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1. Introduction

Let 2 = {&;,7 € Z} be a sequence of iid variables taking values in (0,1). A random
walk (Sp) in the random environment £ (RWRE) can be understood as follows: for each
realization of =, (S,,n > 0) is a Markov chain on Z such that Sy = 0 and

Sn =i, E)z{ﬁ&_,

where here and in the sequel, P denotes the total probability and [E the associated expec-

(1.1) IP’(SnH - {zfi

tation. We always suppose that &; is not a constant random variable to avoid the usual
Bernoulli random walk case. The above setup can be realized via product spaces, see
Solomon [30], who also obtained the recurrence/transience criteria. Among the random
environment problems considered in mathematical physics, the RWRE (S,,) may be the
most elementary model and has drawn much attention both from mathematics and from
physics, see e.g. Hughes [15].

Kesten et al. [19] characterized the rate of convergence of S,, in the transient case,
whereas the recurrent case was solved by Sinai [29] who showed that S,, / log” n converges
in law under PP (cf. Section 6 below). We refer to Révész (1990, Part III) for the literature
about the studies of (S,,) prior to 1990. For more recent studies, see e.g. [4], [5], [10], [12,
13], [28], [35] and the references therein.

The continuous analogue of RWRE was firstly introduced in Schumacher [27] and
Brox [2] as follows: Consider a process {V(z); € R} with “cadlag” (i.e. continuous from
the right and having limits from the left) and locally bounded trajectories, which plays
the role of random potential. We can formally define a process {X(¢); ¢ > 0} from the

equation

dX (¢) = dB(t) — V(X (1))d¢
12) {X(é))zo () - 3V'(X(0)dt

where {#(t); ¢ > 0} is a one—dimensional Brownian motion independent of V. For some
physicists points of view about this model (1.2), see Bouchaud et al. [1], and some recent
papers [6], [9], [21]. Rigorously speaking, instead of writing the formal derivative of V in
(1.2), we should consider X as a diffusion process (conditioning on each realization of V')

with generator

%evw % (e—V(m> %) ,
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Taking a Brownian potential V. = W in (1.2), where W = {W(z),z € R} denotes a
(two-sided) one-dimensional Brownian motion starting from 0 (independent of ), we
denote by {Xw (t); t > 0} the associated diffusion. Brox [2] showed the analogue of Sinai’s
renormalization for Xw. Furthermore, Tanaka [31, 32] obtained a deeper localization
result: if we denote by b(logt) the bottom of a certain valley of W, whose mathematical

definition will be given in (2.6) below, we have
(1.3) Xw(t) — b(logt) converges in law as t — oc.

Furthermore, the convergence in terms of process {Xw (¢ + -) — b(logt)} was obtained
in Tanaka [31,32]. Therefore Sinai’s renormalization follows immediately from the self-
similarity b(logt) faw (log®t) b(1). We refer to Tanaka [33] for the references prior to 1994
about the studies of (1.2) in the one-dimensional and higher dimensional cases. See also
some recent papers [3], [14], [16], [22, 23], [34] together with their references.

Here, we generalize the Brownian potential to some potential V which asymptotically
behaves as a Brownian motion, and we want to see how this perturbation influences the
properties of X (¢) such as the localization (1.3). Remark that this perturbation may bring
on big fluctuations (see e.g. Shi [28] for the fluctuations of local times).

We assume the following setting: On a possibly enlarged probability space, there
exists a coupling of V' and a standard two—sided Brownian motion {W(y); y € R}, and a
constant ¢ > 0 such that for all n > 1,

c
(1.4) P sup V(@) = oW (@) |2 C: logn) < -2,

with C; > 0 (1 < 4 < 3). For instance, the well-known Komlés-Major-Tusnddy [20]
strong approximation theorem tells us that (1.4) will be satisfied for V a step function on
R defined as the partial sum of iid (bounded) variables, cf. (6.9).

Firstly, we estimate the deviation of X () from b(l‘iTgt):

Theorem 1.1. Assuming (1.4). For each small § > 0, there exist a constant Cy =
Cy(0,C1,C5,C3) > 0 and tg = to(d) sufficiently large such that for allt > tg and A > 1,
we have

(1.5) 2(|x (0 - b loglog

VA
with b(*°8t) being defined in (2.6) below. Consequently, the family of laws of { (X (t) —
b(l%f—t))/log2 logt,t > 10} is tight. In particular,

a?X (t)
log?t

logt
= + Cy(logt) ™17,

)| >2) < Cy

g

(1.6) Doy, .



Remark 1.1. The uniform estimate (1.5) is useful in further studies of random envi-
ronment, such applications will be explored elsewhere. In contrast with (1.3), we believe
that X (¢) — b(lﬂTgt), as t — 0o, does not converge in law in general for any potential sat-
isfying (1.4), due to the possible big fluctuations of the potential V' (which also partially
explain the term of loglogt in (1.5)). We refer to Kawazu et al. [17] for the tightness of
{X(t)/log¥t,t > 2} (where £ > 0 is the self-similarity order of the environment), and the

corresponding convergence in law in more general settings.

Following previous works [29, 2, 31] on the localization problem, the proof of Theorem
1.1 can be outlined in two steps: Outside an event of small probability, the diffusion hits the
bottom b(l%f—t) quickly; after this hitting time, the diffusion starting from b(l%f—t) behaves
as a diffusion with stationary distribution. Instead of using the coupling technique as in
Brox [2] and in Tanaka [31], we shall study in the second step the speed of convergence of
a diffusion towards its stationary distribution, and the first step can be achieved by using

some estimates of hitting times which are presented in Section 3.

Now, we consider the problem of return time at 0 for X. Define

(1.7) Dx() ¥ inf{s>t: X(s)=0}, ¢>0.

Notice that under (1.4), Dx(¢) is almost surely finite. We intend to characterize the limit
distribution of Dx(t) as ¢ — oo. The localization arguments say that X (¢) lives near to
the bottom b(l‘iTgt) of a certain Brownian valley; hence the problem of return time consists
in studying how long the random walk takes to exit this valley and to hit the origin, which
can be viewed as looking for a better understanding of what happens after the localization
of X(t). See Fisher et al. [9] and Le Doussal and Monthus [21] for several interesting
exponents related to return time problem under physical consideration.

