Construction d'une solution explosive stable pour l'équation Complexe de Ginzburg-Landau dans un cas critique avec détermination du profil

Séminaire à l'Université de Versailles Saint-Quentin

Hatem ZAAG

CNRS et Université Paris 13

2 mars 2017

Travail en collaboration avec Nejla Nouaili, Université Paris Dauphine.

The complex Ginzburg Landau (CGL) equation

We consider the following equation

$$\begin{array}{lcl} \partial_t u & = & (1+i\beta)\Delta u + (1+i\delta)|u|^{p-1}u - \gamma u \\ u(x,0) & = & u_0(x) \text{ for } x \in \mathbb{R}^N, \end{array} \tag{CGL}$$

where

- p > 1, β , δ and γ are real.
- $u(t): x \in \mathbb{R}^N \to u(x,t) \in \mathbb{C}$.
- $u_0 \in L^{\infty}(\mathbb{R}^N, \mathbb{C})$.

Content

- Introduction

Physical motivation and Mathematical relevance for CGL

- Physical motivation: When p = 3, CGL appears:
 - in the description of plane Poiseuille flow, see Stewartson and Stuart (1971) and Hocking, Stuart and Stewartson (1971);
 - in the context of the binary mixture, see Kolodner, Bensimon and Surko (1988).
- Mathematical relevance: Classical tools break down:
 - Maximum principle;
 - Variational formulation;
 - Energy methods.

History of blow-up in CGL equation

- p = 3, Formal approach by Hocking and Stewartson (1972), Popp, Stiller, Kuznetsov and Kramer (1998), under some condition on β and δ .
 - Existence of blow-up solutions:
 - Determination of the blow-up profile.
- Rigorous approach for p > 1: Construction, profile and stability, under some condition on β and δ ,
 - when $\beta = 0$, see Zaag (1998);
 - when $\beta \neq 0$, see Masmoudi and Zaag (2008).
- Case $\beta = \delta$: This is variational. Results by Cazenave, Dickstein and Weissler.

Cauchy problem and blow-up

- Cauchy problem: Welpossedness in $L^{\infty}(\mathbb{R}^N, \mathbb{C})$. For other spaces, see Ginibre and Velo (1996-1997), Cazenave (2003), Ogawa and Yokota (2004).
- Blow-up solutions: If $T < \infty$, then $\lim_{t \to T} \|u(t)\|_{L^{\infty}} = +\infty$.
- Blow-up point: The point a is a blow-up point if and only if there exists $(a_n, t_n) \to (a, T)$ as $n \to +\infty$ such that $|u(a_n, t_n)| \to +\infty$.

Content

- Introduction
- 2 The blow-up profile
 - History of the problem in the subcritical case
 - Existence of the new profile in the critical case $\beta = 0$
- 3 Proof

Case $\beta = \delta = 0$, the heat equation

The generic profile is given by

$$(T-t)^{\frac{1}{p-1}}u(z\sqrt{(T-t)|\log(T-t)|},t)\sim f_0(z),$$

where
$$f_0(z) = (p-1+b_0|z|^2)^{-\frac{1}{p-1}}$$
 and $b_0 = \frac{(p-1)^2}{4p}$
See Galaktionov-Posashkov (1985), Berger-Kohn (1988), Herrero-Velázquez (1993).

The constructive existence proof by Bricmont-Kupiainen (1994), Merle-Zaag (1997) is based on:

- The reduction of the problem to a finite-dimensional one.
- The solution of the finite-dimensional problem thanks to the degree theory.
- Other profiles are possible.

CNRS et Université Paris 13 Construction d'une solution explosive stable p

Case $(\beta, \delta) \neq (0, 0)$

lf

$$p - \delta^2 - \beta \delta(p+1) > 0,$$
 (subcritical)

then, Masmoudi and Zaag (2008):

- constructed a solution such that

$$(T-t)^{rac{1+i0}{p-1}} |\log(T-t)|^{-i\mu} u(z\sqrt{(T-t)|\log(T-t)|},t) \sim f(z),$$

where
$$f(z) = \kappa^{-i\delta} (p-1+b|z|^2)^{-\frac{1+i\delta}{p-1}}$$
, $\kappa = (p-1)^{-\frac{1}{p-1}}$

$$b = rac{(p-1)^2}{4(p-\delta^2-eta\delta(p+1))}$$
 and $\mu = -rac{2beta}{(p-1)^2}(1+\delta^2);$

- proved the stability with respect to initial data.

