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The equation

[ %u = 2u + |u|P~ 1y,

| #(0) = up and u(0) = uy,

where p > 1,
u(t):x € R— u(x,t) € R,

ug € Hlloclu(IR) and uq € leoclu(IR)
and

a+1 ) 1/2
folls,omy = sup ([ o) Pax)
o aclR \7¢
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Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex
(a,T(a)) and slope ¢ < 1.

/////// , t=T(x)

ligh\t cone (slope 1)

The point is said characteristic if not.

- Notation: R C R is the set of all non characteristic points.
- Notation: § C R is the set of all characteristic points (S UR = IR).
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Similarity variables

Selfsimilar transformation for all x5 € IR

weo(3,5) = (T(x0) = 7 Tu(x, 1), y = oy 5 = ~log(T(x) — ).

(x,t) in the light cone of vertex (xg, T(xp)) <= (vy,s) € (—1,1) x [—log T(xg), o).

Equation on w = wy,: For all (y,s) € (—1,1) x [—log T(xg), ):

2(p+1 _
923, — %ay(p(l — y?)o,w) + %w — |w|P~tw

p+38 w — Zya

where p(y) = (1 — [y[2)7
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A Lyapunov functional (Antonini-Merle)
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E(w) :/1 (%(asw)z+_(ayw)z(1_yz)+ (p+1) wz_%’w‘lﬂrl) ody,

Thanks to a Hardy-Sobolev inequality, E = E(w, d;w) is well defined in the
energy space

! 2
H= {q € Hpe % Lioo(B) | llgll3, = /_1 (7 + (3ya1)* (1 = y?) +a3) pdy < +<>°}-
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Properties of the Lyapunov functional E

Lemma 1 (Monotonicity (Antonini-Merle)) For alls; ands;:

E(w(s2) — E(w(s) =~ [ [ @)1= ly) 7Ty,

Lemma 2 (A blow-up criterion) Consider a solution W such that
E(W(sp)) < 0 for some sy € R, then W blows up in finite time S > s.
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Regularity of the blow-up set at a characteristic point

Th. The set of characteristic points S is made of isolated points.
IfacS, then T/(a) = 1and T} (a) = —1.
Rk. An important step of the proof is to prove first that S has an empty interior.

Th. (the corner property) Ifa € S, then for all x near a,

Zlx —alllog |x — ]| ") < T(x) — T(a) + |x — a| < Clx —al| log |x — a]| 7@
(1)
where
v(a) = ) = ;)(P ) with k(a) € N, k(a) > 2.
Rk. Estimate remains valid after differentiation.
p!  (aT(@)
ffffff =T(y)
- X
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Asymptotic behavior at a characteristic point

Th. If xy € R is characteristic, then, there exist k(xg) > 2, e(xy) = £1 and
continuous d;(s) = —tanh {;(s) fori =1, ...,k such that:

(i)
Wi, ( k(xo) - x(d;(s),-
H( - ;‘)’xo ) —e(xp) Z; (—1)! ( O(d( o) )

(if) Introducing

— 0 as s — oo,
H

Dy, (&,5) = (1— y?) 7 Twy, (y,5) With y = tanh & and ;(xo) = — argth d;(s),

we get
k(XQ) L
|,(Z,5) —e(x0) Y (=1)"cosh™ 71 (& = §i(5)) |l gpip(iR) — 0 @S 5 — o,
=1
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Asymptotic behavior at a characteristic point (cont.)

- The {;(s) satisfy a Toda system:

(i) Foralli = 1, ..., k(xg) and s large enough,

(i_ (k(x0;+1)> =1 1ogs o < 1405 < (i_ <k<x02>+1>> 1) 1ogis 1 Co.

(iv) E(wy,(s)) — k(xg)E(xg) as s — oo.

Rk.

- As s — o0, wy, becomes like a decoupled sum of equidistant stationary
solutions (“solitons”), with alternate signs.

- In the ¢ variable, half of the solitons go to —oo, and the other half to +oo.

- The main difficulty in the proof is to prove that k(xg) > 2 (the case k(xg) =0
is harder to eliminate).

k—1
1 =
=1
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Idea of the proof of the results in the characteristic case

The results are: the decomposition into solitons, the corner property and the
fact that the interior of S is empty.

