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Summary. A doubly perturbed Brownian motion (DPBM)
behaves as a Brownian motion between its minimum and max-
imum, and is perturbed at its extrema. We study here how
these perturbations influence the asymptotic behaviours of the
extrema by characterizing all upper and lower limits of DPBM
for permissible perturbation parameters.
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1. INTRODUCTION.

Let (By,t > 0) be a real Brownian motion starting from 0. Fix «, < 1, and con-
sider the doubly perturbed Brownian motion (X3,¢ > 0) (DPBM in short) defined as the
(pathwise unique) solution of the following equation:

(].].) Xt = Bt -+ CVMt - ﬁIt,
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with Xo = 0, M, & SUPg<s<t Xs, and I &ef Supg<s<i(—Xs). Le Gall [16] showed that the
DPBM can be obtained as a limit process from a “weak” polymers model of Norris, Rogers
and Williams [19]. A time changed version of (1.1), the so—called perturbed reflecting
equation, appears also in the studies of the asymptotics of planar Brownian motion (cf.
Le Gall and Yor [17]). The DPBM also arises as the scaling limit of some self-interacting
random walks (see Téth [25] and [26]). Recently, the equation (1.1) has attracted much
interest from several directions: see e.g. Petit’s thesis [21] and Yor [29] for motivations
from Lévy’s arc sine laws; Le Gall and Yor [17], Carmona et al. [2], Davis [9,10], Perman
and Werner [20], Chaumont and Doney [4] for the existence and unicity of the solutions of
(1.1); Carmona et al. [2,3], Werner [28], Chaumont and Doney [5], Doney [11] for related
Ray-Knight theorems and calculations of laws; Shi and Werner [24] for the almost sure
study of occupation time; Doney et al. [12] for the generalizations to perturbed Bessel
processes. Let us mention that only in the case § = 0 (or similarly for o = 0), has the
process X an explicit form in term of Brownian functionals, i.e:

(1.2) X,=B,+ —2 sup B,, for B =0,
— O 0<s<t

which, according to Lévy’s identity in law for sup,«; Bs and the Brownian local time Ly
at 0, is equivalent to the process —|By| + pL; with g = 1/(1 — @) (cf. Petit [21], Yor [29]
for p-process). We also point out that o, 8 < 1 is the necessary and sufficient condition
for the equation (1.1) to have a (pathwise) unique solution (cf. [4]).

In this paper, we study the asymptotic behaviors of the extrema of X;. First, we state
an Erdds-Feller-Kolmogorov-Petrowsky (EFKP) type result:

Theorem 1.1. Recall (1.1). Let f > 0 be a nondecreasing function; we have
< di 1—a)? f2(¢
(1.3) IP’( sup X, > Vif(t), 1'.0.) = {O (=>/ — f(t) exp (— %) {< 0 ,
0<s<t 1 t 2 = 00
where, here and in the sequel, “i.0.” means “infinitely often” as the relevant index goes to
infinity. Consequently, we have

(1.4) lims Xt !
. 1m su = ,
t—)oop V2t loglogt 1—-«

Remark 1.1. Theorem 1.1 is not surprising. Indeed, intuitively, the extraordinarily large

a.s..

values of X; should only depend on the perturbation at the maxima of X, and so the
upper limits of X; with «, S-double perturbations should agree with those of the a-simply
perturbed Brownian motion given by (1.2). We also point out that in certain cases (for
instance, 0 < «, 8 < 1), the LIL (1.4) can be derived from that of Brownian motion and
Skorokhod’s reflection lemma.

The main results of this paper are the following two forthcoming theorems. The first
one is a Hirsch-type integral test for the lower limits of sup <, X:



Theorem 1.2. Recall (1.1). Let f > 0 be a nondecreasing function; we have

() _J0 =0
(1.5) hgéglf—t OsggI;th = {oo , a.s. < (1 5 {< 0
In particular, we have almost surely
(logt) =™ if <0
1.6 liminf ~—~—— X = { =
(1.6) min Vi oo e if  €>0.

It is noteworthy that the above integral test does not depend on ¢, i.e. the small
values of sup,<; X, only involves the perturbation at minima of X.

Remark 1.2. Denoting by X*# the solution of (1.1), it follows from the Brownian

symmetry that X8 v xB.a Then, the above results give corresponding versions for
— infp<s<¢ X, by interchanging o and S.

The lower functions of supg< <, |Xs| are characterized as follows:

Theorem 1.3. Recall (1.1). Let f > 0 be a non decreasing function; we have

(1.7) B( sup |X,| < vt io.)={0<:>/ dtf()z(lamep( 2f2(t)){i°°.

0<s<t f@)’ 1 ¢ 8 00
Consequently, the following Chung-type LIL holds

™

1.8 lim inf = —,
( ) 0<s<t \/g

t—o00

(loglogt)1/2

Although we don’t state it explicitly, all the above results admit corresponding versions
as t goes to 0.

Let us point out that among these, Theorem 1.3 is more intrinsic, even though DPBM
and a standard Brownian motion enjoy the same LIL. In a sense, this Chung-type integral
test shows how the two perturbations at maximum and at minimum cancel or strengthen
themselves.

Taking o = 8 = 0 in Theorems 1.1-1.3, we obtain respectively the usual EFKP, Hirsch
and Chung type integral tests for Brownian motion. We refer to Csorgd and Révész [8],
and Révész [23] for detailed discussions of the almost sure behaviors of Brownian motion
and random walk, and to Cséki [6] for the generalized Chung and Hirsch-type result.

This paper is organized as follows: In Section 2, we will state a Ray-Knight theorem
for a general DPBM at its first hitting time, and give an estimate for the density functions
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of some infinitely divisible laws. The behaviors of tail probabilities are given in Section 3,
which imply immediately the convergence parts of our integral tests, whereas the divergence
parts need some uniform estimates which are given in Section 4. Finally, all theorems are
proven in Section 5.

Throughout this paper, a < 1,8 < 1 will be considered as two universal constants.
We write f(z) ~ g(x) as x — xo if limg 5, f(z)/g(z) = 1. Unless stated otherwise, the
constants (C; = C;(«, 8),1 < i < 25) only depend on « and .

