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1. Introduction

The simple Random Walk in Random Environment (RWRE) is defined as follows: let
2 = {&;},ez be a sequence of independent and identically distributed random variables
taking values in (0, 1). Define the RWRE {S,,},>0 by Sy f) and for n >1landi€Z,

P[Sn+1=i+1‘5n=i, 5] — ¢, and P[Sn+1=7;—1‘sn=7;, 5] —1-¢.

Note that Z and {S,}n>0 are both random under P, and that given = (which is called
the “environment”), {S,}n>0 performs a nearest-neighbour random walk on the line. For
notational simplification, we write throughout the paper
(1.1) nj of log(l;gj), Jj ELL.

&

The study of RWRE is motivated by modelisation of some random phenomena in
physics and biology (see Hughes [19]). For recent progress, see for example [1], [3]-[5], [7],
[9]-[10], [13]-[18], [20]-[21], [23]-[24], [28], [32]-[33], [35]-[37], [39], as well as the book of
Révész [30].

We shall assume the following “usual” condition for the random environment:

(1.2) 7o is bounded almost surely, with E(7) = 0,
and write
(1.3) o E ().

It is worth noting that if o = 0, {S, }>0 becomes the usual simple symmetric random walk
(Bernoulli walk). By a slight abuse of notation, we keep using the terminology “RWRE”
even in case g = (.

According to a general recurrence/transience criterion of Solomon [36], under (1.2),
the random walk {Sy,}n>0 is recurrent, i.e. it visits any given point infinitely often. An
important result of Sinai [35] tells that if (1.2) holds, and if o > 0 (which excludes the
Bernoulli walk), then S,,/(logn)? converges to a non-degenerate limiting distribution (the
computation of this distribution is later independently achieved by Kesten [23] and Golosov
[14]). This contrasts the case of the Bernoulli walk, for which the usual central limit
theorem says that S, //n converges to a Gaussian distribution.

The main concern of this paper is to study the favourite points. For n > 0 and x € Z,
define

n
def
(1'4) L(’I’L, 1[7) = Z ]I{Si=:1:}a
=0
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the number of visits of RWRE at = up to time n, which is also referred to as the local time

of RWRE. Let
def

F(n) = {1[7 € Zy : L(n,z) = max L(n,y)},
YyEL

which, following Erdos and Révész [11] and Bass and Griffin [2], is called the set of the
favourite sites or the most visited sites (in Z) of RWRE. Since F(n) is not necessarily
a singleton, we consider

1.5 F(n) = :

(1.5) (n) Jmax @
the maximal favourite site (though all the results presented in the paper for F'(n) still hold
if in (1.5), “max” is replaced say by “min”).

Let us first recall two results of F(n) for the Bernoulli walk.

Theorem A (Erd6s and Révész [11], Bass and Griffin [2]). Under (1.2), if o = 0,

F(n)
1.6 li
(16) P (2n loglogn)t/?

=1, a.s.

Theorem B (Bass and Griffin [2]). Under (1.2), if 0 = 0, then with probability one,

.. . (logn)® [0 ifa<2,
(1.7) limint SSE- P = {0 s

It is seen from (1.6) that F'(n) satisfies the same law of the iterated logarithm (LIL)
as the Bernoulli walk. However, it is also proved by Erdds and Révész [11] that they have
different upper functions, i.e. the usual Kolmogorov test (also referred to as the Erd8s—
Feller—Kolmogorov—Petrowsky or EFKP test, see Révész [30, p. 35]) does not apply to

Theorem B is somewhat surprising, which a fortiori tells that F'(n) is transient. The
exact rate of escape of F'(n) in (1.7) is unknown, and is believed to be a very challenging
problem.

We now present the main results of the paper, concerning the behaviours of F(n)

when the environment is random.

Theorem 1.1. Assuming (1.2) and o > 0,

lims F(n) 8 a.s
11m su = S.
P (logn)2logloglogn w202’
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Theorem 1.2. Assume (1.2) and o > 0. For any non-decreasing sequence a,, > 1,

.. a 0 log a, =00
1 f " __F(n)= 8. =
o0 (logn)? () {oo ) 88 Z ny/ay, logn {

In particular,

i inf (loglogmn)® Fln) = {0 if a < ?,

nsoo  (logm)? oo otherwise.
Remark 1.3. Theorem 1.1 is not deep. It merely confirms that in random environment
F(n) satisfies again the same LIL (see Section 6 for the exact statement) as the random
walk, which is easily guessed in view of the corresponding result (i.e. Theorem A) for
the Bernoulli walk. Theorem 1.2 tells that F'(n) is also transient in random environment.
Usually, the presence of the random environment considerably complicates the situation,
and the results obtained are often less complete than those for the Bernoulli walk. The
problem of the escape rates of the most visited site is the only example we are aware of

so far, which is solved in random environment but remains open for the Bernoulli walk.

The rest of the paper is as follows. In Section 2, we study some properties of the
location of the minimum of one-dimensional Brownian motion. Section 3 is devoted to
introduction of a continuous-time model in random environment. Some preliminary esti-
mates are presented in Section 4, which will be used in Section 5 to prove Theorem 1.2.
The proof of Theorem 1.1 is provided in Section 6. Finally, in Section 7, we give the
corresponding results for a class of recurrent diffusion processes with random potentials,
including the example of Brox’s diffusion with Brownian potential.

Throughout the paper, we write indifferently Z(¢) and Z; for any stochastic process Z.
Since we only deal with (possibly random) indices r, n, ¢, - - - which ultimately go to infinity,
our statements, sometimes without further mention, are to be understood for the situation
when the appropriate index is sufficiently large. The usual symbol a(z) ~ b(z) (z — xo)
denotes lim,_,,. a(z)/b(xz) = 1. We also adopt the abbreviation “i.0.” for “infinitely often”
(when the relevant index goes to infinity).

Unimportant finite positive constants will be denoted by ¢; (1 < i < 29).

2. Brownian motion

Let {W(t); t > 0} be one-dimensional Brownian motion, with W(0) = 0. Define the
processes of first hitting times for W: for » > 0,
(2.1) H % nf{t>0: W(t)>r},

(2.2) H., ¥ mf{t >0: W(t) < 7‘}.
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Consider

def . _
(2.3) B L int{t>0: W)= it W) r>o

which is the (first) location of the minimum of W over [0, H,].