6 main steps are needed:

> Step 1: Decomposition into a decoupled sum of k(xg) > 0 solitons, with
no information on the signs or the distance between the solitons’ centers
(in the ¢ variable).

> Step 2: Characterization of the case k(xg) > 2. Proof of the upper bound
in the corner property if k(xg) > 2.

> Step 3: Excluding the case k(xy) = 0 if xg € dS (note that S C S since
R = R\S is open).

> Step 4: Characterization of the case where xy € S and k(xy) = 1.

> Step 5: We prove that the interior of S is empty, then that k(xy) > 2 for
all xo € S (which gives the upper bound in the corner property by Step 2).

> Step 6: We prove that § is made of isolated points.
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Comments

Rk. 1: A good understading of the non-characteristic case is crucial.

Rk. 2: Excluding the case k(xy) = 0 is more difficult than excluding the case
k(xo) = 1.

In particular, we can’t exclude directly the case k(xy) = 0 for all xg € S. We do
it first when xg € 95, then prove that the interior of S is empty, hence 9§ = S.
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Step 1: Decomposition into a decoupled sum of k(xg) > 0 solitons

Take xp € IR a characteristic points. We have two estimates:
> || (wxy (5), 95w, (5)) |2 < Co;

00 1
> f—logT(xO) f—l(aswxo (y/5>>21_py2dy < CO'

Rk. Unlike the non characteristic case, we can’t have a covering argument, so

we can’t obtain the H! x L? norm bounded (in fact, we will show that it is
unbounded).
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s N

Step 1: Decomposition into a decoupled sum of k(xy) > 0 solitons (cont.)

In the @,, (¢, s) variable, we have

wao(‘frs)HHl(lR) < Co.

For any sequence ¢, in IR, we find a “local” limit in the sense that for some
sy, — 0o, we have

Wy, (G + Cn,s+5y) —> W aS N — 00,

uniformly on compact sets for (¢, s), with w* a stationary solution, due to the
fact that

00 1
9 )2 —P—dy < ¢,
/logT(xo) /—1( waO(y 5)) 1—y2 =0

Since the energy is bounded, the number of non zero “local limits” is finite, and
we end-up with the following result:
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s N

Step 1: Decomposition into a decoupled sum of k(xy) > 0 solitons (cont.)

Prop.There exist k(xg) > 0 and continuous d;(s) € (—1,1) such that

k(xo)
wxo K(di(5>/')
H( deton, (5 ) — l; e;(xo) ( 0 )

Civ1(s) — Ci(s) = c0oass — oo and d;(s) = — tanh {;(s).

— 0ass — oo,
H

with

Rk.
> If k(xg) = 0, then the above sum is 0.
> At this level, we don’t know that k(xy) = 0 and k(xy) = 1 don’t occur.
> We have no information on the signs e;(xp).

> We have no equivalent for {;(s) as s — oo.
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Step 2: Case k(xg) > 2; A differential equation on the solitons’ centers

Here, we assume that k(xy) > 2 (we don’t prove that fact here).

Linearizing the equation in the w(y, s) setting around the sum of the solitons,
we get the following Toda system on the solitons’ centers in the ¢ variable:
foralli =1, ...,k and s large enough, we have

where

2

7. _ 2 (7. 7.
@724 m(@ Cl_l)—|—€i€i+1€ P—l(glﬂ g1)—|—Ri

k—
Ri] < CJ'*%, J(s) = Zle—%@m(s)—@(sﬂ,
j=1

eg = exyq = 0, for some ¢; > 0 and 4y > 0.
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Step 2: Case k(xg) > 2 (cont.)

Since for alli =1, ..., k(xg) — 1, we have

Ci+1(s) — Ci(s) — o0 as s — oo,

using ODE techniques, we find that

€i€i41 — —1 and Ci(S> ~ (l — k(XQ) i 1) (p _ 1) logs.

2 2

The upper bound on the blow-up rate gives the upper bound in the corner
property.
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Step 3: Excluding the case where xy € dS and k(xy) = 0

By contradiction, if xo € S and k(xg) = 0, then

|wx, (s)||5 = 0and E(wy,(s)) — 0as s — oo.