Acknowledgements. We are grateful to Frédérique Petit and Marc Yor for helpful discus-
sions on Ray-Knight theorems for perturbed Brownian motion. We thank an anonymous
referee for her/his insightful comments.

2. PRELIMINARIES.

Firstly, let us recall a Ray-Knight type theorem for the DPBM with non zero initial
values for its maximum and minimum. Fix mg > 0 and 49 > 0. Consider the equation

Y; = By + a(MY —mo)T — BIY —io)T, t>0,
(2.1)

Yo= 0,
with 2+ €2 v 0, MY ¥ supge,<; Yo Vv 0, and IY ¥ supge,<,(—Y;) V 0. We denote by
{Ly(t,z),t > 0,z € R} the family of local times of the continuous semimartingale Y
defined by the occupation time formula. Write

(2.2) Ty ())& inf{t >0:¥, > b}, b>0.

Throughout this paper, we write

a=1—a>0,
(2.4) B=1-8>0,
(2.5) BESQf = a process having the same law as the square of Bessel processes

of dimension § starting from r > 0,
see [22, Chap. XI] for detailed studies on Bessel processes.

Proposition 2.1. Fix b > 0. The process {Ly (Ty (b),b—t),t > 0} has the same law as
(Z(t NC),t > 0), where Z is the unique solution of

t t
Zy = 2/ VZsdB;s + / (25]1(05s5(b—mo)+) + 20 (p—mo)+<s<p) T+ 25]1(325+i0))d3’
0 0
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and (¥ inf{t > b : Z; = 0}. In words, the process {Ly(Ty(b),b —t),t > 0} is an
inhomogeneous Markov process which is a BESQ32® on [0, (b —mg)*], a BESQ? on ((b—
mo)t,b], a BESQO on (b,b+ ig] and a BESQ?? on [b + i, 00), absorbed at its first zero
after time b.

Remark 2.2. The case of mg = 419 = 0 of the above proposition has been stated in
Carmona, Petit and Yor [3, Proposition 3.4]. See also their Ray-Knight theorem at the
inverse of local time at 0 ([3, Theorem 3.3]). For the case § = 0 (i.e. the p-process) see [2,
Theorem 3.2].

Proof of Proposition 2.1. This result, probably not new, may have already been ob-
tained by the experts of py-process or perturbed Brownian motion. Its proof can be achieved
by a method of studying the filtration generated by the excursions of Y below levels. This
method, developed by McGill [18] and Jeulin [14] for the classical Ray—Knight theorems for
Brownian local times, works in fact with more general diffusion processes or semimartin-
gales (cf. [19]), and also has been used in [3] to obtain their Ray—Knight type results.
Here, for the sake of completeness, we sketch the main steps, and the interested reader is
referred to [18,14,19,3]. Applying Tanaka’s formula to (2.1) gives that for z € R,

¢ + + 1
(Yt—w)+:(—z)++/ ]l(ys>m)st+a(MtY—m0V$) —5(1{/\(—35)—7;0) +5 Lyt 7).
0

Define Z, < Ly (Ty(b),b—y) for y > 0 and let ¢ = inf{t > b : Z, = 0}. Observing
¢ = b—i—Iq}fy(b), we have for y > 0

Ty (b) +
Z, = —2/ Ly, >b—y)dBs + 2y Ab—2ay A (b—mo)t + 2,6’(y ANC—(b+ 7}0))
0

It suffices to show that y € [0, 00) — fOTY(b) 1(y,>5—y)dBs is a continuous martingale with
respect to the natural filtration (FZ,¢ > 0) of Z, with increasing process y — foy Zydz.
The key point is to show that for every H € L?(FZ), there exists a process (k) predictable
with respect to the filtration (o(Bs, s < t),¢ > 0) such that

Ty (b)
H=E(H)+ [ hlpsmsdB.
0

To prove this representation, observe that the time-change arguments of [18,14,19] work in
the present case once we use the facts that the equation (2.1) has a unique solution adapted
to the natural filtration of the Brownian motion B, and that Ty (b) is also a stopping time
with respect to the filtration (o(B;s,s < t),¢ > 0). The details are omitted. 0

We shall make use of the following



Lemma 2.3. Recall (2.3)~(2.5). Let V,’) be a process with law BESQ®. For § > 0,
denote by Z(6) the gamma distribution on Ry with density z°~'e=% /T'(6). We have for
u,t, A, i > 0 that

Hy 2
@B)(Nlaw T
(2.6) / VO

2 t —46/2
(2.7) Eexp ( — uVO(‘s) (t) — % / dsVO(‘s)(s)) = (cosh()\t) + 2% sinh()\t)) :
0

2

(2.8) E( exp (— % /OOO dsv® (s)) ]1(H0<u)) = exp ( — %)\ coth()\u)),

where in (2.6) and (2.8), Hy denotes the respective first hitting time of the processes V,*%)
and V,\V. Furthermore, we have for all z,r,t > 0,

(2.9) IP’(/OHO dsV,?8) (s) > x) < g—hB/2 (I‘(l +B/2))—1 (;_2)@2,

(2.10) IP’(/T dsVO(m)(s) > w) < 29/2 exp ( — %),

0
(2.11) IP’(/OT dsVO(m)(s) < 6) ~ 2;1_/17/_1_2 % exp ( — 62:2), e/r? =0,
(2.12) E(V,,(O)(t))ﬁg \/E(l—i-B)_(th)ﬂ.