Our result reads as follows:

Theorem 1.2. Consider a diffusion X with potential V satisfying (1.4). As t — oo,

log (DX(t) — t) d
— A(1), under P,

1.
(1.8) logt

where A(1) is defined in (2.10) below, and admits the following density:

(1.9) P(A(1) € ds) = (2;11(05%@) + %ﬂ(mzn)dz.
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Remark 1.2. In the Brownian potential case, the fact that o does not appear in (1.8) can
be understood as follows: Let us denote by X, the diffusion given in (1.2) with V = oW,
where W is a Brownian motion independent of 5. Then, by the self-similarity (cf. Brox
2]): {Xow(t),t > 0} 2w {072 Xw (o), > 0}, showing that under logarithm scale, the
limit of log (Dx,,, (t) —t)/logt (if it exists) does not depend on .

The proof of Theorem 1.2 relies on some quenched estimates of hitting times, which
roughly assert that Dx () — ¢, the first hitting time at 0 of a diffusion starting from X (¢),
is proportional in the logarithm scale to the height of some new Brownian valley, and the
density of the limit law A(1) follows from some explicit computations of the law of this
height given in Section 2.

The rest of this paper is organized as follows: In Section 6, we study the return time
problem for Sinai’s walk by using the Skorokhod embedding in random environment. The
estimates of hitting times are stated in Section 3. Theorem 1.1 is proven in Section 4,
whereas Section 5 is devoted to proving Theorem 1.2.

Throughout this paper, unless stated otherwise, we always assume (1.4), and the
constants (C;,5 < j < 13) may depend on (o, C1, Cs, C3).

Acknowledgements: The problem of return time was formulated by Professor Jean-
Philippe Bouchaud in his talk at the University Paris V seminar organized by Professor
Sophie Weinryb. I thank an Associate Editor and an anonymous referee for their com-
ments and suggestions, and Professor Marc Yor for his helps which greatly improved the
presentation of the paper.

2. Brownian valley

For the sake of notational convenience, we shall constantly write, for any continuous
process Y and all ¢ > 0

(2.1) Y(t) = 0s<ugtY(s),
(2.2) Y« Jinf_Y(s),
(2.3) V(1)L sup (V(s) ~¥(5)).
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Consider {W(z),xz € R} a two-sided Brownian motion, starting from 0; i.e. Wy =
{W(t),t > 0} and W_ = {W(—t),t > 0} are two independent Brownian motions, both

starting from 0. For the Brownian motion W, define

24 d+7'd§finft>O:W#t>r, r > 0.
+

Let b4 (r) be the localization of the minimum of W, over [0, d(7)]:

(2.5) bi(r) € inf{0 <u < dy(r) : Wa(s) = We(de(r))}, 7 >0.

Let us define similarly d_(r) > 0 and b_(r) > 0, by replacing (W4, d4) by (W_-,d_) in
(2.4) and (2.5). In the literature, the triplet (—d_(r),0,d,(r)) is called a Brownian valley
containing 0 of depth r, its bottom b(r) is defined as follows:

(26) b))% {b—f?h, W) W) sy,

The law of b(r) was independently computed by Kesten [18] and Golosov [11]. We define

a new valley around b (r). Let

(2.7) 0+(r) EWL (b4 (r) — Wa(b4(r)), 7 >0,
(2.8) Co(r) B inf{t > b (r) : Wi () > Wa(be(r))},  7>0,
(2.9) Ay EWECE), >0

Remark that Ay (r) > 0(r), and both the strict inequality and the equality can be realized
with positive probability. We can think A, (r) as the (absolute) height of a valley of W
around by (r). Let us define similarly A_(r) for the negative part W_. Finally, let

A+(’f‘), if b(T) >0

def
(2.10) A(r) = { A_(r), otherwise 2l

Observe A(r) o, A(1) for a fixed » > 0. The main purpose of this section is to identify
the law of A(].) Remark from (25) and (27), 0+(1) + W+(d+(1))) > W+(d+(1))) —

Wi (b4(1))) =1

Lemma 2.1. The variable (1 —W,(d+(1)))) is exponentially distributed with parameter
1, and for v > 0,

P(04(1) € do | W, (dy (1)) = 1 - o)
v —T
(2.11) = (1(v§m<1)ﬁ e? —+ ]1(1Vv§:1;<1+'u)(]. + v — iL‘)el+v )d:L'.
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Moreover, Wy (d4+(1)) and W (b4 (1)) are uniformly distributed on [0, 1].

Proof of Lemma 2.1. Let us identify W (t) = W, (¢) for ¢t > 0. According to Lévy’s
identity (cf. [25, Theorem (VI.2.3)]), we can write W (t) — W (¢) = |B(¢)|,¢ > 0, for some
Brownian motion B, and —W(t) = L(t),t > 0, the process of local time at 0 of B. It turns
out that

(2.12) dy(1) = inf{t > 0:|B(t)| > 1} € o (1),

(2.13) by (1) = sup{t < o (1) : B(t) = 0} € g(c(1)).

Hence Wf(b.,.(l)) = SUDPg<s<g(o(1)) | B(8)| is uniformly distributed in [0, 1] according to
Williams’ path-decomposition (cf. [25, Theorem (VIL.4.9)]). Moreover, W (b, (1)) =
SUPg<s<g(o(1)) (| B(8)| — L(s)), and we have

(2.14) W (de (1)) =1+ Wb (1) =1 - L(a(1)),

(2.15) 0.(1) = s (IB(s)| = L(s)) + L(o(1)),
W (d1(1)) = max (W (b4 (1)), W(d+(1)))

(2.16) =max (04 (1) — 1,0) + W(d4(1)).

