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The equation

[ %u = 2u + |u|P~ 1y,

| #(0) = up and u(0) = uy,

where p > 1,
u(t):x € R— u(x,t) € R,

ug € Hlloclu(IR) and uq € leoclu(IR)
and

a+1 ) 1/2
folls,omy = sup ([ o) Pax)
o aclR \7¢
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THE CAUCHY PROBLEM INH! = (IR) x L? (IR)

loc,u loc,u

It is a consequence of:
> the Cauchy problem in H! x L?(IR),

> the finite speed of propagation.

(IR) x L?

. . . 1
Maximal solution in H e

loc,u

(R)

- either it exists for all t € [0, ) (global solution),
- or it exists for all £ € [0, T) (singular solution).
Existence of singular solutions

lt's a consequence of ODE techniques and the finite speed of propagation; see
also the energy argument by Levine 1974

if (g, u1) € H* x L*(RR) and [ (%(ul)z + 5 (9x1ip)? — ﬁ|”0|p+l> dx <0,

then u is not global.
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Singular solutions: the maximal influence domain
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light cone

T
0

The blow-up set x — T(x) is 1-Lipschitz (finite speed of propagation).

Remark: T = inf T(x) is the blow-up time. For all x € RY, there exists a
“local” blow-up time T(x).

The aim of this talk: To describe precisely the blow-up set, and the solution
near the blow-up set, for an arbitrary blow-up solution.

All about blow-up for a semilinear wave equation in one space dimension — p. 4/41




— IATEX prosper

Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex
(a,T(a)) and slope ¢ < 1.

/////// , t=T(x)

ligh\t cone (slope 1)

The point is said characteristic if not.

- Notation: R C R is the set of all non characteristic points.
- Notation: § C R is the set of all characteristic points (S UR = IR).
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Known results, for an arbitrary solution

- The blow-up set T = {(x, T(x))} c R
- By definition, I" is 1-Lipschitz.
- R # @ (Indeed, x such that T(X) = min__g T(x) is non characteristic).

- Caffarelli and Friedman (1985 and 1986) had two criteria to have R = IR and
x — T(x) of class C! (using the positivity of the fundamental solution):

> either when p > 3, with ug > 0, u; > 0 and (ug,u;) € C* x C3(R),
> or under conditions on initial data that ensure that

u>0and diu > (14 6y)|dxu|

for some 5 > 0.
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Questions and new results

> Existence
- Are there characteristic points? yes, S # ©.

> Regularity
- Is R open? yes

-Is T (or ') of class C! ? yes
- “How is” §7? isolated points
- How does I' look like near S? corner shaped

> Asymptotic behavior (profile)

- How does the solution behave near a non characteristic point? we have
the profile

- and near a characteristic point? we have a precise decomposition into
solitons

Rk. Regularity and asymptotic behavior are linked.
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Extension to the radial case outside the origin

If u = u(r,t) satisfies for all » > 0,

—1
071 = O%u + Mam + |u|P~tu

then all our results in one dimension extend to this case, as long as we
consider the behavior outside the origin.
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The plan

v Vv V V

Part 1: Existence of characteristic points.
Part 2: A Liouville theorem and regularity of the blow-up set.
Part 3: A Lyapunov functional and the blow-up rate.

Part 4: Asymptotic behavior near non characteristic points (the blow-up
profile).

Part 5: Asymptotic behavior near characteristic points (decomposition
into solitons).

All about blow-up for a semilinear wave equation in one space dimension — p. 9/41




Part 1: Existence of characteristic points

We recall: Any solution to the Cauchy problem has (at least) a non characteristic
point (the minimum of the blow-up set).

Th. There exist initial data which give solutions with a characteristic point.

Example: We take odd initial data, with two large plateaus of different signs.
Then, the solution blows up, and the origin is a characteristic point with
vVt < T(0), u(0,t) = 0.