Proof of Lemma 2.3. By scaling, it suffices to treat the case » = 1 in Lemma 2.3. See
Yor [29, pp.16] for (2.7). To see (2.6), by Bessel time reversal,

Hy ! L1
| asv®e e [Ty,

0 0

with £ =sup{t > 0: V0(4_2ﬂ ) (t) < 1} being the last exit time at 1 of the transient Bessel
square process V0(4_2ﬂ ). From this, (2.6) follows from Yor [29, pp.119]. To prove (2.8),
again by time reversal we have

(VO (Ho — 5),0 < 5 < Ho} "= {V{(s),0 < s < L1},

with £; & sup{s > 0: V0(4) (s) < 1}. Using the density function of £, evaluated by Getoor
[13] and conditioning on £, give that the expectation term of (2.8) equals
A2 £
= E( exp ( — 0 / dsV0(4) (s))]l(£1<u))
0
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:/OUP(ﬁledx)E[exp(—
:/OuIP(ﬁledz)E[ex (

/Om dsV0(4)(s)) ‘El = x]

/0 " dsv (s )‘V(4) _1]

)\2
2
)\2
2

p( -
— i 2d;2 exp ( %) (73111})1\?)\:5) )2 exp (%(1 — Az coth()\x)))
— exp ( B )\coth()\u))

— s )

where the third equality is due to [30, pp. 53|, and the fourth to [22, pp. 443]. (2.8) is
thus proved. (2.9) follows immediately from (2.6) by bounding the density of Z(8/2) by
xP/2=1 /T'(B/2). To obtain (2.10), use of analytical continuation yields

2

Eexp ()\/01 dsVO(za)(s)) = (cos(\/ﬁ))_a, 0<A< g_a

implying (2.10) by Chebychev’s inequality at A = 2 /32. Take g = 0in (2.7). By inverting
the Laplace transform, we get the density function

IP’(/O dsVP®(s) € dt)/dt=7§)2a (r_(l)) (;H))\ﬁ_ )e—%, t>0,

implying (2.11). Finally, we use the following Laplace transform for the BESQ? process
Vi© (cf. [22, Chap. XI))

Eexp ( - )\V,,(O)(t)) = exp ( — L)a

which implies

Eexp ()\V,,(O)(t)) = exp (1_)\7;)\15), A< i

Let k%<1 + [8] the smallest integer greater than 8. Taking A = 1/4(r V t) in the above

transform and using the elementary relation z* < kle’® A% gives

B(v00)” < ((vo®)")" < ()" 27 ve,
gives (2.12) by means of k! < k* < (1 + B)*. O

The following result shows the relation between the asymptotic behaviour of the den-
sity function of an infinitely divisible distribution and that of its Lévy measure in cir-
cumstances that do not seem to have been considered before, and may be of independent
interest.



Lemma 2.4. Let E be an infinitely divisible random variable on [0, c0) whose Lévy mea-
sure has density function w(x) such that

(2.13) Ee™*® =exp ( — /000(1 — e_)‘“’)ﬂ'(x)dx).

Assume furthermore that supg. .., 7(x) < 0o and there exist two constants ¢ > 0 and
p > 0 such that

n(z) ~ pr~le ® T — 0.

Then = has at most a Dirac mass at 0 and
(2.14) ( € dt) Jdt = P71 eE)e e, >0,

with some function £(t) which is slowly varying at cc.

Proof of Lemma 2.4. First, let us show that = has at most a Dirac mass at 0. In
fact, either [ m(z)dz = oo, and Tucker [27] says that in this case the distribution of =

is absolutely contlnuous; or n e fo (z)dx < oo, in which case = can be realized as a

compound Poisson variable, i.e. ch Y+ &g + .. + En, where (&,i = 1,2,...) are ii.d.,
with common distribution P(& € dw) Jdx = w(z)/n, £ > 0, and (§;); > 1 are independent

of N, which has the Poisson distribution of parameter 7. Therefore IP’(E = O) =e " In
terms of the density function 7(z)/n of &;, it is easy to obtain that = has a density function
n (0, c0).
To prove (2.14), write f(¢ )defIP’(: € dt) /dt for ¢ > 0 and f-cdéfIP’(E = O) > 0.
Differentiating (2.13) with respect to A gives

E(E e_)‘E) = E(e_)‘E) /Oo e or(x)de, A >0,
0

which implies in terms of f and x that
tf(t) = kin(t /ft—s sm(s)ds, t>0.
* () 3f et wrey def ot
Define f*(t) = e f(t), and 7*(t) = e“n(t), so that

(2.15) tf*(t) = win*(t) + /t [ (t —s)sn*(s)ds, t>0.

Since sm*(s) = p as s — 00, it is easy to show

(2.16) lim =9



In fact, notice that fooo f*(t)dt = oo (otherwise, applying dominated convergence to (2.15),
we would have that f*(t) ~ (kp+p f;° f*(s)ds)/t, as t — oo, leading to a contradiction).
Since sup,»q s7*(s) = K < oo, (2.15) yields f*(t) < S fg f*(s) ds, and therefore for

any fixed A > 0, since fOA sT*(s)ds < oo, we have

A ¢
/ f*(t—s)sn‘*(s)ds=o(/ f*(s) ds), t — o0,
0 0
implying (2.16) in view of (2.15). Combining (2.15) and (2.16), we have

lim ttfi =p>0,
t—o0 fo f*(s) ds

so that, according to a result of Karamata (cf. [1, pp.30]), f*(t) = t*P~14(t) which completes
the proof since f(t) = e~ f*(¢t). O

3. TAILS.

Consider the DPBM X of (1.1) and define

(3.1) T )déf{inf{t>0:Xt>a} if a > 0,

inf{t >0: X; <a} ifa <0.

Recall (2.3) and (2.4). The explicit form of the density function of Tx (1) has been given
in [3], and this yields

—2
~ CyzM? exp(— -
(3.2) IP’(TX(l) < w) Cyz'* exp( 2:5)’ z— 0,

with C; = 28+Y/2T(@ + B) /al'(3 — a — B/2)['(8/2). The goal of this section is to get the
behavior of the tail probabilities of Tx (1) and of the exit time Tx(—a) A Tx (b) from the
interval [—a, b].

Lemma 3.1. Recall (2.3)-(2.4) and (3.1). We have

-B/2 t
) 3 — — 00,
A

IP’(TX(T) > t) ~ Ca (t/r2
where Co = 2048/ (a + ) / (BF(B/2)F(a)).

Remark 3.2. The Laplace transform of T'x(r) is given explicitly in [3], from which it
is also possible to get the above tail behaviour by using a Tauberian theorem (cf. [1,
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pp. 333, Theorem 8.1.6]). Intuitively, the reason why the asymptotic behaviour of the
tail of the distribution of T'x(r) depends on £ and not « is that if we write Tx(r) =
At (Tx(r)) + A= (Tx (r)), where A*/~(t) denotes the time spent positive/negative by X
up to time ¢, then it is A~ (Tx(r)), which obviously depends only on 3, which dominates.