Fixing s( large enough such that E(wy, (sp)) < +

E(xg), we find x1 near xg such
that

N

—_

x1 € R and E(wy, (sg)) < =E(xp).

N

Since E(wy, (s)) — E(xg) as s — oo and E(wy, (s)) is decreasing, it follows that

E(wx, (s0)) > E(ko).
Contradiction.
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Step 4: Characterization of the case where xy € 0S5 and k(xp) = 1

In this case,

( Wy, (s ) e ( x(d1(s),y) )
JsWy, (s 0

Our “trapping” result implies that for some d(xy) € (—1,1),

— 0ass — ocoand E(wy,(s)) > E(xp).
H

Wy, (s) = x(d(xp)) as s — oo.

Some elementary geometry and the precise knowledge of the case of non

characteristic points gives that x is either left-non-characteristic or
right-non-characteristic.
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Step 5: Conclusion without Isolatedness

Using the previous steps, we prove in the same time that k(xy) > 2 and the
interior of S is empty, together with precise estimate on the location of the

solitons’ centers.
We also get the upper bound in the corner property.
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Step 6: Characteristic points are isolated

Consider xo € S. From translation invariance of the equation in u(x, t), we can
assume that xg = T(xg) = 0, hence,

0eSand T(0) =0.

We have just proved that for some integer k = k(0) > 2, for some continuous
functions d;(s), Cp > 0 and sy € IR, we have

k
wols) - Z(_l)ZK(di(S» — 0ass — oo
ds1 (S) i=1 p
$ H
Vi k+1 .
Vs > s, argthd;(s) — Bl logs| < Cp where y; = (p—1) (T — 1) _
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Step 6: Characteristic points are isolated (cont.)

Introducing for x # 0, B = B(x) by

=1— B(x),
we translate the upper bound in the corner property as follows

0<B< Co
| log |x||™

We proceed in two parts:

- In Part 1, we use the algebraic relation between wy and w, and a dynamical
study to derive the expansion of w, where x is near0 € S.

- In Part 2, we show that x is non characteristic and measure the distance of
T'(x) to 1 when x < 0 (and to —1 when x > 0).
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Part 1: Expansion for w,.

Algebraic transformation
Recalling the selfsimilar change of variables for wy and w,:

w0(Y,5) = (~0)FTu(Er), Y =2, $=—log(~1),

wi(ys) = () =) T ™), = i s = —log(T(x) ),

we get the following algebraic relation between w, and wy

S
we(y,s) = (1— (1= B)xe®) P1w(Y,S), Y= —YI T 5_s_log(1—(1—B)%

1—(1—B)xe®

This means that the expansion for wg translates into an expansion for w:
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Part 1: Expansion for w, (cont.)

Prop. We have

lim ( lim sup

L—eo \ x—0~ L<s<L+|log |x||

wx(s) . i (3 -
< 310 (3) ) =) (=D ( i(S)/Vi(S))

where

A

;(x,8) = [B— (1 —dj(x,s))]xe’, di(x,s) =d;(S)and —e 5% = x(1—B) —e™*.

Moreover, forany d € (—1,1) and u € R, «*(d, ue®, y) is a particular solution
of the equation in selfsimilar variables, given by...
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Part 1: Definition of x*(d, v, y)

. K°(d,v,y) = (x7,x5)(d,v,y) where

1

k1 (d,v,y) = Ko

1

2y (1 —d?) P T

_ A2\ p—1
el —and x5 (d,v,y) = vayxi (d,v,y) = —

(1+dy+v)r?

whered € (—1,1)and v > —1+ |d|.

Note that for any u € R, (y,s) — x*(d, ue®, y) is an explicit solution to the
equation in similarity variables. Moreover,

- when u = 0, we recover the stationary solutions x(d, y);

- when u > 0, the solution exists for all (y,s) € (—1,1) x R and converges to 0
in H as s — oo;
- when u < 0, the solution exists for all (y,s) € (—1,1) x (—OO,log (\d|—1>>

H
and blows up at time s = log ('””T_l)

p—1 (1+dy +v)

pr
p
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Part 1: Proof: First, algebraic technique

Rk. The algebraic technique gives explicit parameters but not on the whole
interval (—1,1).

