacing (W,,d+) by (W_,d_) in (2.9)
and (2.10). In the literature, the triplet (—d_(r),0,d(r)) is called a Brownian valley
containing 0 of depth r, its bottom b(r) is defined as follows:

211) b {b_*b(_r?;), W) < W6 sy

The identity b(1) 2y (in (1.5)) was obtained by Kesten [17] and by Golosov [10]. Recall
the following result whose proof can be found in [11]:

Fact 2.2. Assuming (2.4). There exist a constant Cy = Cy(0,C1,C3,Cs) > 0 such that
for allt > 3, we have

logt

(2.12) P(‘X(t) —b( )| > logt) < C4(logt)_1/3.

o
Let us recall the following fact stated in Berkes et al. [2, Lemma 1], which can be

proven by using the arguments of Schatte [21, section 2.3]:

Fact 2.3. Assume that the convergence like (2.5) holds for f being any indicator function
of intervals and for f = fo: R — Ry a fixed a.e. continuous function, then (2.5) holds for
all a.e. continuous function f such that |f(x)| < fo(xz). The null probability set can be

chosen universally for all such functions f.

Lemma 2.4. Recall (2.11). Almost surely for every f satisfying the condition of Theorem

2.1, we have

1

(2.13) logT/l %f(bf—?) 25 g(f(0(1), T oo

Proof of Lemma 2.4. According to Fact 2.3, it suffices to prove (2.13) for a fixed a.e.
continuous function f. The proof is based on the fact that the Brownian scaling transform
is ergodic (cf. Csdki and Foldes [6] for related discussions). By using the change of variable
t = e°, the LHS of (2.13) equals (write log7T = N)

N
el / dsf(e=2¢ b(ef)) 22 O, N — o0,
N Jo

where this almost sure convergence follows from the ergodic theorem and by using the
fact that the process b = (e=2%b(e®), s > 0) is (strictly) stationary. The limit variable ©

5



is measurable with respect to the o-fields which is invariant by translation on the process
b. If we have proven that this invariant o-fields is trivial, necessarily we have ©® = E© =
E(f(b(l))), as desired.

To complete the proof, we remark the following ergodic scaling property: For A > 0,

define Wy(z) & A~/2W (A ) for z € R. We have

(2.14) (W (z), Wa(z), € R) & (W(2),W(z), z€R), A— oo,

where W is an independent copy of W. See e.g. Revuz and Yor [20, Exercise (XIIL1.17)]
for (2.14). Define by related to W) the same way b to W. Observe that for any sg € R,
B(so+5) = bx(s),s > 0, for A = 2%, We apply (2.14) and obtain that the o-fields invariant

with respect to translation on bis trivial, completing the proof. O

Proof of Theorem 2.1. According to Fact 2.3, it suffices to prove (2.5) for each indicator
function of intervals and for f(z) = e®®l. Let us show (2.5) for f(z) = e®l with ¢ <
7202 /8, the indicator functions can be similarily treated by using the monotonicity.

For notational convenience, we assume that ¢ = 1. In view of Lemma 2.4, it suffices

to prove that

1 T X(t) b(logt)
(2.15) loglogT/2 tlogt ‘f(log%) A log?t )

a.s.

— 0, T — oo.

Write for simplification Ay & | X (t)—b(logt)|. Since |f(z+v)— f(z)| < clv|f(|z|+]v]),
the LHS of (2.15) is less than

1 T ¢, blogt) 1
< IL|(T _ —1
< L(T)+ loglog T /2 tlogt = (Arslost) 1oy I log?t T logt)
(2.16)  =L(T)+o(l), T-oo, as.

by using Lemma 2.4, and where

aef 1 Todt X (1) b(logt)
2.17 IL(T) = 1 2NN )
(2.17) (T) 10g10gT/2 tlogt (Atzlogt)‘f(logzt) H log? t )

