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1 introduction

We are concerned in this paper with blow-up solutions for the following semilinear wave
equation

uy = Au+ |u|p_1u, (1)
u(0) = up and u(0) = uq,

where u(t) : 7 € RV — wu(z,t) € R, up € Hlloc’u(RN) and u; € L%OC’U(RN). The space
L2 _(RN) is the set of all v in L2 _(RN) such that

loc,u loc

1/2
||UHLI2 (RN) = Sup (/ |v(z)|2dz> < 4o0.
oo a€RN lz—al<1

The space H. = (RY) is the set of all v in L2

loc,u loc,u
assume in addition that

(RY) such that Vo € L2 _ (RN). We

loc,u

4
1 1+ ——. 2
<p<l+— (2)

The Cauchy problem for equation in the space HL . x L2 (RY) follows from the finite

speed of propagation and the wellposedness in H! x LZ(R"). See for instance Lindblad and
Sogge [11], Shatah and Struwe [13] and their references (for the local in time wellposedness



in H! x L2(R")). The existence of blow-up solutions for equation (1) is a consequence
of the finite speed of propagation and ODE techniques (see for example John [8]). More
blow-up results can be found in Caffarelli and Friedman [3], Alinhac [1], Kichenassamy
and Litman [9], [10]. Given a solution u of (1) that blows up at time 7' > 0, we aim at
controlling its blow-up norm in Hlloc,u (RN). More precisely, we would like to compare the

growth of u with the growth of v, a solution of the associated ODE :

vy = P, v(T) = +o0,

. -2 2(p+1) -1 : :
that is v(t) ~ k(T —t)”" »=1 where kK = ((pzi1)2) . For this purpose, we introduce for

each a € RV the following self-similar change of variables :
2 Tz —a
wa(yas) = (T_t)pilu('r’t)a y= ﬂa 8=—10g(T—t) (3)
The function w, (we write w for simplicity) satisfies the following equation for all y € RY
and s > —logT:

+3 2(p+1 _ 2(p+1
Wsg + p—ws + 2y.Vw, + Z(yiyj - (5,-,]-)8;.%_11) + My.Vw = |wPtw — ng,
p—1 i p—1 (p—1)
or in divergence form:
1 2(p+1) 1 p+3
~=d — ply. Ty — Pt = P 2, — 2y 4
Wss P iv (pVw — p(y.Vw)y) + (p—1)2 w — |w[P™ w P— 1 Ws —4Y Vw, (4)

2 N-1
where p(y) = (1 — |y|>)® and a = P B

> 0. (5)

Note that a > 0 is equivalent to the condition p < 1+ stated in (2). Note also that

N -1
s goes to infinity as ¢ goes to T'.

Caffarelli and Friedman have obtained in [3] results on blow-up solutions for equation
(1), when a monotony condition is satisfied by the solution and N = 1. Antonini and Merle
[2] have proved under some restrictions on the power p that all positive solutions of (4)
are bounded in Hj, ,(RY), which yields a growth estimate for positive blow-up solutions
of (1). Their method strongly depends on positivity, since it relies on the nonexistence of
positive solutions for

Au+uP =0
in R, if p>1and (N —2)p < N +2, as proved by Gidas and Spruck [4].

In this paper, we remove the positivity condition and prove the same result for unsigned
solutions.



Theorem 1 (Uniform bounds on solutions of (4)) Ifu is a solution of (1) that blows
up at time T, then for all s > —logT + 1,

€0 < sup [lwa(s)|lmr(s) + [0swa(s)|L2() < K
a€RN

where w, is defined in (3), B is the unit ball of RN, ¢y = eg(N,p) > 0, and K depends
only on N, p and on bounds on T and the initial data in Hi._ x L2 (RN).

loc,u loc,u

Remark: The critical value for p in our theorem (p = 1 + ) is also critical for the
existence of a conformal transformation for equation (1). Note that the Lyapunov func-
tional E is the w(y, s) variable is not the energy of the conformal transformation of u.
Remark: Let us remark that the lower bound in the theorem follows by standard tech-
niques from scaling arguments and the wellposedness in H' x LZ(RY). Indeed, let us
assume by contradiction that there exists s* > —logT + 1 such that

for all a € RV, lwa(s™) 11 (B) + 10swa(s™)|lL2(B) < €0

where €y will be fixed small. Let t* = T —e™*". We define for all a € RV, ¢ € RV and
TE [_TtT*t*a 1)7

va(&,7) = (T — ") Tula + E(T — £°), £ + 7(T — *)).
The function v, is a solution of equation (1) that blows up at time 7 = 1. Moreover,

[va(0)l12 (B(0,2)) + 10700 (0)[lL2(B(0,2)) < Ceo-

Using the finite speed of propagation and the local in time wellposedness in H! for equation
(1), we obtain for some M > 0

Va € RV, Timsup [[va(7)llu(50,2)) + 10-va(7)lIL2(B02)) < M,

T—1

which implies that
Fim 5 90 s, < M

This contradicts the fact that 7' is a blow-up time for u. Therefore, the main point of the
theorem is the existence of the constant K.

