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Abstract In this paper, we consider the following nonlinear equation

ut = ∆u+ |u|p−1u

u(., 0) = u0,

(and various extensions of this equation, where the maximum principle do
not apply). We first describe precisely the behavior of a blow-up solution
near blow-up time and point. We then show a stability result on this be-
havior.
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1 Introduction

In this paper, we are concerned with the following nonlinear equation:

ut = ∆u+ |u|p−1u

u(., 0) = u0 ∈ H, (1)

where u(t) : x ∈ IRN → u(x, t) ∈ IR, ∆ stands for the Laplacian in IRN . We
note H = W 1,p+1(IRN ) ∩ L∞(IRN ). We assume in addition the exponent p
subcritical: if N ≥ 3 then 1 < p < (N+2)/(N −2), otherwise, 1 < p < +∞.
Other types of equations will be also considered.
Local Cauchy problem for equation (1) can be solved in H . Moreover, one
can show that either the solution u(t) exists on [0,+∞), or on [0, T ) with

1



T < +∞. In this former case, u blows-up in finite time in the sense that
‖u(t)‖H → +∞ when t→ T .

( Actually, we have both ‖u(t)‖
L∞(IRN

)
→ +∞ and ‖u(t)‖

W 1,p+1(IRN
)
→

+∞ when t→ T ).
Here, we are interested in blow-up phenomena (for such case, see for example
Ball [1], Levine [14]). We now consider a blow-up solution u(t) and note T
its blow-up time. One can show that there is at least one blow-up point a
(that is a ∈ IRN such that: |u(a, t)| → +∞ when t → T ). We will consider
in this paper the case of a finite number of blow-up points (see [15]). More
precisely, we will focus for simplicity on the case where there is only one
blow-up point. We want to study the profile of the solution near blow-up,
and the stability of such behavior with respect to initial data.

Standard tools such as center manifold theory have been proven non
efficient in this situation (Cf [6] [3]). In order to treat this problem, we
introduce similarity variables (as in [8]):

y =
x− a√
T − t

, (2)

s = − log(T − t),

wT,a(y, s) = (T − t)
1

p−1u(x, t), (3)

where a is the blow-up point and T the blow-up time of u(t).
The study of the profile of u as t→ T is then equivalent to the study of the
asymptotic behavior of wT,a (or w for simplicity), as s→ ∞, and each result
for u has an equivalent formulation in terms of w. The equation satisfied by
w is the following:

ws = ∆w − 1

2
y.∇w − w

p− 1
+ |w|p−1w. (4)

Giga and Kohn showed first in [8] that for each C > 0,

lim
s→+∞

sup
|y|≤C

| w(y, s) − κ| = 0,

with κ = (p− 1)−
1

p−1 , which gives if stated for u:

lim
t→T

sup
|y|≤C

| (T − t)1/(p−1)u(a+ y
√
T − t, t) − κ |= 0.

This result was specified by Filippas and Kohn [6] who established that
in N dimension, if w doesn’t approach κ exponentially fast, then for each
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C > 0

sup
|y|≤C

| w(y, s) − [κ+
κ

2ps
(N − 1

2
|y|2)]| = o(1/s),

which gives if stated for u:

sup
|y|≤C

| (T − t)
1

p−1u(a+ y
√
T − t, t) − [κ+

κ

2p| log(T − t)| (N − 1

2
|y|2)] | (5)

= o((− log(T − t))−1).

Velazquez obtained in [16] a related result, using maximum principle.
Relaying on a numerical study, Berger and Kohn [2] conjectured that in

the case of a non exponential decay, the solution u of (1) would approach
an explicit universal profile f(z) depending only on p and independent from
initial data as follows:

(T − t)
1

p−1u(a+
√

(T − t)| log(T − t)|z, t) = f(z)+O((− log(T − t))−1) (6)

in L∞
loc, with

f(z) = (p− 1 +
(p− 1)2

4p
|z|2)−

1
p−1 . (7)

This behavior shows that in the case of one isolated blow-up point, there
would be a free-boundary moving in (x, t) coordinates at the rate

√

(T − t)| log(T − t)|.

This free-boundary roughly separates the space into two regions:
1) the singular one, at the interior of the free-boundary, where ∆u can be

neglected with respect to |u|p−1u, so equation (1) behaves like an ordinary
differential equation, and blows-up.

2) the regular one, after the free-boundary, where ∆u and |u|p−1u are of
the same order.
Herrero and Velazquez in [12] and [13] showed in the case of dimension
one (N = 1) using maximum principle that u behaves in three manners,
one of them is the one suggested by Berger and Kohn, and they proved
that estimate (6) is true uniformly on z belonging to compact subsets of IR
(without estimating the error).

Going further in this direction, Bricmont and Kupiainen construct a
solution for (1) satisfying (6) in a global sense. For that, they used on one
hand ideas close to the renormalization theory, and on the other hand hard
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analysis on equation (4).
In this paper, we shall give a more elementary proof of their result, based
on a more geometrical approach and on techniques of a priori estimates:

Theorem 1 Existence of a blow-up solution with a free-boundary
behavior of the type (6)
There exists T0 > 0 such that for each T ∈ (0, T0], ∀g ∈ H with ‖g‖L∞ ≤
(log T )−2, one can find d0 ∈ IR and d1 ∈ IRN such that for each a ∈ IRN ,
the equation (1) with initial data

u0(x) = T
− 1

p−1

{

f(z)(1 +
d0 + d1z

p− 1 + (p−1)2

4p |z|2
) + g(z)

}

,

z = (x− a)(| log T |T )−
1
2 ,

has a unique classical solution u(x, t) on IRN × [0, T ) and
i) u has one and only one blow-up point: a
ii) a free-boundary analogous to (6) moves through u such that

lim
t→T

(T − t)
1

p−1u(a+ ((T − t)| log(T − t)|) 1
2 z, t) = f(z) (8)

uniformly in z ∈ IRN , with

f(z) = (p− 1 +
(p− 1)2

4p
|z|2)−

1
p−1 .

Remark: We took d0 and d1 respectively in the direction of h0(y) = 1 and
h1(y) = y, the two first eigenfunctions of L (Cf section 2), but we could have
chosen other directions D0(y) and D1(y) (see Theorem 2). We can notice
that we have a result in H = W 1,p+1(IRN ) ∩ L∞(IRN ). We can also obtain
blow-up results in H1(IRN ) ∩ L∞(IRN ). If p < 1 + 4

N , then f(z) ∈ H1, and
we use the same arguments to solve the problem in H 1(IRN ) ∩L∞(IRN ). If
p ≥ 1 + 4

N , the result in H1 follows directly from the stability result (see
Theorem 2 below).
Remark: Such behavior is suspected to be generic.

Remark 1.1
One can ask the following questions:

a) Why does the free-boundary move at such a speed?
b) Why is the profile precisely the function f?