Lemma 2.1. Let 0 < 6 < 2(v — 1). Almost surely for all large r and all t € [0, H,],

7‘2 T

> inf .
(logr)? = W)= oglsngHT Wis)+ (log r)¥

|t_/3r| Z

Roughly, the lemma says that asymptotically, Brownian motion can realize a value
which is close to its minimum only in a neighbourhood of the location of the minimum. This
is intuitively clear. The proof is based on the following well-known path decomposition
theorem, see Revuz and Yor [31, Proposition VI.3.13]:

Fact 2.2. For any r > 0, the variable |info<,<m, W(s)| has density r(z + 7)™ ?Liz503-

Moreover, given |info<s<m, W(s)| =z > 0,
{T—W(t); Ogtgﬁr} and {T—W(Hr—t); OStSHr—,BT}

are independent three-dimensional Bessel processes, the first starting from r and killed
when hitting x + r for the first time, the second starting from 0 and killed when hitting
T+

Proof of Lemma 2.1. Fix v > 0 and v > 0, whose values will be chosen later. For r > u,
define

Euo(r) dzef{ inf W(t) < inf W(s)+ u}
OStSHry |t—ﬂr|ZU OSSSHT‘
(inf @ o 00). By conditioning on info<s<m, W(s) = —x, and using Fact 2.2,
o rdz
2.4 P(E. = I I —
(2.4) (Euw(r)) /0 (2.4) X (2.4) r+2)7

with
L(2.4) Lfp, ( sup Rt)y>r+z—u, 7(r+z)> v),
0<t<7(r+z)—v

5.4 & IP’O( sup Rt)>r4+z—u, 7(r+z)> v),
0<t<7(r+z)—v
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where {R(t); t > 0} is a three-dimensional Bessel process, 7(s) o inf{t > 0: R(t) > s},

and P; denotes the probability under which R starts from s (s > 0).
By the strong Markov property,

o 4y = Prou (7(r +2) > 0) = P ( Sup B(T) <7+ 7).

Under P, 5., the Bessel process R can be written as

ds

R(t)=(r+x—u)+B(t)+/0 et

where B is standard Brownian motion. Therefore,

Since I3 4y < 1, in view of (2.4), we have
u

Ju

Now fix 0 < # < 2(v—1) and £k > 1. Let r, Lef gn (for all n > 1). We choose
v r1/(logrs)?, v r2/(logTk41)?, and define

(2.5) P(Ey(r)) < —, for all r > w.

A(k) o inf{r >rptw€E Eu,v(r)}.

Clearly H(gy is an (F,)r>o stopping time, where (F;);>o is the natural filtration of W.

On {A(k) < oo}, we consider W(t) d=efW(t + Hp ) — A(k) (for t > 0) which is Brownian

motion independent of F, Hp 5 Define
G, ¥ { W hits (res1 — i) before hitting (—rk)}.
Observe that

({rk <A®) < e} NG {_inf

— 'f‘k

W(s) < —u}) C Eyu(Tk+1),

which implies




Since P(A(k) = ri) = P(Eyv(1%)), it follows from (2.5) that

P(rk <A(k) < 7‘k+1) < P(Eu,v(rk)) + TI:.;:l (P(E“’”(Tk"'l)) T urrk)

Tk +Th+1 U UTE+1

- Tk \/'l_l rk(u-l-rk)’

which yields >, P(ry < A(k) < rg41) < co. Lemma 2.1 is proved by an application of the

Borel-Cantelli lemma. O

Lemma 2.3. Let 31 be as in (2.3),

(2.6) P(B1 < A) ~ \/g A= 0t

As a consequence, for all 0 < A <1,

Cl\/XS]P(51<)\) SCz\/X.

Proof. We again apply the path decomposition theorem in Fact 2.2, to see the Laplace

transform of By: for all u > 0,

—upB * —uT T dz
E(e ﬂ):/o El(e 1+ ))ma

where, as before, R denotes a three-dimensional Bessel process, starting from 1 under P,

(E; standing for the associated expectation), and 7(1 + z) o inf{t > 0: R(t) > 1+ z}.

According to Kent [22],

e_UT(1+m) _ (1+$)Slﬂhm
Ea ) sinh((1 + )v2u)’

which implies

E(e_“ﬂl) _/°° sinh\/2ud 1 "= o0
= Jyss ysinhy 07 Vaa '

This yields (2.6) by means of a Tauberian theorem, see for example Feller [12, p. 445]. O
Define, for r > 0,
(2.7) U, = OSlSHSfHT W(s) |+,
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which is the range of W over [0, H,]. Let {U,; r > 0} be a process having the same law as
{U,; r > 0}, independent of {W(s); s > 0}. Define,
(2.8) Ur & max (U, ﬁr), r > 0.

Lemma 2.4. For any 6 > 1, there exist positive constants cs, ¢4 and cs, depending on 6,
such that for all 0 < e < 1/2,

(2.9) P( 1 < e(Ug)?) < cs/e log(g),
(2.10) P(ﬁl < 8612, ﬁl < 8_1/3, Ui < 2) > C4\/E log(g),
(2.11) P( By < e(UF)?) > 5 /& 1og(§).

Proof. We only have to treat the case when ¢ is sufficiently small. Write aVb for max(a, b).
By independence and scaling,

(B1,U5) = (B1,Us V ﬁe) o (B1,Up v eﬁl)a

where “27 gtands for identity in law. Let U and U denote two independent copies of

the process U, and independent of {W(s); 0 < s < H;}, then by the strong Markov and
scaling properties,

(B1,U5) o (B, U1 +0—-1)V (Tg_1) v 961)
(81, (UL + 0 —1) Vv (0 — 1) Ty v 6T,

which, in view of the relation U; + 60 — 1 < 80U, implies that

]P)(ﬁl <€(Ug)2) S]P(g < Ul\/Ul\/Ul)

<2r( 2 <)

— < .
0\/E_U1VU1

Observe that the probability expression on the right hand side is

gP(Ulvﬁl>W) (,61< (1/) U1>2)
+P(g/5__<2+U1, Ul_#g(l/s))'
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The first probability term is easy to estimate. Indeed, since P(U; > z) = 1/z for all x > 1,
we have,
~ 2
P(UiVU, >z) <2P(Uy >z) <=, &>1.
x

To estimate the second probability expression, note that U; = 1 — info<,<g, W(s), which
implies, for all 0 < u < 1,
1
9.12 P UL > 2 <IP’(— inf 1)< (——).
(2.12) (Br<u,U; >2) < ognslguw(s) > 1) <exp(—o-

Finally, thanks to the independence of ; and ﬁl, we have, by conditioning on U and
using Lemma 2.3, for all 0 < u < 1 and v > 2 such that u(2 +v) < 1,

P(\/ﬁilf u(2+ ﬁl), ﬁl S ’U) S Co E[U(2+ Ul)]l{Ulgv}]
Y dz
= czu/l (2 + z) e

< cgulogw.