Denote by (e(t),t > 0) the excursion process related to B, with It6 measure n (cf. [25,
Chap. XII]). Let us write m(e) & sup{le(s)|,s > 0} for a generic excursion e. It is
well known that L(o(1)) is the first entrance time of e(t) into AL {e : m(e) > 1},
hence is exponentially distributed with parameter n(m(e) > 1) = 1. Consider the PPP
€ the restriction of e on A¢, the complement of A. The characteristic measure n of € is:
n = 14 n, and € is independent of L(c(1)). It turns out that for 0 < y < 1 and v > 0,

P( sup (|B(s)| - L(s)) <y| L(c(1)) = v)

0<s<g(o(1))
:P(Ozggv (m(&(s)) —s) <y|L )=v)
=%( Oi‘;ﬁv (m(e() -2) < y)

= exp / dS/ 1 - ]l(m(e) s<y)))
0 m(e)<1
1
dz
= eXp ( — /0 dS/O 22 ]1(z23+y))

(2.17) _ iy € if v4+y<1,
. yel—y’ if vty Z 17
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where the third equality follows from the exponential formula for the multiplicative function

v— 1 In view of (2.14)-(2.16), some lines of elementary compu-

(suPo<s <o (m(e(s))—5)<y)" o
tations based on (2.17) show (2.11) and prove that W, (d4(1)) is uniformly distributed.

a

The following description of the law of the process {W, (z + by (r)),z > —by(r)} is
due to Tanaka [31] ((i) is immediate from the strong Markov property together with the
fact that W (d(r)) — W, (b4 (r)) = r, and we have rewritten Tanaka [31]’s result as (iii)
by using Pitman’s identity for Bessel process of dimension 3 (cf. [25, Theorem (VI.3.5)])):

Fact 2.1 (Tanaka [31]). Recall (2.4) and (2.5). Fix » > 0 and denote by Rz =

{Rs3(t),t > 0} a Bessel process of dimension 3, starting from 0. The following three

ingredients are independent, and

(i) The process {Wy(z + dy(r)) — Wi (by(r)),z > 0} behaves as a Brownian motion
starting from r;

(ii) The law of {Wi(z+b4(r)) — W4 (b4(r)),0 <z < di(r) —by(r)} is that of Rg till its
first hitting time at r;

(iii) The law of {Wi(b4(r) — z) — Wi (by(r)),0 < z < d4(r) — by (r)} is that of Rg till
o(r), where p(r) % sup{0 < ¢ < ¢(r) : R3(t) = Jr,(£)}, with ¢(r) < inf{t > 0 :

R3(t) — Jr, () = r} and Jg, (t) & inf{R3(s) : s > t}.

We end this section by proving (1.9), which we state as a lemma:

Lemma 2.2. Recall (2.10). We have

(2.18) P(A(l) = dz) - (2;11(09@ + %n(mzl))dz.

Proof of Lemma 2.2. From (2.6) and (2.10), we have by symmetry that for all z > 0,

P(AQ) > 2) = 2P(A4 (1) > 5 Wa(dy (1)) < W-(d-(1)))

(2.19) = 2E( (1 - Wi (d(1))) ]1(A+(1)>z))a

using the fact that W_(d_ (1)) "2 Wy (d4(1)) is uniformly distributed (cf. Lemma 2.1).
Write W( )def Wi (b (1) +t) — W4(b(1)),t > 0. Recall (2.7)—(2.9). We have

(2.20) Ce(1) = by (1) = inf{t > 0: W(t) > 0, (1)} 5(04(1)),

(2.21) A (1) = 0,(1) + sup{—T(s) : 0 < 5 < 30 (1)} > 0, (1),
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where 7 (r) & inf{t > 0 : W(t) > r} denotes the first hitting time at r of W. Remark
that dy (1) — by(1) = 3(1). According to Fact 2.1, {W(t),0 < t < 5(1)} is a three-
dimensional Bessel process starting from 0, and independent of 6, (1); The process 7%
after o°(1), {W(t +a(1)),t > 0}, is a Brownian motion starting from 1, and is independent
of o{W(t),0 < ¢ <&(1);6,(1)}. Combined this with (2.21), we have

IP’(A+(1) >ylop)=z> 1)
= IP’(a Brownian motion starting from 1 hits —(y — ) before x)

—1
(2.22) =TT y>a,
y

and A4 (1) = 64(1) on {64 (1) < 1} (remarking from (2.22) that P(A,(1 ) 0.4 (1)|04+(1)
& >1) =1/z). Let 0 < z < 1. Using Lemma 2.1, since W (d4(1)) = ( +(1)) on the
event {A4(1) < z} = {0+(1) < z < 1}, we deduce from (2.19) and (2.11) th

IP’(A(l) > z) =1-2E(1 - Wy (d+(1))) La, )<z
=1-2E(1 - Wy (dy(1))) Lo, (1)<)

Z Z v
=1- 2/ dvve‘”/ d$—2€
0 v T

1
(2.23) =1- §z2, 0<z<l1.

For z > 1, it follows from (2.16), (2.19) and (2.22) that

P(AL) > 2) = 2E( [2 = W (d4 (1)) = 04(D)] (L, (155 + ]1(1<9+(1)5z)0+(1z$))

2
2.24 = —
(2.24) z
after some lines of computations based on (2.11); hence Lemma 2.2 follows from (2.23)
and (2.24). 0

3. Hitting times

Throughout this section, we assume (1.4). Consider a finite stopping time Yo > 0

(with respect to {o(X(s),0< s <t; V,W),t > 0}). Define

(3.1) X(t) € X(t+To) — X(Yo), >0,

(3.2) V(z) ¥ V(z + X(To)) - V(X(To)), z€R,

(3.3) W(z) ¥ Wz + X(To)) - W(X(To), z€R
Vi) E V), Vo) E V(=)

(&4 {W+< YL W), W (1) L w(-0), =t
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When YTy = 0, we are simply considering the process X. We shall also simply write
W(t), V(t) instead of W, (¢), V4 (¢) if there is no risk of confusion. Notice that the process
X is related to its potential V the same way X is to V. For any cadlag process (Y (¢),¢ > 0),
define

def [inf{t >0:Y(t) > r}, if r >0,
(3:5) Oy (r) = {inf{t >0:Y(t) <r}, if  r<o.