As in various physical situations, we suspect that the asymptotic behavior
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of w → κ is described by self-similar solutions of equation (4).
Since we are dealing with equation of the heat type (Cf (4)), the natural
scaling is y√

s
. Let us hence try to find a solution of the form v( y√

s
), with

v(0) = κ, lim
|z|→∞

|v(z)| = 0. (9)

A direct computation shows that v must satisfy the following equation, for
each s > 0 and each z ∈ IRN :

− 1

2s
z.∇v(z) =

1

s
∆v(z) − 1

2
z.∇v(z) − 1

p− 1
v(z) + |v(z)|p−1v(z) (10)

According to Giga and Kohn [10], the only solutions of (10) are the constant
ones: 0, κ,−κ, which are ruled out by (9). We can then try to search formally
regular solutions of (4) of the form

V (y, s) =
∞
∑

j=0

1

sj
vj(

y√
s
)

and compare elements of order 1
sj ( in one dimension, in the positive case

for simplicity). We obtain for j = 0:

0 = −1

2
zv′0(z) −

1

p− 1
v0(z) + v0(z)

p,

and for j = 1 (z 6= 0)

v′1(z) + a(z)v1(z) = b(z)

with a(z) = 2
z ( 1

p−1 − pv0(z)
p−1) and b(z) = v′0(z) + 2

zv
′′
0 (z). The solution for

v0 is given by

v0(z) = (p− 1 + c0z
2)

− 1
p−1

for an integration constant c0 > 0. Using this to solve the equation on v1

yields

v1(z) = v0(z)
pz2[c1 +

∫ z

1
ζ−2v0(ζ)

−pb(ζ)dζ],

for another integration constant c1. Since we want V to be regular, it is
natural to require that v1 is analytic at z = 0. v1 is regular if and only
if the coefficient of ζ in the Taylor expansion of v0(ζ)

−pb(ζ) near ζ = 0 is

zero which turns to be equivalent to c0 = (p−1)2

4p after simple calculation.
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Therefore, v0(z) = (p − 1 + (p−1)2

4p z2)−
1

p−1 . Hence, the first term in the
expansion of V is precisely the profile function f . Carrying on calculus
yields:

v1(z) =
p− 1

2p
f(z)p +

(p− 1)2

4p
z2f(z)p log f(z) + c1z

2f(z)p. (11)

We note that v1(0) = κ
2p .

Unfortunately, we are not able to calculate every vj . In conclusion, we take
an other approach to obtain approximate self-similar solutions (see the proof
of Theorem 1).

As in the paper of Bricmont and Kupiainen [3], we won’t use maximum
principle in the proof. The technique used here will allow us using geomet-
rical interpretation of quantities of the type of d0 and d1 to derive stability
results concerning this type of behavior for the free-boundary, with respect
to perturbations of initial data and the equation.

Theorem 2 Stability with respect to initial data of the free bound-
ary behavior
Let û0 be initial data constructed in Theorem 1. Let û(t) be the solution of
equation (1) with initial data û0, T̂ its blow-up time and â its blow-up point.
Then there exists a neighborhood V′ of û0 in H which has the following prop-
erty:
For each u0 in V′, u(t) blows-up in finite time T = T (u0) at only one blow-up
point a = a(u0), where u(t) is the solution of equation (1) with initial data
u0. Moreover, u(t) behaves near T (u0) and a(u0) in an analogous way as
û(t):

lim
t→T

(T − t)
1

p−1u(a+ ((T − t)| log(T − t)|) 1
2 z, t) = f(z)

uniformly in z ∈ IRN .

Remark: Theorem 2 yields the fact that the blow-up profile f(z) is stable
with respect to perturbations in initial data.
Remark: From [15], we have T (u0) → T̂ , a(u0) → â, as u0 → û0 in H.
Remark: For this theorem, we strongly use a finite dimension reduction of
the problem in IR1+N , which is the space of liberty degrees of the stability
Theorem: (T, a).

Remark 1.2
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Theorem 2 is true for a more general û0: It is enough that û(t) satisfies the
key estimate of the proof of Theorem 1.
Remark: Since we do not use the maximum principle, we suspect that such
analysis can be carried on for other type of equations, for example:

ut = −∆2u+ |u|2u,

and
ut = ∆u+ |u|p−1u+ i|u|r−1u, (12)

where 1 < r < p (p < N+2
N−2 if N ≥ 3).

See also for other applications [18].
According to a result of Merle [15], we obtain the following corollary for

Theorem 2:

Corollary 1.1 Let D be a convex set in IRN , or D = IRN . For arbitrary
given set of k points x1,..., xk in D, there exist initial data u0 such that the
solution u of (1) with initial data u0 (with Dirichlet boundary conditions in
the case D 6= IRN) blows-up exactly at x1,..., xk.

Remark: The local behavior at each blow-up point xi (|x−xi| ≤ ρi) is also
given by (8).

2 Formulation of the problem

We omit the (T, a) or (d0, d1) dependence in what follows to simplify the
notation.

2.1 Choice of variables

As indicated before, we use similarity variables:

y =
x− a√
T − t

,

s = − log(T − t),

w(y, s) = (T − t)
1

p−1u(x, t).

We want to prove for suitable initial data that:

lim
t→T

‖(T − t)
1

p−1u(a+ ((T − t)| log(T − t)|) 1
2 z, t) − f(z)‖L∞ = 0,

7



or stated in terms of w:

lim
s→∞

‖w(y, s) − f(
y√
s
)‖L∞ = 0,

where

f(z) = (p− 1 +
(p− 1)2

4p
|z|2)−

1
p−1 .

We will not study as usually done, this limit difference as s→ +∞

w(., s) − f(
.√
s
),

but we introduce instead:

q(y, s) = w(y, s) − [
Nκ

2ps
+ (p− 1 +

(p− 1)2

4ps
y2)−

1
p−1 ]. (13)

The added term in (13) can be understood from Remark 1.1. There, we tried
to obtain for w an expansion of the form

∑+∞
j=0

1
sj vj(

y√
s
). We got v0 = f

and for v1 the expression (11). Hence, it is natural to study the difference
w(y, s)− (v0(

y√
s
)+ 1

sv1(
y√
s
)). Since the expression of v1 is a bit complicated

(see (11)), we study instead w(y, s) − (v0(
y√
s
) + 1

sv1(0)), which is (13) for

N = 1.
Now, if we introduce

ϕ(y, s) =
Nκ

2ps
+ f(

y√
s
) =

Nκ

2ps
+ (p− 1 +

(p− 1)2

4ps
|y|2)−

1
p−1 , (14)

we have
q(y, s) = w(y, s) − ϕ(y, s).

Thus, the problem in Theorem 1 is to construct a function q satisfying

lim
s→+∞

‖q(., s)‖L∞ = 0.