Question: What happens in the critical case?

Theorem (Nouaili and Zaag; Existence of a blow-up solution with determination of its profile)

lf

$$\beta = 0$$
 and $p = \delta^2$,

then, there exists a solution u(x,t) blowing up at time T>0 only at the origin, s.t.

Blow-up profile

$$(T-t)^{rac{1+i\delta}{p-1}} |\log(T-t)|^{-i\mu} u(z\sqrt{(T-t)}|\log(T-t)|^{rac{1}{4}},t) \sim f_c(z)$$

as $t \to T$, where

$$f_c(z) = (p-1+b_c|z|^2)^{-\frac{1+i\delta}{p-1}},$$

$$b_c = rac{(p-1)^2}{8\sqrt{p(p+1)}} \; ext{and} \; \mu = rac{8\delta b^2}{(p-1)^4} (1+p).$$

Comments

The blow-up behavior is *new* in two aspects:

- The scaling law: $\sqrt{(T-t)}|\log(T-t)|^{\frac{1}{4}}$ instead of the law of the subcritical case, $\sqrt{(T-t)|\log(T-t)|}$.
- ullet The profile function: $f_c(z)=(p-1+b_c|z|^2)^{-rac{1+i\delta}{p-1}}$ depends on a constant b_c different from the subcritical case.

Idea of the proof

We follow the the constructive existence proof introduced by Bricmont-Kupiainen (1994), Merle-Zaag (1997) for the standard semilinear heat equation, and used by Masmoudi and Zaag (2008) for the CGL equation in the subcritical case.

The method is based on:

- the reduction of the problem to a finite-dimensional one (N+1)parameters;
- the solution of the finite-dimensional problem thanks to the degree theory.

Stability of the constructed solution

Thanks to the interpretation of the (N+1) parameters of the finite-dimensional problem in terms of the blow-up time (in \mathbb{R}) and the blow-up point (in \mathbb{R}^N), the existence proof yields the following:

Theorem (Nouaili and Zaag: Stability)

The constructed solution is stable with respect to perturbations in initial data:

Consider initial data \hat{u}_0 of the solution of (CGL) with blow-up time \hat{T} , blow-up point \hat{a} and profile f_c centred at (\hat{T}, \hat{a}) .

Then, $\exists \mathcal{V}$ neighborhood of \hat{u}_0 s.t. $\forall u_0 \in \mathcal{V}$, u(x,t) the solution of (CGL) blows up at time T, at a point a, with the profile f_c centred at (T, a).

Content

- Introduction
- 2 The blow-up profile
- Proof
 - A formal approach for the existence result
 - A sketch of the proof of the existence result

A formal approach to find the ansatz (N = 1)

- Herrero, Galaktionov and Velázquez (1991), Tayachi and Zaag (2015).
- Following the standard semilinear heat equation case, we work in *similarity variables*:

$$w(y,s) = (T-t)^{\frac{1+i\delta}{p-1}}u(x,t), \ \ y = \frac{x}{\sqrt{T-t}} \ \text{and} \ \ s = -\log(T-t).$$

We need to find a solution for the following equation defined for all $s \ge s_0$ and $y \in \mathbb{R}$:

$$\partial_{s}w = \partial_{y}^{2}w - \frac{1}{2}y\partial_{y}w - \frac{1+i\delta}{p-1}w + (1+i\delta)|w|^{p-1}w,$$

such that

$$0<\varepsilon_0\leq \|w(s)\|_{L^\infty(\mathbb{R})}\leq \frac{1}{\varepsilon_0}.$$

G CNRS et Université Paris 13 Construction d'une solution explosive stable p

Inner expansion

We write

$$w = e^{i\mu logs}(v(y,s) + \kappa)$$

and we look for v such that

$$v \to 0$$
 as $s \to \infty$.

