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The equation

[ %u = 2u + |u|P~ 1y,

| #(0) = up and u(0) = uy,

where p > 1,
u(t):x € R— u(x,t) € R,

ug € Hlloclu(IR) and uq € leoclu(IR)
and

a+1 ) 1/2
folls,omy = sup ([ o) Pax)
o aclR \7¢
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Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex
(a,T(a)) and slope ¢ < 1.

/////// , t=T(x)

ligh\t cone (slope 1)

The point is said characteristic if not.

- Notation: R C R is the set of all non characteristic points.
- Notation: § C R is the set of all characteristic points (S UR = IR).
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A Lyapunov functional and the blow-up rate

Selfsimilar transformation for all x5 € IR

weo(3,5) = (T(x0) = 7 Tu(x, 1), y = oy 5 = ~log(T(x) — ).

(x,t) in the light cone of vertex (xg, T(xp)) <= (vy,s) € (—1,1) x [—log T(xg), o).

Equation on w = wy,: For all (y,s) € (—1,1) x [—log T(xg), ):

2(p+1 _
923, — %ay(p(l — y?)o,w) + %w — |w|P~tw

p+38 w — Zya

where p(y) = (1 — [y[2)7
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A Lyapunov functional (Antonini-Merle)
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E(w) :/1 (%(asw)z+_(ayw)z(1_yz)+ (p+1) wz_%’w‘lﬂrl) ody,

Thanks to a Hardy-Sobolev inequality, E = E(w, d;w) is well defined in the
energy space

! 2
H= {q € Hpe % Lioo(B) | llgll3, = /_1 (7 + (3ya1)* (1 = y?) +a3) pdy < +<>°}-
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Properties of the Lyapunov functional E

Lemma 1 (Monotonicity (Antonini-Merle)) For alls; ands;:

E(w(s2) — E(w(s) =~ [ [ @)1= ly) 7Ty,

Lemma 2 (A blow-up criterion) Consider a solution W such that
E(W(sp)) < 0 for some sy € R, then W blows up in finite time S > s.
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An upper bound on the blow-up rate in selfsimilar variables

Th. Forall xp € Rand s > —log T(xg) + 1,

/1 > 1 2 2 (p+1) - 1 p+1
- - _ - <
/_1 (2(asw) +2(8yw) (1—|y|7) + (p_1>2w +p+1|wl )pdy_[(

where the constant K depends only on p and an upper bound on T(xg),
1/T(xo) and || (g, uy) .

Getting rid of the weights
Reducing (—1,1) to (-3, 5), we get:

Cor. Forall xp € Rand s > —log T(xg) + 1,

1
/_ " (@sw)? + Byw)? + w? + |w]P+1) dy < K.

N[
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Upper bound in the original u(x, ) variables

Th. sup. Forall xg € Rand t € [3T(x0), T(x0)):

()l T
2 2(B (x5, 109))
(T(X()) t)p (T(X()) _ t>1/2

Hut(t)HLZ(B(xO,T(xg)_t)) N Haxu(t)HLz(B<xO,T(xg)—t)) “x

241
+(T(xg) — )7 1" O EIE T(x) — D172 <

Rk. We have a lower bound of the same size when x( is non characteristic
(see Part 4 on profiles near a non characteristic point).
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Covering technique at a non characteristic point

If xg is non characteristic point, then we can recover the estimate in whole
section of the light-cone (or in the y variable, on the whole interval (—1,1)):

Prop. If xo € R, then forall s > —log T(xg), we have
1 (wixy (5), 9swxq ()| 1 x 12(~1,1) < Co-

N S ]b
£ =T — —
T (x)-]b deltaolx xol
—— ] AL LA L A ALY N (- t0
/ ; >
x0 X

Blue: slope 6y < 1, Green: slope 1 (light-cone), Red: slope 2.
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Asymptotic behavior at a non characteristic point

Take xp € R non characteristic. Using the energy structure, we obtain that
H (wxo (S)/ awaO (S)) HHl XLZ(—l,l) IS bounded.

Question: Does wy, (y,s) have a limit or not, as s — oo (thatis as t — T(xg)).

Remark: In the context of Hamiltonian systems, this question is delicate, and
there is no natural reason for such a convergence, since the wave equation is
time reversible.

See for similar difficulty and approach, results for
> the critical KdV (Martel and Merle),
> NLS (Merle and Raphaél).
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Stationary solutions.

