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The equation

Oru = Au+ (1+id)ulPtu
u(0,x) = uo(x) € LR, (Eaus)

where u(t) : RN — C, p>1and d € R.
We say that u(t) blows up in finite time T, if u(t) exists for all
t €0, T) and lime 7 [Ju(t)] e = +o0.

The point a is a blow-up point if and only if there exists
(an, tn) — (a, T) as n — 400 such that |u(ap, t,)| — +o0.
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Why this equation?

- A submodel of the Ginzburg-Landau equation
Oru = (1 +iB)Au+ (1 +id)|uP u —yu (1)

where 3, 6 and ~ are real (See Masmoudi and Zaag JFA 2008
where a blow-up solution is contructed for equation (1)).

- A lab model for the blow-up problem in parabolic equations with
no gradient structure.
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Outline of the talk

@ Case =0, (N-2)p<N+2
© Case 6 #£0
© Proof of the Liouville theorem case § = 0

@ Proof of the Liouville theorem case § # 0
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Case § =0, (N —2)p < N+2

Outline of the talk

@ Case6=0, (N-2)p< N+2
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Case § =0, (N —2)p < N+2

Existence of a Lyapunov functional:

d 2
EEQ(U) = _/R’V |Oru|“dx

where

1 1
EO(U) = 5 /I‘QN |VU|2 dx — ﬁ /I‘QN ‘U‘p+1dX.

Remark: From Ball 77, we have E(up) < 0 = u(t) blows up in
finite time.
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Case § =0, (N —2)p < N+2

Extensive bibliography 6 = 0

e Existence of Blow-up solutions? yes, energy method by Levine
1974 and Ball 1977.

e Blow-up rate? Giga-Kohn 1987, Giga, Matsui and Sasayama
2004.

If u blows up at time T, then

Vt € [07 T)? ||u(t)||L°° < CV(I‘),

1

{ vit) = v(t)P,

v(T)= +oo.

Definition: We say that u is of "type I".
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Case § =0, (N —2)p < N+2

e Asymptotic Behavior (Blow-up profile § = 0)1990" Herrero,
Veldzquez , Bricmont, Kupiainen, Filippas, Kohn, Liu.

Given a blow-up point a, the (supposed to be generic) profile is the
following:

u(x,t) ~ (T = t) 711 ( T = 0)log(T — )] > ’

1

where fo(z) = (p — 1+ b(p)z) »-T.

u(x,t)

~1(p-1)

K(T-t

: X
& A+R[T-llog(T-t)]"
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Case § =0, (N —2)p < N+2

Remark: If N =1, we know it is generic (Herrero, Veldzquez).
If N> 2, open problem.

e Stability of the blow-up profile (6 = 0)

Theorem (Fermanian, Merle, Z. 2000) Consider initial data i, the
solution &i(x, t) of (Equp) with blow-up time T, blow-up point 3
and profile fy centered at (T, 3).

Then, 3V neighborhood of &g s.t. Yug € V, u(x,t) the solution of
(Equo) blows up at time T, at a point a, with the profile fy
centered at (T, a).

A

Moreover, (T,a) — (T,3a) as up — dp.
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Case § =0, (N —2)p < N+2

A Liouville Theorem for equation (Equyp)

Theorem
Assume that u is a solution of (Equg) s.t.

V(x, t) € RN x (=00, T), [u(x, )| < M(T — t)"#1.
Then,
u=0or¥(x,t) € RN x (=00, T), u(x,t) = +r(To — t)—p—117

for some Tog > T.
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Case § =0, (N —2)p < N+2

Consequences of the Liouville Theorem for equation (Equp)

Proposition Consider u a solution of (Equg), which blows up at
time T.
Then, (i) (L* estimates for u and derivatives)

1

u(t)||fee(T — t)P~1 — K an u(t)| e —tﬁ+§—>0
T d ||V¥ T
ast— T for k=1, 2 or 3.

(ii) (Uniform ODE localization) For all € > 0, there is C(¢)
such that Vx € RN, vt € [0, T),

04, £) — JulP " u(x, 1)| < elu(x, )P + C.