The following estimate of ©x(r) is in fact a quenched-type result, with the error
probability estimated under the total probability P, and may be of independent interest
(for instance, in the study of the increments of (X;) and (Sy)):

Lemma 3.1. Recall (2.1), (2.3), and (3.1)-(3.5). Under (1.4), there exists a constant
Cs(0,C41,C5,C3) > 0 such that for every r > Cjs, there exists a measurable event F; =
E1(r) such that

(3.6) P(Ef) < exp ( — log? 7‘),

and on E1 N {|X(Yo)| < exp (log?r)}, we have

(3.7) log Ox(r) < o max (Wf (r), U_ (W, (r) + log® 7-)) + 210 r,
whereas on E1 N {|X(To)| < exp (log?r)} N {Wy(r) > 2log®r}, we have
(3.8) log Ox (r) > o max (wﬁE (r) — log® r, U_ (W, (r) — log® 7‘)),

where U_ () L+ sup{—W_(s),0 < s < Ow_(z)}, for all x > 0. The same estimates
hold for ©x(—r) by interchanging in all the above the roles of W, and of W_.

Proof of Lemma 3.1. Consider 7 > 1 in this proof. The case of Ty = 0 has been
proven in [13], but the arguments presented there will also apply to the general case. In

fact, although the process W is not a Brownian motion, but we deduce from (1.4) that for
def

CG =1+ 3/03
IP’( sup V(z) — oW(z)| > log®r; |X(To)| < exp (log? r))
|z|<exp (C’e log? r)
< IP’( sup V(z) — oW (z)| > log® r)
|z|<2exp (C’e log? r)
(3.9) < exp ( — 3log? r).

10



An advantage of working with W rather than with V is that the modulus of continuity of
W is easier to control, since

IP’( sup (W(u) — W(v)| > log®r; | X (To)| < exp (log? r))
0<u<v<ryv—u<logr
<P sup W (u) — W(v)| > log® r)

ful, vl <2exp (log? r);lv—ul<logr

(3.10)  <exp ( — 3log? 7‘),

by using the estimate for Brownian oscillations (cf. Csorg6 and Révész [7, pp. 24]). Also

the range of W is not too big; indeed, we have

IP’( sup |W(u)| > exp (log?r); | X(Yo)| < exp (log? r))

0<u<r
1
< IP’( sup (W (u)| > 5 eXP (log2 r))
|u|<2exp (log2 r)
(3.11) < exp ( — 3log? 7‘),

by using the Gaussian tail estimate.

From (3.9)-(3.11), the arguments used in [13] to treat the case of Ty = 0 work well
here after some slight modifications. For the sake of completeness and to avoid tedious
details, we shall only briefly point out the arguments, and the explicit estimates will be
omitted. Recall (3.1)—(3.3), using the Feller space-change representation of a real-valued
diffusion, we obtain the following version of X: there exists a one-dimensional Brownian

motion 7y starting from 0 such that
(3.12) X(t) =A (y(TH (),  t20,

where, A1, T~! denote the inverse of the increasing processes A and T defined by

(3.13) A(z) def / dy exp (V(y)) , xz € R,
0
t
(3.14) T(t) / dsexp (- 2VA (1(5)), ¢ 20,
0
The inverses A~1, T~! are well-defined since a.s., A(co) = oo and A(—oc) = —oo from

(1.4) and (3.2)—(3.3). Observe that by using the Markov property of X conditioning

on the environment (V,W), the Brownian motion 7 is independent of X(Y,). Write
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p(z) &ef inf{t > 0: y(t) > x}, the first hitting time at x > 0 of v, and {L(¢, x),t > 0,z € R}

the family of local times of . Using the occupation time formula,

(315)  Ox(r)= /0 4 /_ Ooo)ds eV L(p(A(r), A(s)) 21, (r) + Lp(r),

with obvious definitions. Let us first study I1(r). Using the Ray-Knight theorem (cf. [25,
pp. 433]), we have

(3.16) ILi(r)= /07’ dse”V () A(r) R2(1 — A(s)/A(r)),

for a two-dimensional Bessel process R starting from 0, and independent of (V, W). From
(3.9)—(3.11), we can deduce from (3.16) the existence of Fy satisfying P(Eg) < exp ( —

21log? r), and on E» N {|X(To)| < exp (log®r)},

(3.17) \ log I () — oW# (7‘)‘ < log® .

We use the same idea to study I>(r). From the second Ray-Knight theorem [25, pp. 439],
there exists a squared O-dimensional Bessel process Z independent of (V, W), with Z(0)
exponentially distributed with parameter 1/2, such that

w(r)
(3.18) Li(r) = A(r) /0 dse™V-(8) Z(A_ (s)/A(r)),

where A_ (t) & fg duexp (V_ (u)) (recalling (3.4)), for ¢ > 0, and
(3.19) k(r) Y inf{s > 0: Z(A_(s)/A(r)) = 0}.

By using (3.9) and (3.10), there exists an event E3 such that P(Eg) < exp ( —2log®r),
and on E3 N {|X(To)| < exp (log’r)},

(3.20) | log A(r) — W(r)| < 3log?r.

Similarly, we can bound log A_(r) by W_(r). Going back to (3.19), we can show that
there exists an event F4 such that IP’(EZ) <exp(-— 21og? r), and on E; N {|X(To)| <

exp (log2 )},
(3.21) Ow_ ((W(r) —1log® r)*) < k(r) < Ow_ (W(r) +log®r),
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where Ow_ (r) denotes the hitting time of 7 by W_ (recalling (3.5)). Since in the logarithm
scale, the term Z(A_(s)/A(r)) does not contribute much to I5(r), applying (3.20) and
(3.21) to (3.18), we get the existence of E5 such that P(Eg) < exp ( — 2log’r), and on

E5 N {|X(Yo)| < exp (log®r)} N {W(r) > 2log®r},
(3.22) oU_(W(r) —log’r) <logly(r) < oU_(W(r) +log®r),
which in view of (3.17) implies Lemma 3.1. O

Using the monotonicity and (3.10), we can obtain the following strengthened form of
Lemma 3.1, which will be applied in the sequel to Yo = 0 in the proof of Theorem 1.1,

and to Ty = ¢ (some constant) in the proof of Theorem 1.2:

Proposition 3.2. Recall (2.1)-(2.3) and (3.1)-(3.5). Assuming (1.4), for every r1 >
C7(0,C1,C42,Cs) (Cr being some large constant), there exists an event Eg = Eg(r1) such
that for all 7 > r1, on Eg N {|X(Yo)| < exp (log?r)} N {Wy(r) > 3log®r}, we have

(3.23) log O (r) < o max (Wf (), U_ (W (r) + 21og® 7‘)) +3log®r,
(3.24) log ©x(r) > o max (VV*_’:{E (r) — 2log® r, U_ (W, (r) — 2log® r)),

where U_ (z) has been defined in Lemma 3.1, and

(3.25) P(Eg) < exp ( - %10g2 7'1).