We look for solutions of

1 A 2(p+1) _
E(p(l—yz)w) — (p_1>2w+|w\’” lw =o0.

We work in H, the (stationary energy space) defined by
1
Ho = {r € H- (=1,1) | ||r[%, = /_1 (21— y2) + %) pdy < +oo}.

Prop. Consider a stationary solution in Hy. Then, either w = 0 or there exist
d € (—1,1) and e = +1 such that w(y) = ex(d,y) where

1

12 e — =TT (2(p 1)\
V) € (L wid) = o e = ()

Remark: We have 3 connected components. E(0) = 0 < E(%x(d)) = E(xg).
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Blow-up profile near a non characteristic point

Th. There exist Cy > 0 and ug > 0 such that

if xo is non characteristic, then there exist d(xy) € (—1,1), e(xg) = +1 and
s*(xg) > —log T(xq) such that :

(i) Forall s > s*(xg),

ws c(d(x0), )
(5t ) e (3%

and E(wy,(s) — E(xq) where the energy space

S Coe_luo(s_S*)
H

1 2
H = {q € H x L (=11) | o} = [ (48 + (1)* (1 =) +a3) pdy < +0<>}-
(ZZ) d(xo) = T/(XO).
Rk. We have exp. fast convergence (hence, Cl#o regularity of R, see Nouaili).
RK. [, (1,5) — e(x0)x(d(x0), y) | =(_1,1) = O.
Rk. The parameter of the profile d(xg) has a geometrical interpretation

(T"(x0))-
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Difficulties of the proof of convergence

> The set of non zero stationary solutions is made up of non isolated
solutions (one parameter family):
— we need a modulation technique.

> The linearized operator around a non zero stationary solution is non
self-adjoint:

— we need to use dispersive properties coming from the Lyapunov
functional to control the negative part of the spectrum.
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The aim of the talk: the proof the convergence

Consider xy € R and write w instead of wy,. We proceed in 3 parts:
- Part 1: Approaching the set of (non zero) stationary solutions.

- Part 2: Study of the linearized operator around a stationary solution and
decomposition of the solution.

- Part 3: Convergence to a stationary solution.
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Part 1: Approaching the set of stationary solutions
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We claim the following
Prop. For some dy € (—1,1) and eg = +1, we have

(21)<()
dsw(s) °\ o

Consider the set of stationary solutions Stat = {0, +x(d) | |d| < 1}. Since
> forslarge, 0 < egp(p) < [[(w(s), dsw(s))||xr2(~1,1) < Co,

> |[r(d) || (—1,1) = +oeas |d] — 1,

inf — as s — oo.
‘d|<d0

H1xL12(—1,1)

> Stat is made of 3 connected components {0}, {x(d) | |d| <1} and
{—x(d) | |d] <1},

it is enough to prove that

(5 )-(3)
dsw(s) 0

inf
w*eStat

— dS § — o0,
H'xL?2(—1,1)
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The proof of Part 1

We proceed in 2 steps:

- In Step 1, we use compactness to prove the convergence in L*(—1,1).

- In Step 2, we use the energy localization in the u variable to gain control in

H'(-1,1).
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Step 1: Compactness and convergence in L*(—1,1)

Consider an arbitrary sequence s;, — oo. We will show that for some w* € S
and up to a subsequence, we have

(5 ) (5)

From the bound

— adS n — oQ.
H'xL2(—1,1)

I(w(s), 95w (s))[| 1 xr2(—11) < Co

for s large enough and compactness, we see that for some
(w*,v*) € H' x (—1,1) and up to a subsequence,

wlsn) I weakly in H! x L?(—1,1) as n — oo.
dsw(sy) v*

and
[w(sn) — w*||pe(—1,1) = 0 @S 1 — 0.
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Step 1: Compactness and convergence in L*(—1,1) (cont.)

From the dissipation of the Lyapunov functional:

0 1 E)sw(y,s)2
< — <
/logT(xo) /—1 1 —yz p(y>dy — E(w( lOg T(x0)>) < Co,

we prove that
v" =0, w* € Statand w(y, s, +s) — w*(y) as n — oo

uniformly for |y| < 1 and |s| < M, for any M > 0.
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Step 2: Convergence in H! through energy localization in the u variable

Going to the u(x, t) variable, writing a Duhamel formulation in the light cone

and coming back to the w(y, s) variable, we get a Duhamed formulation in w,
fors € [s;, — M, s,], yielding

(5 )~ (5)

Fixing M then n large enough, we get to the conclusion which we recall:

_2m
< C(M)[lw(sp — M) —w™|[ e (—1,1) + Coe 1.
HIx[2(—1,1)

Prop. For some dy € (—1,1) and ey = £1, we have

(21)<()
dsw(s) “\ o

inf — as s — oo.
|d|<do

Hx[2(—1,1)
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Part 2: Linearization around a possible limit

Let us assume that w(y,s) — epx(d,y) in the energy space . Let

q(y,s) = w(y,s) — eox(d,y).