U_0(x)

A

T

—

Th. If we perturb the constructed initial data, then the new solution blows up
and has a characteristic point.
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Part 2: Regularity of the blow-up set

> Near a non characteristic point:

Th. The set of non characteristic points R is open and T(x) is of class C!
on this set (C1* by N. Nouaili CPDE 2008).

> Near a characteristic point:

Th. The set of characteristic points S is made of isolated points.
Ifa €S, then T/(a) = 1and T} (a) = —1.

Cor. There is no solution witha € S and T'(a) = 1.
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Part 2: The corner property near a characteristic point

Th. (the corner property) Ifa € S, then for all x near a,

érx — al|log|x —a|| =" < T(x) — T(a) + |x — a| < C|x —a||log |x — a]| =)
(1)
where

(a) € N, k(a) > 2.

2

(@ T(a)
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Comments

Idea of the proof:
The techniques are based on

> - a very good understanding of the behavior of the solution in
selfsimilar variables in the energy space related to the selfsimilar

variable (see Part 3 of this talk).
> - a Liouville Theorem (see next slide).
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A Liouville Theorem

Th. Consider u(x,t) a solution of us = uyy + |u|P~'u such that:
- u IS defined in the infinite green cone,

2
- u is less than (T* —t)” 7T (in L? average).

t

A

cone of slope delta*™

(x*,T%)

N

Light cone
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A Liouville Theorem

- —

QT 0-t+d_0(x—x*)=0
(x*,T%*)

cone of slope delta*

/ \>X

Light cone

Then,
- either u = 0,

- or there exists Top > T*, dg € [—J4,04] and 6y = £1 such that u is actually
defined below the red line by

1

(- )™
L

u(x,t) = Ooxo(p) :
(To — t+do(x — x*)) ¥

Remark: u blows up on the red line.
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Comments

> The limiting case 6* = 1 is still open.

The proof:

> The proof has a completely different structure from the proof for the heat
equation.

> The proof is based on various energy arguments and on a dynamical
result.
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Part 3: A Lyapunov functional and the blow-up rate

Selfsimilar transformation for all x5 € IR

weo(3,5) = (T(x0) = 7 Tu(x, 1), y = oy 5 = ~log(T(x) — ).

(x,t) in the light cone of vertex (xg, T(xp)) <= (vy,s) € (—1,1) x [—log T(xg), o).

Equation on w = wy,: For all (y,s) € (—1,1) x [—log T(xg), ):

2(p+1 _
923, — %ay(p(l — y?)o,w) + %w — |w|P~tw

p+38 w — Zya

where p(y) = (1 — [y[2)7
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The case of radial solutions
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If u = u(r,t) satisfies for all » > 0,

—1
071 = %u + (Nr )aru + |u|P~tu

and for ro > 0, wy,(y,s) is defined by

r—rTp

W (y,5) = (T(r0) = )7 Tu(r, 1), y = gy, 5 = ~Tog(T(ro) = 1),

then w,, (y, s) satisfies the following:

2 1 _ N—1)e™®
2w — 13, (p(1 - y2)3yw) + TEHw — [w|P 1w + 9,0

p+38 w — 2y8

In particular, the new term %;25_ d,w is negligeable (unlike when ry = 0).
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Back to 1 d: A Lyapunov functional (Antonini-Merle)
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E(w) :/1 (%(asw)z+_(ayw)z(1_yz)+ (p+1) wz_%’w‘lﬂrl) ody,

Thanks to a Hardy-Sobolev inequality, E = E(w, d;w) is well defined in the
energy space

! 2
H= {q € Hpe % Lioo(B) | llgll3, = /_1 (7 + (3ya1)* (1 = y?) +a3) pdy < +<>°}-
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Properties of the Lyapunov functional E

Lemma 1 (Monotonicity (Antonini-Merle)) For alls; ands;:

E(w(s2) — E(w(s) =~ [ [ @)1= ly) 7Ty,

Lemma 2 (A blow-up criterion) Consider a solution W such that
E(W(sp)) < 0 for some sy € R, then W blows up in finite time S > s.
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The blow-up rate

We look for a local blow-up rate near the singular surface (i.e. near every local
blow-up time, t — T(xg)), in H' x L? of the section of the light cone.

