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The equation











∂2
t u = ∂2

xu + |u|p−1u,

u(0) = u0 and ut(0) = u1,

where p > 1,

u(t) : x ∈ IR → u(x, t) ∈ IR,

u0 ∈ H1
loc,u(IR) and u1 ∈ L2

loc,u(IR)

and

‖v‖L2
loc,u(IR) = sup

a∈IR

(

∫ a+1

a−1
|v(x)|2dx

)1/2

.
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THE CAUCHY PROBLEM IN H1
loc,u(IR)×L2

loc,u(IR)

It is a consequence of:

! the Cauchy problem in H1 × L2(IR),

! the finite speed of propagation.

Maximal solution in H1
loc,u(IR)×L2

loc,u(IR)

- either it exists for all t ∈ [0, ∞) (global solution),

- or it exists for all t ∈ [0, T̄) (singular solution).

Existence of singular solutions

It’s a consequence of ODE techniques and the finite speed of propagation; see
also the energy argument by Levine 1974:

if (u0, u1) ∈ H1 × L2(IR) and
∫

IR

(

1
2 (u1)

2 + 1
2 (∂xu0)2 − 1

p+1 |u0|p+1
)

dx < 0,

then u is not global.
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Singular solutions: the maximal influence domain

x

t

T

0

Du

t=T(x)

light cone

The blow-up set t → T(x) is 1-Lipschitz (finite speed of propagation).

Remark: T̄ = inf T(x) is the blow-up time. For all x ∈ IRN , there exists a

“local” blow-up time T(x).

The aim of this talk: To describe precisely the blow-up set, and the solution
near the blow-up set, for an arbitrary blow-up solution.
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Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex
(a, T(a)) and slope δ < 1.

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

The point is said characteristic if not.

- Notation: R ⊂ IR is the set of all non characteristic points.
- Notation: S ⊂ IR is the set of all characteristic points (S ∪R = IR).
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Known results, for an arbitrary solution

- The blow-up set Γ = {(x, T(x))} ⊂ IR2.

- By definition, Γ is 1-Lipschitz.

- R (= ∅ (Indeed, x̄ such that T(x̄) = minx∈IR T(x) is non characteristic).

- Caffarelli and Friedman (1985 and 1986) had two criteria to have R = IR and

x )→ T(x) of class C1 (using the positivity of the fundamental solution):

! either when p ≥ 3, with u0 ≥ 0, u1 ≥ 0 and (u0, u1) ∈ C4 × C3(IR),

! or under conditions on initial data that ensure that

u ≥ 0 and ∂tu ≥ (1 + δ0)|∂xu|

for some δ0 > 0.
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Questions and new results

! Existence
- Are there characteristic points? yes, S (= ∅.

! Regularity
- Is R open? yes

- Is Γ (or ΓR) of class C1 ? yes
- “How is” S? isolated points
- How does Γ look like near S? corner shaped

! Asymptotic behavior (profile)
- How does the solution behave near a non characteristic point? we have
the profile
- and near a characteristic point? we have a precise decomposition into
solitons

Rk. Regularity and asymptotic behavior are linked.
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The plan

! Part 1: Existence of characteristic points.

! Part 2: A Liouville theorem and regularity of the blow-up set.

! Part 3: A Lyapunov functional and the blow-up rate.

! Part 4: Asymptotic behavior near non characteristic points (the blow-up
profile).

! Part 5: Asymptotic behavior near characteristic points (decomposition
into solitons).

Rk. The order of this presentation goes from the easiest (to state) to the most
complicated. The chronological order is actually 3, 4, 1, 2, 5.
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Part 1: Existence of characteristic points

We recall: Any solution to the Cauchy problem has (at least) a non characteristic
point (the minimum of the blow-up set).

Th. There exist initial data which give solutions with a characteristic point.

Example: We take odd initial data, with two large plateaus of different signs.
Then, the solution blows up, and the origin is a characteristic point with
∀t < T(0), u(0, t) = 0.

U_0(x)

x

Th. If we perturb initial data, then the new solution blows up and has a
characteristic point.

Introduction and results on blow-up for the semilinear wave equation – p. 9/30



—
LA

T E
X
p
r
o
s
p
e
r

—

Part 2: Regularity of the blow-up set

! Near a non characteristic point:

Th. The set of non characteristic points R is open and T(x) is of class C1

on this set (C1,α by N. Nouaili CPDE 2008).