To simplify the notation, we assume that

ep=1 p=2andw > 0.
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Part 2: Linearization around a possible limit (cont.)

For all s > —log T'(xg),

s ()2 )+ (%)

q1
L = /
d(ﬂz) <£Q1+¢dyﬁh 5‘122%1/2)

Lg1 = 29, (p(1—y*)9yq),

where

- =

1—2
vidy) = 6 (2 1)
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Properties of the linear operator

- The operator L  is not self-adjoint in the energy space.
- Its spectrum is given by

)\nzl_nandyn:_6_n, TlEN

In particular, it has A = 1 and A = 0 as eigenvalues. The others are negative.
Two problems :
> How to control the zero eigenvalue? By modulation.

> How to control the negative part? By a linear version of the Lyapunov
functional.

Non characteristic points for the semilinear wave equation — p. 22 /30




— IATEX prosper

Decomposition of the solution

For A =1 or 0, we introduce the eigenfunction Fff (y) such that

LyF4 = AF§

and the projector 74 on F¥.
Rk. We have

F(y) = C(d) ( i )

and Fld is coming from the choice of the scaling time in the definition of
w = w_xo.

We decompose g as

q(y,s) = 1 (q(s))F{ (y) + 7§ (q(s))E () + 9 (v, 5).
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Control of the negative part

Let us introduce the symmetric bilnear form

1
P4 (q,7) 2/1(—(11 (Lr1 +9(d, y)r1) + gar2) pdy

where Lr1 + ¢(d, y)rq already apperas in the definition of L;:

I " _ (&)
2 5 Lri+y(d,y)ry —5rp —2yrh |
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Control of the negative part (cont.)
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We recall the decomposition:

r(y) = m{ () F{ (y) + 7§ (r) E§ () + - (y).

We claim the following:
Prop.

(i) Ifr € H and 7w (r) = 7&(r) = 0, then

1
C—OHVH%{ < @a(r,r) < ColIrll3-
(i1) If r € H, then,

1

1
I3 < @ar—r) + 3 |73 (n)] < Collll3.
0 A=0
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Modulation technique

| recall that we know that

( w(s) ) - ( k(d) )
dsw(s) 0

for some dy € (—1,1). We want to prove the convergence to some «(d*,v).
We introduce

inf

d — dS s — 0
d|<dy

H'xL2(—1,1)

q(y,s) = w(y,s) —x(d(s),y)

where d(s) € (—1,1) is chosen so that

757 (q()) = 0in q(y,s) = 717 (9() O () + 74D (a(s) B () + 9 (w.5).

This is possible because Fé(y) = C(d) ( 9ar(d,y) )
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Modulation technique (cont.)

The decomposition becomes

1(,s) = 179 q(s) ) () + 0+ 4 (1,5)

and if we define

a1 (s) = 715 (q(s)) and a—(s) = |/ 9a(s) (9,9

then

Cin(s)HH < ‘061(5)’ + ‘(X—(S)‘ < COHCI(S)HH
0
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Projection of the equation on the components of g

We recall the equation:

0 q B q 0 , d%(d)
2 () w(n ) () e ()

If d(s) = tanh {(s), then

G < Cla)l3
W) ()] < Cllals) I3
oGP +R) < [ oty ClGI,
with |[R_(s)] < Cllq(s) I3
%11511Q2P < —gfx(5)2+C/11012,21_py2dy+(3“%-
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Decreasing of the function

f
1
£(s) = () +2R-(5) +71 | _qugap
and n > 0 is small, then
f'(s)

1 2
C—OHQ(S)HH

N
|
N
=
N
~—~
9}

N

A
—
=
N
A
e
=

()13

Thus,
lq(s) I3, < Ce™"° with q(y,s) = w(y,s) —x(d(s), y).

But does w(y, s) converge?
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Convergence of the modulation parameter

Recalling that |¢’(s)| < C||q(s)]3,, we see that {(s) converges and so does
d(s) = tanh {(s).
Finally, we see that

lw(y,s) —x(d™, y)lly < Ce™#®
for some d* € (—1,1).
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