0
Hint: Is the rate given by the associated ODE v/ = vF?
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An upper bound on the blow-up rate in selfsimilar variables

Th. Forall xp € Rand s > —log T(xg) + 1,

/1 2, 1 2 2 (p+1) 5 1 p+1
- - _ AV - <
/_1 <2(asw) +2(8yw) (1—1y|7) + (P_1>2w +p+1\wl )pdy_K

where the constant K depends only on p and an upper bound on T(xg),
1/T(xo) and || (g, uy) .

Idea of the proof of the upper bound

> Selfsimilar transformation and existence of a Lyapunov functional
> Interpolation to gain regularity

> Gagliardo-Nirenberg estimates.
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Part 4: Asymptotic behavior at a non characteristic point

Take xp € IR non characteristic. Using a covering argument for x near xg, we
obtain that || (wx, (s), dswx, ($))[| g1 x 12(—1,1) IS bounded.

Question: Does wy, (y,s) have a limit or not, as s — oo (thatis as t — T(xg)).

Remark: In the context of Hamiltonian systems, this question is delicate, and
there is no natural reason for such a convergence, since the wave equation is
time reversible.

See for similar difficulty and approach, results for
> the critical KdV (Martel and Merle),
> NLS (Merle and Raphaél).
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Stationary solutions.

We look for solutions of

1 A 2(p+1) _
E(p(l—yz)w) — (p_1>2w+|w\’” lw =o0.

We work in H, the (stationary energy space) defined by
1
Ho = {r € H- (=1,1) | ||r[%, = /_1 (21— y2) + %) pdy < +oo}.

Prop. Consider a stationary solution in Hy. Then, either w = 0 or there exist
d € (—1,1) and e = +1 such that w(y) = ex(d,y) where

1

12 e — =TT (2(p 1)\
V) € (L wid) = o e = ()

Remark: We have 3 connected components. E(0) = 0 < E(%x(d)) = E(xg).
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Blow-up profile near a non characteristic point

Th. There exist Cy > 0 and ug > 0 such that

if xo is non characteristic, then there exist d(xy) € (—1,1), e(xg) = +1 and
s*(xg) > —log T(xq) such that:

(i) Forall s > s*(xg),

ws c(d(x0), )
(5t ) e (3%

and E(wy,(s) — E(xq) where the energy space

S Coe_luo(s_S*)
H

1 2
H = {q € H x L (=11) | o} = [ (48 + (1)* (1 =) +a3) pdy < +0<>}-
(ZZ) d(xo) = T/(XO).
Rk. We have exp. fast convergence (hence, Cl#o regularity of R, see Nouaili).
RK. [, (1,5) — e(x0)x(d(x0), y) | =(_1,1) = O.
Rk. The parameter of the profile d(xg) has a geometrical interpretation

(T"(x0))-
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Difficulties of the proof of convergence

> The set of non zero stationary solutions is made up of non isolated
solutions (one parameter family):
— we need a modulation technique.

> The linearized operator around a non zero stationary solution is non
self-adjoint:

— we need to use dispersive properties coming from the Lyapunov
functional to control the negative part of the spectrum.
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Part 5: Asymptotic behavior at a characteristic point

Th. If xy € R is characteristic, then, there exist k(xg) > 2, e(xy) = £1 and
continuous d;(s) = —tanh {;(s) fori =1, ...,k such that:

(i)
Wi, ( k(xo) - x(d;(s),-
H( - ;‘)’xo ) —e(xp) Z; (—1)! ( O(d( o) )

(if) Introducing

— 0 as s — oo,
H

Dy, (&,5) = (1— y2) 7 Twy, (y,5) with y = tanh & and {;(s) = — tanh— 1 d,(s),

we get
k(xo0) 2
|@x, (E,8) —e(xo) Z (— 1) cosh =1 (& — Ci(s))HHlmLoo(lR) —0ass — oo,
=1
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Part 5: Asymptotic behavior at a characteristic point (cont.)