Note that our result remains true with the unit ball B replaced by B(R), for any R > 0
(in that case, K depends also on R).

Remark: The result holds in the vector valued case with the same proof. Note that our
proof strongly relies on the fact that « is positive. In particular, we don’t give any answer

<p<l4+——.
N-1 N -2
Remark: Note that a similar structure exists in the diffusive case (nonlinear heat equa-
tions) as has been exhibited and used by Giga and Kohn [5] to obtain uniform bounds in
the similarity variables. Further refinements has been accomplished by Quittner [12] and

Giga, Matsui and Sasayama [6].

in the range of subcritical exponent 1 +



As in [2], this theorem can be restated in the original set of variables u(z,t):

Theorem 1’ (Uniform bounds on blow-up solutions of equation (1)) If u is a
solution of (1) that blows up at time T, then for allt € [T(1 —e 1), T),

2 2 11
€0 < (T =07 lulliy @+ T =7 (Juills @+ IVulle @v) <K
for some €y = €(N,p) > 0 and a constant K which depends only on N, p and on bounds
on T and the initial data in Hlloc,u x L2 . (RN).

loc,u

The proof of the main result relies on:

- the existence of a Lyapunov functional for equation (4) and some energy estimates
related to this structure,

- the improvement of regularity estimates by interpolation,

- some Gagliardo-Nirenberg type argument similar to that used once for nonlinear
Schrédinger equation, where uniform H! bounds have been derived from L? and energy

4
conservation in the subcritical case p < 1 + N (see Ginibre and Velo [7]).

We thank the referee for his helpful comments.

2 Local energy estimates

2.1 A Lyapunov functional for equation (4)

We recall in this subsection some results from Antonini and Merle [2]. Throughout this
section, w stands for any w, defined in (3). As a matter of fact, all estimates we get are
independent of a € RV .

Antonini and Merle [2] showed that equation (4) had a Lyapunov functional defined
by

(p+1)
(p—1)?

where B is the unit ball of RV . More precisely, they have proved the following identity:

_ 15, 1o 5 1 2 21 p+l
E(w)—/B(2w5+2\Vw| V) + wt =l ) pdy (0

Lemma 2.1 For all s1 and s2,
82
B(w(sy)) — E(w(s1)) = —2a / /B w(y, 5)2(1 — [y[2)* dyds.
81

The authors have showed the following blow-up criterion for equation (4):

Lemma 2.2 (Blow-up criterion for equation (4)) If a solution W of equation (4)
satisfies E(W (sg)) < 0 for some so € R, then W blows up in finite time S* > sy.

Since w is by definition defined for all s > —logT', we get the following bounds:



Corollary 2.3 (Bounds on E) For all s > —logT, ss > s1 > —logT, the following
identities hold:

0 < E(w(s )) < E(w(—=logT)) < Co, (7)
C
2ya—1 < X0
[ [ w20y < 50 Q
where Cy depends only on bounds on T and the initial data of (1) in Hlloc,u X L%OCH(RN).

From now on, we adopt a strategy different from that of [2].

2.2 Space-time estimates for w

The space-time estimates we obtain in this section involve two relations between three
different quantities

89 89 89
/ / w?pdyds, / / |w|P* pdyds and / / |Vw|?(1 — |y|?) pdyds,
S1 B S1 B S1 B

where 1 < s9 — 51 < 3. Let us first derive the two relations.