Other consequences: Regularity of the set of all blow-up points,
see Z. 2006.
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Case § #0

Outline of the talk

eCaseé#O
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e What changes? No Lyapunov functional.

e What is known? Existence of a blow-up solution stable/ initial
data (constructive method Z. 1998).

e What is unknown? The blow-up rate, the blow-up profile, etc......

eQur approach: Try to prove a Liouville Theorem.

Hatem ZAAG LAGA, CNRS UMR 7539 Université Paris 13 A Liouville theorem for vector valued semilinear heat equations



A Liouville theorem for equation (Equs), 6 # 0

Theorem (Nouaili,Z.)
If0 < |0] < do and

W(x,t) € RN x (=00, T) u(x, t)] < M(3)(T — t) 51

for some dg > 0 and M(5) > 0O, then,

1+id

u=0orV¥(x,t) € RN x (oo, T), u(x, t) = ke'®(Ty — t) %1,

for some To > T and 6y € R.

Rk. M(6) — 400 as 6 — 0.
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Uniform blow-up estimates

Proposition Consider 0 < || < dp and u a solution of (Equs) that
blows up at time T and satisfies

e € [0, T), u(t)lli= < M(S)(T — ) 71. (type I)

Then, (i) (L estimates for derivatives)

1

(8[| (T — )71 — 5 and [ V¥u(t)|| i (T — £)r-112 — 0
ast— T for k=1, 2 or 3.

(ii) (Uniform ODE localization) For all € > 0, there is C(¢)
such that Vx € RN, vt € [0, T),
ou

E(X’ t) — (1 +i0)|ulPtu(x, t)| < elu(x, t)|P + C.

Proof It follows from the Liouville theorem.
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Proof of the Liouville theorem case § = 0

Outline of the talk

e Proof of the Liouville theorem case § = 0
@ Part 1: Limits of w as s — +00
@ Part 2: Trivial cases
@ Part 3: Case when w_,, > Kk as s — —0
@ Step 1: Linearization of w near k as s — —o0
@ Step 2: The relevant case, A =1
@ Step 3: The irrelevant cases; i) A = 3 oriii) A=10
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Part 1: Limits of w
Part 2: Trivi
Part 3: Cas

Proof of the Liouville theorem case § = 0

Let us recall the Liouville Theorem for:
Oru = Au+ |ulPu.
Theorem

Assume that u is a solution of (Equgp) s.t.

1

V(x,t) € RN x (=00, T), |u(x, t)] < M(T — t)”»1.

Then,
u=0or¥(x,t) € RN x (~00, T), u(x,t) = £a(To — t) 71,

for some Tog > T.
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Part 1: Limits of w as s — 4o

Proof of the Liouville theorem case § = 0 3
Part 3: Case when w_ o — K ass — —ox

Statement in selfsimilar variables:

X —a

wy(y,s) = (T — t)ﬁu(x, t),y = \/% s=—log(T —t),

for all (x,t) € RN x (—o0, T), the function w = w, satisfies for all
(v,s) € RV x R:

1
ws =Aw — -y -Vw —

1
p—1 E
5 (p—l)W+’W‘ w. (Eqwp)
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Part 1: Limits
Part 2: Trivi
Part 3: Case when w_

Proof of the Liouville theorem case § = 0

Theorem (A Liouville theorem for equation (Eqwyp)) If
[w(y,s)ll e @vurr)y < M
and w is a solution of (Equyp), then
w=0orw= =4k or w=tpy(s— s),

for some sp € R, and

wo(s) = k(1 +€°) =y and k = (p— 1) » 1.
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Part 1: Limits of w as s — +oo
Part 2: Trivial cases

Proof of the Liouville theorem case § = 0 3 »
Part 3: Case when w.

Outline of the talk

e Proof of the Liouville theorem case § = 0
@ Part 1: Limits of w as s — £o0
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Part 1: Limits of wass — Foo

Proof of the Liouville theorem case § = 0 Part 3
3

A Lyapunov functional in the w variable

w2 wlptl
g(w):/RN <%|w\2+2(‘p_|1)—‘ | >p(y)dywith

p+1
ef#
p(y) = W
SEw) =~ [@wny)d
w
ds s p\y)ay
Consequence: Wioo = lims_, 1o w(y, s) exists and is a stationary
solution of (Eqwp). From Giga and Kohn we obtain wi., =0,
Wioo = R OF Wihoo = —K.
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Part 1: Limits of w
Part 2: Trivial cases

Proof of the Liouville theorem case § = 0 3 -
Part 3: Case when w.