Similar estimates (3.23) and (3.24) hold for Ox(—r) by interchanging W, and W_.

Proof of Proposition 3.2. Applying Lemma 3.1 tor =k > r; > C; > Cjs gives the
existence of F7(k) such that

P(E?(k)) < exp ( — log? k),

and (3.7)—(3.8) hold on E-(k) N {|X(To)| < exp (log’k)}. It follows from (3.10) that
P(Eg(k)) < exp ( — 3log? k), where

E5(k) dg{ Sup W, (u) — Wy (v)] > log®(k + 1)} n {|X(T0)| < elog?(kﬂ)},
0<u<v<k+1lv—u<l

Define

Es(r)® () (Be(k) N Es()),
k>[r1]
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and (3.25) follows for sufficiently large C7. For all r > 71, k < r < k + 1 for some k, we
have from the monotonicity that on Eg(r1) N {|X(To)| < exp (log?r)},

log ©x(r) < logOx(k + 1)
< o max (Wf(k + 1), U_ (Wi (k+1) +log® (k + 1))) +2log®(k +1)
< o max (W‘iE (k), U_ (W (k) + 21og® k)) +3log® k,

provided that Cy is sufficiently large, and (3.23) follows. (3.24) can be proven in the same
way by using (3.8) instead of (3.7). 0

4. Proof of Theorem 1.1

Firstly, we state a preliminary lemma to estimate the speed of convergence in law of
a diffusion towards its stationary distribution. Without any loss of generality, we suppose
that Y is of natural scale.

Lemma 4.1. Let Y be a (regular) diffusion on R, on its natural scale and starting from

y € R; Its Feller space-change representation is:

(4.1) Y() ¥ B (), ¢>0,
t

(4.2) a(t) % / WBuw)du, k>0, m / h(z)dz < oo,
0 R

where B is a one-dimensional Brownian motion starting from y, and a~" denotes the inverse
of the increasing function a. If we denote by v(dx) &ef %dw the stationary distribution
of Y, we have for allt > 0

Cgm _
(4.3) 1LY (®) —v|| <viz:|z—y| >/} + 1+ ik 14,
where || - || denotes the total variation of the measure and L(Y (t)) the law of Y (t), and

Cg > 0 is some universal constant.

Proof of Lemma 4.1. The proof uses the coupling method, which we learnt from Rogers
and Williams [26, pp.303]. It is well-known that v defined above is the stationary distri-
bution of Y (see e.g. [26, pp. 277, 303]). Let ¥ be an independent diffusion with the same
semigroup as Y, and with the initial distribution v. Let

T, % inf{t > 0: V() =Y (®)},
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be the coupling time of Y and Y. The coupling inequality says
(4.4) 1L(Y (2) — v < IP’(TCO > t),

law

since ?(t) = v. Let us bound the coupling time T,,. Applying the Dubins-Schwarz’
representation to the two independent continuous martingales Y (¢) and Y (t) gives

M) LY () - Y(t) = y(M)) - Y(0) +,

where v is a one-dimensional Brownian motion starting from 0, and (M), = (Y, + (Y ), >
(Y); = a~'(t). Denote by ©,(z) the hitting time of z € R by . It follows that

P(Zeo > t) = B(0(~(¥ (0) ~9)) > (M),)
< P(0,(=(Y(0) ~9)) > 1) +B((M). < 1)

(4.5) < IP’(|17(0) —y| > t1/4) + P(@v(tl/‘L) > t) + P(a_l(t) < t) .

Using (4.2), the third probability term in (4.5) is

@) 2(a®) > 1) =B /R doh(2) Ly (t,7) > t) < B(mL3(t) > t) < %2(1)

where L.(t,z) denotes the local time of v at level z up to time ¢, and its supremum
Lx(t) &ef sup,eg Ly (t, ) 2 VL (1). Take Cg défELfy(l) < o0. Since O, (z) 2 2 /N2, for
a standard centered Gaussian variable A/ of variance 1, we deduce from the boundedness
of the Gaussian density that the second probability term in (4.5) is bounded by #~1/4,

which in view of (4.6) implies (4.3), as desired. O

Proof of Theorem 1.1. Fix a small § > 0. We shall prove the existence of a constant
Cy > 0 and tg = £¢(0) > 0 such that for all A > 1 and ¢ > #,

loglogt
VA

The proof of (4.7) is divided into two steps. Consider large ¢ > £y > 1. Recall the notation

introduced in Section 2 and (3.1)—(3.5). For simplification, we write in this proof:

logt logt —144

(an) (X - B(=20)] > AY N {b(—) > 0}) < Co + Co(logt)

@8)  FEL0 >0} = {Walde(0) <Wo(@d-(0)},  with ¢ 5L

g
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First step: Show that under F, the process X will hit by (£) quickly before ¢ with
large probability (i.e. (4.13)—(4.14) below). The idea is to work with some “favorite”
events. Define

where here and in the sequel,

(4.9) U_(z) L+ sup{—W_(s) : 0 < s < Op_(x)}, x> 0.

with Ow_ () of inf{u > 0: W_(u) > z} being defined in (3.5). Let us show

(4.10) E1 € {U_ (W5 (b4(0) +21og” b1 (8)) < (1 - %)z}.