The first is obtained by integrating in time between s; and s, the expression (6) of

B(w):
/:2 E(w(s))ds = /;/B (%w§+ ((;)jll))z w? p+1|w|p+1) pdsdy

+ %/:2 /B (|Vw|2 — (y.Vw)2) pdsdy. 9)

We derive the second relation by multiplying the equation (4) by wp and integrating both
in time and space over B X (s1,s2). After some straightforward integration by parts that
we leave to Appendix A, we obtain the following identity:

[ (s (2250) )]

52
/ / (—w? — 2wy . Vw + |Vw|* — (y.Vw)Q) pdyds

A G =

Using (10) to eliminate the second line in the energy integral (9), we obtain

52
/ / (—wfp — wsy.Vwp — wswy.Vp) dyds
S1 B

A LR

From the previous section and Sobolev estimates, we claim the following;:



Proposition 2.4 (Control of the space-time LP?*! norm of w) For all a € RN and

s> —logT +1,

s+1
[ [ 1wl edds < 0(Co, Nop)
S B

Proof: For s > —logT + 1, let us work with time integrals between s; and so where
s1 € [s—1,s] and sp € [s + 1,5 + 2]. We will first control all the terms on the right hand
side of the relation (11) in terms of the space-time LP*! norm of w. Hence, we conclude
the estimate. In the following, C' denotes a constant that depends only on p, N and Cj,

and e is an arbitrary positive number in (0, 1).

Step 1: Control of the H! norm of w in terms of its L?t! norm
We claim the following:

Lemma 2.5

S9 2 52
[ [ vupa-wttans < ot [ [ wrtpayas,
S1 B p+1 S1 B

52
sup /w(y,s)dey < g%—C’e/ /|w\p+1pdyds.
B € sy JB

51<5<s2

Proof: Since |y.Vw| < |y|.|Vw|, it follows that
[ vula -ty < [ (90 - @.50)2) pa
B B

Using the energy integral (9) and the energy bound (7), we get (12).

By the mean value theorem, there exists 7 € [s1, s3] such that

52 89
/w(ya7)2pdy= i / /w2pdyds§/ /w2pdyds
B $2—581Js, JB s1 JB

because s; — 51 > 1. For any s € [s1, s9],

s d
/w(y,S)dey = /w(y,f)dey+/ d—/ w’ pdy
B B T S JB

52
< /w(y,T)QdeJr?/ /I’w\lwslpdyd&
B S1 B

Using the fact that 2ab < a? + b?, we write

S2 52 52
2/ / |w||ws|pdyds S/ /wfpdyds+/ /w2pdyds.
S1 B s1 B s1 B

Using the bound on w; (8), we get for all s € [s1, s2],

s2
/ w(y, s)’pdy < C + C/ / w?pdyds.
B S1 B




Since 1 < s9 — 59 < 3, we use Jensen’s inequality to write

2
52
/ / w?pdyds < C </ / \w|p+1pdyds) i < ¢ +Ce/ / |w|PTpdyds.  (16)
S1 B

The desired bound (13) follows then from estimates (15) through (16). This concludes the
proof of Lemma, 2.5. [ |

Step 2 : Control of the terms on the right hand side of the relation (11)
In this step, we prove the following identity

52
/ /B lw|P pdyds < C + C/B (ws(y, $1)” + ws(y, 52)°) pdy. (17)
81

For this, we will bound each term on the right hand side of (11) with the LP*! norm.
Note that the first term is bounded because of the energy bound (7), while the second is
negative.

a) Control of f:f S5 wsy-Vwpdyds:
Using the definition of p (5) and the Cauchy-Schwarz inequality, we write

wsy.prdyds

52 gya-1 9, e+l
< \wsl(l—lyl ) 2 [Vw|(1—y[7) > dyds

(/ / ) aldyds)m(/ JE \y|2>a+1dyds)1/2

< —+C’e/ /\w|p+1dyds (18)

IA

where we used the bound on ws (8) and the bound on the gradient (12).

b) Control of f:’f [ wswy.V pdyds:
Since we have from the definition of p (5)

y.Vp=—2aly|*(1— |y[)*", (19)

we can use the Cauchy-Schwarz inequality to write

wswy.Vpdyds
B

52 a—1 a—1
<% / / sl (1 — [y1?)°F wl gl (1 — ly]?) T dyds
S1 B

81
$2 ) ) ) 1/2 S2 ot 1 ) ) 1/2
< 2 ( [ [wa-pre dyds) ( [ [ wra- e dyds)
81 B S1 B
c * 20,12(1 _ .,12ya—1
< + Ce wy|“ (1 — |y|°)* ™ dyds,
€ S1 B

where we used the bound on w; (8). Since we have the following Hardy type inequality
for any f € HL _ (RN) (see Appendix B for details):

loc,u

/ Fy(1— [y tdy < © / V21— [y2)*Hdy + © / Pody,  (20)
B B B



we use the bound on the gradient (12) and Jensen’s inequality (16) to write

52
/ / wswy.V pdyds
S1 B

¢) Control of [5wwspdy:
Using the fact that ab < a? + b? and the control (13) of the L? norm, we write