Let us show I1(T') converges to 0 almost surely. Recall the following LIL for X (¢) (o = 1)

su X(s 8
(2.18) lim sup Pocsce IX(5) = — a.s.,

too log?t logloglogt — w2
S b(lo
(2.19) lim sup UP;§s§t| (log )| < % a.s.,
t—oo  log“tlogloglogt — =
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see [12, Theorem 1.6] for the proof of (2.18), and since —d_(r) < b(r) < d4(r), the estimate
(2.19) in fact has been obtained in the proof of (2.18). Applying (2.18)—(2.19) to (2.17),
we obtain a finite variable 0 < K (w) < oo such that

Kw) (T dt 20 K(w)
2.2 I,(T) < 1 log1 = I(T).

Now, applying Fact 2.2 yields that

2
E(I(T)) < " _di C4(loglogt) O(1 T —
=

( 2( )) —/2 tlogt log'/3 ¢ (1), oo

showing that I3(oc0) < o0,a.s.. This combining with (2.20) and (2.16) prove (2.15), as
desired. 0

3. Proof of Theorem 1.1.

We firstly give the Skorokhod embedding in random environment. Consider the step
potential V' such that V(0) = 0,V (z) is constant on [n — 1,n), and

1-— gn

€n
Let {Xv(t),t > 0} be the diffusion associated with the potential V via the equation (2.1).
The following Skorokhod embedding was stated in Schumacher [22], Kawazu-Tamura-

n € 7.

(3.1) V(n) —V(n—) =log

Tanaka [16], see [12] for the proof (there also exists a strong approximation of local times).
Fact 3.1 (Skorokhod embedding). Assuming (1.3). Define

(3.2) e & inf{t > gyt | Xv(©) — Xv(pe1)| = 11,
with po 0. Therefore

o {Xy(un),n >0} Z{Sp,n >0}

o {pn — pn—1,n > 1} are iid, and p; taw inf{t > 0: |[W(t)| = 1}.

To deduce Theorem 1.1 from Fact 3.1 and Theorem 2.1, we have to bound some

increments of (X (¢)). The following result is elementary:



Lemma 3.2. We have

(3.3) fin = n + O(n?/3), n — 00, a.s.
. . 1
(3.4) nlg{)lo (log n) ér}clgn (Nk - Nk—l) =5 a.s..

Proof of Lemma 3.2. Using Fact 3.1, we have E(p;) = 1, and (3.3) follows from the
usual LIL for the partial sum g,,. The well-known estimate for the Brownian hitting time

yields that

1 1 1
lim — logIP’(— > x) =——.
00 T Y1 2

This in view of the standard theory for the extreme values of the iid variables imply that

. 1
lim max —— = 2, a.s.,
n—oo logmn 1<k<n Uup — pr—1

proving (3.4). 0

Lemma 3.3. Recall (3.1) and assume (1.3). We have

Xy (t2) — Xv (2
(3.5) lim sup Xv(ta) v(t)| <3, P—a.s.
ta>t1—soo 1+ (t2 —t1) logta

Proof of Lemma 3.3. This is an argument w-by-w. Consider large ¢1,%2. Let ui < 1 <
pr+1 and gy < €2 < pyyr. Then ! > k and k ~ logt; and I ~ logts in view of (3.3). By
using (3.2),

| Xv(t2) — Xv(t)| <I—-k+1.

Suppose | > k + 1. From (3.4), we deduce that
I—k—1<(mw— pr+1) glogl < (t2 — tl)glogl < 3(t2 — 1) logta,
implying (3.5). a
We need the following estimate concerning the Brownian valley. Recall (2.9)—(2.11).

Lemma 3.4. For all us > u; > 0,

4(U2 — Ul) .

(3.6) P(b(u);éb(ul) for Someue[ul,uz]) <=
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Proof of Lemma 3.4. By scaling, we can take u; = 1. By symmetry, the probability
term in (3.6) is equal to

= 2P(W—+(d+(1)) < W_(d—(1)); b(u) # by (1) for some u € [1,uz])
< 2P(W(dy (1) < W_(d_(1)) < Wy (dy (v2)))

+ 2P(b+(u) # by (1) for some u € [1, uz])
(3.7) = I3+ 1.