Outline of the talk

e Proof of the Liouville theorem case § = 0

@ Part 2: Trivial cases
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Part 1: Limits of w as s — 4o
Part 2: Trivial cases

Proof of the Liouville theorem case § = 0 3
Part 3: Case when w_ o, — K as s — —cx

—+00

ds pdy >0

Since E(W_oo) — E(Wi0)

7

and E(r) = E(—k) > 0 = £(0),

we have 2 cases:
o (Trivial)
EWeno) —EWiao) =0=0sw=0=w=0o0r w==k.
@ (Non trivial)
EWeno) = EWio0) > 0= (Weno, Whoo) = (£, 0).
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Part 1: Limits of
Part 2: Trivial ca

Lo 5 —
Proof of the Liouville theorem case § 0 Part 3: Case when w_ oo — K as s — —0o

Outline of the talk

e Proof of the Liouville theorem case § = 0

@ Part 3: Case when w_, — Kk as s — —o0
@ Step 1: Linearization of w near k as s — —o0
@ Step 2: The relevant case, A =1
1

@ Step 3: The irrelevant cases; ii) A = 5 oriii)) A=10
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Part 1: Limits of w as s — £ox
Part 2: Trivial cases

Lo 5 —
Proof of the Liouville theorem case § 0 Part 3: Case when w_ oo — K as s — —0o

Step 1: Linearization of w near Kk as s — —o0

We consider v(y,s) = w(y,s) — k.
1
Osv = Lv + f(v), with Lv = Av — 5V Vv +v, |f(v)] < Clv.

L is self adjoint, spec(£) = {1 — F|m € R}.
The eigenvectors are Hermite polynomials.
As s — —o0, one of the following cases occurs:
o i)A=1, w(y,s)=kr+ Ge® +o(e®), G € R.
o i)\ =1, w(y,s) =k + Ce/2y + o(e%/?), C; € R*.
@ ii)A =0, w(y,s) =k — 2—’;5(%)/2 —1)+o(2).
Convergence is in L,z) and uniformly on compact sets.
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Part 1: Limits of w as s — £ox
Part 2: Trivial cases

Lo 5 —
Proof of the Liouville theorem case § 0 Part 3: Case when w_ oo — K as s — —0o

The relevant case, A =1

= kif (g =0,
1
If o*(s) = = po(s —s)=r(1l+ es_so)_?, if Co <0,
P(s —sp) = k(1 —e=%0) p1,if Gy >0,

with sp = —log (@|Co|), then ¢* is a solution of (Eqwg) with
the same expansion of w as s — —o0.

If V.=w— " then [V(y,s)llz = O(e?).

Since 3 > 1 = max{\ € spec(£)}, then V = 0.

Because wio =0, we get ©* = po(s — sp).

w(y,s) = ¢(s —sp) = (1 + es_so)_ﬁ, for some sp € R.
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Part 1: Limits of w as s — £ox
Part 2: Trivial cases

N s —
Proof of the Liouville theorem case ¢ 0 Part 3: Case when w_ o, — k as s — —oo

Step 3: The irrelevant cases; ii) A = 3 or i) A =0

Merle-Zaag (Blow-up criterion). Let W a solution of (Eqwg), such
that

([Iwvslonay) * =22 ews). s

for some sy € R. Then W blows-up at some time S > sp.

In case ii) and iii) one can find ap and sp such that (lsp) is true
with W(y,s0) = way (v, 50) = w(y + a0e®/?, s0).

Then, there exists S > sp, such that w,, blows up at S,
contradiction because w (w(y,s) = w,,(y — age*/?,s)) is bounded.
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Outline of the talk

0 Proof of the Liouville theorem case § # 0

@ Part 1: Limits of w as s — —o0

@ Part 2: Case where w — 0 as s — —o0

@ Part 3: Case where infgeg ||w(.,s) — lieiGHLZp —0ass— —o0
@ Step 1: Modulation
@ Step 2: Behavior as s — —o0
@ Step 3: The relevant case A =1
@ Step 4: The irrelevant cases, i) A = 1 oriii)) A=0
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. . < » —0ass — —
Proof of the Liouville theorem case § # 0 Dese

What changes?