Proof. By scaling, we need only consider » = 1. Applying Proposition 2.1 with my =
19 = 0 yields

(3.3) IP’(TX(l) > t) - P(/OlZ(s)ds—i—/OHo V(s)ds > t),

where (Z(s),0< s< 1) is a BESQ?® and (V(s),s > 0) denotes a BESQ?? starting from
Z(1), Hy = inf{¢t > 0: V() = 0}. It follows that

(3.4) IP’(/OHOV(s)ds > t) < IP’(TX(l) > t)
IP’(/HO V(s)ds >t — \/1_5) —HE”(/l Z(s)ds > \/1_5)

H 2
IP’(/ i V(s)ds >t — \/1_5) +28/2 77 ‘/2/32,
0

IA

(3.5)

IA

by applying (2.10) to Z. Using (2.6), we have

Ho 28~BI2EZ (1) 3 3
IP’(/ V(s)ds > t) L A8TTEZA)T =Cot P2t = oo,
0 BL(8/2)

which yields the desired estimate in view of (3.4) and (3.5). 0

The main result of this section is the following tail behaviour of IP’(TX(—a) ATx(b) >
t), for fixed a,b > 0.

Proposition 3.3. Recall (2.3), (2.4) and (3.1). Fix a,b > 0. We have

2

— ~ —a—l[—] _ T
IP’(TX( a) > Tx(b) > t) Cst exp ( S ICE t), t — o0,
, FEHB—3 g \ETB-1
with Gy = 2055 (a+ 0+ (sin 15

By exchanging « and £ in the above result, we obtain the tail of IP’(TX (b) > Tx(—a) >
t) and therefore
2
(3.6) IP’(T_a AT, > t) ~ 205t~ 8 exp ( - ST t), t = 0.
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Our proof of Proposition 3.3 relies on the following Laplace transform obtained in [5]: for
A >0,

— e} a . E . a—1
(3.7) E( e N0 1, (b)<TX(_a))) _I@+h) / 2y A (sinh AD)” (sinh d)

It seems difficult to directly invert the above Laplace transform. We shall write (3.7) in
an equivalent form. For v > 0 and 0 < a1 < a3, denote by A,(a1,a2) a r.v. having the
following Laplace transform

inh(Aa1)\” .
2?2 BpEpisal), ifay >0,
(38) ]Eexp ( — ? Ary(a]_, 02)) = (al S h()\a2))

T
sinh(Aa2) ’ iay =,

Write A, (a2) = A,(0,a2) for brevity. Observe the following monotonicity and scaling

A>0.

property of A, variables:

(3.9) Ay(a1,a2) taw a3 A (a1/as, 1), 0 <a: <ay,
(310) P(Afy(al, 02) > t) < P(Afy(a& 02) > t), 0<az<a1<ay, 120,

(A quick way to obtain (3.10) is to notice that A,(as, as) taw A, (a1, a2) + A (as, a1), the
sum of two independent variables). We can rewrite the RHS of (3.7) as

I'(@+B) /a u—b? A2

— 7 du —— Eexp | — — (A1(u) + Aglu, b+ u) + Az(b,b+u) ) ),
where the three random variables are assumed to be mutually independent. This implies
that

a+p @ u=bP
(311)  B(Tx () > Tx(8) < Tx(~a)) =%/0 duﬁp(zu > 1),

with 3, € Ay (u) + Ag(u, b+ u) + Ag(b, b+ u).

Remark 3.4. Since (T'x(b) < Tx(—a)) = (I7yp) < a), we get the density function
of I, ) by differentiating (3.11) with respect to a. Furthermore, (3.11) tells us that
conditionally to (I, ) = u), Tx (b) = A1(uw) + Ag(u, b+u) + Ag(b, b+u) is a sum of three
independent hitting times which correspond respectively to BES(3) (the three-dimensional
Bessel process), to BES(3, ) (the a-perturbed three-dimensional Bessel process) and to
BES(3,). It remains an open question to find a path transformation explaining this
decomposition. For studies on perturbed Bessel processes, we refer to [12].
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Lemma 3.5. Recall (3.8). Fix 0 < z1,22,23 < 1. Let © = A1(21) + Ag(22, 1) + Ag(zs, 1),
where the three A-random variables are assumed to be independent. We have
21 8in®(zo7) sin® (zgm) w1 HAHE

— . 11'2
IP’(@ € dt)/dt ~ - oAl %t t — o0,
T'(@ + B) 28 22 sin(z17)

where for 1 = 1, 2,3, the above constant should be understood as its limit when z; — 0 if
Zi = 0.

Proof of Lemma 3.5. Observe that the infinitely divisible random variable © has a
continuous density function f(¢) on (0,00), and its Lévy measure w(z)dz is given by

E2x2 k252
2 22

2.2 -
1 - z _k2g2 -k g B8 _ K2g2 -
7T(£E)=—E e *°1 +—§ (e 2 P —e %2 )-I——E (e 2 T—e %% ),
T
v T k=1 k>1

k>1

with the convention % = co. Applying Lemma 2.4 with ¢ = 72/2,p =a + 8 > 0 yields

2

FO) =Py e~ T, >0,

with a function #(¢) which is slowly varying at co. It remains to show that £(¢) is equivalent
to the desired constant as ¢t — co. To this end, using the above expression for the density
function f(t) and writing the (positive) Laplace transform of O at %2 — ¢ for a small € (by
taking the limit in the following expression as the appropriate index goes to 0 if zq, 29, or
z3 equals to 0), use of (3.8) gives

/ et @ +B=1 (1) d
0

= E(e(’a—?—e)@)

214/2(% —¢) sin (224/2(% —€) )\ @ ,sin (23 2(%—6)))5

sin (214/2(% —€) ) 22 sin1/2(% —€) 73 sin\/2(% —€)
21 sin®(zom) sin®(zgm) w1HEHE —G+7
~ — € s

28 25 sin(z )

e — 0,

which implies by a Tauberian theorem (cf. [1, pp.43, Theorem 1.7.6]) that

o) ~ _1 _ A sina(zzzr)_sinﬁ(zyr) 771"‘5"‘5, £ 5 oo,
I'(@+p) 28 25 sin(z )

as desired. 0
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Proof of Proposition 3.3. We are going to show that