To see (4.10), since W_(d_(¢)) = max (W_(b_(¢)), W_(d_(¢))), on Eis, there are only
two possibilities:

Either W_(b_(£)) > W (d4(£)) + £, implying that U_ (W (b4(£)) + 2log® by (€)) <
U_(W_(b-(£)) — €t/2) < W*(b_(£)) < (1 — )45

Or W_(d—(£)) > Wi(d4+(£)) + €, implying that U_ (W4 (b4 (£)) + 2log® by (£)) <
U_(W_(d_(£)) —et/2) < U_(W_(d_(£))) — e£/2 = (1 — ¢/2)¢, by using the fact that
U_(z) <U_(xz +y)—y for z,y > 0, showing (4.10), as desired.

Now, we show that conditioning on F'; E;5 has large probability in the sense that
(4.11) IP’(F N Ef2) <3075, 4> 4,

where here and in the sequel, £y denotes some large constant depending on (o, C1, Cs, C3, §)
whose value can change from one line to the next. In fact, Lemma 2.1 tells us that
W4 (d4 (1)), W¥ (b4(1)) are uniformly distributed in [0, 1], and since W_ and W are inde-
pendent, we have by scaling that P(FﬂEg) < P(W—+(d+(1)) < E_(l_‘s)) -HE”(W(d_ (1)) —

e < Wi(do(1) < W(d_(l))) < 4~(=8) 4 ¢ < 2¢-(-9) and P(Efo) < 9. Finally, since
by (¢),d+(£) are self-similar of order 2, we obtain:

(4.12) P(Efl) < IP’(b+(1) < zé—z) + 2P(d+(1 te) > z),
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and it is easy to estimate the two probabilities in RHS of (4.12). Firstly, using (2.12) and
scaling, we have Ed, (1 + €) = (1 + ¢€)2, which implies that IP’(d.,.(l +€) > E) < (1+€)2/4;
Using (2.13) and Williams’ path-decomposition for the Brownian motion B at g(o(1)) (cf.
[25, Theorem (VIL4.9)]), we get Eexp ( — %b_,_(l)) = tanh(A)/A for A > 0. Therefore
Chebychev’s inequality yields:

IP’(b+(1) < £5‘2) < NPT tanh(X) /A < eM/24-(1=6/2)

by choosing A = £(179/2), Assembling all above estimates gives (4.11).

Recalling (3.1)—(3.5) and (4.10). Applying (3.23) to To =0 (so X, W are just X, W),
and 71 = £%, we find an event E;3 = E;3(¢) such that P(Ef3) < exp (— 1log?(6¢)) < £72

and
(4.13)  ©x(b4(0) < exp (az(1 —e/2) + 310g5(z3)) <et<t/2,  onEisn Eis,
and by using (4.11), we have
(4.14) P(F N (BN Bp)) <4000, 224,
Observe that
def el

(4.15) c_(£) = inf{s>0: W_(s) > 2t Wi(dy ()} <d_(0), on Fg.

We show that under Ej2, {X(s),0 < s < t} exits from the interval [—c_(£),d+((1 + €)£]
only with small probability. In fact, applying (3.24) to To = 0, r; = £° gives the existence
of E14 such that P(Ef4) < ¢72 and on E15N Eqy,

(4.16) log ©x (d4((1 +€)€)) > o (WF (d4((1 + €)8)) — 210g>(£%)) > o (1 + ¢/2)¢ > logt,
and by interchanging W, and W_, on F12 N E14N {c_ (£) > E‘s}, we have
(4.17)  log©x(—c_(£)) > aU,(W_(c_(£)) — 21og®(£3)) > aU, (W (£) + €£/3) > logt,

where U4 (z) relates to W the same way U_ relates to W_ (cf. (4.9)). Notice that on
E1s, Wi (d4(€)) > £, it follows from (4.15) that

(4.18) P(Elz N{c_(0) < z‘s}) < IP’(@W_ (%) < z‘s) - IP’(|N| > z5/2) < 2exp (—£0/2),

since Oy _(z) "2 22A/~2 for a standard Gaussian variable A". Define

def

Fi5s = EioNEisNEyN {C_(ﬁ) > ﬁé} C F.
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In view of (4.16)—(4.18), we have shown that for £ > £y,

(4.19) —c_(£) < X(s) <d4+((1+¢€)f), VO<s <t on Eis; and P(FOE&,) < 54~ (19,

Second step: We study the tightness of the laws of the post-process X (s+0x (b (¢)))
for 0< s < (t—0(by(8)". Taking To = O(by(£)) in (3.1)(3.3), so that X(s) & X (s
by (£)) = by (£), for s > 0, and V(z) & V(z+b4 (0)) — V(b (£)) and W(z) E W (z+b, (£) -
W(bs(£)), for z € R. Recall Fact 2.1 for the law of W (it is obvious that W(z), z < —b4(¥)
is an independent Brownian motion starting from —W (b4 (4))).

Denote by J; the interval [—c_(£) — b4 (£),d((1 + 6)£) — b (£)]. Recall (4.19), under
E15 C F, the process (X(s),0 < s < t) stays in Jj.

Let us consider a random potential U which coincides with V in Jy, i.e.: U(z) = o V(z)
for x € Jy, and U(z ) = |x| otherwise. Recall (3.12)—(3.14). We can define a diffusion Z
starting from 0 with potential U, exactly the same way X relates to V, and with the same

_|_

driving Brownian motion . Therefore, before its exit time of Jy, the path of X coincides
with that of Z, which implies in view of (4.19) and (4.13) that for any A > 0,

IP’({|X(t) —b(0)| > A} N F) < IP’(F N Ef5) + IP’({|X(t) — b)) = A} N E15)
<5 L P({1Z(E - (b1 (9)] 2 A} N Bis),
(4.20) < 5g1H0 +E[]1E12 sup ( 1Z(s)] > A| (V, W) )]
s>t/2
since F15 C E12 N E13 C F. Remark that conditioning on the potential U, fR dre= V(@) <
00, a.8., therefore Z converges towards its stationary distribution, and we shall estimate
the speed of this convergence with the help of Lemma 4.1.
Let Ay(x fo dyexp (U(z)),z € R, be the scale function of Z. Applying Lemma