No Lyapunov functional:
@ No Lyapunov functional to get the limits as s — +oc.

@ No blow-up criterion to rule out the irrelevant cases.
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=
Part 3: Case ere i - <e 2 — 0ass — —
L

Proof of the Liouville theorem case § # 0

Let us recall the Liouville Theorem for:
Oru = Au+ (1 +id)|ulPu.

Theorem (Nouaili, Z.)
If0 < |0| < ¢ and u is a solution of (Equs) satisfying
V(x,t) € RN x (=00, T) |u(x,t)] < M(6)(T — t)_ﬁ

for some 8o > 0 and M(5) > 0O, then,

_14is

u=0orV¥(x,t) € RN x (=00, T), u(x, t) = ke'®(Ty — t) 751

)

for some To > T and 6y € R.
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Proof of the Liouville theorem case § # 0

Statement in selfsimilar variables:

waly,8) = (T = )7 ulx, ), y = 2 s = —log(T — 1),

for all (x, t) € RN x (o0, T), the function w = w, satisfies for all
(v,s) e RN x R:

1 1+1i6
—Aw—Zy-Vw—

w+ (14 i8)|wlPtw.  (Eqws)
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Part 1: Limits of w as s

— Oass — —

Proof of the Liouville theorem case § # 0

Theorem(A Liouville theorem for equation (Eqws)) If 0 < |d] < dp
and w is a solution of (Eqws) s.t.

[w(y, $)ll Lo mrxr,c)y < M(0),

then,
w=0orw= ke or w=ps(s —sp)e’”,

for some 0y € R and s € R, where

1+i8)

_ (g L
0s(s) = w(1+e9) D and K = (p— 1) 7 1.
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Part 1: Limits of w as s
Part 2: Case where w — 0
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Outline of the talk

0 Proof of the Liouville theorem case § # 0
@ Part 1: Limits of w as s — —o0
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Proof of the Liouville theorem case § # 0

(Stationary solution) Consider w € L>(RN) a stationary solution
of (Eqws). Then, w = 0 or there exists 0y € R such that

w = kel

Remark: The proof is trivial and much easier than the case § = 0.

To get the limits, we have no Lyapunov functional.
Fortunately, a perturbation method used by Andreucci, Herrero
and Velazquez, works here and yields the following:

Proposition If 0 < |§| < do and w is a solution of (Eqw;) satisfying
for all (y,s) € R xR, |w(y,s)| < M(6) for some dp and M(J),
then, as s — —o0

either (i) ||W(.,S)||L% —0
or (if) infger ||w(.,s) — ﬂei(’\\L% — 0.
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Part 1: Limits of w as
Part 2: Case where w — 0 as s — —oo

. . < Part 3: Ca ereinfg¢ v(.,s)— 2 —0ass — —
Proof of the Liouville theorem case § it 35 € eretntoe Koo 9) L<, Dese

Outline of the talk

0 Proof of the Liouville theorem case § # 0

@ Part 2: Case where w — 0 as s — —oc0
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Proof of the Liouville theorem case § # 0

If h(s) = [z Iw(y,s)|? p(y)dy, then
H) < —h(s) 2 [ wly.s)7* o).

Using the regularizing effect of equation (Eqw;s), we derive the
following delay estimate, for some positive sx and C
ptl

Vs € R, H(s) < —%h(s) b C(Mh(s — )5

Using h(s) — 0 as s — —oo and delay ODE techniques, we have
for some € > 0 small enough,

_2(s—o)
Vo € R, Vs >0+ sx,h(s) <ece » 1|

Fixing s and letting 0 — —o0, we get w = 0.
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Part 1: Limits of w as

Part 2: Case where w — 0 0O

Part 3: Case where infgcg ||w h;e’HHLQ — 0ass — —x
€R 2

Proof of the Liouville theorem case §

Outline of the talk

0 Proof of the Liouville theorem case § # 0

@ Part 3: Case where infoer [|w(.,s) — re”|[;2 — 0 as s — —oc0
@ Step 1: Modulation
@ Step 2: Behavior as s — —o0
@ Step 3: The relevant case A =1
@ Step 4: The irrelevant cases, i) A = 3 oriii) A=10