From (4) and (13), the equation satisfied by q is the following:
for s > 0,

∂q

∂s
(y, s) = LV (q)(y, s) +B(q(y, s)) +R(y, s), (15)

where
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• the linear term is
LV (q) = L(q) + V (y, s)q (16)

with

L(q) = ∆q − 1
2y.∇q + q and V (y, s) = p(ϕp−1 − 1

p−1),

• the nonlinear term (quadratic in q for p large) is

B(q) = |ϕ+ q|p−1(ϕ+ q) − ϕp − pϕp−1q, (17)

• and the rest term involving ϕ is

R(y, s) = ∆ϕ− 1

2
y.∇ϕ− 1

p− 1
ϕ+ ϕp − ∂ϕ

∂s
. (18)

It will be useful to write equation (15) in its integral form: for each s0 > 0,
for each s1 ≥ s0,

q(s1) = K(s1, s0)q(s0)+

∫ s1

s0

dτK(s1, τ)B(q(τ))+

∫ s1

s0

dτK(s1, τ)R(τ), (19)

where K is the fundamental solution of the linear operator LV defined for
each s0 > 0 and for each s1 ≥ s0 by,

∂s1K(s1, s0) = LVK(s1, s0) (20)

K(s0, s0) = Identity.

2.2 Decomposition of q

Since LV will play an important role in our analysis, let us point some facts
on it.

i) The operator L is self-adjoint on D(L) ⊂ L2(IRN , dµ) with

dµ(y) =
e−

|y|2
4 dy

(4π)N/2
. (21)

Note here that there is a weight decaying at infinity. The spectrum of L is
explicit. More precisely,

spec(L) = {1 − m

2
|m ∈ IN},

and it consists of eigenvalues. The eigenfunctions of L are derived from
Hermite polynomials:
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• N = 1:
All the eigenvalues of L are simple. For 1 − m

2 corresponds the eigen-
function

hm(y) =

[m
2

]
∑

n=0

m!

n!(m− 2n)!
(−1)nym−2n. (22)

hm satisfies
∫

hnhmdµ = 2nn!δnm.

(We will note also km = hm/‖hm‖2
L2

µ
.)

• N ≥ 2:
We write the spectrum of L as

spec(L) = {1 − m1 + ...+mN

2
|m1, ...,mN ∈ IN}.

For (m1, ...,mN ) ∈ IN, the eigenfunction corresponding to 1−m1+...+mN
2

is
y −→ hm1(y1)...hmN

(yN ),

where hm is defined in (22). In particular,

*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunc-
tion is

H0(y) = 1, (23)

*1
2 is of multiplicity N , and its eigenspace is generated by the orthog-

onal basis {H1,i(y)|i = 1, ..., N}, with H1,i(y) = h1(yi); we note

H1(y) = (H1,1(y), ...,H1,N (y)), (24)

*0 is of multiplicity N(N+1)
2 , and its eigenspace is generated by the or-

thogonal basis {H2,ij(y)|i, j = 1, ..., N, i ≤ j}, with H2,ii(y) = h2(yi),
and for i < j, H2,ij(y) = h1(yi)h1(yj); we note

H2(y) = (H2,ij(y), i ≤ j). (25)

ii) The potential V (y, s) has two fundamental properties that will influence
strongly our analysis.

a) We have V (., s) → 0 in the L2(IR, dµ) when s → +∞. In
particular, the effect of V on the bounded sets or in the “blow-up” region
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(|x| ≤ C
√
s) inside the free boundary will be a “perturbation” of the effect

of L.
b) Outside the free boundary, we have the following property:

∀ε > 0, ∃Cε > 0, ∃sε such that

sup
s≥sε,

|y|√
s
≥Cε

|V (y, s) − (− p

p− 1
)| ≤ ε

with − p
p−1 < −1.

Since 1 is the biggest eigenvalue of L, we can consider that outside the free
boundary, the operator LV will behave as one with fully negative spectrum,
which simplifies greatly the analysis in this region.

Since the behavior of V inside and outside the free boundary is different,
let us decompose q as the following:
Let χ0 ∈ C∞

0 ([0,+∞)), with supp(χ0) ⊂ [0, 2] and χ0 ≡ 1 on [0, 1]. We
define then

χ(y, s) = χ0(
| y |
K0s

1
2

), (26)

where K0 > 0 is chosen large enough so that various technical estimates
hold.
We write q = qb + qe where

qb = qχ and qe = q(1 − χ).
Let us remark that

supp qb(s) ⊂ B(0, 2K0
√
s) and supp qe(s) ⊂ IR\B(0,K0

√
s).

Then we study qb using the structure of L. Since L has 1+N expanding
directions (corresponding to eigenvalues 1 and 1

2) and N(N+1)
2 neutral ones,

we write qb with respect to the eigenspaces of L as follows:

qb(y, s) =
2

∑

m=0

qm(s).Hm(y) + q−(y, s) (27)

where
q0(s) is the projection of qb on H0,
q1,i(s) is the projection of qb on H1,i, q1(s) = (q1,i(s), ..., q1,N (s)), H1(y) is
given by (24),
q2,ij(s) is the projection of qb on H2,ij, i ≤ j, q2(s) = (q2,ij(s), i ≤ j), H2(y)
is given by (25),
q−(y, s) = P−(qb) and P− the projector on the negative subspace of L.
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In conclusion, we write q into 5 “components” as follows:

q(y, s) =
2

∑

m=0

qm(s).Hm(y) + q−(y, s) + qe(y, s). (28)

(Note here that qm are coordinates of qb and not of q).
In particular, ifN = 1 andm = 0, 1, 2, qm(s) andHm(y) are scalar functions,
and Hm(y) = hm(y). We write in this case:

q(y, s) =
2

∑

m=0

qm(s)hm(y) + q−(y, s) + qe(y, s). (29)

Let us now prove Theorem 1.

3 Existence of a blow-up solution with the given

free-boundary profile

This section is devoted to the proof of Theorem 1.

3.1 Transformation of the problem

As in [3], we give the proof in one dimension (same proof holds in higher
dimension). We also assume a to be zero, without loss of generality.
Let us consider initial data:

u0,d0,d1(x) = T
− 1

p−1

{

f(z)(1 +
d0 + d1z

p− 1 + (p−1)2

4p z2
) + g(z)

}

,

where
z = x(| log T |T )−

1
2 .

We want to prove first that there exists T0 > 0 such that for each T ∈ (0, T0],
for every g ∈ H with ‖g‖L∞ ≤ (log T )−2, we can find (d0, d1) ∈ IR2 such
that

lim
t→T

(T − t)
1

p−1ud0,d1(((T − t)| log(T − t)|) 1
2 z, t) = f(z) (30)

uniformly in z ∈ IR, where ud0,d1 is the solution of (1) with initial data
u0,d0,d1 , and

f(z) = (p− 1 +
(p− 1)2

4p
z2)−

1
p−1 . (31)

This property will imply that ud0,d1 blows-up at time T at one single point:
x = 0. Indeed,
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Proposition 3.1 Single blow-up point properties of solutions
Let u(t) be a solution of equation (1). If u satisfies the following property

lim
t→T

‖(T − t)
1

p−1u(
√

(T − t)| log(T − t)|z, t) − f(z)‖L∞ = 0 (32)

then u(t) blows-up at time T at one single point: x = 0.

Proof: For each b ∈ IR, we have from (32)

lim
t→T

{(T − t)
1

p−1u(b, t) − f(
b

√

(T − t)| log(T − t)|
)} = 0.