11'2
(3.12) lim supIP’(TX(—a) ATx(b) > t) 1B ¢T3 b < O,
t—o0
11'2
(3.13) lim inf P(Tx (~a) A Tx (b) > t) %47 €302 > Gy

First, let us show (3.12). Fix 0 < € < a. We rewrite (3.11) as

u—e 8
P(Tx(5) > 6 T (b) < TX(—a)) le(%)) / / b—i—uba"‘ﬂP(Zu > 1),
(3.14) (t) + L(t

with the obvious meaning for I; and I5. Recall that X, = A1 (u) + Ag(u, b+u) +Agz(b, b+
b+ u) is the sum of three independent random variables, and the variables have the
properties (3.8)—(3.10). For u < a — ¢, using (3.10), (3.9) and applying Lemma 3.5 with
z1=(a—¢€)/(b+a—¢€),2 =23 =0 we see that

P(Zu >t) SP(Al(a—e)+Aa(b+a—e)+AE(b+a—e) >t)

- P(Al(b:%) + Ag(l) + Ag(1) > m)

t )a+E—1 =2

SK((b+ BH e 7", > (a+b)?/2
a—e€

for some constant K = K(e,a,b) > 0. It follows that
=,
(3.15) lim sup I (%) 1218 e T 2@ b = ().
t—00

It remains to estimate I3(¢). For u € [a — €,a], using (3.9) and (3.10) yields

u b !
P(Zu > t) (Al(b—i— )+Aa(b+—u’1)+AE(b+—u’1) > (b+u)2)
a—e b t
(3.16) < P(Al(H—a)+AE(m’l)+AE(H—a’1) > (b+u)2)
(317) ~ 04(6) ((b_:iu)z)a-i_ﬂ_l e—ﬁt’ t/(b + a)2 — 00

where the last equivalence is obtained by applying Lemma 3.5 with z; = a/(a + b), 25 =
(a—¢)/(a+b—¢),and z3 =b/(b+a). It is easy to see

)mﬁ_l a'=%~? /T(a + B).

(3.18) lim Cy(e) = 2 ((a + b)wsin (wa/(a + b))

e—0
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Applying (3.16)—(3.18) to I5(t) of (3.14), some lines of elementary calculations imply

limsup Ir(t) o+ e 3@ ' < 22— (g + p)2(atB) (Sin ) (1 T le )’
m sup Iy (1) < o @t T 0

where 7(e) — 0 as € — 0, which, in view of (3.15), gives the desired upper bound (3.12)
by letting ¢ — 0. For the lower bound, we use in lieu of (3.16) the following observation
that for u € [a — €, al,

P(Zu>t)2P(A1( a—c ¢ b ' ),

— IV + A (— D+ AA(—— 1) > ———
b+a—e)+ “(b+a’ )+ ﬂ(b+a—e’ )>(b+u)2

and the lower bound (3.13) follows exactly in the same way from (3.14) and Lemma 3.5.
O

We also need to bound uniformly the probability IP’(TX(—a) > Tx(b) > t) for a,b > 0.

Lemma 3.6. Recall (2.3), (2.4) and (3.1). There exists a constant Cs = Cs(a,3) > 0
only depending on «, 3 such that for all 0 < b<a andt > 0,

(3.19) IE”(TX(—a) > T (b) > t) < Oy exp ( - ﬁ)

Moreover, for allb < a < 2b and t > (a + b)?, we have

2(a+B) p—a—p i
(3.20) P(Tx(—a) > Tx (b) > t) < GCsb T exp ( - W)

Proof of Lemma 3.6. It follows from (3.7) that for all 0 < A < Ok

-1

. CT@+B) [ . A(sinxb)® (sindu)®
(G21) (e T(b)“<Tx<b><Tx<-a>>)‘W/o T e+ )

Taking A = SagD) 1 (3.21) and using the elementary relation that x > sinz > 2z/x for
0 < z < /2 yields that the RHS of (3.21) is bounded by

a bﬁua—l a/b 7o=1 00 71
Cﬁ(a,ﬁ)/ dui = Cﬁ/ dwi S Cﬁ/ dwi,
0 (b+ u)ath 0 (1+ z)t8 0 (1 + z)ots
which, by applying Chebychev’s inequality to (3.21), implies (3.19).
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Now, we consider the case b < a < 2a. Recall (3.8)—(3.11). For 0 < u < a, u/(b+u) <
a/(b+ a) < 2/3. Using (3.9)-(3.10) yields

U U b t
Ag(—2— 1)+ Ar(—— 1
b+u)+ (b-l—u )+ ﬂ(b-l—u )>(b+u)2)

< P(Al(g) + Az(1) + Agz(1) > ﬁ)

P(u > t) = P(Ax

t ) a+8-1

< Cr(a, B) (m

72t 9
[ — >
exp( 2(b+u)2)’ t>(a+b)°,

where the last inequality is obtained by applying Lemma 3.5 with z; = 2/3,20 = 23 = 1.
Using the above estimate in (3.11), (3.20) follows from some elementary computations
(with possibly a larger constant Cs). 0

4. MAIN ESTIMATES.

This section gives the main estimates needed to prove the theorems 1.1-3. We consider
a special case of the equation (2.1) with mo = 0 and iy = v,

(4.1) {Yt=Bt+aMtY—,B(ItY—v)+,

with some constant v > 0 being given. Write throughout this section

Ty(z) & inf{t >0: ¥, =2}, zeR

Lemma 4.1. Recall (2.3)-(2.4). There exists a constant Cg = Cg(c, ) > 0 only depend-
ing on « and B such that for all r,t > 0

(4.2) P(Ty(r) < t) < Cs \/75 exp ( _ a; 22)
(4.3) P(Ty(r) > t) < Cgexp ( — %) + Cg% +Cs (v v T)Et_ﬁ/z.