! Near a characteristic point:
Th. The set of characteristic points S is made of isolated points.

If a ∈ S , then T′
l (a) = 1 and T′

r(a) = −1.

Cor. There is no solution with a ∈ S and T′(a) = 1.
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Part 2: The corner property near a characteristic point

Th. (the corner property) If a ∈ S , then for all x near a,

1

C
|x − a|| log |x − a||−γ(a) ≤ T(x)− T(a) + |x − a| ≤ C|x − a|| log |x − a||−γ(a)

(1)
where

γ(a) =
(k(a)− 1)(p − 1)

2
with k(a) ∈ N, k(a) ≥ 2.

t=T(x)

x

(a,T(a))
t
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Comments

Rk. We recall the result of Caffarelli and Friedman:

If for all x ∈ IR and t < T(x), we have u(x, t) ≥ 0 and ∂tu ≥ (1 + δ0)|∂xu| for some
δ0 > 0, then R = IR.

Here, We improve their criterion:
If for all x ∈ [a, b] and t < T(x), we have u(x, t) ≥ 0, then (a, b) ⊂ R.

Idea of the proof of the regularity in the non characteristic case:
The techniques are based on

! - a very good understanding of the behavior of the solution in
selfsimilar variables in the energy space related to the selfsimilar
variable (see Part 3 of this talk).

! - a Liouville Theorem (see next slide).

Idea of the proof of the regularity in the characteristic case: See the third talk.
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A Liouville Theorem

Th. Consider u(x, t) a solution of utt = uxx + |u|p−1u such that:
- u is defined in the infinite green cone,

- u is less than (T∗ − t)−
2

p−1 (in L2 average).

(x*,T*)

t

x

Light cone

cone of slope delta*
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A Liouville Theorem

(x*,T*)

t

x

Light cone

cone of slope delta*

eq: T_0−t+d_0(x−x*)=0

Then,
- either u ≡ 0,
- or there exists T0 ≥ T∗, d0 ∈ [−δ∗, δ∗] and θ0 = ±1 such that u is actually
defined below the red line by

u(x, t) = θ0κ0(p)
(1 − d2

0)
1

p−1

(T0 − t + d0(x − x∗))
2

p−1

.

Remark: u blows up on the red line.
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Comments

! The limiting case δ∗ = 1 is still open.

The proof:

! The proof has a completely different structure from the proof for the heat
equation.

! The proof is based on various energy arguments and on a dynamical
result.
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Part 3: A Lyapunov functional and the blow-up rate

Selfsimilar transformation for all x0 ∈ IR

wx0(y, s) = (T(x0)− t)
2

p−1 u(x, t), y =
x − x0

T(x0)− t
, s = − log(T(x0)− t).

(x, t) in the light cone of vertex (x0, T(x0)) ⇐⇒ (y, s) ∈ (−1, 1)× [− log T(x0), ∞).

Equation on w = wx0 : For all (y, s) ∈ (−1, 1)× [− log T(x0), ∞):

∂2
ssw − 1

ρ ∂y(ρ(1 − y2)∂yw) + 2(p+1)
(p−1)2 w − |w|p−1w

= − p+3
p−1 ∂sw − 2y∂2

syw

where ρ(y) = (1 − |y|2)
2

p−1
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A Lyapunov functional (Antonini-Merle)

E(w) =
∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − y2) +

(p + 1)

(p − 1)2
w2 −

1

p + 1
|w|p+1

)

ρdy,

Thanks to a Hardy-Sobolev inequality, E = E(w, ∂sw) is well defined in the
energy space

H =

{

q ∈ H1
loc × L2

loc(B) | ‖q‖2
H ≡

∫ 1

−1

(

q2
1 +

(

∂yq1
)2 (1 − y2) + q2

2

)

ρdy < +∞

}

.
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Properties of the Lyapunov functional E

Lemma 1 (Monotonicity (Antonini-Merle)) For all s1 and s2:

E(w(s2))− E(w(s1)) = −
4

p − 1

∫ s2

s1

∫ 1

−1
(∂sw)2(1 − |y|2)

2
p−1 −1dyds.