Assembling these pieces and we obtain:

P( 1 < e(Ug)?) < 40+/elog(1/e) + 2v/e + ¢z \/Elog(g),

which readily yields (2.9).
To check (2.10), observe that the probability term on the left hand side of (2.10) is

greater than (or equal to)
]P’(ﬁl < 6612, ﬁl < 8_1/3) — ]P)(ﬁl < 61/3, Ui > 2),

which, by means of Lemma 2.3 and (2.12) (and recalling that P(U; > z) = 1/z for > 1),

is
1
s V01 1)
1 1
proving (2.10).
We actually have already proved (2.11), implicitly. Indeed, by independence and

scaling,
~o 0
P( B < s(Ul*)2) > P(ﬁg <eU? U, < %)
:P(’Bl <872eU7, Uy < %),
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which leads to (2.11) again by conditioning on U; and using Lemma 2.3. 0

Lemma 2.5. Fix 0 > 1. Let f > 1 be a non-decreasing function, and let

g™ [ iog; E:; dr.
(i) If J(f) < oo, then
(2.13) liminf f(r) (U597)2 =00,  as.
(i) If J(f) = oo, then along the subsequence T, = 67,
(2.14) liminf f(rn) (5}")2 =0, as

Remark 2.6. Since Ug,. > 0r, an immediate consequence of (2.13) is that, almost surely

for all large r,

7,2

br > (logr)3"

Proof of Lemma 2.5. Let f > 1 be non-decreasing, and r,, Lfon. 1t is easily seen that

log f rn

\/ 7- n

To prove (2.13), let us assume J(f) < oo, which implies that f goes to infinity. Fix

(2.15) J(f) <o Z

A > 0 and consider the events

def P
E, = {f(’rn) ﬁr(n) <A (Uer(n+1))2}a

for sufficiently large n, say n > ng. (For typesetting reason, we have written r(n) and
r(n + 1) for r, and r, 41 respectively). It follows from (2.9) that for n > ny,

P(E,) < c3 f(i‘\n) log f(;"),

which, according to (2.15), is summable for n. Applying the Borel-Cantelli lemma and

using monotonicity, we obtain:

liminf f(r) Br

> .S.
10 Uz )2 = A as
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This yields (2.13) by sending A to infinity.
It remains to show (2.14). Suppose that the integral in (2.15) diverges. In view of the

form of the test, we can assume, without loss of generality, that (for all large r),
(2.16) logr < f(r) < (logr)3.

(This is well-known, and can be checked by a deterministic argument, see for example
Cséki [6]). Fix A > 0, and define

def

E,= {f(Tn) Br(n+1) < )‘ﬁf(n)}

def [ =~ Tny f(rn)
G, = {Ur(n) < 107 U,

gf(r ) » Yr(n+1) < 2Tn+1}a
n

D, ¥ E NnG,.

By independence, scaling and (2.10), for all n > ny,

_ )‘Trzr, 72 17 V f('rn)
P(Dn) = ]P)(f(rn) p1 < 7'7214-1 Ur, Ui < m, U < 2)
> P(f(rn) BL<N2U2, U, < (??j)‘”i U, < 2)
log f(rn)
(2.17) > g f(,rn) .

This implies >, P(D,) = oco. In order to apply the Borel-Cantelli lemma, we have to
estimate the second moment P(D; N Dy), for j > i. Recall H from (2.1), and define

s def

W) = Wt + Hyiy1)) — Tit1s t >0,

which is Brownian motion independent of Fg We can define H and B for W, exactly

r(i+1)°
in the same way as H and 3 are for W.

There are three possible situations:
Case 1: Br(j+1) < Hr(i+1)a
Case 2: Br(j41) > Hpt1), j—1 < 3(logi)/logh,
Case 3: Br(j41) > Hpi41), j— 12> 3(logi)/logh.

Case 1 is equivalent to

=N inf W(t) > _U’I’(i+1)'
0<t<Hr(j41)—r(i+1)



Since D; C {Uy(;41) < 27341}, we have

P(Di, D;, Case 1) < P(D;, __inf W(t) > —27‘i+1)
0<t<H,(j+1)—r(i+1)
= (D)) P( inf W(t) > ~2rip )
( ’) 0<t<Hr(j41)—r(i+1) ( ) o
2 .

¢ Tj+1 + Tit1
< 20-U"VP(Dy),

which gives

(2.18) > P(Di, Dj, Case 1) <ci zn: P(D;).

no<i<j<n i=no

In Cases 2 and 3,

(2.19) Brii+1) = Hriv1) + Br(j+1)—r(i+1)-
Observing that D; C {B(j4+1) < Ar7/(log f(r;))?}, and recalling (2.16),
P(Di, Dj, Case 2) < P( D, f < A )
i, /5, Lase = iy Pr(j+1)—r(i+1) (1ng(rj))2

= P(Di)P(ﬁr(ﬁl)—”(”l) < W)

)\7']2-
< P(D;) P(ﬁrml)—r(“” < m)'

Since r(j + 1) —r(i¢+ 1) > (6 — 1) rj, we have, by means of Lemma 2.3,

C C
]P’(Di, Dj, Case 2) < P(Dz)loglzlgr < 10;2.7- ]P)(Dz)
J

Therefore,
n
(2.20) > P(Di, Dj, Case2) <ciz Y P(D;).
no<i<j<n i=no

To treat Case 3, we first make a general observation:

U,y = max(r; — 75 + Up(iys Zo()—r(i))»



where Z,.(jy_r(;) is distributed as U, (;)—,(;), independent of {W (¢); £ > 0} and ﬁr(i). Since
by (2.16), D; C {U,(;y < ri(logr;)?}, and since 7;(logr;)? < r; —r; in Case 3, we have, on
D; (and in Case 3),
Upiy < i —ri 4 1i(10g73)? + Zo(jy—r(iy
< 2(rj = 73) + Zr(5)—r(i)
< 3Zr(j)=r (@)

In light of (2.19), this leads to:

972

P(D;, Dj, Case 3) < P(Di, Brjan)—r(ian) < W)
QU2 .. .
_ . . _ T r(G)-r@)

- ]P)(‘DZ) ]P)( 5”'(.7+1)—7'(Z+1) < f('f']) )

o, 9(rj —mi)® =
=R < e )

In Case 3, (r; —73)/(rj+1 — Ti41) < c14. By (2.9), for 0 < e <1/2,

]P’(ﬁl < 6612) < ]P)(ﬁl < €(Uf)2) <cs \/Elog(g)

Therefore,
1 .
]P)(DZ, Dj, Case 3) < cis ]P)(DZ) M,
f(r5)
which, in view of (2.17), yields
n 2
(2.21) > P(Di, Dj, Case3) <eis (D P(Dy)) -
no<i<j<n i=no

Since Y, P(D,) = oo, combining (2.18), (2.20) and (2.21) together with Kochen and
Stone’s Borel-Cantelli lemma ([26]) gives P(limsup,, D,,) > 0. A fortiori, with positive

probability,
.. 597’n
liminf f (rn) e <A\

The above clearly is a tail event, which, by means of a 0-1 argument (and by ultimately
sending A to 0T), completes the proof of (2.14). O

3. Diffusions with random potentials



Let {V(t); ¢ > 0} and {V(—t); ¢ > 0} be adapted and locally bounded processes with
V(0) = 0, independent of the standard Brownian motion {B(¢); ¢ > 0}. Consider the
process X defined by X (0) =0 and

(3.1) dX () = dB() — - V(X (¢)) dt.