The equation satisfied by $v = \Re v + i\Im v$ is the following

$$\partial_{s}v = \tilde{\mathcal{L}}v + f(v) - i\frac{\mu}{s}(v + \kappa),$$

where

$$\tilde{\mathcal{L}}v = \mathcal{L}_0 v + (1 + i\delta) \Re v \text{ with } \mathcal{L}_0 = \partial_y^2 v - \frac{1}{2} y \partial_y v,$$

$$f(v) = (1 + i\delta) \left(|v + \kappa|^{p-1} (v + \kappa) - \kappa^p - \frac{v}{p-1} - v_1 \right)$$

Note that f is quadratic.

The linear operator $\hat{\mathcal{L}}$

Note that \mathcal{L}_0 is self-adjoint in in L^2_ρ , but not $\tilde{\mathcal{L}}!!!!$ where

$$\mathsf{L}^2_{\rho}=\{g\in \mathsf{L}^2_{loc}(\mathbb{R})|\int_{\mathbb{R}}(g(y))^2\rho(y)dy<\infty\}$$
 and $\rho(y)=rac{\mathrm{e}^{-rac{|y|^2}{4}}}{\sqrt{4\pi}}.$ The spectrum of $\tilde{\mathcal{L}}$ is given by

$$spec(\tilde{\mathcal{L}}) = \{1 - \frac{m}{2} | m \in \mathbb{N}\}.$$

The eigenfunctions are given by $(1+i\delta)h_m$ and ih_m , where h_m are rescaled Hermite polynomials

$$\tilde{\mathcal{L}}((1+i\delta)h_m) = (1-\frac{m}{2})(1+i\delta)h_m,
\tilde{\mathcal{L}}(ih_m) = -\frac{m}{2}ih_m.$$

In particular, for $\lambda = 1, \frac{1}{2}$, the eigenfunctions are $(1 + i\delta)h_0(y)$ and $(1 + i\delta)h_1(v)$.

for $\lambda = 0$, the eigenfunctions are $(1 + i\delta)h_2(y)$ and $ih_0(y)$.

17 / 35

Naturally, we expand v(y,s) according to the eigenfunctions of $\tilde{\mathcal{L}}$:

$$v(y,s)=(1+i\delta)\sum_{0}^{\infty}\bar{v}_{m}h_{m}+i\sum_{0}^{\infty}\hat{v}_{m}h_{m}.$$

Since the eigenfunctions $(1+i\delta)h_m$ for $m \geq 3$ and ih_m for $m \geq 1$ correspond to negative eigenvalues of $\tilde{\mathcal{L}}_{i}$, assuming v even in y, we may consider that

$$v(y,s) = (1+i\delta)(\bar{v}_0h_0 + \bar{v}_2h_2) + i\hat{v}_0h_0(y)$$

with

$$ar{\emph{v}}_0,\,ar{\emph{v}}_2,\,\hat{\emph{v}}_0 o 0$$
 as $s o \infty.$

Plugging this in the equation to be satisfied by v

$$\partial_{s}v = \tilde{\mathcal{L}}v + f(v) - i\frac{\mu}{s}(v + \kappa),$$

then, projecting on $(1+i\delta)h_0$, $(1+i\delta)h_2$ and ih_0 , we get the following ODE system