Lemma 2 (A blow-up criterion) Consider a solution W such that
E(W(s0)) < 0 for some s0 ∈ IR, then W blows up in finite time S > s0.
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The blow-up rate

We look for a local blow-up rate near the singular surface (i.e. near every local

blow-up time, t → T(x0)), in H1 × L2 of the section of the light cone.

x

t

T

0

Du

t=T(x)

light cone

Hint: Is the rate given by the associated ODE v′′ = vp?
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An upper bound on the blow-up rate in selfsimilar variables

Th. For all x0 ∈ IR and s ≥ − log T(x0) + 1,

∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − |y|2) +

(p + 1)

(p − 1)2
w2 +

1

p + 1
|w|p+1

)

ρdy ≤ K

where the constant K depends only on p and an upper bound on T(x0),
1/T(x0) and ‖(u0, u1)‖.

Getting rid of the weights

Reducing (−1, 1) to (− 1
2 , 1

2 ), we get:

Cor. For all x0 ∈ IR and s ≥ − log T(x0) + 1,

∫ 1
2

− 1
2

(

(∂sw)2 + (∂yw)2 + w2 + |w|p+1
)

dy ≤ K.
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Upper bound in the original u(x, t) variables

Th. sup. For all x0 ∈ IR and t ∈ [ 3
4 T(x0), T(x0)):

(T(x0)− t)
2

p−1

‖u(t)‖
L2(B(x0,

T(x0)−t
2 ))

(T(x0)− t)1/2

+(T(x0)− t)
2

p−1 +1





‖ut(t)‖L2(B(x0,
T(x0)−t

2 ))

(T(x0)− t)1/2
+

‖∂xu(t)‖
L2(B(x0,

T(x0)−t
2 ))

(T(x0)− t)1/2



 ≤ K.

Rk. We have a lower bound of the same size when x0 is non characteristic
(see Part 4 on profiles near a non characteristic point).
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Idea of the proof of the upper bound

! Selfsimilar transformation and existence of a Lyapunov functional

! Interpolation to gain regularity

! Gagliardo-Nirenberg estimates.
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Part 4: Asymptotic behavior at a non characteristic point

Take x0 ∈ IR non characteristic. Using a covering argument for x near x0, we
obtain that ‖(wx0(s), ∂swx0(s))‖H1×L2(−1,1) is bounded.

Question: Does wx0 (y, s) have a limit or not, as s → ∞ (that is as t → T(x0)).

Remark: In the context of Hamiltonian systems, this question is delicate, and
there is no natural reason for such a convergence, since the wave equation is
time reversible.

See for similar difficulty and approach, results for

! the critical KdV (Martel and Merle),

! NLS (Merle and Raphaël).
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Stationary solutions.

We look for solutions of

1

ρ

(

ρ(1 − y2)w′
)′

−
2(p + 1)

(p − 1)2
w + |w|p−1w = 0.

We work in H0, the (stationary energy space) defined by

H0 = {r ∈ H1
loc(−1, 1) | ‖r‖2

H0
≡

∫ 1

−1

(

r′2(1 − y2) + r2
)

ρdy < +∞}.

Prop. Consider a stationary solution in H0. Then, either w ≡ 0 or there exist

d ∈ (−1, 1) and e = ±1 such that w(y) = eκ(d, y) where

∀(d, y) ∈ (−1, 1)2, κ(d, y) = κ0
(1 − d2)

1
p−1

(1 + dy)
2

p−1

and κ0 =

(

2(p + 1)
(p − 1)2

)
1

p−1

.

Remark: We have 3 connected components. E(0) = 0 < E(±κ(d)) = E(κ0).
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Blow-up profile near a non characteristic point

Th. There exist C0 > 0 and µ0 > 0 such that
if x0 is non characteristic, then there exist d(x0) ∈ (−1, 1), e(x0) = ±1 and
s∗(x0) ≥ − log T(x0) such that:
(i) For all s ≥ s∗(x0),

∥

∥

∥

∥

∥

(

wx0 (s)

∂swx0 (s)

)

− e(x0)

(

κ(d(x0), ·)

0

)∥

∥

∥

∥

∥

H

≤ C0e−µ0(s−s∗)

and E(wx0(s) → E(κ0) where the energy space

H =

{

q ∈ H1
loc × L2

loc(−1, 1) | ‖q‖2
H ≡

∫ 1

−1

(

q2
1 +

(

q′1
)2

(1 − y2) + q2
2

)

ρdy < +∞

}

.