Proof of Lemma 4.1. Applying Proposition 2.1 with b = r,m¢ = 0,49 = v yields

T v Hy
(4.4) Ty (r) law / dsZ, +/ dsUs; +/ dsVs,
0 0 0

where (Z5,0 < s <7)is a BESQ?® (cf. (2.5)), (Us,0 < s <w) is a BESQC starting from
Z,, and (V,, s > 0) is a BESQ?P starting from U, > 0, with Ho % inf{t > 0: V; = 0}

15



(so Hy = 0 if U,, = 0). By applying (2.11) to Vo(za) = Z, (4.2) follows from the fact that
IP’(TY (r) < t) < IP’( i dsz, < t). Applying (2.10) to V.®® = Z and (2.9) to V8 =V
(recall that Vp = U,,) yield

P(Ty(r)>t) SIP’(/OrdsZS> §)+P(/OvdsUs> §)+P(/OH°dsVs> %)

<22 exp (- it )+ %E/v dsU, + (§)E/2 (ra +B/2))_1E(U§) —B/2.
0

96 12 8

Using the fact that (Uy) is a martingale starting from Z,. gives EU; = EUy = EZ, = rEZ,
by scaling. Finally, applying (2.12) to V(® = U,t = v with Uy = Z, gives E(Uf) <

- - 8
Ve (1+B)? (vﬂ +E(Zf)) < Cy(a, B) (v Vr) , implying the desired estimate (maybe with
a larger constant Cg). 0

Recall (4.1). The rest of this section is devoted to estimating the tail probability of
the exit time of Y from an interval [—a,b] with b > 0 and a > v > 0. In the case v = 0 in
(4.1), recall that by Lemma 3.6, we know how to estimate this tail. The idea here consists
of reducing the case of v > 0 to that of v = 0. Write

(4.5) o (a, b; t) = P(Ty(—a) > Ty (b) > t).

Recall that Ty (z) is defined as the hitting time at by Y the solution of equation (4.1)
with initial value for the minimum of v (so the probability term of (4.5) depends implicitly
on v). For v = 0, we have from Lemma 3.6 that there exists C5 = Cs(«, 8) > 0 such that
(4.6)

Cg,@@(-ﬁ), foralla>b>0, t>0.

¢0 a, bat S
( ) Cys b2(@tB8) g=a=B exp ( — ™t ) forallb<a<2b, t> (a+b)2
2(a+b)

We distinguish the two cases, § > 0 and £ < 0, in bounding ¢, (a, b; t).

Lemma 4.2. Recall (4.5). If $ > 0, we have for all 0 <v < a and b,t > 0
B
PRy a,b;t),
(4.7) bu(abit) < (%) o(at:1)
28 do (2a, b: t).

Lemma 4.2 together with (4.6) give a uniform estimate for ¢, (a, b;¢) in the case § > 0.
In the case that a/v > 1, the first estimate of Lemma 4.2 is sharper, whereas the second
deals with the case that v is nearby to a.

16



Proof of Lemma 4.2. We prove the two estimates in the same way. Let (Z;) be the
solution of the following equation:

dZt = 2\/Zt th + (26]1(0§t§b) + 25]1(t2b+’u))dta
(4.8) Zo =0,
Z,=0, t>C% inf{t>b: 2 =0},

where (W;) is a real valued Brownian motion. It follows from Proposition 2.1 that
o0
(4.9) b (a, b; t) - IP’(/ Zyds > t; (7 < a+ b).
0

Let (Wt) be an independent Brownian motion and consider a process (0;) which is the
solution of

40, = 24/0; AW, + 281 (p<r<pivydt,
(4.10) Q,=0, 0<s<b,

0:=0, t>Co% inf{t>b:0; =0}
Define
(4.11) v, ¥z, +0, t>o0.

Applying the additivity of the squared Bessel processes (cf. [22, Chap. XI]) to the two
independent processes Z and © given respectively by (4.8) and (4.10), we have for some
Brownian motion (y(¢),¢ > 0)

dV, = 24/Vy dy, + (2611(0§t§b) + 25]1(?2’?)) dt,

(4.12) Vo =0,
Vi=0, t>¢inf{t>b:V =0}

so that the law of the process V' does not depend on v. Observe that (4.9) is also valid for
v = 0 by replacing the process Z by the process V, which means for all z > 0,

(4.13) qﬁg(z,b;t) =IP’(/ Vids > t; Cv <z+b).
0
Now, let £ > a. Use of (4.11) shows that the probability term of (4.13) is
ZIP’(/ Zsds > 1; (z < a+b; (e <$+b)
0
:IP’(/ Zeds > t; ¢z < a+b) P(Go < +b)
0
(4.14) = by (a, b;t) IP’(C@ <z+ b).
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It remains to compute the probability term in (4.14). Since (@s = Os45,0 < s < (o —b)
is a process of law BESQgﬂ on [0, v] and of law BESQ" on (v, cc) till its first hitting time
at 0, we see that

IP’(C@ <z+ b) = E(IP’(BESQE hits 0 before time x — v ‘7‘ = @U))

=Eexp(— 2(33671@))

-(5)7

where the second equality is due to the fact that the BESQY hits 0 before time u with

T

probability exp(—5-) (this can be seen, e.g., from (2.8) by letting A — 0 there), and the
third follows from (2.7) by taking 6 = 28 and by letting A — 0. This, by taking z = a and
x = 2a, combining with (4.14) yields the two estimates of (4.7) and completes the proof of

Lemma. O

For the case 8 < 0, we have

Lemma 4.3. Let 8 < 0. Recall (4.5). There exists a constant Cg = Cy(c, ) > 0 such
that for alla > bV v, v >0 and b,t > 0 that

(4.15) o (a, b; t) < Cy exp ( — ﬁ?b)z)

Moreover, for allb < a <2b,0<v <aandt>(a+b)? we have

(4.16) bo(atit) <Coltym) e (- s

Proof of Lemma 4.3. We use the same idea as in the previous proof, but the details are a
little more complicated. Recall (4.12)—(4.13) for the process V. Let (7;) be an independent
Brownian motion and define in this proof the process (6;) as the solution of (recalling —f3
is positive)

dOy = 2¢Oy dys — 281 (p<i<pv)dt,
(4.17) 0,=0, 0<s<b,

0:=0, t>Co% inf{t>b:0; =0}
Therefore the two process © and V are independent. Define in this proof