We call X diffusion with random potential V.
However, we even do not assume V to be continuous. Therefore, instead of writing
the formal derivative of V' in (3.1), we really should regard X as a diffusion process whose

generator is
v d (v d
2% dz (e dz)'

A more convenient way in the study of X is to use diffusion theory to arrive at the

following representation (see Brox [3]):

(3.2) X(t) = AT (B(T* (), t>0.

Here, B is standard Brownian motion independent of {V(z); z € R},
(3.3) Az) % /0 "V dy,  zeR

(3.4) T(r) & /0 ' exp[—2V(A‘_(B(s)))] ds, r>0,

and A* and T* denote the respective inverse functions of A and T'. (Of course, we have
to assume that almost surely A(+oo) = oo and T(o0) = oo, which will be satisfied by
the examples of V' considered in the paper). We point out that A is the scale function of
X.

Let {Lp(t,x);t > 0, z € R} denote the jointly continuous local time process of B.
For any bounded Borel function f, by (3.2),

[ rxpas= [ sacma-mas
= [ o (v A a))
-/ Z J(A% (1)) exp(~2V(A* (1)) L (T (), y) dy
— [ 1@ Lo (1 (1), A@) da,



Consequently,
(3.5) Lx(t, ) Le V@ Lg(T+(4),A(z)), t>0,z€R,

is the local time process of X.

The reason for which X interests us is that if the random potential is carefully chosen,
then X behaves very much like Sinai’s RWRE. Here is a brief description of the choice of this
particular random potential (the main idea goes back at least to Schumacher [32]): given
E = {&;}jez arandom environment satisfying (1.2), and recalling 7; and ¢ from (1.2)-(1.3)
(with o > 0), there exists a unique choice of (random) step function {V(z); x € R} with
V(0) = 0, which is flat on each interval [n,n + 1), with jumps V(n) — V(n—) = 5, (for
n € Z). More precisely,

o+ -+ N, ifx ek, k+1)forkeZy,
(3.6) V(z) = <0, if z €[0,1),
—(o+n_1+-+mks1), ifxelkk+1)forkeZ*.

For this choice of V', we can define a diffusion process X via (3.2). It can be seen that

X is recurrent. Define pyg 0 and
def .
(3.7) i b {t > 15 (X = X(uar)| =1}, n=1,2,-

It is now possible to compare Lx with local time of Sinai’s RWRE. The following is
borrowed from [16, (4.12)-(4.13) and Fact 4.3].

Fact 3.1. Let E satisfy (1.2), with ¢ > 0. In a rich probability space, there exists a
coupling for RWRE {Sy, }n>0 in random environment = and diffusion process {X (t); t > 0}
whose random potential is defined by (3.6), such that with probability one,

(3.8) lim sup sup sup |Lx(s, k) —2& L(n, k)| <29,

1
n—oo keZ /1 4+ L(’I’L, k) log v pn<s<pinia

where L and Lx are the local times of S,, and X respectively. Moreover,

(3.9) im P =1, as

n—o0 711

Our approach essentially goes like this: instead of directly handling L (local time of
RWRE), we shall be working on Lx (local time of diffusion with random potential), by



exploiting the representation (3.5). Thanks to Fact 3.1, this is sufficient for our needs, at

the cost of an extra precision of order O(y/maxgeyz L(n, k) logn).

4. Partial sum potential and Brownian movement

This section is devoted to the study of two subjects: (i) partial sum potential V; (ii)
Brownian motion B which drives the movement of our diffusion X (see Section 3). For

the sake of clarity, they are discussed in distinct subsections.
4.1. PARTIAL SUM POTENTIAL

Let E = {{;} ez be an iid sequence of variables satistying (1.2), and let n; = log((1 —
€;)/&;) (see (1.1)). Therefore, there exists a finite constant K > 0 such that for all j € Z,

(4.1) In;| < K.

We assume o > 0 (see (1.3)), to ensure the randomness of the environment.

Let {V(z); x € R} denote the partial sum potential introduced in (3.6). According to
the classical Komlés-Major-Tusnédy strong approximation theorem ([27]), possibly in an
enlarged probability space, there exists a standard two-sided Brownian motion {W (z); = €
R} and finite constants c;7 > 0 and c¢;3 > 0 (depending on the distribution of 79) such
that for all ¢t > 1,

(4.2) IP’( sup |V(z)— oW (x)| > c17 logt) < as
—t<g<t 12

We first recall a well-known estimate for the modulus of continuity of W, which is a

particular case of Lemma 1.1.1 of Csérgs and Révész [8, p. 24] (takinge = 1, h = 1/r*

and v = logr in their notation).

Fact 4.1. There exists a universal constant c1g such that for any r > 1,

2
IP’( Ogsgtg?f—sgl/r‘i W (t) — W(s)| > lc;gzr) < ciort exp( —@ )
Recall H, from (2.1), and define
(4.3) 8, &f inf{t >0: W(t)= inf W(s)},
(4.4) o int{e > 0: w(t) - Jnf, W(s) < Serrtdto logr},
(4.5) 7 sup{t < H, - W(t) - Jnf, W(s) < e tdta logr }.



Observe that «,, B, and 7, are well-defined for all » > 7o (so that r > (8ci17 +4 +
o)o~llogr), and that (4.3) is nothing else but (2.3).

We point out that, despite some ressemblance, our triplet (., By, 7,) is not a “valley”
in the sense of Sinai [35] and Tanaka [37]. The reason for which we are interested in
(0, Br,7vr) is that the favourite site of the diffusion process X with random potential V,
at some suitably chosen random times, lies eventually in [c., Y, ] (see Lemma 5.1 in Section
5).