Hatem ZAAG LAGA, CNRS UMR 7539 Université Paris 13 A Liouville theorem for vector valued semilinear heat equations



Part 1: Limits of oc
Part 2: Case wher 5 — —00
Part 3: Case where infgcp [|w(., S)*I\)E’BHL% 5 0ass — —ox

Proof of the Liouville theorem case § # 0

Step 1: Modulation

We introduce 6(s) and v such that
w(y,s) = €% (v(y, s)+r), Vs < 51, /( Im (v)—0 Re (v))p = 0.(%)

dsv = Lv — ifs(v + k) + G, where

Lv=Av— SyVv+ (L+id)wv, |G(v)| < Clv[%.
spec(L) = {1 — 2|m € R} its eigenvectors are given by
{(L+ i0)hm, ihm|n € N} and hy,, are Hermite polynomials.

The choice of (s) (x) kills one neutral mode.
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Part 1: Limits of
Part 2: Case wher s — —oo
Part 3: Case where infgcp |[w(., s)—re'” HL% — Qass — —x

Proof of the Liouville theorem case § # 0

Step 2: Behavior as s — —o0

e )\ =1, with eigenfunction (1 + id)ho(y) = (1 + i9).
e \ = 1/2, with eigenfunction (1 + id)hi(y) = (1 +id)y.
e \ = 0, with two eigenfunctions (1 + id)ha(y) = (1 +i8)(y? — 2)
and ihg(y) = i (killed by the choice of 8(s) (x)).
We have one of the following cases as s — —o0:

(i) w(y,s) = {k + (L +i8)Coes}e'® + o(egs), GeR
(i) w(y,s) = {k + (1 +i0)Cres?y e 4 o(e%/?), C; € R*,
() wly, ) = (s — (Lt i0) 2~ 2)~ IEEE L 4 o)

Convergence takes place in L,23 and uniformly on compact sets.
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Part 1: Limits of w as s — —ox

Part 2: Case where v — —0oQ

Part 3: Case where infgcp [|w(., s)fh;e’BHLg — Qass — —x
)

Proof of the Liouville theorem case § # 0

Step 3: The relevant case, A =1

We do exactly as in case 6 = 0.

= ke if G =0, ‘
F o' (s) =4 = ws(s—s0) = rel®(1+ es—so)‘ﬂ, if Co <0,
= @s(s—s0) = ke'P(1—es7%0) 7> = Co > 0,

with sp = —log (@Mﬂ) and 0y € R. Then ¢* is a solution of
(Eqws) with the same expansion of w as s — —o0.

If V=w—y* then HV(y,s)HL% = 0(e%%).

Since 2 > 1 = max{\ € spec(£)}, then V = 0.

Because w is bounded, we get ¢* # @5, hence w(y,s) = xe® or

. . 1 1(5
w(y,s) = @s(s — 5p)e'® = ke'®(1 + 57) 7% = , for some sy € R.
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Part 1: Limits of w as s — —ox
Part 2: Case where w

Proof of the Liouville theorem case § # 0 Part3: Case where infgcg [[w

Step 4: The irrelevant cases, ii) A = 5 oriii) A =

No blow-up criterion ? Our source of inspiration is Veldzquez's

work.
We extend the convergence in ii) and iii) from |y| < R to larger

regions to find singular profiles.

iNf(€) = k(1 — Gk~ pf) smgular for £ = Ri(p)
w(y,s) — fl(yes/z)‘ =0, where R < Ri(p).

lim sup
§——00 |y|§Re*5/2

(14i6)

inNf(&) =k (1 — E 5g)§2> p—1 singular for £ = Rx(p).

W(y,s)—f< 4 )‘ = 0 where R < Rx(p).

lim sup
S——00 |y|§R /—_5
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Part 1: Limits of w as
Part 2: Case where w

Proof of the Liouville theorem case § # 0 PliE & (Cameudiere i

A picture for the case iii) A =0

F2( y/(—%))

2M

\ A
S

R(—s)"?

Here, we choose R = R(M) such that \fz( -)| = 2M, where
Wl oo vy < M = M(5) (*). Then, for |s| large enough,

RV S, 5)~ ()| < B [w(RVS,9)] > I

Contradiction with (*).
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