Our goal is to find a solution for this system

$$\left\{ \begin{array}{ll} \bar{v}_{0}^{'} & = & \bar{v}_{0} + \frac{\mu\delta}{s} \bar{v}_{0} + \frac{\mu}{s} \hat{v}_{0} + \frac{1}{2\kappa} \hat{v}_{0}^{2} - \frac{(p+1)p}{3\kappa^{2}} \bar{v}_{0}^{3} - \frac{(p+1)\delta}{\kappa^{2}} \bar{v}_{0}^{2} \hat{v}_{0} - \frac{(p+1)}{\kappa^{2}} \bar{v}_{0} \hat{v}_{0}^{2} - 8 \frac{(p+1)}{\kappa^{2}} \bar{v}_{0} \bar{v}_{2}^{2} \\ & - \frac{\delta}{2\kappa^{2}} \hat{v}_{0}^{3} - 8 \frac{(p+1)\delta}{\kappa^{2}} \hat{v}_{0} \bar{v}_{2}^{2} - \frac{64}{3} \frac{(p+1)p}{\kappa^{2}} \bar{v}_{2}^{3} + R_{1}, \\ \bar{v}_{2}^{'} & = & \frac{\mu\delta}{s} \bar{v}_{2} - 40 \frac{(p+1)p}{\kappa^{2}} \bar{v}_{2}^{3} - 8 \frac{(p+1)p}{\kappa^{2}} \bar{v}_{2}^{2} \bar{v}_{0} - 8 \frac{(p+1)\delta}{\kappa^{2}} \bar{v}_{2}^{2} \hat{v}_{0} \\ & - \frac{(p+1)p}{\kappa^{2}} \bar{v}_{2} \bar{v}_{0}^{2} - \frac{(p+1)}{\kappa^{2}} \bar{v}_{2} \hat{v}_{0}^{2} - 2 \frac{(p+1)\delta}{\kappa^{2}} \bar{v}_{2} \bar{v}_{0} \hat{v}_{0} + R_{1} \\ \hat{v}_{0}^{'} & = & -\frac{\mu\kappa}{s} - \frac{\mu(1+p)}{s} \bar{v}_{0} - \frac{\mu\delta}{s} \hat{v}_{0} + \frac{1+p}{\kappa} \hat{v}_{0} \bar{v}_{0} + \frac{(1+p)\delta}{\kappa^{2}} \bar{v}_{0}^{2} + \frac{8(1+p)\delta}{\kappa} \bar{v}_{2}^{2} \\ & - \frac{\delta(p+1)^{2}}{\kappa^{2}} \bar{v}_{0}^{3} + \frac{(2p-1)(p+1)}{\kappa^{2}} \bar{v}_{0}^{2} \hat{v}_{0} + \frac{3\delta(p+1)}{2\kappa^{2}} \bar{v}_{0} \hat{v}_{0}^{2} + \frac{(p+1)}{2\kappa^{2}} \hat{v}_{0}^{3}, \\ & - 24 \frac{\delta(p+1)^{2}}{\kappa^{2}} \bar{v}_{0} \bar{v}_{2}^{2} + 8 \frac{(2p-1)(p+1)}{\kappa^{2}} \hat{v}_{0} \bar{v}_{2}^{2} - 64 \frac{\delta(p+1)^{2}}{\kappa^{2}} \bar{v}_{0}^{3} + R, \end{array} \right.$$

where $R_1 = O(|\bar{v}_0|^4 + |\hat{v}_0|^4 + |\bar{v}_2|^4)$.

Remark:

- Most of the quadratic terms disappear since $p = \delta^2$;
- If $\mu = 0$, then the system has a solution $\sim \log s$, which doesn't go to 0.

CNRS et Université Paris 13 Construction d'une solution explosive stable p

Assuming the second equation is driven by the following two terms:

$$ar{v}_2' \sim -40 rac{p(p+1)}{\kappa^2} ar{v}_2^3,$$

we make the following ansatz:

$$ar{v}_2 = rac{lpha}{\sqrt{s}}, \;\; \hat{v}_0 << ar{v}_2, \;\; ar{v}_0 << ar{v}_2 \; ext{for some} \; lpha \in \mathbb{R}$$

$$\mu\kappa = \frac{8\delta(p+1)}{\kappa}\alpha^2,$$

we obtain,

$$ar{v}_2 = -rac{\kappa}{8\sqrt{p(p+1)}}rac{1}{\sqrt{s}} + O(rac{1}{s^{7/4}}), \ \ ar{v}_0 = O(rac{1}{s^{3/2}}), \ \ \hat{v}_0 = O(rac{1}{s^{5/4}})$$

and

$$\mu = \frac{\delta}{8n}$$
.

Conclusion for the inner expansion

Recalling the ansatz

$$w(y,s) = e^{i\mu logs} (\kappa + (1+i\delta)\bar{v}_0 h_0(y) + (1+i\delta)\bar{v}_2 h_2(y) + i\hat{v}_0 h_0(y)),$$

we end-up with

$$w(y,s) = e^{i\mu logs} \left[\kappa - (1+i\delta) \frac{\kappa}{8\sqrt{p(p+1)}} \frac{y^2 - 2}{\sqrt{s}} + O(\frac{1}{s^{5/4}}) \right] \text{ with } \mu = \frac{\delta}{8p}$$

Remark: This expansion is valid in L_{ρ}^2 and uniformly on compact sets by parabolic regularity. However, for bounded y, we see no shape: the expansion is assymptotically a constant (in modulus).