/wwspdy‘ < /wgpdy—i-/w%dy
B B B

52
< / w?pdy + ¢ + C’e/ / |w[PT pdyds. (22)
B € s1 JB

52
< c + Ce/ / |w [Pt pdyds. (21)
€ S1 B

Now, we are able to conclude the proof of the identity (17) from the relation (11). For
this, we bound all the terms on the right hand side of (11) (the second term is negative,
use (7), (18), (21), (22) and (13) for the other terms) to get:

S2 C 82

[ [ wpttpayds < Z v ce [T ol pdyds 4 [ (w52 + waly,52?) o
s1 JB € s1 JB B

Taking e = 1/2C yields identity (17). ]

Step 3 : Conclusion of the proof
Let s > —logT + 1. Using the mean value theorem, we get s; € [s — 1,s] and
sg € [s+1,s + 2] such that

S
/'/mm#uﬂwwszjmmMM—wwwy
s—1JB B

and

s+2
st P s = [ w1 = )"
s+1 B B

Since the left hand sides of these inequalities are bounded by the bound on the w; (8), it
follows that

memm+mm@ﬁu—mw*@sa

Using the bound on the LP*! norm of (17), we conclude that

52
/ / lw|P ™ pdyds < C.
S1 B

Since 51 < s < s+ 1 < 39, this concludes the proof of Proposition 2.4. |

As a consequence of Proposition 2.4, estimate (8), Step 1 and the fact that 3 <

i
1 —|y|? <1 whenever |y| < 3, we have the following:

8



Corollary 2.6 (Bound on space-time norms of the solution) For all a € RY and
s > —logT + 1, the following identities hold

s+1
[ [ (bt ot w920 = )+ (Va1 — ) dods < €.
S
/ wa(y, 5)*pdy < C,
B

s+1
) [ (s + 1Vl + ) dyas < .
s By

/ w3dy < C.
Byys

where By, = B(0,1/2), C = C(Co, N,p) and Cy depends only on a bound on T and the
x LZ _(RY).

loc,u

(23)

norm of initial data in Hloc u

3 Control of the H. . norm of the solution

loc,u

In this section, we conclude the proof of Theorem 1. Let us remark that Theorem 1’
follows from Theorem 1 and the change of variables (3) as in [2]. We proceed in two steps:

- In the first step, we use the uniform local bounds we obtained in the previous section
to gain more regularity on the solution by interpolation (control of the Li . norm of the
solution, where r < 2£3),

- In the second step, we use Gagliardo-Nirenberg type argument involving the func-
tional ¥ to conclude the proof.
Step 1: Control of w,(s) in L]

loc

Proposition 3.1 For all s > —logT + 1 and a € RV,
p+1
a ) —
/|w Y, 8 y<C sz>2and/|w (y,8)PT"dy < C if N =1, (24)

where B is the unit ball of RY .
Proof: We introduce r = "%3 foral N>2andr=p+1for N =1.

Let us first remark that thanks to a simple covering property, it is enough to prove the
result with By, instead of B. Indeed, let us assume that

for all s > —logT + 1 and b € RV, / |wp(y, s)|"dy < C (25)
By



and prove (24). Consider ¢ € RY and s > —logT + 1. Remark that the ball B can
be covered by a finite number k(NN) of balls of radius 5. Thus, the problem reduces to
controlling uniformly for |yo| < 1,

/ |wa(z, 8)|"dz.
lz—yo|< 3

Note that using the definition (3) of w,, we see that
for all y € RV, wa(y + Y0, 5) = Watype—s (Y, 5)-

Therefore,

[ wtesrde= [ wayrisd= [ e wsldy < C.
lz—yol|<3 lyl<g lyl<

2
Let us prove (25) now. We write w for wy.

i) Using Corollary 2.6 and the mean value theorem, we derive the existence of 7(s) €
[s,s + 1] such that

s+1
| wwnrta - [ (/ |w|P+1dy)dssc.
B2 s B2

Therefore, since r € [2,p + 1], we use the Cauchy-Schwarz inequality and the L2 bound in
(23) to obtain

| wre)ray<c.
B2

ii) Moreover, using again Corollary 2.6, and the fact that ab < a? + b?, we write
5 d
[ wword = [ wwords [ L[ s
Bi/2 B2 v 0S5 JBy