Lemma 4.2. Let A be as in (3.3). For all > 7o,

(4.6) B(r* Aly) > A(H,)) < 2287,

Proof. Define

8 8
El déf{ sup W(S) S r— M 10g7‘},
0<5<, g
Es déf{ sup |V (s) —oW(s)| < 4c17 logr},
0<s<rt

E3d§f{1 < H, <1},
where c;7 is the absolute constant in (4.2). By the definitions of A and ~,, on E3 N E3,

Alyr) < eXP(U sup W(s) + 4cy7log 7‘)%
0<s<yr

< r*exp ( o sup W(s)+ 4cirlog 7') .
0<s<yr

Therefore, on E1 N Ey N Ej3,
Aly,) < rt exp(ar — (0 +4c17 + 8) logr )

On the other hand, on Es N Ej3,
H,
A(H,) > / eV ds
H,—1

> exp(ar —4dcyzlogr — o sup W (t) — W (s)| )
0<s<t<rt, t—s<1

Consequently, by writing I 46 for the probability term on the left hand side of (4.6),

3
lug <P( sup  |W(t) = W(s)| > logr) + > P(EY)
0<s<t<rs, t—s<1 i=1
logr 8
(4.7) =p( sup W) - W(s)| > =5 ) + 3 P(ES).
0<s<t<1, t—s<1/r4 T i—1



The first probability term on the right hand side is estimated in Fact 4.1. We have to
bound P(Ef) for 1 < i < 3. According to (4.2),

(4.8) P(ES) < =2,

By the usual estimates for Gaussian tails,

(4.9) P(ES) =P(H, < 1) +P(H, >r*) < exp(—g) + %

Finally, to estimate P(EY), let G(r) & sup{t < H, : W(t) = 0}. Observe that

8 8
P(ES) < P(v, > G(r)) + IP’( sup V(s)>r— Sart o+ 0

log r).
0<s<G(r)

According to Williams’s path decomposition theorem ([38]), supg< ;<) W ($) is uniformly
distributed in (0,7). This confirms that the second probability term on the right hand
equals 71 (8c17+8+0)o "t logr. Since {7y, > G(r)} means W (t) > —(8ci7+4+0)o~ logr
for all 0 < ¢ < H,, it follows that

(8ci7 +4+0)o~tlogr 8c17 + 8+ 0 logr
4.10 P(ES) < .
(4.10) ( 1)_r+(8017+4+0)0—110g7'+ o r

Assembling (4.7)—(4.10) and using Fact 4.1 yields the lemma. O
4.2. BROWNIAN MOVEMENT

Let B be standard one-dimensional Brownian motion, whose jointly continuous local
time process is denoted by {Lp(t,z); ¢ > 0, x € R}. For r > 0, define

(4.11) o(r) & inf{t > 0: Bt) >},

The following is the classical Ray—Knight theorem, see Ray [29], Knight [25] or Revuz and
Yor [31, Theorem XI.2.2].

Fact 4.3. Forr > 0, {Lp(o(r),r—z); 0 <z < r} is a squared Bessel process of dimension
2, starting from 0.

Lemma 4.4. Write

(4.12) Ls(t,R) Y supLp(t,z), t>o0.
>0



For allv>wu> 0 and A > 2,

(4.13) IP’( sup sup w > )\) < co log A (1 + log %)

o(w)<t<o(v) 0<z<u/xz LB(t,T) A

Proof. Let N = N(u,v) be the integer part of (log(v/u))/log2, and let I(4 13y denote the
probability expression on the left hand side of (4.13), then

N
Lp(t, Ry
Lig13) < E IP’( sup sup Lp(tRy) > )\)
e(2Fu)<t<p(2k+t1y) 0<z<u/A2 LB(tax)

N
Lp(t
= ZIP’( sup sup Lp(t,Ry) > )\)
2(1)<t<(2) 0<z<2—k /A2 Lp(t,x)
Lp(t
B( 7R|-) > )\)

<(N+1 IP’( sup sup @ ——
( ) o(1)<t<o(2) 0<z<r—2 LB(t,z)

< (N +1)P(Lp(e(2),Ry) > 6log )

. 6log A
+ WA DR(int | L(e). o) < =)

£
(4.14) T (N +1) Ligaa) + (N + 1) L4 14y,

with obvious notation. Let {§(¢); 0 < ¢ < 1} denote a 2-dimensional Bessel process with
$(0) = 0. According to Fact 4.3 and the scaling property,

(4.15) Ta.14) = IP’( sup R(t) > /3 log)\) < 0272

0<t<1

the last inequality following from the usual Gaussian tail estimate: logP(supg<;<; R(t) >
z) ~ —x2/2 (as & goes to infinity).
To estimate I[(4.14), observe that, by Fact 4.3,

faan = P( 1—Ai—I2lf§t§1§R(t) < \/6\;0_?)
< P(%(l) < \/?) +P(1-AS—3‘;51 R(L) - R(D)| > \/?)

The random variable %2(1) being exponential, with mean 2, its density function is bounded

above by 1/2. Therefore for any y > 0,



On the other hand, since ® can be realized as the Euclidean modulus of an R2-valued

Brownian motion, say (Wi, W), by triangular inequality and time reversal, for any y > 0,

IP’( sup |R(1) — R(@)| > y) < 2IP’( sup |[Wi(s)| > %) < 4exp(—y2)\2).

1-2—2<¢<1 0<s<A—2 4
Consequently,
log A Alog A
414y < % + 4exp(— 4g )
Combining this with (4.15) and (4.14) yields the lemma. O

5. Proof of Theorem 1.2

Let 2 = {¢;}jez be iid random variables satisfying (1.2) (with ¢ > 0), and let V be
the partial sum process defined by (3.6). We are interested in {X (¢); ¢ > 0}, the diffusion
process with partial sum potential V', driven by the Brownian motion B (see (3.2) for
definition).

Let {W(z); z € R} be the Koml6s—Major-Tusnidy two-sided Brownian motion sat-
isfying (4.2), independent of B. Recall A and T from (3.3)—(3.4). For notational simplifi-

cation, we write
(5.1) o(r) ¥ T(o(A(H,))), r>0,

where p and H are as in (4.11) and (2.1) respectively. The following lemma confirms that,
the favourite site of X, at time O(r), eventually lies in [a., 7, ], where (o, By, ¥,) is defined
via (4.3)-(4.5).

Lemma 5.1. Let Lx denote the local time of X as in (3.5). For all s > r > 7y,

slogr

Lx(t, k 1
(5.2) IP’( sup max L > —2) <c3——5
T T

o(r)<t<0(s) 0<k<a, Lx(t,[Br])

Lx(©(r), k) 1 log r
5-3) P(max 7 o). 5] 7)< o

where [f3,] stands for the integer part of f3,.

Proof. Let

E, déf{ sup |V (s) — oW (s)| < 4ec17 IOgT}a
0<s<rt

E3d§f{1<Hr<r4},

B s (W) - W(s)| <logr},
0<s<t<rt, t—s<1



where ¢;7 is the constant in (4.2). By (3.5), on Ea N E3 N Ey, for all O(r) <t < O(s) and
0<k<a,,

Lx(t, k) — = (V®)=V(5,]) Lp(T" (1), A(k))

Lx(t,[6:]) Lp(T™ (t)aA([/Br]))
< (8err10gT o—a(W (k)=W (B,))+olog Lp(T" (t), A(k))
= Lp(T* (), A([B]))
8ci7logr —(8cir+4)logr LB(TP (t)?A(k))
G4 S T (0), ACAD)

i Lp (T<— (t)a R—I—)
* Lp(T™ (1), A([5]))
where Lp(-,Ry) is defined in (4.12). We have used the definition of «, (see (4.4)) in (5.4).