Using (31), we obtain lim
t→T

(T − t)
1

p−1u(0, t) = κ and for b 6= 0, lim
t→T

(T −

t)
1

p−1u(b, t) = 0. A result by Giga and Kohn in [8] shows that b is a blow-up

point if and only if lim
t→T

(T − t)
1

p−1u(b, t) = ±κ. This concludes the proof of

proposition 3.1.

Therefore, it remains to find (d0, d1) ∈ IR2 so that (30) holds to conclude
the proof of Theorem 1.
If we use the formulation of the problem in section 2, the problem reduces
to find S0 > 0 such that for each s0 ≥ S0, g ∈ H with ‖g‖L∞ ≤ 1

s2
0
, we can

find (d0, d1) ∈ IR2 so that the equation (15)

∂q

∂s
(y, s) = LV (q)(y, s) +B(q(y, s)) +R(y, s),

with initial data at s = s0

qd0,d1(y, s0) = (p− 1 +
(p− 1)2

4ps0
y2)

− p
p−1 (d0 + d1y/

√
s0) −

κ

2ps0
+ g(y/

√
s0),

(33)
has a solution q(d0, d1) satisfying

lim
s→∞

sup
y∈IR

|qd0,d1(y, s)| = 0. (34)

q will always depend on g, d0 and d1, but we will omit theses dependences
in the notations (except when it is necessary).
The convergence of q to zero in L∞(IR) follows directly if we construct q(s)
solution of equation (15) satisfying a geometrical property, that is q belongs
to a set VA ⊂ C([s0,+∞), L2(IR, dµ)), such that VA shrinks to q ≡ 0 when
s→ ∞.
More precisely we have the following definitions:
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Definition 3.1 For each A > 0, for each s > 0, we define VA(s) as being
the set of all functions r in L2(IR, dµ) such that

|rm(s)| ≤ As−2,m = 0, 1,

|r2(s)| ≤ A2(log s)s−2,

|r−(y, s)| ≤ A(1 + |y|3)s−2,

‖re(s)‖L∞ ≤ A2s−
1
2 ,

where r(y) =
∑2

m=0 rm(s)hm(y)+r−(y, s)+re(y, s) (Cf decomposition (29)).

Definition 3.2 For each A > 0, we define VA as being the set of all func-
tions q in C([s0,+∞), L2(IR, dµ)) satisfying q(s) ∈ VA(s) for each s ≥ s0.

Indeed, assume that ∀s ≥ s0 q(s) ∈ VA(s). Let us show that ∀s ≥ s0

sup
y∈IR

|q(y, s)| ≤ C(A)√
s

, which implies (34).

We have from the definitions of qb and qe

q(y, s) = qb(y, s) + qe(y, s)

= qb(y, s).1{|y|≤2K0
√

s} + qe(y, s)

=
(

2
∑

m=0

qm(s)hm(y) + q−(y, s)
)

.1{|y|≤2K0
√

s}(y, s) + qe(y, s).

Using the definitions of hm (Cf (22)) and VA, the conclusion follows.

3.2 Proof of Theorem 1

Using these geometrical aspects, what we have to do is finally to find A > 0
and S0 > 0 such that for each s0 ≥ S0, g ∈ H with ‖g‖∞ ≤ 1

s2
0
, we can find

(d0, d1) ∈ IR2 so that ∀s ≥ s0,

qd0,d1(s) ∈ VA(s). (35)

Let us explain briefly the general ideas of the proof.
-In a first part, we will reduce the problem of controlling all the compo-

nents of q in VA to a problem of controlling (q0, q1)(s). That is, we reduce
an infinite dimensional problem to a finite dimensional one.

-In a second part, we solve the finite dimensional problem, that is to
find (d0, d1) ∈ IR2 such that (q0, q1)(s) satisfies certain conditions. We will
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proceed by contradiction and use dynamics in dimension 2 of (q0, q1)(s) to
reach a topological obstruction (using Index Theory).

The constant C now denotes a universal one independent of variables,
only depending upon constants of the problem such as p.

Part I: Reduction to a finite dimensional problem
In this section, we show that finding (d0, d1) ∈ IR2 such that ∀s ≥ s0 q(s) ∈
VA(s) is equivalent to finding (d0, d1) ∈ IR2 such that |qm(s)| ≤ A

s2 ∀s ≥ s0,
∀m ∈ {0, 1}. For this purpose, we give the following definition:

Definition 3.3 For each A > 0, for each s > 0 we define V̂A(s) as being
the set [− A

s2 ,
A
s2 ]2 ⊂ IR2.

For each A > 0, we define V̂A as being the set of all (q0, q1)
in C([s0,+∞), IR2) satisfying (q0, q1)(s) ∈ V̂A(s) ∀s ≥ s0.

Step 1: Reduction for initial data
Let us show that for a given A (to be chosen later), for s0 ≥ s1(A), the
control of q(s0) in VA(s0) is equivalent to the control of (q0, q1)(s0) in V̂A(s0).

Lemma 3.1 i) For each A > 0, there exists s1(A) > 0 such that for each
s0 ≥ s1(A), g ∈ H with ‖g‖L∞ ≤ 1

s2
0
, if (d0, d1) is chosen so that

(q0, q1)(s0) ∈ V̂A(s0), then

|q2(s0)| ≤ (log s0)s0
−2,

|q−(y, s0)| ≤ C(1 + |y|3)s0−2,

‖qe(., s0)‖L∞ ≤ s0
− 1

2

ii) There exists A1 > 0 such that for each A ≥ A1, there exists s1(A) > 0
such that for each s0 ≥ s1(A), g ∈ H with ‖g‖L∞ ≤ 1

s2
0
, we have the following

equivalence:

q(s0) ∈ VA(s0) if and only if (q0, q1)(s0) ∈ V̂A(s0).

Proof:
We first note that part ii) of the lemma follows immediately from part i)
and definition 3.1. We prove then only part i).
Let A > 0, s0 > 0 and g ∈ H such that ‖g‖L∞ ≤ 1

s2
0
. Let (d0, d1) ∈ IR2.

We write initial data (Cf (33)) as

q(y, s0) = q0(y, s0) + q1(y, s0) + q2(y, s0) + q3(y, s0)

15



where q0(y, s0) = d0F ( y√
s0

), q1(y, s0) = d1
y√
s0
F ( y√

s0
), q2(y, s0) = − κ

2ps0
,

q3(y, s0) = g( y√
s0

) and F ( y√
s0

) = (p− 1 + (p−1)2

4ps0
y2)−

p
p−1 .

We decompose all the qi as suggested by (29).
-From ‖g‖L∞ ≤ 1

s2
0

we derive that |q3
0(s0)|+ |q3

1(s0)|+ |q3
2(s0)|+‖q3

e(s0)‖L∞ ≤
C
s2
0
, and then, |q3

−(y, s0)| ≤ C
s2
0
(1 + |y|3).