Observe that W, (dy(uz2)) < Wi(d4+(1)) + (uz — 1) and it is not difficult to see that
W_(d_(1)) is uniformly distributed on [0, 1] (see e.g. Kesten [17] or Hu [11, Lemma 2.1]).
It follows that

I3 < 2(uz — 1) = 2(ugy — uq).

Using Lévy’s identity (cf. Revuz and Yor [20, Theorem (VI.2.2)]), we deduce that

(b+(),7 > 0) = (9(T:(1BI)), 7> 0),

where B denotes a one-dimensional Brownian motion starting from 0, T,.(|B|) &of inf{¢t >

0:|B(t)| > r} and g(u) o sup{t < u : B(t) = 0} for u > 0. By considering the process

(|B(u—+ T1(|B|))], w > 0), it turns out that

Iy < 2IP’( A reflected Brownian motion starting from 1 hits 0 before hitting wuo )

U2—1 Ug — Uy
=2 =2 ,
U2 U2

implying (3.6) in view of (3.7). O

Lemma 3.5. Assume (1.3) and recall Fact 3.1. Write Sy, def Xv(px), k > 0. We have

n
1
(3.8) ;;, PENCICTY og®/° & ﬂ(‘Sk—b(lig—k) Salogh) — 0(1), n — 00, a.8.

The power 5/6 in the above partial sum of (3.8) can be replaced by any constant
larger than 1/2.

Proof of Lemma 3.5. For notational convenience, we assume ¢ = 1. Write I5(n) the
partial sum in (3.8). It follows from (3.3) that for large k,

1 1
= +0(k™3),  as,
klog®®k  [p]log™ O[]
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where [x] denotes the integer part of 2 > 0. This together with (3.5) implies that

1
1, = 1 1
S(n) pE >3 k<N [uk] 10g5/6[uk] (‘XV([F’k])_b(Ing)‘2103#'19) O( )
k=
1
(39) = E E ]1(]<“k<]+1)m ]1(|Xv(j)—b(logk;)|210gj) + 0(1)7 a.s.

323 k<n
Define for j > 3

(310) B % {b(u) = b(logy) , Ju—log j| < 77+ } n {|Xv(j) - b(log j)| <log;}.

In view of (3.3), we have log u = logk + O(k~'/3), k — 00, a.s. Therefore, for large 5, on
E;, we have | Xv(j) — b(logk)| <logj if j < px < j + 1. Hence, the term of partial sum
in (3.9) equals

Z Z]I(J<uk<2+1) / ]1E° +O( )
Jlog

3<3<2n k<n

1
< 7(N- —N-)]l@-l—(’)l
3<§2n jlog®® j Ak ) ®

def

(3.11) = Ig(n) + O(1), as.,

where N, is the renewal process defined by
def . .
N; = inf{k >0: pp > j}.

It remains to show that Is(n) is bounded on n. Using (3.6) and applying (2.12) to
Xy (0 =1) give that for large j,

IP’(EJC) < 55 Y4(log )7 + C4(logj)_1/3.

It follows from Holder’s inequality that

E(Iﬁ(n)) = . ilog®
C5

hS 19/18

s<j<an 110877 7]
hence Is(00) < 00, a.s.. This together with (3.9) and (3.11) imply (3.8). 0
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Proof of Theorem 1.1. In view of Lemma 3.4 and using (2.19), it is immediate to show
that

i 1 log k RHL gt log ¢
B12) Y | OCE) - [0 S0CE)| = o), oo, as,
£~ |k log o K og o

for any function f : R — R in Theorem 1.1. Using Lemma 3.5 and (3.12), the proof of
Theorem 1.1 can be achieved by using the same method as that of the proof of Theorem
2.1. The details are omitted. O
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