Starting from the expansion of wy and the algebraic relation between w, and
wop, we get the result with the norm restricted to

y > yp(x,s)

for some y(x,s) > —1:

lim | lim sup
L=eo | x—=0~ L<s<L+|log |x||

wx(s) . i« (7 -
< Dot (5) ) =) (=D ( i(5>/1/i(5))
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Part 1, Proof: Second, analytic technique

Rk. The analytic technique gives non explicit parameters, but on the whole
interval (—1,1).

Since the result holds for wy on the square (y,s) € (—1,1) x [L,L 4+ 1], by
continuity, it holds also for w, when |x| small on the same square. Performing

a modulation technique around the sum of x*(d;, v;), we propagate the
estimate with non explicit parameters up to

s = L+]log|xl],

in the sense that

lim ( lim sup

L= \ x=0" 1 <s<1.+|log |x|]

< Wy (S) ) - i(_DiK* (di(s),7i(s))
dsWy () ' o
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Part 1: Conlusion of the proof of the expansion for w,

Since y1(x,s) is “close” to the center of the first soliton, comparing the two

expansions for y € (y1, (x,s),1) gives that the parameters (d;(s), 7;(s)) and
(d;(s),7;(s)) are close, and we get to the conclusion of the proposition:

Wx(s) : w2
< 05 () ) ~ LU (di(s),01(s) H) = 0.

lim | lim sup
L—o0 x%O_LgsgLHlongH
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Part 2: Conclusion of the fact that x is isolated

It happens that when s = L + | log | x||, all the solitons for i > 2 vanish, in the
sense that

Vi>2 lim )
L—c0

* (di(|1og || + L), o;(|og ]| + 1)) |, =

Therefore, given € > 0, for L large enough and |x| small enough, we have

< €.
H

wx ( 10g!xH+L> e A
+ d1(]1 + L), 7;(|1 + L
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Part 2: Using the energy behavior

Since we have the following
Prop. (Energy minimum)

Vx € R, Vs> —logT(x), E(wx(s)) > E(xg),
it follows that
E («* (d1(|1og |x|| + L), %(|log |x|| + L)) ) > E(xo) — Ce 2)

on the one hand.
On the other hand, we have by direct computation

2
E(xg) < E(x*(d,v)) < E(xo) (3A2 — (2 — e)A3> where A = i S}U)zd_) 7

(3)
From (2) and (3), we see that

3M2 — (2—€)A® >1—Ce, hence |A — 1| < Ce.
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Part 2: Using the energy behavior (cont.)

Since we have in this regime

k" (d,v) — ( g(%’()) )

<ClA—1],
H

it follows that

willogl[+1) \_(_di(loglxll+L)
dswx(|log |x]] +1) T+ 0;(log ]| +1)’

< Ce.

H
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Part 2: A trapping argument

Now, we recall the following result (from the non-characteristic case):

Prop. (Trapping result) There exists €* > 0 such that if for some x* € IR,
s* > —log T(x*) and d* € (—1,1) we have

s (5%) + k(d*,y) 12 < €,

then, wy-(s) — x(d) as s — oo for some d such that

argthd — argthd™| < Ce*.
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Part 2: Application to our case

Therefore, in our case, for some d(x) such that

41 (] log ||| + L)
T+ ;([log ][+ L)

argthd(x) — argth < Ce*,

we have wy(s) — —x(d(x)) as s — .

From the knowledge of the non-characteristic case and the characteristic case,

Moreover, T’ (x) = d(x).

di(|log |x|| + L)

< Ce*.
1+ 0,(log x|+ L)| = ¢

argth T'(x) — argth
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Part 2: Final conclusion

This gives a bound on T'(x):

1 C

VAN
~
=
|
[
A

)(P 1) — (k(xg)—1)(p-1)
C|log |x|| | log [x[| 2

which gives by integration

!x\

< _
)(P ) — )(p 1)
Cllog ||~ " |log x|

(remember that
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