s+1
C+ 7“/ / |ws||w|" " dyds
s B2
s+1 s+1
C+r (/ / w?dyds + / / |w|2(r_1)dyds>
s By/2 s By/2

s+1
< C+ 7"/ / |w|?" Y dyds.
S B1/2

, we have 2(r — 1) = p + 1, hence, the last line is uniformly bounded

IN

IN

In the case r = 1’%3
by Corollary 2.6.
In the case N =1, we have r = p+ 1 and 2(r — 1) = 2p. Using Sobolev’s embedding in
two dimensions (space and time), and Corollary 2.6, we write

s+1 s+1 p
/ / |w|?Pdyds < C / / (Oswa(y, 8)® + |Oywa|* + w?) dyds | < C.
S B1/2 S Bl/2

10



This concludes the proof of Proposition 3.1. |

2
loc,u

Step 2: Control of the gradient in L
We claim the following

1
loc,u

Proposition 3.2 (Uniform control of the H
For all s > —1ogT + 1 and a € RV,

norm of wg(s))

/ Vwaly, s)2dy < C.
B2

We first introduce the following estimate.

Lemma 3.3 (Local control of the space L’*! norm by the H! norm) For all s >
—logT +1 and a € RV,

B8
/ waPT < C+ C (/ |Vwa\2dy) ,
B B

where = B(p,N) € [0,1).

Proof: If N =1, Proposition 3.1 implies the result with § = 0. Assume now that N > 2.
Since 1 < p < 1+ w2, it follows that p + 1 < 2* where 2* = 2% if N > 3 and 2* = 400
if N = 2. Therefore, we can introduce some ¢ = g(p, N) to be fixed later such that

3
]%<p+1§q§2*.

We have by interpolation and Proposition 3.1,

i () () s (o)

o= (121 (-2) - 525

Sobolev’s embedding in the unit ball B, the fact that ¢ > ’%3 and Proposition 3.1 yield

where

20q
p+3

B B
/ lwe|PT! < C (/ \Vwa|2> +C </ |wa\pJ2r3) ! < (/ |Vwa\2) +C,
B B B B

g0 (p—1)g/4
Blg) = 2 T q-3/2—pp2 (26)

If N > 3, then we fix ¢ = 2*. Since p < 1+ 7, it follows that

where

- (p—1)2°/4 _ 2*/(N — 1) _ 2 L
2—(p+3)/2 20 —3/2— (1 + 327) (N_1)<L_L)

11



If N = 2, just note from (26) that when ¢ — oo, we have ((q) — p%l < 1, because
1 < p <14 x4 = 5. Therefore, we can fix ¢ large enough such that 3(q) < 1. This
concludes the proof of Lemma 3.3. |

Let us prove Proposition 3.2 now.
Proof of Proposition 3.2: We will prove that for some C = C(N,p, Cp), we have

for all s > —logT + 1 and a € RY / |Vw, (y, s)[2dy < C. (27)
B2

For a given s > —log T + 1, there exists ag = ao(s) such that

/ Vg 2(1— [y?)** dy > 3 sup / V(1 — [y[?)2+dy. (28)
B aERN

i) We claim that a covering argument and the definition of ag(s) yield

/B (Vao 2dy < C /B Vwa 21— [y[?)>+ dy. (20)

Indeed, since we can cover B with k() balls of radius 1/2, it is enough to prove that
[ Pyt )y < [ V0~ (30)
y <*

uniformly for |yg| < 1. Using the definition (3) of w, we see that
for all y € RN,VwaO (Y + 90, 8) = VWagiyge—s (Y, 5)-
Therefore, since 1 — |y|2 > 3 whenever |y| < 3, we write
[ Vonl+ o)y = [ Ve 9Py
|y‘<_ |y|<2

< CL |Vlwao—|—yoe_S (y7 3)|2(1 - |y| )a+1dy < C sup /B |Vw(1|2(1 - |y‘2)a+ldy

acRN

<c /B Vg 2(1 — [yP?)*+dy,

by definition of the supremum (28). This yields (30) and then (29).

ii) From the estimates on the Lyapunov functional £ and Lemma 3.3, we have the
conclusion. Indeed, using the definition (6) of E, inequality (14) and the fact that a > 0,
we see that

/B Vg [2(1 — [y[?)*Hdy < /B (IVwao|? = (3. Ve, )?) pely

(p+1) 1
(__65 Weo — (p— 1)2“’20 + mh”ao |p+1 pdy

2
< 2E(’U)a0)+m/3|wao|p+1dy.