Let I(5.2) denote the probability term on the left hand side of (5.2). Since ¢ — T (t)
is continuous, with T (©(v)) = p(A(H,)), we arrive at (noting that [3,] < 7,):

IA

4

c LB(uaR+)
I FE- P
@ = 2;( Dt (Q(A(H Deuzeaciy Lo(u AQGD) " )

7

INA
Ty

() +P(r* () > A(H,))
+ IP( M > 7.2).

sup sup
o(A(H,))<u<o(A(H.)) 0<a<A(H,)/r* LB(U,T)

-
I
I\

We can apply Lemmas 4.2 and 4.4 respectively to the last two probability expressions on
the right hand side, to see that

4
logr 2logr A(Hy)
I5.2) < ; ) + c20 +0217(1+E10g A(Hr))'

Since Elog A(H,.) > 0 for large r, and since A(H,) < e*H,, we have

:L

(Hs)
A(H,)

Elog < s+ Elog Hy < co5 s,

the last inequality following from the scaling property. Consequently,

slogr

4
[(5.2) < Z ) + c26
=2

This, jointly considered with (4.8), (4.9) and Fact 4.1, yields (5.2).



The proof of (5.3) is along the same lines, using the fact that W(t) — W(5,) >
(8ci7 +4+0)otlogr for all v, <t < H, (as for all 0 < ¢t < ). 0

Now let us look at the supremum of X. By (3.2) and the occupation time formula,
for any £ > 0 and v > 0,

{ Os<1ith } {/Q(A(v)) exp(—2V(A<_ (B(s)))) ds < t}
—{ [ oy eaw). v <1}
{/Zo e V® Ly (o(Av )),A(z))dz<t},
using a change of variable y = A(z). Writing
L650) % [ eV OLn(e(4w), A ds
(5.5) oo
Tosy(®) ™ [ e VI Ln(o(Aw), A=) ds,
we have,
(5.6) { sup X(s) > v} - {1(5_5)(1;) + 5.5 (v) < t}.

0<s<t

For brevity, we write

(5.7) W)Y sup W(s),
(5.8) W#*HY sup (W()-W(w), ¢>0.

Define, for r > 0,

- inf{t >0: W(=t) > 7‘},

which is the first hitting time at (r, 0c0) by {W(—t); t > 0}. Let

(5.9) U-(r) &

inf  W(-s) ‘ +r.
0<s<H;

The following estimate can be found in [17, Lemmas 4.1 and 4.2].

Fact 5.2. Under (1.2) with o > 0, for all sufficiently large v, we can find a measurable
event E(v), with P(E(v)) > 1 —exp(—(logv)®/?), such that on E(v)N{ W (v) > 2(logv)*},

oW#(v) — (logv)* < logl(s.5(v) < oW#(v) + (logv)*,
ocU™ (W (v) — (logv)*) <logls 5y (v) < oU™ (W (v) + (logv)*).



Lemma 5.3. Assume (1.2) and o > 0. Almost surely for all large v,
(5.10) oW#(v) — (logv)® < logIs.s5)(v) < oW#(v) + (logv)°®,
(5.11) oU™ (W (v) — (logv)®) <logls5)(v) < oU™ (W(v) + (logv)®).
Proof. Apply Fact 5.2 and the Borel-Cantelli lemma (noting that W(v) > 2(logv)* is
almost surely realized for all large v), to see that for all large integer n,

oW#(n) — (logn)* <loglis.s)(n) < oW#(n) + (logn)*.
Let v € [n,n + 1). By monotonicity,

logL(5.5)(v) > logIis 5(n) > oW#(n) — (logn)*.

It is well-known (see Csérg6 and Révész [8, p. 31]) that

limsup (2logn)~ Y2 max sup [W(k+s)— W(k)| =1, a.s.
7—00 0<k<n 0<s<1

Therefore, for large v € [n,n + 1), W#(v) — W#(n) < (3logn)'/2, which implies
logL5.5)(v) > oW#(v) — (3 logn)'/? — (logn)* > oW#(v) — (logv)®.

This yields the lower bound in (5.10). The rest of the lemma can be proved exactly in the

same way. 0

Proof of Theorem 1.2. Recall H, and U, from (2.1) and (2.7) respectively. By definition,
W#(H,) = U,. Since U, — U, > b — a for all b > a > 0, by the first part of Lemma 5.3,

almost surely for all large r,
(5.12) Uy, 2 < loglis.5)(H,) < oUs,.
On the other hand, W(H,) = r, which, in view of (5.11), yields that for large r,
(5.13) oU, ), <loglis.s) (Hy) < oUs,,.
By the occupation time formula and (5.6),

(5.14) Ii5.5)(v) + Ls.5)(v) = T(e(A(v))),



which, in view of (5.1), implies
I(5.5(H,) + L (5.5/(H,) = O(r).

Using max(a,b) < a + b < 2max(a,b) (for positive a and b), and in light of (5.12)—(5.13),
we arrive at: almost surely for all large r,

(5.15) omax(Uy /s, U, ;) <log©(r) < o max(Us,, Us,).

Another observation is that by Lemma 2.1, for all large r,

7,2 7,2

(5.16) |Olr - 5r| < (10g7‘)4’ |’77’ - 57’| < (10g,,,)4'

Let u-défj2 for all 7 > 1. Applying Lemma 5.1 to » = u; and s = w41, and by virtue
j g j i+

of the Borel-Cantelli lemma, we have, almost surely for all large j,

(5.17) max Ly(tR) S w3 La(2e), 1€ [Ou;), Ousn)]
(5.18) kir}y%f)Lx(@(U]), k) < u]._zLx(@(u]‘),Z+),

where Lx (t,Z4) & supgez, Lx(t, ). Let {pn}n>0 be the sequence defined in (3.7). For

large n, there exists a unique j = j(n, w) such that u, € [O(u;), ©(uj+1)). By (3.8),

max 2¢xL(n, k) < 304/1+ L(n,Z4) logn + o< 12X Lx (pin, k)

0<k<a(u;) <k<a(uy)

< 30y/1+ L(n,Zy) logn + uj *Lx (pn, Zy),

the second inequality following from (5.17), with the notation L(n,Z4) & SUp,ez, L(n, ).
Applying (3.8) once more to see that the above is smaller than (noting that &, < 1)

60v/1+ L(n, Z,) logn + 2u; > L(n, Z).
It is known (see Révész [30, p. 292]) that

(5.19) lim (loglogn)*

L P log L(n,Z4) = oo, a.s.

By (1.2), & is bounded below by a positive constant, this yields

5.20 L(n, k) < L(n,Z,),
(5:20) % () < Lin,Z)



ie. for p, € [©(y;),0(uj+1)),
F(n) > a(u;).

Therefore, by (3.9),

F(n)
(logn)?

a(u,)

au;) 1
2 (log ©(uj11))?

1
2 (log pn)?