-Using simple calculations we obtain |q2
0(s0)| ≤ C

s0
,

q21(s0) = 0, |q2
2(s0)| ≤ Ce−s0 , |q2

−(y, s0)| ≤ Cs−2
0 (1 + |y|3) and ‖q2

e(s0)‖L∞ ≤
Cs−1

0 .
-For q0, we have q0

0(s0) = d0
∫

dµ(z)χs0F ( z√
s0

) ∼ d0C(p) (s0 → ∞),

q01(s0) = 0, q0
2(s0) = d0

∫

dµ(z)χs0F ( z√
s0

) z2−2
8 ∼ d0

C′(p)
s0

(s0 → ∞),

|q0−(y, s0)| ≤ d0
C
s0

(1 + |y|3) and ‖q0
e(s0)‖L∞ ≤ Cd0.

All theses last bounds are simple to obtain, perhaps except that for q0
−. In-

deed, we write q0
−(y, s0) =

d0χs0F ( y√
s0

)−d0
∫

dµ(z)χs0F ( z√
s0

)−d0
∫

dµ(z)χs0F ( z√
s0

) z2−2
8 (y2−2). The

last term can be bounded by Cd0
s0

(1 + |y|3). We write the first term as

d0

{

χs0(y)F ( y√
s0

) − χs0(0)F (0) −
∫

dµ(z)(χs0F ( z√
s0

) − χs0(0)F (0))
}

. Using

a Lipschitz property, we have |χs0(y)F ( y√
s0

) − χs0(0)F (0)| ≤ Cy2

s0
, and the

conclusion follows.
-Similarly, we obtain for q1, q10(s0) = 0, q1

1(s0) = d1√
s0

∫

dµ(z)χs0F ( z√
s0

) z
2z ∼

d1
C′′(p)√

s0
(s0 → ∞), q1

2(s0) = 0, |q1
−(y, s0)| ≤ d1

C

s
3/2
0

(1+|y|3) and ‖q1
e(s0)‖L∞ ≤

C d1√
s0

.

Hence, by linearity, we write

q0(s0) = d0a0(s0) + b0(g, s0) (36)

q1(s0) = d1a1(s0) + b1(g, s0)

with a0(s0) ∼ C(p), a1(s0) ∼ C′′(p)√
s0

, |b0(g, s0)| ≤ C
s0

and |b1(g, s0)| ≤ C
s2
0
.

Therefore, we see that if (d0, d1) is chosen such that (q0, q1)(s0) ∈ V̂A(s0)
and if s0 ≥ s1(A), we obtain |dm| ≤ C

s0
for m ∈ {0, 1}. Using linearity and

the above estimates, we obtain |q2(s0)| ≤ C
s2
0
, |q−(y, s0)| ≤ C

s2
0
(1 + |y|3) and

‖qe(s0)‖ ≤ C
s0

. Taking s1(A) larger we conclude the proof of lemma 3.1.

Step 2: A priori estimates
This step is the crucial one in the proof of Theorem 1. Here, we will show
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through a priori estimates that for s ≥ s0, the control of q in VA(s) reduces
to the control of (q0, q1) in V̂A(s). Indeed, this result will imply that if for
s∗ ≥ s0, q(s∗) ∈ ∂VA(s∗), then (q0(s∗), q1(s∗)) ∈ ∂V̂A(s∗). (Compare with
definition 3.1).

Remark 3.1

We shall note here that for each initial data q(s0), equation (15) has a unique
solution on [s0, S] with either S = +∞ or S < +∞ and ‖q(s)‖L∞ → +∞,
when s → S . Therefore, in the case where S < +∞, there exists s∗ > s0
such that q(s∗) 6∈ VA(s∗) and the solution is in particular defined up to s∗.

Proposition 3.2 (Control of q by (q0, q1) in VA) There exists A2 > 0
such that for each A ≥ A2, there exists s2(A) > 0 such that for each s0 ≥
s2(A), for each g ∈ H with ‖g‖L∞ ≤ 1

s2
0
, we have the following property:

-if (d0, d1) is chosen so that (q0(s0), q1(s0)) ∈ V̂A(s0), and,
-if for s1 ≥ s0, we have ∀s ∈ [s0, s1], q(s) ∈ VA(s),
then ∀s ∈ [s0, s1] ,

|q2(s)| ≤ A2s−2 log s− s−3

|q−(y, s)| ≤ A

2
(1 + |y|3)s−2

‖qe(s)‖L∞ ≤ A2

2
√
s
.

Proof: see Proof of Proposition 3.2 below.

Step 3: Transversality
Using now the fact that (q0, q1) controls the evolution of q in VA, we show a
transversality condition of (q0, q1) on ∂V̂A(s∗).

Lemma 3.2 There exists A3 > 0 such that for each A ≥ A3, there exists
s3(A) such that for each s0 ≥ s3(A), we have the following properties:
i) Assume there exists s∗ ≥ s0 such that q(s∗) ∈ VA(s∗) and (q0, q1)(s∗) ∈
∂V̂A(s∗), then there exists δ0 > 0 such that ∀δ ∈ (0, δ0), (q0, q1)(s∗ + δ) 6∈
V̂A(s∗ + δ).
ii) If q(s0) ∈ VA(s0), q(s) ∈ VA(s) ∀s ∈ [s0, s∗] and q(s∗) ∈ ∂VA(s∗) then
there exists δ0 > 0 such that ∀δ ∈ (0, δ0), q(s∗ + δ) 6∈ VA(s∗ + δ).

Proof:
Part ii) follows from Step 2 and part i).
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To prove part i), we will show that for each m ∈ {0, 1}, for each ε ∈ {−1, 1},
if qm(s∗) = ε A

s2∗
, then dqm

ds (s∗) has the opposite sign of d
ds(

εA
s2 )(s∗) so that

(q0, q1) actually leaves V̂A at s∗ for s∗ ≥ s0 where s0 will be large. Now,
let us compute dq0

ds (s∗) and dq1

ds (s∗) for q(s∗) ∈ VA(s∗) and (q0(s∗), q1(s∗)) ∈
∂V̂A(s∗). First, we note that in this case, ‖q(s∗)‖L∞ ≤ CA2√

s∗
and |qb(y, s∗)| ≤

CA2 log s∗
s2∗

(1 + |y|3) (Provided A ≥ 1). Below, the classical notation O(l)

stands for a quantity whose absolute value is bounded precisely by l and not
Cl.
For m ∈ {0, 1}, we derive from equation (15) and (22):

∫

dµχ(s∗)
∂q
∂skm =

∫

dµχ(s∗)Lqkm+

∫

dµχ(s∗)V qkm+

∫

dµχ(s∗)B(q)km+

∫

dµχ(s∗)R(s∗)km.

We now estimate each term of this identity:
a) |

∫

dµχ(s∗)
∂q
∂skm− dqm

ds | = |
∫

dµdχ
ds qkm| ≤ |

∫

dµdχ
ds qkm| ≤

∫

dµ|dχ
ds |CA2√

s∗
|km|

≤ Ce−s∗ if s0 ≥ s3(A).
b) Since L is self-adjoint on L2(IR, dµ), we write

∫

dµχ(s∗)Lqkm =

∫

dµL(χ(s∗)km)q.