= 2E(wa,) + 2/

B

12



Using the bound (7) on E, the control of the LP*! by the H! norm of Lemma 3.3 and (29),
we obtain

B8
/B |Vwao|2<1—|y|2)“+1dysc+c( /B |Vwao|2<1—|y|2)“+1dy) ,

where ( € [0,1). Therefore, for some C = C(p, N, Cy) independent of s, we have

|| IVt ) P~ o)y <
From the definition of ag(s), this yields

for all s > —logT + 1 and a € RY, / |Vwa(y, s)|>(1 — |y|*)*dy < C.
B

Since 1 — |y|? > 2 whenever |y| < 3, the estimate (27) follows. This concludes the proof
of Proposition 3.2. [}

Step 3: Conclusion of the proof of Theorem 1
We conclude the proof of Theorem 1 here.

i) Uniform control of the H'(B) norm of wy(s):
From Proposition 3.2 and by covering the unit ball B by k£(N) balls of radius %, we
obtain
for all s > —logT and a € RY, / |Vwa|2dy <C.
B

Since 2 < p + 1, we use this bound and Lemma 3.3 to get for all s > —logT and a € RV,

p+1

N B
(/ngdy) 2 SC/ng"'ldySC+C(/B\Vwa|2dy> <C.

for all s > —logT and a € RY, |wa(s) a1 () < C(N,p, Co).

Thus,

i4) Uniform control of the L2(B) norm of 05w, (s):
From the expression and the boundedness of E (see (7)), Part i) yields for all s >
—logT +1and a € RY,

dewidy < C’/ dsw? pdy
B

Bi/2
p+1) 1 1)
< 2CE 2C — Pt d
- C/ (|Vwa|? = (y.Vw,)?) pdy < C. (31)
B

13



From a covering argument, we conclude again that
for all s > —log T and a € RN, ||0,wq(s)l|p2() < C(N,p, Co). (32)

Indeed, since the unit ball B can be covered by k(N) balls of radius 3, this reduces to
prove that:

for all s > —logT+ 1, a € RY and |y| < 1, / ) dswa(y, s)2dy < C. (33)
ly—yo/<35

Consider a € RV and |yo| < . For all b and y in R, wy(y, s) = wa(y + (b — a)e’®, s) and
Oswp(y, s) = Oswa(y + (b — a)e’, s) + (b — a)e’.Vwa(y + (b — a)e’, s).

Taking b = a + yge™®, this gives
for all y € RN, Oywa(y + 0, 8)* < 205wy ypes (4, 5)* + 2| Vg (y, 5)|°.

Therefore, using (31) and Part i), we obtain (33) and then (32). This concludes the proof
of Theorem 1. [ |

A Evolution of the L2 norm of solutions of (4)

We prove estimate (10) here. For simplicity, we write [ for fsslz J and drop down dyds.
If we multiply equation (4) by wp and integrate in space and time over B X (s1, s2), then

we get: // (|w|p+1 "ot 1) > //( ss+ wg) wp+2//y.szwp

- [[waivve- p(y.va) (34)

Since 2w,w = 95(w?), we integrate by parts in time and write

(SR TAR L P
Integrating by parts in space, we write
2//y.Vw5wp = —2//w5V. (ywp)
= —ZN// wswp—Z//wsy-V“’p—2//wswy-Vp
= —N [/B w2pdy] N —2// wsy.pr—2// wswy.Vp.  (36)
s1

Integrating by parts in space, we write

//'wdlv (pVw — p(y.Vw)y / (IVw]? = (y.Vw)?) p. (37)

Using (35), (36) and (37), we see that (34) yields the desired identity (10). [ |

14



B

A Hardy type identity

We prove the identity (20) here: For any f such that the right hand side is finite:

/ P21 — [y2)etdy < © / V(1 — [y2)**Hdy + © / Pody.  (38)
B B B

Using the expression of y.Vp (19), we see that

a— 1=
[ a1 tay=—o [ [ £yody
B o Jg B

If we integrate by parts in space, then we see that

- [ PuSpay=2 [ 191wty N [ fody (39)
B B B

Therefore, using the Cauchy-Schwarz inequality, we write

‘ / foypdy\ [ 1951 = )R 7l - 1)y

2 a—|—1 2\a—1 2
< ([rorea-wp dyds) ([ £wea-1er-a)
1 _
< o [ IVIPQ -y e [ 2P0 ety
€JB B
for any € > 0. Taking e = ¥, we get the desired conclusion (38). [ |
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