41t0Y = AU( ), ¥y =0 and h(x) L exp (—2U(A7'(2))),z € R gives that for all A > 0
and s > ¢/2

2(12(5)] > A| (V,W)) < vu[Au(Y), 00) + vy(—o0, Au (V)] + v [Au((t/2)/*),00)+
VU(—OO,A(j( (t/2)1/4)]+ (1+ (22)1/4)(15/ ) 1/4

—1 C sy
4.21 S / +/ e_U(m)dil? +2(1+ t_1/4,
- my ( lz|>X |m|2(t/2)1/4) ( t1/4 )

with vy (dz) ¥ moexp ( — 2U(Ay ' (z)))dx and my = [y dzexp (— U(z)). To bound the
integrals in (4.21), we define Cl() =3+ 3/03, Cll = 01010, 012 = 2011 +4 and

Eig dff{ sup |V(z) — W(z)| < Clllogﬁ},

|| <£C10
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B sup  |[W(e)-W(y)| < logt},
-3 <z<ly<z+1<63

def . .
FEis = f W > (Ciolog¥t f=
18 {mGJiI;lImIZA (z) > Cralog }, (1% +00),

def
E19= E12N EigN E17 N Eg.

To estimate IP’(F N Efg), we use (1.4), which gives:

(4.22) P(Efﬁ) <02 4> 4
The Brownian oscillation estimate (cf. [7, pp.24]) yields:
(4.23) P(Ef7) <0 >4

Recall Fact 2.1. {W(z),—b, (¢) <z < d;(€)—b(¢)} coincides with the path of a two-sided
Bessel process R of dimension 3 starting from 0: R(x) = Ry (z)1(z>0) + R_(—2)1z<0)
for —p_(£) <z < Op, (£), where p_(£) is defined from R_ the same way p(r) is from R3
in Fact 2.1 (iii). For R = R, or R_, denote by Lg(z) = sup{t > 0: R(t) < z}, the last
exit time of by the three-dimensional Bessel process R, Williams’ time-reversal for R at
Lr(z) (cf. [25, Corollary(VIL4.6)]) implies that £r(z) 2 2N ~2 for a standard Gaussian
variable V. It turns out that for A > 0,

012 10g V4

Remark from (4.15), W_(c_(£)) — infocz<c_(g) W—(z) < £ implies that

(4.24) IP’(ER(Clz log £) > )\) <

inf  W(x)= inf W(z)>W_(c_(f))—1¢

—c_(£)<z<0 0<z<Lc_(¥)
— el
=Wilde () -+ 5
(4.25) > Wh (b+ (ﬁ)) + Ci2log¥, £> £y, on Fg,

since Wi (d4(¢)) = Wi(by(€)) + £. Using Fact 2.1 (i), we have
W. —Wi(by(£))) > Cialogt
(i ree® ey (T (@) = W (b4(8))) > Oz logt)
> P(a Brownian motion starting from £ hits (1 + €)£ before Ci2log ¥ )

21og®
(4.26) >1-2=1- Ozgz.
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In view of (4.24)-(4.26), we arrive at

C]_3 logﬁ —(1-6)
C
< = =
IEI)(Els N E15) S= N +4£ )
which in view of (4.11), (4.22) and (4.23) implies that

1
(4.27) P(Efg N F) < M +54-(1=9),

On Fhg, for z € Jy and |z| > A, we have U(z) = V(z) > W(z)—C11 logf > (C12—Ch1) log#,
which implies that

/ e V@) gy < (/ +/ )e‘mdw—i-/ e~ (C12=Cu1)logl g,
|z >A C Ma<—e_(@-bi () Ja>di((1+e)0) z€Jy,|z|>A

< 2/ e~ 1"l dg + 23 ¢~ (Cr2=C)
| >3
(4.28) < 3¢~ (C12=Cn=3),

and for all x € Jy, U(z) = V(z) > W(z) — Ci1logl > —Ci1log¥,

(429) my = (/ +/ )C_U(m)dx S 2/ e—|$|d$+2£3£011 S 3£3+011.
T Jy xEJy |m|236

We can bound my below as follows: for || <1, U(z) < W(z)+Ci1logl < (1+C11)logt,

hence

(4.30) my > inf e” V@) > p=1-Cun
lz|<1

Recall that ¢ = ef. From (4.28)-(4.30), we have shown that on E1g,

(4.31) i/ e~V @ gy < 3¢~ (1272004 = 342,
My Jjz|>x B
1 1
(4.32) —/ e V@ dy = —/ e”leldy < 072,
mu Jie|>(t/2)1/4 MU Ja|>(t/2)1/4

Observe that Eig is o(V, W)-measurable. Applying (4.30)—(4.32) to (4.21) gives that for
all A > 1 and s > t/2, we have

IP’(|Z(3)| > AV, W)) <5072, on Eig C Eu,
which together with (4.20), imply that
IP’({|X(t) —b(0)| > A} N F) < 104710 4 IP’(F N Efg),
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yielding (4.7) by means of (4.27). The case {b(*%€) < 0} follows from (4.7) by interchang-
ing (V4, W4 ) with (V_, W_), hence yielding Theorem 1.1 . 0

5. Proof of Theorem 1.2

Fix ¢ > 0. We first prove

61 B(Dx(t) - t> 15 b(k’it“) >0) =B(A() > :b(1) > 0) +0(1), ¢ o0,

Fix a small € > 0. Consider a small § > 0 and define

def logt

By & {|X(t) - b(—27)| < 510g?t},

g

1 log®
Ey o {elogzt < ‘b( Oft)‘ < oge t}’
Es déf{ sup W (z) - W(y)| < elogt}
|z|,|y|< 2 log? ¢;|z—y|<38log? t
1
Ess3 déf{ sup  Wi(s) — W(M(%t)) > 3¢ logt}.