Idea: What if $z = \frac{y}{c^{1/4}}$ is the relevant space variable for the solution's shape?

Outer expansion

To have a shape, following the inner expansion, (valid for bounded |y|),

$$w(y,s) = e^{i\mu logs} \left[\kappa + (1+i\delta) \left(-\frac{\kappa}{8\sqrt{p(p+1)}} z^2 + \frac{2}{8\sqrt{p(p+1)}\sqrt{s}} \right) + o(\frac{1}{\sqrt{s}}) \right]$$

let us look for a solution of the following form (valid for |z| bounded):

$$w(y,s) = e^{i\mu logs} \left[f(z) + \frac{a}{\sqrt{s}} + O(\frac{1}{s^{\nu}}) \right], \ \nu > 1/2,$$

with $z = \frac{y}{s^{1/4}}$, $f(0) = \kappa$ and f bounded.

Plugging this ansatz in the equation satisfied by w, and keeping only the main order, we get

$$-\frac{1}{2}zf'(z)-\frac{1+i\delta}{p-1}f(z)+(f(z))^p=0,$$

hence, $f(z) = \kappa^{-i\delta} (p-1+b_c|z|^2)^{-\frac{1+i\delta}{p-1}}$, for some constant $b_c > 0$.

Matching asymptotics

For y bounded, both the inner expansion (valid for |y| bounded):

$$w(y,s) = e^{i\mu logs} \left[\kappa - (1+i\delta) \frac{\kappa}{8\sqrt{p(p+1)}} \frac{y^2 - 2}{\sqrt{s}} + o(\frac{1}{s^{1/2}})\right]$$

and the outer expansion (valid for |z| bounded):

$$w(y,s) = f(z) + \frac{a}{\sqrt{s}} + O(\frac{1}{s^{\nu}}), \ \nu > 1/2, \ z = \frac{y}{s^{1/4}}$$

with

$$f(z) = \kappa^{-i\delta} (p - 1 + b_c |z|^2)^{-\frac{1+i\delta}{p-1}} = \kappa - (1 + i\delta) \frac{\kappa b_c}{(p-1)^2} z^2 + O(z^4),$$

have to agree.

Therefore

$$b_c = \frac{(p-1)^2}{8\sqrt{p(p+1)}}, \ a = \frac{\kappa}{4\sqrt{p(p+1)}} \ \text{and} \ \mu = \frac{\delta}{8p}.$$

Conclusion of the formal approach

We have just derived the blow-up profile for $|y| < Ks^{1/4}$

$$\varphi(y,s) = e^{i\mu \log s} \left(f\left(\frac{y}{s^{1/4}}\right) + \frac{a}{s^{1/2}} \right) \\
= e^{i\mu \log s} \left(\kappa^{-i\delta} (p - 1 + b_c \frac{|y|^2}{s^{1/2}})^{-\frac{1+i\delta}{p-1}} + \frac{a}{s^{1/2}} \right),$$

where

$$b_c=rac{\kappa(p-1)^2}{8\sqrt{p(p+1)}}, \ a=rac{\kappa}{4\sqrt{p(p+1)}} \ ext{and} \ \mu=rac{\delta}{8p}.$$

Strategy of the proof

We follow the strategy used by Bressan (1992), Bricmont and Kupiainen (1994), then Merle and Zaag (1997) for the semilinear heat equation, based on:

- The reduction of the problem to a finite-dimensional one;
- The solution of the finite-dimensional problem thanks to the degree theory.

This strategy was later adapted for:

- the Heat equation with subcritical gradient exponent by Ebde and Zaag (2011), with critical power nonlinear gradient term by Tayachi and Zaag (2015);
- The complex heat equation by Nouaili and Zaag (2015).
- the Ginzburg-Landau equation: by Zaag (1998), then Masmoudi and Zaag (2008);
- the supercritical gKdV and NLS in Côte, Martel and Merle (2011);
- the semilinear wave equation in Côte and Zaag (2013), for the construction of a blow-up solution showing multi-solitons.