(ii) d(x0) = T′(x0).

Rk. We have exp. fast convergence (hence, C1,µ0 regularity of R, see Nouaili).
Rk. ‖wx0 (y, s)− e(x0)κ(d(x0), y)‖L∞(−1,1) → 0.

Rk. The parameter of the profile d(x0) has a geometrical interpretation

(T′(x0)).
Introduction and results on blow-up for the semilinear wave equation – p. 25/30
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Difficulties of the proof of convergence

! The set of non zero stationary solutions is made up of non isolated
solutions (one parameter family):
−→ we need a modulation technique.

! The linearized operator around a non zero stationary solution is non
self-adjoint:
−→ we need to use dispersive properties coming from the Lyapunov
functional to control the negative part of the spectrum.
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Part 5: Asymptotic behavior at a characteristic point

Th. If x0 ∈ IR is characteristic, then, there exist k(x0) ≥ 2, e(x0) = ±1 and

continuous di(s) = − tanh ζi(s) for i = 1, ..., k such that:
(i)

∥

∥

∥

∥

∥

(

wx0(s)

∂swx0(s)

)

− e(x0)
k(x0)

∑
i=1

(−1)i

(

κ(di(s), ·)

0

)∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

(ii) Introducing

w̄x0 (ξ, s) = (1 − y2)
1

p−1 wx0(y, s) with y = tanh ξ and ζi(s) = − tanh−1 di(s),

we get

‖w̄x0(ξ, s)− e(x0)
k(x0)

∑
i=1

(−1)i cosh− 2
p−1 (ξ − ζi(s))‖H1∩L∞(IR) → 0 as s → ∞,
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Part 5: Asymptotic behavior at a characteristic point (cont.)

(iii) For all i = 1, ..., k(x0) and s large enough,

(

i −
(k(x0) + 1)

2

)

(p − 1)
2

log s−C0 ≤ ζi(s) ≤

(

i −
(k(x0) + 1)

2

)

(p − 1)
2

log s+C0.

(iv) E(wx0(s)) → k(x0)E(κ0) as s → ∞.

Rk.
- As s → ∞, wx0 becomes like a decoupled sum of equidistant stationary

solutions (“solitons”), with alternate signs.
- In the ξ variable, half of the solitons go to −∞, and the other half to +∞.
- The main difficulty in the proof is to prove that k(x0) ≥ 2 (the case k(x0) = 0
is harder to eliminate).
- The ζi(s) satisfy a Toda system:

1

c1
ζ ′i(s) = e−

2
p−1 (ζi−ζi−1)− e−

2
p−1 (ζi+1−ζi) +Ri with Ri = o





k−1

∑
j=1

e−
2

p−1 (ζ j+1−ζ j)



 as s → ∞.
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The energy behavior

Defining

k(x0) = 1 when x0 ∈ R,

we get the following:

Cor.
(i) For all x0 ∈ IR and s ≥ − log T(x0), we have

E(wx0(s)) ≥ k(x0)E(κ0).

(ii) (An energy criterion for non characteristic points) If for some x0 ∈ IR and
s0 ≥ − log T(x0), we have

E(wx0(s0)) < 2E(κ0),

then x0 ∈ R.
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Blow-up speed or the L∞ norm behavior

Cor.
(i) (Case of non-characteristic points) If x0 ∈ R, then

(T(x0)− t)−
2

p−1

C
≤ sup

|x−x0|<T(x0)−t

|u(x, t)| ≤ C(T(x0)− t)−
2

p−1

(i) (Case of characteristic points) If x0 ∈ S , then

| log(T(x0)− t)|
k(x0)−1

2

C(T(x0)− t)
2

p−1

≤ sup
|x−x0|<T(x0)−t

|u(x, t)| ≤
C| log(T(x0)− t)|

k(x0)−1
2

(T(x0)− t)
2

p−1

.

where k(x0) ≥ 2 is the solitons’ number in the decomposition of wx0 .

Rk.
When x0 ∈ R, the speed is given by the associated ODE u′′ = up.
When x0 ∈ S , the speed is higher. It has a log correction depending on the

number of solitons.
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