0<s<by (1o8)

Notice that P(Egz) does not depend on ¢t. Choose a sufficiently small but fixed 0 < 6§ =
d(e) < €/2 such that IP’(E§2) < e. It follows from Theorem 1.1 that for all large ¢ > to(4, €),

we have IP’(ESO) < ¢, hence we deduce from Brownian scaling that

5.2 sup P((n2,, E:)°) = o(1), e — 0.
(5:2) sup P((MZa0 55)°) = o(1)
Recall (3.1)—(3.5). Let Yo = t > to (to will be sufficiently large), and X(s)défX(s +

t) — X(t), s > 0; W(x) di(:E + X(t)) — W(X(t)),z € R. Applying Proposition 3.2

to 1 = r1(e) sufficiently large such that exp ( — %10g2 7'1) < €, we obtain an event Eaq4
satisfying

(5.3) P(Eg,) <e,
and for all 7 > r1, on Ezsa N {|X ()| < exp (log®r)} N {W_(r) > 3log® r}, we have

(5.4) log Ox (—7) < o max (W*f (), Uy (W_(r) + 21og® 7‘)) +3logr,

(5.5) log Ox (—r) > o max (W*f (r) — 21og® r, Uy (W_(r) — 21og® 7‘)),
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where Uy (z) L+ sup{—W, (s) : 0 < s < Ow, ()}, and we have interchanged W, and
W_ in (3.23) and (3.24). On NZ,0E; N {b(l—oag—t) = b+(1—°§—t) > 0}, we apply (5.4) to
r=X(t) > (¢—0)log’t > Lelog®ty > r1 gives

log(Dx (t) — t) = log ©x (- X (t))
< o max (W# (b.,.(10g ) + dlog®t), Uy (W_ (b.,.(1 gt )) + 26 log? t)) + 41log®logt

logt

(5.6) < omax (W#(M -

- ]
0,0y (W_ (b4 (C55) ) +5oclogt,  ¢> 1,

provided that to is sufficiently large, and in (5.6), W.,.( ) W( +b ( EYY —W (by (1281)),

o

W_(z) &€ W (—s+by (128L)) - W (by (125)) for s > 0; and Ty (z) & x—i—sup{—T//V:(s) 10 <
s < @V/I\’+ ()} for z > 0. Recall (2.7)—(2.9). Notice that the RHS of (5.6) equals in fact in
law (A4 (1) + 50¢) log ¢, which implies in view of (5.2) and (5.3) that
P({log(Dx(t) - 1) > clogt} n (H(2") > 0})
< IP’( 2 E) +IP’({A+( ) + 50e > ¢} N {b(1) > o})

=P({A1) > ¢} N {b(1) > 0}) +0(1), €0,

yielding the upper bound part of (5.1), the lower bound can be proven in the similar way
by using (5.5) instead of (5.4). Obviously the case of {b( Y < 0} can be proven in the
same way, and Theorem 1.2 follows. a

6. Sinai’s walk in random environment

Recall (1.1). Assume that

(6.1) (&;,1 € Z) are i.i.d. and ¢ < &; < 1 — ¢, for some constant ¢ € (0,1/2),
1-§
(6.2)  Elog ( : ) 0,

—&\2
3 ) =% € (0, 00),

Sinai [29] showed that as n — oo,

(6.3)  Elog (1

%S, ()

(6.4) — b(1), under P

log®n
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where b(1) is defined by (2.6). We shall call this RWRE (S,,) Sinai’s walk. Here, we limit
our attention to the first return time Dg(n):

(6.5) Dg(n) o inf{k > n : S = 0}.

Similarly to the continuous case, we have

Theorem 6.1. Assuming (6.1)—(6.3), we have that as n — oco:

log (Ds(n) — n)

GA A(1), under P,
logn

(6.6)

with the density of A(1) given in (1.9).

Define the last zero Gg(n) of S before n by

Gs(n) & max{0 < k <n:S;=0}.

Theorem 6.1 yields the following convergence in law for the last zero Gg(n) and the age

process n — Gg(n):

Corollary 6.1. Assuming (6.1)-(6.3). Under P, the following two convergences in law
hold: asn — oo

logGgs(n) (4@ 2 1
(67) qu) — 1, ]P)('l’]]_ € d(E) = g]l(osm<1)d$ + 561 (dz‘),
log (n — Gs(’l’b))
(d) 2z 2
(6.8) Togn - 1o, P(nz € dw) = ?]l(osgcﬂ)dm + 551(dx),

where §; denotes the Dirac measure at 1.

Notice that (6.7) and (6.8) contrast completely with the classical Lévy’s arcsine law

for a simple random walk (cf. Feller [8]).

To prove Theorem 6.1, let us consider the step potential V' such that V(0) = 0 and

1- gn
€n

Let { X (t),t > 0} be the diffusion associated with the potential V. The following Skorokhod

embedding was stated in Schumacher [27], Kawazu et al. [17], and its proof can be found
in [13]:

(6.9) V(x) is constant on [n — 1,7n) and V(n) — V(n—) = log n € 7.
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Fact 6.1. Assuming (6.1)-(6.3). For k£ > 1, define yy, o inf{t > pp—1 : | X)X (pr-1)| =
1} with po 0. Therefore {X(pn),n > 0} is distributed as {S,,n > 0} defined by (1.1).
Furthermore {p,, — pin—1,7n > 1} are iid with common distribution that of the first hitting
time at 1 of a reflected Brownian motion starting from 0.

Proof of Theorem 6.1. Using Fact 6.1, we can take S, ©f x (n),m > 0. Remark that
p(Ds(n)) = Dx (u(n)) for n > 1. Fix ¢ > 0 and write m = n+ n°. Let Eas o {(1 —e)n <
pin) < (1+ e)n} N {(1 —e)m < p(m) < (14 e)m}. The law of the large numbers shows

@ — 1, a.s., which shows IP’(E§5) =0(1) as n = oo. On Ey5, we have

{Ps(n) 2 m} < {Dx(u(m) > (1= m} < {Dx (1 + ) > (1 = Jm},
{Px(=m) 2 1+ Om} c {Dx(u(n) 2 1+ m} C {Ds(n) > m},
implying that
P(Ds(n) >m) =P(Dx(n) >m) +o(1), €0,

which in view of Theorem 1.2, implies the desired result. O
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