Construction of PDEs with prescribed behavior

More generally, we are in the framework of constructing a solution for some PDE with some prescribed behavior:

- NLS: Merle (1990), Martel and Merle (2006),
- Kdv (and gKdv): Martel (2005), Côte (2006,2007),
- water waves: Ming-Rousset-Tzvetko (2013),
- Schrodinger maps: Merle-Raphael-Rodiansky (2013),
- etc...

The strategy of the proof (N = 1)

We recall our aim: To consruct a solution w(y, s) of the equation in similarity variables:

$$\partial_{s}w = \partial_{y}^{2}w - \frac{1}{2}y\partial_{y}w - \frac{1+i\delta}{p-1}w + (1+i\delta)|w|^{p-1}w,$$

such that

$$w(y,s) \sim e^{i\mu \log s} \varphi(y,s)$$

where

$$\varphi(y,s) = \kappa^{-i\delta} (p - 1 + b \frac{y^2}{s^{1/2}})^{-\frac{1+i\delta}{p-1}} + (1+i\delta) \frac{a}{s^{1/2}}.$$

Idea:

We linearize aound φ , introducing q(y,s) and $\theta(s)$

$$w(y,s) = e^{i(\mu \log s + \theta(s))} (\varphi(y,s) + q(y,s))$$

In that case, our aim becomes to find $\theta \in C^1([-\log T, \infty),)$ such that q(y,s) is defined for all $(y,s) \in \times [-\log T, \infty)$ and

$$\|q(s)\|_{L^\infty} o 0$$
 as $s o \infty$

with a modulation condition (related to $\theta(s)$):

$$\int (\Im(v) - \delta \Re(v)) \rho = 0.$$

This choice of $\theta(s)$ kills one neutral mode.

Decomposition of q(y, s) into inner and outer parts

The variable $z=\frac{y}{s^{1/4}}$ plays a fundamental role. Thus we will consider the dynamics for the outer region |z|>K and the inner region |z|<2K. Consider a cut-off function

$$\chi(y,s) = \chi_0\left(\frac{|y|}{Ks^{1/4}}\right),$$

where $\chi_0 \in C^{\infty}([0,\infty),[0,1])$, s.t. $supp(\chi_0) \subset [0,2]$ and $\chi_0 \equiv 1$, in [0,1]. Then, we introduce

$$q = q_{inner} + q_{outer}$$

q(y,s) satisfies for all $s\geq s_0$ and $y\in\mathbb{R}$,

$$\partial_s q = \tilde{\mathcal{L}}q - i\left(\frac{\mu}{s} + \theta'(s)\right)q + V_1q + V_2\bar{q} + B(q, y, s) + R^*(\theta', y, s),$$

where

$$\begin{array}{lll} \tilde{\mathcal{L}}q & = & \partial_{y}^{2}q - \frac{1}{2}y \cdot \partial_{y}q + (1+i\delta)\Re q, \\ V_{1}(y,s) & = & (1+i\delta)\frac{p+1}{2}\left(|\varphi|^{p-1} - \frac{1}{p-1}\right), \\ V_{2}(y,s) & = & (1+i\delta)\frac{p-1}{2}\left(|\varphi|^{p-3}\varphi^{2} - \frac{1}{p-1}\right), \\ B(q,y,s) & = & (1+i\delta)\left(|\varphi + q|^{p-1}(\varphi + q) - |\varphi|^{p-1}\varphi - |\varphi|^{p-1}q - \frac{p-1}{2}|\varphi|^{p-3}\varphi(\varphi\bar{q} + \bar{\varphi}q), \\ R^{*}(\theta',y,s) & = & R(y,s) - i\left(\frac{\mu}{s} + \theta'(s)\right)\varphi, \\ R(y,s) & = & -\partial_{s}\varphi + \partial_{y}^{2}\varphi - \frac{1}{2}y \cdot \partial_{y}\varphi - \frac{(1+i\delta)}{p-1}\varphi + (1+i\delta)|\varphi|^{p-1}\varphi \end{array}$$