Using L(χ(s∗)km) = (1 − m
2 )χ(s∗)km + ∂2χ

∂s2 km + ∂χ
∂y (2∂km

∂y − y
2km),

we obtain
∫

dµχ(s∗)Lqkm = (1 − m
2 )qm(s∗) +O(CAe−s∗).

c) We then have from (16): ∀y, |V (y, s)| ≤ C
s (1 + |y|2). Therefore,

|
∫

dµχ(s∗)V qkm| ≤
∫

dµ
C

s∗
(1 + |y|5)CA

2 log s∗
s2∗

|km| ≤ CA2 log s∗
s3∗

d) A standard Taylor expansion combined with the definition of VA shows

that |χ(y, s∗)B(q(y, s∗))| ≤ C|q|2 ≤ C(|qb|2 + |qe|2) ≤ CA4(log s∗)2

s4∗
(1+ |y|3)2 +

1{|y|≥K
√

s∗}(y)
A2√
s∗

. Thus, |
∫

dµχ(s∗)B(q)km| ≤ CA4(log s∗)2

s4∗
+ Ce−s∗ .

e) A direct calculus yields | ∫ dµχ(s∗)R(s∗)km| ≤ C(p)
s2∗

(Actually it is equal

to 0 if m = 1). Indeed, in the case m = 0, we start from (18) and
(14) and expand each term up to the second order when s → ∞. Since
ϕ(y, s) = f( y√

s
) + κ

2ps , we derive:

1)
∫

dµχ(s)(− ϕ
p−1) = − 1

p−1(κ− κ
2ps + κ

2ps +O(Cs−2)) = − κ
p−1 +O(Cs−2),

2)
∫

dµχ(s)ϕp =
∫

dµfp+ κ
2ps

∫

dµpfp−1+O(Cs−2) = κ
p−1− κ

2(p−1)s+ κ
2ps

p
p−1+

O(Cs−2) = κ
p−1 +O(Cs−2),
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3) ϕs(y, s) = p−1
4ps2 y

2fp − κ
2ps2 and then

∫

dµχ(s)(−ϕs) = O(Cs−2),

4) ϕy(y, s) = −p−1
2ps yf

p and then
∫

dµχ(s)(− 1
2yϕy) = κ

2ps +O(Cs−2),

5) ϕyy(y, s) = −p−1
2ps f

p+ (p−1)2

4ps2 y2f2p−1, then
∫

dµχ(s)ϕyy = − κ
2ps+O(Cs−2).

Adding all these expansions, we obtain
∫

dµχs∗R(s∗) = O(C(p)s−2
∗ ). Con-

cluding steps a) to e), we obtain

dqm
ds

(s∗) = (1 − m

2
)
εA

s2∗
+O(

C(p)

s2∗
) +O(CA4 log s∗

s3∗
)

whenever qm(s∗) = εA
s2∗

. Let us now fix A ≥ 2C(p), and then we take s3(A)

larger so that for s0 ≥ s3(A), ∀s ≥ s0,
C(p)
s2 + O(CA4 log s

s3 ) ≤ 3C(p)
2s2 . Hence,

if ε = −1, dqm

ds (s∗) < 0, if ε = 1, dqm

ds (s∗) > 0. This concludes the proof of
lemma 3.2.

Now, let us fix A ≥ sup(A2, A3).

Part II: Topological argument
Now, we reduce the problem to studying a two-dimensional one. Let us
study now this problem. We give its initialization in the following lemma:

Lemma 3.3 (Initialization of the finite dimensional problem) There
exists s4(A) > 0 such that for each s0 ≥ s4(A), for each g ∈ H with ‖g‖L∞ ≤
1
s2
0
, there exists a set Dg,s0 ⊂ IR2 topologically equivalent to a square with

the following property:

q(d0, d1, s0) ∈ VA(s0) if and only if (d0, d1) ∈ Dg,s0.

Proof:
As stated by lemma 3.1 (ii), if we take s0 > s1(A) and g ∈ H with ‖g‖L∞ ≤
1
s2
0
, then it is enough to prove that there exists a set Dg,s0 topologically

equivalent to a square satisfying

(q0, q1)(s0) ∈ V̂A(s0) if and only if (d0, d1) ∈ Dg,s0 .

If we refer to the calculus of qm(s0) (Cf (36) and what follows), and take
s4(A) ≥ s0(A) and s4(A) large enough, then this concludes the proof of
lemma 3.3.

Now, we fix S0 > sup(s1(A), s2(A), s3(A), s4(A)) and take s0 ≥ S0. Then
we start the proof of Theorem 1 for A and s0(A) and a given g ∈ H with
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‖g‖L∞ ≤ 1
s2
0
.

We argue by contradiction: According to lemma 3.3, for each (d0, d1) ∈ Dg,s0

q(d0, d1, s0) ∈ VA(s0). We suppose then that for each (d0, d1) ∈ Dg,s0 , there
exists s > s0 such that q(d0, d1, s) 6∈ VA(s). Let s∗(d0, d1) be the infimum of
all these s. (Note here that s∗(d0, d1) exists because of remark 3.1).

Applying proposition 3.2, we see that q(d0, d1, s∗(d0, d1)) can leave
VA(s∗(d0, d1)) only by its first two components, hence,

(q0, q1)(d0, d1, s∗(d0, d1)) ∈ ∂V̂A(s∗(d0, d1)).

Therefore, we can define the following function:

Φg : Dg,s0 −→ ∂C

(d0, d1) −→ s∗(d0, d1)
2

A
(q0, q1)(d0, d1, s∗(d0, d1))

where C is the unit square of IR2.
Now, we claim

Proposition 3.3 i) Φg is a continuous mapping from Dg,s0 to ∂C.
ii) The restriction of Φg to ∂Dg,s0 is homeomorphic to identity.

From that, a contradiction follows (Index Theory). This means that there
exists (d0(g), d1(g)) such that ∀s ≥ s0, q(d0, d1, s) ∈ VA(s), that is q ∈ VA.
In particular,

‖q(s)‖L∞ ≤ C(A)√
s
.

Using Proposition 3.1, this concludes the proof of Theorem 1.
Proof of Proposition 3.3:

Step 1: i)
We have (q0, q1)(s) is a continuous function of (w(s0), s) ∈ H × [s0,+∞)
where w(s0) is initial data for equation (4). Since w(s0) ( = q(y, s0) +
ϕ(y, s0), Cf (33) and (14) ) is continuous in (d0, d1) (it is linear), we have
(q0, q1)(s) is continuous with respect to (d0, d1, s). Now, using the transver-
sality property of (q0, q1) on ∂V̂A (lemma 3.2 ), we claim that s∗(d0, d1) is
continuous. Therefore, Φg is continuous.
Step 2: ii)
If (d0, d1) ∈ ∂Dg,s0 , then, according to the proof of lemma 3.3, (q0, q1)(s0) ∈
∂V̂A(s0). Therefore, using q(s0) ∈ VA(s0) (lemma 3.1), we have q(s0) ∈
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∂VA(s0). Applying ii) of lemma 3.2 with s0 and s∗ = s0 yields δ0 > 0 such
that ∀δ ∈ (0, δ0), q(s0 + δ) 6∈ VA(s0 + δ). Hence,

s∗(d0, d1) = s0,

and Φg(d0, d1) =
s2
0

A (q0, q1)(s0). Formulas (36) show then that Φg|∂D},∫′
is

homeomorphic to identity. This concludes the proof of Proposition 3.3. Let
us now prove Proposition 3.2.