2 2

According to (5.16) and (5.15), this yields

P 1 Aluy) — uj/(log u;)*
(logn)* ~ 2 02(max(U3uj+1,U3;Lj+1))2
1 Bluy) —uj/(logu;)*
~ 202 (max(U4ujaU4_uj))2
1 Blu;)
~ 302 (max(Usy;, Us,,))

(5.21) -

the last inequality following from Remark 2.6.
Let a, > 1 be a non-decreasing sequence such that > _(loga,)/(n./a, logn) < oco.
Let € > 0, and define the function

def
9(r) = e apexp(or/zy, T > 1

Then [*(logg(r))/(ry/g(r))dr < co. By Lemma 2.5, for all large r,

B(r) S 302
(ma,x(UM, U[r))2 ~ g(r)’

which, in view of (5.21), yields that, for all large n with p, € [O(y;), ©(u;j4+1)),

F(n) 1
(logn)® = g(uy)’

Since log p, > log ©(u;) which, according to (5.15), is greater than ou;/2, it follows from
(3.9) that logn > ou;/3. Therefore,

F(n) 1 1
> = .
(logn)? = g(80~1llogn) cay,

This yields the convergent part of Theorem 1.2.



To prove the divergent part of the theorem, consider a non-decreasing sequence a,, > 1
such that )", (logay,)/(n/an logn) = co. Let € > 0, and define the function

def 3
h(T) = E Qlexp(32r2)] r > 1.

Then [*°(logh(r))/(ry/h(r))dr = co. Applying Lemma 2.5 to § = 4 yields that, there
are infinitely many m satisfying

5(2m+2) < 1

(522) (ma,x(Uzm, Uz_m))2 — h(2m)

We are now working only with these m satisfying (5.22). Let j = j(m) be such that
u; € [2m+1, 2m+2) There exists a random index n = n(m) such that ©(u;) € [tn, Pnt1)-
As in the proof of (5.20), using (5.18) instead of (5.17), we can see that

max L(n,k) < L(n,Z,).
pax (n, k) < L(n, Z4)

Therefore, by (3.9),

F(n) () () 7(uy)
(logn)? = (logn)? = *(1og ns)? =  (log O(uy))%

Applying (5.16), (5.15) and Remark 2.6 yields

F(n) _, Bu;)
(logn)? = 42 (max(Uy, /2, Uqu/z))y

which, according to (5.22), yields

F(n) < 3
(logn)? = h(u;/4)

By (2.7) and the laws of the iterated logarithm (see Révész [30, p. 53]), almost surely for

(5.23)

all large r,
(5.24) U(r) < r+ (3H,loglog H,)'/? < r(logr)?,

which, in light of (5.15), implies log ©(r) < r2. Since O(u;) > pn, and p,/n — 1 (see
(3.9)), this yields logn < 2u}. Going back to (5.23), we have,

F(n) < 3 _ £
(ogn)? = hE-72(logm)/2/4) — an’



completing the proof of the divergent part of Theorem 1.2. O

6. Proof of Theorem 1.1

Throughout the section, {S,}n>0 denotes a simple RWRE, whose associated random
environment = = {¢;} ¢z satisfies (1.2), see Section 1. Let ¢ be as in (1.3), with ¢ > 0.
We first recall the following law of the iterated logarithm (see [17, Theorem 1.3]):

Fact 6.1. Under (1.2), if o > 0,

lim su MaXo<k<n Sk = 8 a.s
el (logn)2logloglogn w202’ o

Let L(n,z) be the local time process of RWRE, with F(n) the favourite site up to
time n (see (1.5)). In view of the trivial relation F'(n) < maxo<k<n Sk, the upper bound
in Theorem 1.1 immediately follows from Fact 6.1.

To show the lower bound, we again make use of the diffusion model. From the random
environment = = {&;};ez, we can define a partial sum process {V(z); ¢ € R} via (3.6),
and a diffusion process {X(t); ¢ > 0} with potential V, driven by a Brownian motion B
which is independent of =, see (3.2).

Let {W(z); ¢ € R} be the Komlés—-Major-Tusnddy Brownian motion satisfying (4.2),
independent of B. Let (A,T) be as in (3.3)—(3.4). Recall that g is the first hitting
time process associated with B, and that Lx is the local time of X, see (4.11) and (3.5)
respectively. Fix € > 0, and define, for large v,

(6.1) Es5(v) déf{ sup Lx(T(e(A(v))),z) < 1 max LX(T(Q(A(U))),z)}
0<z<(1—¢e)v V x€Z 4

jof (1+4e)or v
62 Bolo)™ {logT(e(a) < L}

Assume for the moment that we could show
(6.3) IP’(E;,(U) N Eg(v), i.o.) =1

Let w € E5(v). There exists a unique index n = n(v, w) such that p, < T(0(A(v))) < pnt1,
where {px}r>0 is the sequence defined in (3.7).
By (3.8) and (6.1) (writing again L(n,Z4) o maxzez, L(n,z)),

max  26pL(n,k) <304/1+ L(n,Zy) logn+ max  Lx(p,, k)

0<k<(1—¢e)v 0<k<(1—¢e)v
< 30y/1+4+ L(n,Zy) logn + v ' Lx(pins1, Zy).



Using (3.8) once more gives

max  26,L(n, k) < 60y/1+ L(n,Z,) logn + 2v"'L(n,Z,).

0<k<(1—¢)v

In view of (5.19) and of the boundedness of &, guaranteed by (1.2), we would have

L(n,k) < L(n, Z,),
0B (n,k) < L(n,Z4)

i.e. we would have F'(n) > (1 — &)v. (These lines really are rewritings of the proof leading
to (5.20)).
By (3.9), on Eg(v),

(14 6e)omy/v
V8loglogv

Therefore, if w € E5(v) N Eg(v), we would have, for the random index n = n(v, w),

logn < (1+¢)logun < (1+¢)logT(o(A(v))) <

1- 8
F(n) > ¢

2
Z A +66) o2 (logmn)“logloglogn,

i.e. by assuming (6.3), we would obtain the the lower bound in Theorem 1.1.
The rest of this section is devoted to the proof of (6.3). For brevity, write

W# (u,v) of sup (W(y) — W(z)), 0<u<w.
0<z<u; z<y<v

Recall the definitions of W (t) and W# () from (5.7) and (5.8) respectively (thus W# (u) =
W#(u,u)). The proof of (6.3) is based on the following two lemmas.

Lemma 6.2. Assume (1.2) with 0 > 0. Fix ¢ € (0,1). Almost surely for all sufficiently

large v,
(6.4) log 0<milg)—a)v Lx(T(o(A())),z) — cW#((1 — €)w, v)‘ < (logw)®,
(6.5) log max Lx (T(o(A(®))), z) — sW# (v)‘ < (logv)®.