(4.18) Z¥v,+e, t>o0.
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Use of the additivity of BESQ for (4.12) and (4.17) implies that the process Z verifies the
equation (4.8) with some Brownian motion W, therefore (4.9) again holds. It follows from
(4.13) that, with 0 < ¢ < 1 being a constant whose value will be given ultimately,

qﬁv(a,b;t) =P[/OOO Vsds-l—/o

SIP’[/ @sds>at;C@<a+b]+IP’[/ Vsds>t—/ O, ds;
0 0 0

o0

@sds>t;CV<a+b;C@<a+b]

§V<a+b;/ ©,ds < ot; <@<a+b]
0

o0 o0
- IP’[/ O, ds > ot;Co < a+b| +E|do(a, b;t—/ A50:) 1 [~ o, 4yt cocatt)
0 0 o <
(4.19) =1I3+ I,
with the obvious notation. Let @s def Os4b,8 > 0. Then Ois a BESQSW| on [0,v] and

a BESQ® on (v,00), absorbed at its hitting time at 0. Using successively the Markov
property of © at v, (2.8) and (2.7) gives the following equalities

_a2 °°@sd
E(e i fo S]I(C®<a+b))

2 v 2 [e o) ~
_ E(e_% I @sdsE[e—"T J;” mEsQdsy (a_v)=0)‘7‘ - @v])

(exp( ); / O.ds — ©—)\coth()\(a —v))))

E
(sm:liha)\; v )Iﬂl.

It follows that

* @,ds sin A(a — v)\ 16l
(4.20) E(e z f ]1(C®<a+b)) (W) ) 0< A< 7T/a.
Now, we are going to show (4.15). Take 0 = 1/2in (4.19). Applying Chebychev’s inequality

0 (4.20) with A = = gives
w2t
I3 < exp ( - ),

16a2

and by (4.6),

2
Iy < ¢0(a,b;t/2) < Cs exp(— 16(c7:7-|fb)2)’
implying (4.15) if Cg > 1 4 Cs.
It remains to consider the case b < a < 2b,t > (a+b)2. Let o = aa_:'zbb//23 €[9/10,15/16].
Again applying Chebychev’s inequality to (4.20) with A = 7/(a + b/2) gives

, Ta —18l 2 2
(4.21) I3 < (sm m) ’ exp ( - m) < (5/2)1#lexp ( — 2(a+—2tb/3)2)
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Applying (4.6) to I4 shows that

w2t 2 Ooe d
Iy < Csb*@tP) max x @ Pt PeT 2wt E[e‘ sero? Jo ©sds

1
1/16<2<1/10 (e <a+b)

< Cu(a, B) (ﬁ)_a_ﬂ exp ( - ﬁ)a

which, in view of (4.19) and (4.21) implies (4.16), and we end the proof of Lemma 4.3 by
taking Cg = (1 + C5) V (Cl() + Cll)- O

Combining (4.6) and Lemmas 4.2 and 4.3 gives the following

Corollary 4.4. Recall (4.1). There exists a constant C15 = C12(a, §) only depending on
o, B such that for alla > b> 0,0 <wv <a,t > (a+b)?

(4.22) P(Ty(—a) > Ty (8) > t) < Cipexp (- ﬁ?b)z)

Furthermore, if 0 < v < a/2 < b, we have

2(a+B8) 1—(a+B8) m°t
(4.23) P(Ty(—a) > Ty (b) > t) < C12b t P ( N W)

5. PROOFS OF THEOREMS 1.1-3.

Recall (1.1). Let us at first establish a zero-one law:

Lemma 5.1. Let f > 0 be a nondecreasing function. The events {SUPogsgt Xs >

V), 1'.0.}, {SUPogsgt Xs < %, 1'.0.} and {SUPogsgt 1 X,| < %, 1'.0.} have proba-
bilities 0 or 1.

Proof of Lemma 5.1. The proof relies on the ergodicity of the Brownian scaling trans-
formation. Precisely, for fixed ¢ > 0, define the processes B(9 and X () by Bt(c) def 1 B

Nz

and Xt(c) o % Xt for £ > 0. Therefore, we have that (see e.g. [22, Exercise XIII.1.17])
(c) @, (n

(5.1) (B, B) — (B, B), c — 00,

3 . . . d . .
where B denotes an independent Brownian motion, and Q) means convergence in law in
the space of continuous functions = C(Ry, R), endowed with the topology of the uniform
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convergence on every compact set. Let A be an event determined by 14 = F (B, ¢ > 0)
with F : © — {0,1} a measurable function. Define A, by 1, = F(B®,t > 0). By
approximating F(By,t > 0) by bounded continuous functions in L' (Q, P, o (B)), we deduce
from (5.1) that

(5.2) lim IP’(A N Ac) - P(A)z.

c—>00

Now, we can prove Lemma 5.1 by using (5.2) and the fact that o {X;,t > 0} = o{B;,t > 0}
(which follows from the pathwise uniqueness of (1.1), see [4]) as follows: consider for

example A = {SUPogsgt X, > Vi f(), i.o.} (the other two events can be treated in the

same way), and A, o { SUPg<s<t x> Vit f (1), i.o.}. Using the monotonicity of f, we
have that

(5.3) A C A, c>1,

which in view of (5.2) implies that

IP’(A) = lim IP’(A mAc) =IP’(A)2,

cC—00
yielding that IP’(A) =0 or 1, as desired. O

Proof of Theorem 1.1. The convergence part of this test can be proven in a standard
way. Let t, < exp (n/ log n) for large m. It is well-known (cf. Csdki [7] for a rigorous

justification) that we can limit our attention to the “critical” case

1
(5.4) ﬁ\/loglogt < f(t) < =+/loglogt, t > to.

Therefore it is easy to see that

(5.5) /Wd?f(t)exp(—w)<oo:;fén)exp(—w)<oo.

Qll~

Recall (3.1). Using scaling and (3.2), we have

Cl3 a2‘102(7577,))

IP’( sup X, > \/Zf(tn)) = P(TX(l) <t )) s f(tn) eXp(_ 2

0<s<tpn+1 tnfz(tn

which is summable by (5.5). It follows that almost surely for all large n, supg<,<y,,,, Xs
Vin f(tn). In view of the monotonicity, we have for all £ € [tn,tn41), SUPg<s<s Xs
SUPg<s<t, sy Xs < Vin f(tn) < V't f(t), proving the convergence part of Theorem 1.1.
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def

To treat the divergence part of Theorem 1.1, we again assume (5.4). Let f(£) € f(¢2).