(i) Foralli = 1, ..., k(xg) and s large enough,

(i_ (K(x0) +1>> (01 Jows Co < 21(6) < (i_ (k(x0)+1)> (=1 oes s o

2 2 2

(iv) E(wy,(s)) — k(xg)E(xg) as s — oo.

e -
zeta 2
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Part 5: Asymptotic behavior at a characteristic point (cont.)

Rk.

- As s — o0, wy, becomes like a decoupled sum of equidistant stationary
solutions (“solitons”), with alternate signs.

- In the ¢ variable, half of the solitons go to —oo, and the other half to +oo.

- The main difficulty in the proof is to prove that k(xg) > 2 (the case k(xg) =0
is harder to eliminate).

- The {;(s) satisfy the following system:

k—
_Ci(s) — e_%<€z gi—l) _e_%<€z+1 gz) —|—R Wlth R — 0 Z 6 p— 1<€]+1 g]) as s — o

=1
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The energy behavior

Defining
k(xo) = 1when xy € R,

we get the following:

Cor.
(i) Forall xy € Rand s > —log T(xg), we have

E(wx,(s)) = k(x0)E(xo)-

(i) (An energy criterion for non characteristic points) If for some xy € IR and
sg > —log T(xq), we have

E(wy,y(s0)) < 2E(xp),

then xg € R.
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Blow-up speed or the L* norm behavior

Cor.
(i) (Case of non-characteristic points) If xg € R, then

2

(T(m(_:t)p1 < sup fu(x )] < C(T(x)— 1) 7

|x—x0|<T(x0)—t

(1) (Case of characteristic points) If xg € S, then

og(T(xg) — )|~ %~ Cllog(T(xg) — £)| %~
UL < sup fu(r )| < TS T

C(T(xg) —t)rT |x—x0| <T (x0) —t (T(xg) —t)7T

where k(xg) > 2 is the solitons’” number in the decomposition of Wy, .

Rk.
When xg € R, the speed is given by the associated ODE u"" = u?.

When xg € S, the speed is higher. It has a log correction depending on the
number of solitons.
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Idea of the proof of the results in the characteristic case

The results are: the decomposition into solitons, the corner property and the
fact that the interior of S is empty.

6 main steps are needed:

> Step 1: Decomposition into a decoupled sum of k(xy) > 0 solitons, with
no information on the signs or the distance between the solitons’ centers
(in the ¢ variable).

> Step 2: Characterization of the case k(xg) > 2. Proof of the upper bound
in the corner property if k(xg) > 2.

> Step 3: Excluding the case k(xg) = 0 if xg € S (note that S C S since
R = R\S is open).

> Step 4: Characterization of the case where xy € S and k(xg) = 1.

> Step 5: We prove that the interior of S is empty, then that k(xy) > 2 for
all xo € S (which gives the upper bound in the corner property by Step 2).

> Step 6: We prove that S is made of isolated points and the lower bound
in the corner property (omitted here).
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Comments

Rk. 1: A good understading of the non-characteristic case is crucial.

Rk. 2: Excluding the case k(xy) = 0 is more difficult than excluding the case
k(xo) = 1.

In particular, we can’t exclude directly the case k(xy) = 0 for all xg € S. We do
it first when xg € 95, then prove that the interior of S is empty, hence 9§ = S.
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Step 1: Decomposition into a decoupled sum of k(xg) > 0 solitons

Take xp € IR a characteristic points. We have two estimates:
> || (wxy (5), 95w, (5)) |2 < Co;

00 1
> f—logT(xo) fo CE (y,s))zl_pyzdyds < Cp.