Effect of the different terms

- The linear term $\hat{\mathcal{L}}$: Its spectrum is given by $\{1-\frac{m}{2}|m\in\mathbb{N}\}$ and its eigenfunctions are Hermite polynomials $(1+i\delta)h_m$ and ih_m .
- The potential terms V_1 and V_2 : $V_1 + V_2 \to 0$ in $L^2_o(\mathbb{R})$ as $s \to \infty$. The effect of $q \mapsto V_1 q + V_2 \bar{q}$ in the blow-up area is regarded as a perturbation of the effect of $\tilde{\mathcal{L}}$. Interestingly, V_1 and V_2 converge to negative constants as $s \to \infty$, making the spectrum of $q \mapsto \tilde{\mathcal{L}}q + V_1q + V_2\bar{q}$ negative for $|v| > Ks^{1/4}$.
 - Good news: q_{outer} is easily controlled!!!
- The nonlinear term B: It is quadratic $|B(q)| \le C|q|^2$
- The rest term R^* : It is small $||R^*(.,s)||_{L^{\infty}} \leq \frac{C}{\sqrt{s}} + |\theta'(s)|$.

Decomposition of the inner part

We decompose q_{inner} according to the sign of the eigenvalues of $\tilde{\mathcal{L}}$

$$egin{aligned} oldsymbol{q_{inner}} &= \sum_{0}^{2} ilde{q}_{n} (1+i\delta) h_{n} + \left(\sum_{3}^{M} ilde{q}_{n} (1+i\delta) h_{n} + \sum_{0}^{M} \hat{q}_{n} i h_{n}
ight) + q_{-}(y,s) \end{aligned}$$

- We choose $M \ge 4(\sqrt{1+\delta^2}+1+2\max_{y\in\mathbb{R},s\ge 1,i=1,2}|V_i(y,s)|)$, then q_- is easily controlled.
- From the modulation condition (which kills a neutral mode), we get the smalness of the modulation parameter $\theta(s)$:

$$|\theta'(s)| \leq \frac{C}{s^{\frac{3}{2}}}$$
, where $C > 0$.

• It remains then to control \tilde{q}_0 , \tilde{q}_1 and \tilde{q}_2 .

Control of \tilde{q}_2

This is delicate, because it corresponds to the direction $(1+i\delta)h_2(y)$, the null mode of the linear operator \mathcal{L} .

We need to refine the contribition of the potentials $q \mapsto V_1 q + V_2 \bar{q}$, the nonlinear term B and the rest term R^* .

This is delicate because we are studying a critical problem.

Adding the contributions of all the terms, we obtain:

$$\tilde{q}_2' = -\frac{2}{s}\tilde{q}_2 + O(\frac{1}{s^2})$$

which shows a negative eigenvalue (in the slow variable $\tau = -\log s$).

Conclusion: \tilde{q}_2 can be controlled as well.

The finite dimentional problem \tilde{q}_0 and \tilde{q}_1

The remaining components correspond respectively to the projection along $(1+i\delta)h_0$ and $(1+i\delta)h_1$, the positive direction of $\tilde{\mathcal{L}}$. Projecting the equation:

$$\partial_s q = \tilde{\mathcal{L}}q - i\left(\frac{\mu}{s} + \theta'(s)\right)q + V_1q + V_2\bar{q} + B(q, y, s) + R^*(\theta', y, s),$$

we obtain:

$$ilde{q}'_0 = ilde{q}_0 + O\left(rac{1}{s^{3/2}}
ight),$$
 $ilde{q}'_1 = rac{1}{2} ilde{q}_1 + O\left(rac{1}{s^{3/2}}
ight).$

with given initial data at s_0 by $\tilde{q}_0=d_0,~\tilde{q}_1=d_1.$

This problem can be easily solved by contradiction, using **index Theory**. There exist a particular $(d_0, d_1) \in \mathbb{R}^2$ such that the problem has a solution

 $(\tilde{q}_0(s), \tilde{q}_1(s))$ which converges to (0,0) as $s \to \infty$.

Thank you for your attention.