Define for 7 > 2, r; def exp (z/ log z) and

def Tiz— 22
;& {f2(7'1i) < Tx(r;) < f2(n-)}'

Observe that 7;/r,_1 —1~ 1/logé and 5= logz < f(n) < %logi for large 7 > ig. It follows
from (3.2) that

IP’(AZ) - IP’(TX(l) <F 2(n)) P(Tx(l) 7‘3221 f‘z(n-))
o Oy (- PR Gy (P
(5.6) > 0y (1— e~1/3) %exp( 2f2 (rs) ) i > g

It then follows that
(5.7) > P(4;) = cc.

We shall apply the Borel-Cantelli lemma to show that
(5.8) IP’(AZ-; i.0. ) > 0.

To this end, let us estimate the second moment term of IP’(AZ- N Aj) for ig <4 < j. Recall

(1.1). Applying the strong Markov property for the Brownian motion B at the stopping
time T'x (r;) gives

(5.9 XX, pr oy —ri =B+ aM, - 5(5 — (ri+ ITX(,,i))) . t>0,

where B is a Brownian motion starting from 0, independent of .7-"7){( (o) ((F¥,t > 0) being

the natural filtration of X), and J\//ft and j; are respectively the past maximums of )?t and
of —X;. Define similarly T'(r) for 7 > 0. Conditionally on Iz, ), T'(r) is independent of
F’l{( (,,,').

Notice that T'(r;) = Tx(r;) + T(r; — ;). Applying (4.2) to T(r; — r;) with r =
2

T — Tt = fTZ,JL,);U =7i+ Iy (r;) Glves
~ 2
) . . _J X
Csrj @ (rj — )2 f2(ry)
(5.10) < P( A; J exp | — J 2.
) G —raren = )
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On the other hand, we have from (3.2)

(5.11) IP’(AZ-) < ;Cl exp ( _ @) i > io.

In view of (5.6), (5.10)—(5.11), several lines of elementary calculations show that

014IP’(AZ-) P(Aj), it j—i>log?s,
(5.12) P(AmAj) < 015P(Ai)j—016, it logi < j—i<log?i,
017IP’(AZ-) e=C1s(i—1), it 2<j—i<logi.

It follows from (5.7) and (5.12) that

. 22<ig<n P(Ai N4 )
lim inf 5 <
T (Cacica P(41))

CY].47

which in view of (5.7), according to Kochen and Stone’s version of the Borel-Cantelli lemma
(cf. [15]) implies IE”(AZ-; i.o.) > 1/C14 > 0. This probability in fact equals 1 according to
Lemma 5.1. Finally, write ¢; = 72/f2(r;). Recall f(t) = f(#). Observe that on A;, we
have supgcs<y, Xs > 7i = /1 f(ri) = VEf(r]) > /i f(t;). This completes the proof

since we have shown IP’(AZ-; i.o. ) =1.

Proof of Theorem 1.2. Since the proof is similar to the above one, we just sketch the

main steps. First, the convergence part follows from Lemma 3.1 and the monotonicity, and

the details are omitted. To prove the divergence part, we only have to treat the critical

case
1/(28) 2/8
(5.13) (logt) <flH) < (logt) , t > to.
Define in this case
def 72
(5.14) F S {4 < T (ri) < tis I(Tx(ri)) < 7 (i)
with r; &2t ¢, & 7‘12]/‘\2(7'1) and f(z) Lf (z3). By changing X to —X and interchanging o

and S, we have from (3.2) that

220V @+B) 4y B
(5.15) IP’(TX(—l) < e) ~ et /2 exp ( - 2—6) e — 0.
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Applying Lemma 3.1 and (5.15) gives

P(F) > P(Tx(ri) > ti) = P(Tx (ri) > tias) = P(I(ti1) > 73 F2(mi))

o~

— tz
> C1of(rs) P — P(Tx (1) < %)

o~

C —
(5.16) > %f(ri)_ﬂ.
On the other hand, we have from Lemma 3.1 that

(5.17) P(Fi) < P(Tx(n) > ti) < Coof(ri)=P.

For j > i+ 2, we recall (5.9) to bound IP’(FZ- N Fj) in a similar way as to the proof of
Theorem 1.1, by using (4.3) instead of (4.2). It can be shown that

(5.17) P(FiNF;) < CuP(F) (e70n P+ Ty (g — )7,

Tj Tj f("'j)
From (5.16)—(5.17), the proof of the divergence part of Theorem 1.2 can be completed in
a similar way to that of Theorem 1.1. The details are omitted. O

Proof of Theorem 1.3. Similarly, we only treat the divergence part. We can assume
without any loss of generality that

2 4
(5.18) ;\/loglogt <fl) < - loglogt, t > to.
Define
(5.19) Gi déf {Tx(—’r‘i) > Tx(’f‘i) > 1;; Tx(’f‘i) < ti+1},

o~

with r; & exp (z / log i), and t; € r2f2(r,), and f(z) ¥ f(2®). It follows from Proposition
3.3 and our choices of r;,¢; that

—2(a+8) exp ( B 772]/‘\2(7'1-))’

(5.20) P(Gi) = F(r:) 3

where f(z) < g(z) means that 0 < liminf,_, . f(z)/g(z) < limsup,_, . f(z)/g(z) < oc.
To estimate the second moment IP’(GZ- N Gj), we recall (5.9). Use of the hitting time T'(z)
at x by the process X gives

o~

P(GiNG;) SE[1g, P(T(=r; = i) > Tlry = i) > t; — tina | Fif )|
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which, by applying Corollary 4.4 to Ty (z) = f(w) witha =rj+r, b=rj—ri, t =t;—tiy1
and v =r; + I(Tx(r;)) € (r;,2r;) leads to the following estimate

nglP’(Gi) P(Gj), if j—i > logi;
(5.21) P(GiNG;) < -

024P(Gi)e‘025(7"), if2<j—i<logi.
From (5.20)—(5.21), the proof of the divergence part of Theorem 1.3 can be completed in
exactly the same way as in the proof of Theorem 1.1. We omit the details. O
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