Rk. Unlike the non characteristic case, we can’t have a covering argument, so

we can’t obtain the H! x L? norm bounded (in fact, we will show that it is
unbounded).
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s N

Step 1: Decomposition into a decoupled sum of k(xy) > 0 solitons (cont.)

In the @,, (¢, s) variable, we have

wao(‘frs)HHl(lR) < Co.

For any sequence ¢, in IR, we find a “local” limit in the sense that for some
sy, — 0o, we have

Wy, (G + Cn,s+5y) —> W aS N — 00,

uniformly on compact sets for (¢, s), with w* a stationary solution, due to the
fact that

00 1
J ,8))2 L dyds < C.
[ erie o Bstona(ws)? g pdyds < G

Since the energy is bounded, the number of non zero “local limits” is finite, and
we end-up with the following result:
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s N

Step 1: Decomposition into a decoupled sum of k(xy) > 0 solitons (cont.)

Prop.There exist k(xg) > 0 and continuous d;(s) € (—1,1) such that

k(xo)
wxo K(di(5>/')
H( deton, (5 ) — l; e;(xo) ( 0 )

Civ1(s) — Ci(s) = c0oass — oo and d;(s) = — tanh {;(s).

— 0ass — oo,
H

with

Rk.
> If k(xg) = 0, then the above sum is 0.
> At this level, we don’t know that k(xy) = 0 and k(xy) = 1 don’t occur.
> We have no information on the signs e;(xp).

> We have no equivalent for {;(s) as s — oo.
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Step 2: Case k(xg) > 2; A differential equation on the solitons’ centers

Here, we assume that k(xy) > 2 (we don’t prove that fact here).

Linearizing the equation in the w(y, s) setting around the sum of the solitons,
we get the following system on the solitons’ centers in the ¢ variable:
foralli =1, ...,k and s large enough, we have

where

2 7. _ 2 (7. 7.
ei_leie_ﬁ(@ Cl_l)—|—€i€i+1€ P—l(glﬂ g1)—|—Ri

k—1

Ri| < CJM%, J(s) = ¥ e 1 Gm=5(),

=1

eg = exyq = 0, for some ¢; > 0 and 4y > 0.
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Step 2: Case k(xg) > 2 (cont.)

Since for alli =1, ..., k(xg) — 1, we have

Ci+1(s) — Ci(s) — o0 as s — oo,

using ODE techniques, we find that

logs.

e;e; 1 = —1 and gi(5> ~ (l B k(xoz) + 1) (P ; 1)

The upper bound on the blow-up rate gives the upper bound in the corner
property.

All about blow-up for a semilinear wave equation in one space dimension — p. 38/41




— IATEX prosper

Step 3: Excluding the case where xy € dS and k(xy) = 0

By contradiction, if xo € S and k(xg) = 0, then

|wx, (s)||5 = 0and E(wy,(s)) — 0as s — oo.

Fixing s( large enough such that E(wy, (so)) < YE(xp), we find x1 near x, such
that

N

x1 € R and E(wy, (sg)) < =E(xp).

Since E(wy, (s)) — E(xg) as s — oo and E(wy, (s)) is decreasing, it follows that

I\JlH

E(wx, (s0)) > E(ko).
Contradiction.
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Step 4: Characterization of the case where xy € 0S5 and k(xp) = 1

In this case,

( Wy, (s ) e ( x(d1(s),y) )
JsWy, (s 0

Our “trapping” result implies that for some d(xy) € (—1,1),

— 0ass — ocoand E(wy,(s)) > E(xp).
H

Wy, (s) = x(d(xp)) as s — oo.

Some elementary geometry and the precise knowledge of the case of non

characteristic points gives that x is either left-non-characteristic or
right-non-characteristic.
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Step 5: Conclusion without Isolatedness

Using the previous steps, we prove in the same time that k(xy) > 2 and the
interior of S is empty, together with precise estimate on the location of the

solitons’ centers.
We also get the upper bound in the corner property.
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