3.3 Proof of Proposition 3.2

For further purpose, we are going to prove a more general proposition which
implies Proposition 3.2.

Proposition 3.4 For each Ã > 0 There exists Ã2(Ã) > 0
such that for each A ≥ Ã2(Ã), there exists s̃2(Ã, A) > 0 such that for each
s0 ≥ s̃2(Ã, A), for each solution q of equation (15), we have the following
property:
-if

|qm(s0)| ≤ As−2
0 ,m = 0, 1 (37)

|q2(s0)| ≤ Ãs−2
0 log s0,

|q−(y, s0)| ≤ Ãs−2
0 (1 + |y|3),

‖qe(s)‖L∞ ≤ Ãs
−1/2
0 ,

-if for s1 ≥ s0, we have ∀s ∈ [s0, s1], q(s) ∈ VA(s),
then ∀s ∈ [s0, s1] ,

|q2(s)| ≤ A2s−2 log s− s−3

|q−(y, s)| ≤ A

2
(1 + |y|3)s−2

‖qe(s)‖L∞ ≤ A2

2
√
s
.

Proposition 3.4 implies Proposition 3.2. Indeed, referring to Lemma 3.1,
we apply proposition 3.4 with Ã = max(1, C). This gives Ã2 > 0, and for
each A ≥ Ã2, s̃2(Ã, A). If we take s2(A) = max(s̃2(max(1, C), A), s1(A))
(Cf Lemma 3.1), then, applying proposition 3.4 and Lemma 3.1, one easily
checks that Proposition 3.2 is valid for these values.
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Proof of Proposition 3.4
The proof is divided in two parts:

In a first part, we give a priori estimates on q(s) in VA(s): assume that
for given A > 0 large, Ã > 0, ρ > 0 and initial time s0 ≥ s5(A, Ã, ρ), we
have q(s) ∈ VA(s) for each s ∈ [σ, σ + ρ], where σ ≥ s0. Using the equation
satisfied by q, we then derive new bounds on q2, q− and qe in [σ, σ + ρ]
(involving A, Ã and ρ).

In a second part, we will use these new bounds to conclude the proof of
Proposition 3.4.

Step 1: A priori estimates of q.
Let us recall the integral equation satisfied by q (Cf (19)):

q(s) = K(s, σ)q(σ) +

∫ s

σ
dτK(s, τ)B(q(τ)) +

∫ s

σ
dτK(s, τ)R(τ), (38)

where

B(q) = |ϕ+ q|p−1(ϕ+ q) − ϕp − pϕp−1q,

R(y, s) = ∆ϕ− 1

2
y.∇ϕ− 1

p− 1
ϕ+ ϕp − ∂ϕ

∂s
,

and K is the fundamental solution of LV (Cf (16)).
We now assume that for each s ∈ [σ, σ + ρ], q(s) ∈ VA(s). Using (38), we
derive new bounds on the three terms in the right hand side of (38), and
then on q.
In the case σ = s0, from initial data properties, it turns out that we obtain
better estimates for s ∈ [s0, s0 + ρ].
More precisely, we have the following lemma:

Lemma 3.4 There exists A5 > 0 such that for each A ≥ A5, Ã > 0, ρ∗ > 0,
there exists s5(A, Ã, ρ

∗) > 0 with the following property:
∀s0 ≥ s5(A, Ã, ρ

∗), ∀ρ ≤ ρ∗, assume ∀s ∈ [σ, σ + ρ], q(s) ∈ VA(s) with
σ ≥ s0.

I)Case σ ≥ s0:
we have ∀s ∈ [σ, σ + ρ],
i) (linear term)

|α2(s)| ≤ A2 log σ

s2
+ (s− σ)CAs−3,

|α−(y, s)| ≤ C(e−
1
2
(s−σ)A+ e−(s−σ)2A2)(1 + |y|3)s−2,

‖αe(s)‖L∞ ≤ C(A2e−
(s−σ)

p +Ae(s−σ))s−
1
2 ,
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where

K(s, σ)q(σ) = α(y, s) =
2

∑

m=0

αm(s)hm(y) + α−(y, s) + αe(y, s).

ii) (nonlinear term)

|β2(s)| ≤ (s− σ)

s3+1/2
,

|β−(y, s)| ≤ (s− σ)(1 + |y|3)s−2−ε,

‖βe(s)‖L∞ ≤ (s− σ)s−
1
2
−ε,

where
ε = ε(p) > 0,

and

∫ s

σ
dτK(s, τ)B(q(τ)) = β(y, s) =

2
∑

m=0

βm(s)hm(y) + β−(y, s) + βe(y, s).

iii) (corrective term)

|γ2(s)| ≤ (s− σ)Cs−3,

|γ−(y, s)| ≤ (s− σ)C(1 + |y|3)s−2,

‖γe(s)‖L∞ ≤ (s− σ)s−3/4,

where

∫ s

σ
dτK(s, τ)R(., τ) = γ(y, s) =

2
∑

m=0

γm(s)hm(y) + γ−(y, s) + γe(y, s).

II)Case σ = s0:
Assume in addition that q(s0) satisfies (37). Then, ∀s ∈ [s0, s0 + ρ],
i) (linear term)

|α2(s)| ≤ Ã
log s0
s2

+ Cmax(A, Ã)(s− s0)s
−3,

|α−(y, s)| ≤ CÃ(1 + |y|3)s−2,

‖αe(s)‖L∞ ≤ CÃ(1 + e(s−s0))s−
1
2 .
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We will give the proof of this lemma later.

Step 2: Lemma 3.4 implies Proposition 3.4
Let Ã be an arbitrary positive number. Let A > Ã2(Ã) where Ã2(Ã) will be
defined later. Let s0 > 0 to be chosen larger than s̃2(A) (where s̃2(A) will
be defined later). Let q be a solution of equation (15) satisfying (37), and
s1 ≥ s0. Assume in addition that ∀s ∈ [s0, s1], q(s) ∈ VA(s).
We want to prove that ∀s ∈ [s0, s1]

|q2(s)| ≤ A2 log s

s2
− 1

s3
, |q−(y, s)| ≤ A

2s2
(1 + |y|3), ‖qe(s)‖L∞ ≤ A2

2
√
s
. (39)

Let ρ1 ≥ ρ2 two positive numbers (to be fixed in terms of A later). It is
then enough to prove (39), on one hand for s − s0 ≤ ρ1, and on the other
hand for s− s0 ≥ ρ2. In both cases, we use lemma 3.4. Hence, we suppose
A ≥ A5, s0 ≥ max(s5(A, Ã, ρ1), s5(A, Ã, ρ2)).