$€Z+

Proof of Lemma 6.2. Write [(54) and I(s 5) respectively for the expressions on the left
hand side of (6.4) and (6.5). According to [17, Remark 6.2], for any € € (0,1), there exists
ce7 > 0 such that for all large v,

P(I6.4) > (logv)*) < co7 exp(—(logv)?),

P(I(6.5) > (logv)*) < car exp(—(logv)?).



The lemma now follows from the Borel-Cantelli lemma and the monotonicity, using the

same argument as in the proof of Lemma 5.3. O

Lemma 6.3. Fix 0 < ¢ < 1/30. There exists a constant cag > 0, depending on &, such
thatforallt>OandO<z<\/1_f,

P(W#((l ot < (1—e)z; (1— %)w < WH(t) < 3 W) < %)
(1 +55)772t).

> (_
2 C28 €XPp 872
Proof of Lemma 6.3. By scaling, it suffices to treat the case t = 1. We clearly only have
to deal with small x. Let

WO EWE+1-e)— Wl —¢), ¢>0,
which is again a Brownian motion, independent of {W(s); 0 < s <1 —¢}. We can define
W# and W for W exactly in the same way as W# and W for W. Observe that

W#(1—e,1) = max(W#(1 —¢), W(e) + W(l —¢) — inf W),

W(1) = max(W(1 — ), W(e) + W(I —¢)).

Therefore,
IP’(W#(l e 1) < (1—e)z; (1— g)w <WH#*(1) <z W) < g)
> P(W#(l —e)<(1—-2)z; W(l—¢) < %;
(1- g)w <WH(e) <z W(e) < 533)
— P(W#(l —e) < (1—2)z; W(l—¢) < %) x
(6.6) x IP’((l - g)w <W#(e) < z; W(e) < 530).

The joint law of (W# W) at fixed time has been studied in [17]. In particular, for fixed
0<a<1ands>0,

4 wa w2s
), y — 0.

IP’(W#(S) <y, W(s) < ay) ~ —sin(50) eXp(_@

Applying this to both probability expressions on the right hand side of (6.6) (and noting
that (1 —e)(1 — 2¢)72 < 1 + 4¢) yields the lemma. 0



Proof of (6.3). Fix a small ¢ > 0. Let U~ be the process introduced in (5.9), and define

(14 3e)my/v
v/8loglogv ’

def

Eq(v) % {W#((1 — €)u,v) < W () — (logv)®; W#(v) <

U~ (W () + (logv)®) < W#(v) }

It is an immediate consequence of (5.14), Lemmas 5.3 and 6.2 that almost surely for all

large v,
(6.7) Er(v) C Es(v) N Eg(v).

Let
v exp(j'F°),
- déf (]_ + 35)77\/'[1__7‘
7 /8loglog v; ’
.\ def £
) E{WH(1 = vy, v5) < (1= )y (1= D)ay S WH(vy) < 25
I e A
G <3
Since G(j) C E7(v;), and in view of (6.7), the proof of (6.3) is reduced to showing the

following:

W(’Uj) <

(6.8) P(G(j), i.0.) = 1.

To this end, write F; défa{W(s),O < s <wj; W(—1),0 < ¢t < z;/3}. Observe that
G(j) is F;—measurable. By (5.9),

1[7]'_1
3

1[7]' — 1[7]'_1

(6.9) U™ () = max(U~(ZL2) +

where Z; is a variable having the same distribution as U~ ((z; — z;—1)/3), and is indepen-
dent of F;_; and {W(¢); t > 0}. Let

W EWE+vj1) - W(y_1), £>0,

which is again a Brownian motion. We can define W and W# in the obvious way. Write

def .
A; = vj —vj_1. Since vj_1 < (1 —€)v;, we have

—

W#((1 - &)vj, v;) < max(W#(v;_1) + ?(AJ‘), W#((1 - e)v; —vj_1,4y))
< max(W#(v;_1) + W(A;), W#((1 - e)A;,Ay)),



and also

In light of (6.9), this gives

where

G1() W (v; 1) <
SIWH(1 - )A5,85) < (1= e)ag; W(Ay) < 2
(1 — %)1[7] < W#(A]) < Zj; Zj < —}

Observe that G1(j) is F;_1-measurable, and that both W and Zj is independent of F;_;.
Accordingly,

P(G(j) | Fj-1) = 1g, ;) P(G2(4))
T
(610) = ]lGl(j) ]P)(Z] < E]) X I(6.10)7

where

def __ Ts
1(6-10) = P(W#((l - g)AjaAj) <(1- 5)17]'; W(A]) < gj;

(1 - %):E] < W#(Aj) < :Ej).

Applying Lemma 6.3 to t = A; and z = z; gives

145 wv;—wv;_1
L(6.10) = c28 eXP(— 1+ 3¢)° ¢ vj] loglogvj)
loglogv;
> cag exp( -7 )
_ 28
J

On the other hand, P(U~(a) < b) = (b—a)/bfor all 0 < a < b, and Z; is distributed as
U~ ((z; — zj—1)/3). Therefore, (6.10) leads to:

(6.11) P(G(j) | Fi—1) = c205~ " g, 5y

By the usual law of the iterated logarithm, almost surely for all large j,

W#(vj_l) < 2\/3vj_1loglogvj_1 < %,



whereas by (5.24) (noting that U~ has the same law as U),

_, i1 ri—1 2 xZ;
U= ( ]3 ) < ]3 (logzj_1) <€].

Consequently, 1, ;) = 1 almost surely for all large j. Going back to (6.11), we have
ZIP’(G(j) | Fj—1) = o0, a.s.,
J

which, according to Lévy’s Borel-Cantelli lemma (see [34, p. 518]), implies (6.8). This
completes the proof of (6.3). 0

7. Favourite sites of diffusions with random potentials

Our proofs of Theorems 1.1 and 1.2 clearly work directly for favourite sites of diffusions
with random potentials. Let {X(¢); ¢ > 0} be a diffusion process with random potential
V, asin (3.1)-(3.4). Its local time Lx is defined in (3.5). As for RWRE, we can define

def

Fx(t) = {1[7 €Ry : Lx(t,z) = sup LX(t,y)},

yER

and the favourite site

Fx(t) = max =z.
z€Fx (t)

The arguments in Sections 5 and 6 yield the following counterparts of Theorems 1.1 and
1.2 for X:

Theorem 7.1. If (4.2) is satisfied with some constant o > 0, then

lim su Fx(t) _ 8
t_,oop (logt)2logloglogt  m2g?’

Theorem 7.2. Under (4.2), for any non-decreasing function f > 1,

. f(@) _ 0 > logf(t) =00
liminf — F (t)—{oo, a.s. << / /I logt dt{<oo'

Remark 7.3. In the particular case when X is Brox’s diffusion process with Brownian
potential (i.e. when V is Brownian motion), (4.2) trivially holds with ¢ = 1, and hence
Theorems 7.1 and 7.2 apply.
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