Case 1: s− s0 ≤ ρ1.
Since we have ∀τ ∈ [s0, s], q(τ) ∈ VA(τ), we apply lemma 3.4 (IIi), Iii),
iii)) with A, ρ∗ = ρ1 and ρ = s− s0. From (38), we obtain:

|q2(s)| ≤ Ã
log s0
s2

+ C1(max(A, Ã) + 1)(s− s0)s
−3 + (s− s0)s

−3−1/2

|q−(y, s)| ≤ (C1Ã+ C1(s− s0))(1 + |y|3)s−2 + (s− s0)(1 + |y|3)s−2−ε

‖qe(s)‖L∞ ≤ (C1Ã+ C1Ãe
s−s0)s−

1
2 + (s− s0)s

−3/4 + (s− s0)s
− 1

2
−ε.(40)

To have (39), it is enough to satisfy

Ã
log s0
s2

≤ A2

2

log s

s2
(41)

C1Ãs
−2 +C1(s− s0)s

−2 ≤ A

4
s−2

C1Ãs
−1/2 + C1Ãe

s−s0s−1/2 ≤ A2

4
s−

1
2 ,

on one hand, and

C1(max(A, Ã) + 1)(s− s0)s
−3 + (s− s0)s

−3−1/2 ≤ A2

2

log s

s2
− s−3(42)

(s− s0)s
−2−ε ≤ A

4
s−2

(s− s0)s
−3/4 + (s− s0)s

− 1
2
−ε ≤ A2

4
s−

1
2
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on the other hand.
If we restrict ρ1 to satisfy C1ρ1 ≤ A

8 , C1Ãe
ρ1 ≤ A2

8 , (which is possible if we

fix ρ1 = 3
2 logA for A large), and A to satisfy Ã ≤ A, Ã ≤ A2

2 , C1Ã ≤ A
8 and

C1Ã ≤ A2

8 (that is A ≥ A6(Ã)), then, since s− s0 ≤ ρ1, (41) is satisfied.
With this value of ρ1, (42) will be satisfied if the following is true:

C1(A+ 1)
3

2
logAs−3 +

3

2
logAs−3−1/2 ≤ A2

2

log s

s2
− s−3

3

2
logAs−2−ε ≤ A

4
s−2

3

2
logAs−3/4 +

3

2
logAs−

1
2
−ε ≤ A2

4
s−

1
2 ,

which is possible, if s0 ≥ s6(A).
This concludes Case 1.

Case 2: s− s0 ≥ ρ2.
Since we have ∀τ ∈ [σ, s], q(τ) ∈ VA(τ), we apply Part I) of lemma 3.4 with
A, ρ = ρ∗ = ρ2, σ = s− ρ2. From (38), we derive:

|q2(s)| ≤ A2 log(s− ρ2)

s2
+ C2Aρ2s

−3 + C2ρ2s
−3 + ρ2s

−3−1/2 (43)

|q−(y, s)| ≤ C2(e
− 1

2
ρ2A+ e−ρ2

2
A2 + ρ2)(1 + |y|3)s−2 + ρ2(1 + |y|3)s−2−ε

‖qe(s)‖L∞ ≤ C2(A
2e

− ρ2
p +Aeρ2)s−

1
2 + ρ2s

−3/4 + ρ2s
− 1

2
−ε,

To obtain (39), it is enough to have:

fA,ρ2(s) ≥ 0 (44)

C2(e
− 1

2
ρ2A+ e−ρ2

2
A2 + ρ2) ≤ A

4

C2(A
2e

− ρ2
p +Aeρ2) ≤ A2

4
,

with

fA,ρ2(s) = A2 log s

s2
− s−3 − [A2 log(s− ρ2)

s2
+ C2(A+ 1)ρ2s

−3 + ρ2s
−3−1/2]

on one hand, and

ρ2s
−2−ε ≤ A

4
s−2 (45)

ρ2s
−3/4 + ρ2s

− 1
2
−ε ≤ A2

4
s−

1
2 ,
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on the other hand.
Now, it is convenient to fix the value of ρ2 such that C2Ae

ρ2 = A2

8 , that is
ρ2 = log A

8C2
. The conclusion follows from this choice, for A large. Indeed,

for arbitrary A, we write

|fA,log A
8C2

(s)−s−3(A2 log
A

8C2
−1−C2(A+1) log

A

8C2
)| ≤ CA2

s3+1/2
(log

A

8C2
)2.

Then, we take A ≥ A7 such that

(A2 log
A

8C2
− 1 − C2(A+ 1) log

A

8C2
) ≥ 1

C2((
A

8C2
)−1/2A+ e

−(log A
8C2

)
2

A2 + log
A

8C2
) ≤ A

4

C2(A
2(

A

8C2
)−1/p +A

A

8C2
) ≤ A2

4
.

After, we introduce s7(A) > 0 such that for s ≥ s0 ≥ s7(A), we have
s−3−1/2CA2(log A

8C2
)2 ≤ 1

2s
−3 and (45) satisfied.

This way, (44) and (45) are satisfied, for A ≥ A7 and s0 ≥ s7(A), which
concludes Case 2.

We remark that for A ≥ A8, we have ρ1 = 3
2 logA ≥ ρ2 = log A

8C2
.

If now we take A2 = sup(A5, A6(Ã), A7, A8), and then
s2 = max(s5(A, Ã, ρ1(A)), s5(A, Ã, ρ2(A)), s6(A), s7(A)), then this concludes
the proof of Proposition 3.2.

Proof of Lemma 3.4
Let A ≥ A5 with A5 > 0 to be fixed later. Let Ã > 0, ρ∗ > 0. We take
ρ ≤ ρ∗ and s0 ≥ s5(A, Ã, ρ

∗). We consider σ ≥ s0 such that ∀s ∈ [σ, σ + ρ],
q(s) ∈ VA(s). For each part Ii), ii), iii) and IIi), we want to find s5(A, Ã, ρ0)
such that the concerned part holds for s0 ≥ s5(A, Ã, ρ

∗).
The proof is given in two steps:

-In a first step, we give various estimates on different terms appearing
in the equation (19).

-In a second step, we use these estimates to conclude the proof.

Step 1: Estimates for equation (38)
i) Estimates on K:
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Lemma 3.5 (Bricmont-Kupiainen) .
a) ∀s ≥ τ ≥ 1 with s ≤ 2τ , ∀y, x ∈ IR,
|K(s, τ, y, x)| ≤ Ce(s−τ)L(y, x), with

eθL(y, x) = eθ√
4π(1−e−θ)

exp[− (ye−θ/2−x)2

4(1−e−θ)
].

b) For each A′ > 0, A′′ > 0, A′′′ > 0, ρ∗ > 0, there exists
s9(A

′, A′′, A′′′, ρ∗) with the following property:
∀s0 ≥ s9, assume that for σ ≥ s0,

|qm(σ)| ≤ A′σ−2,m = 0, 1, (46)

|q2(σ)| ≤ A′′(log σ)σ−2,

|q−(y, σ)| ≤ A′′′(1 + |y|3)σ−2,

‖qe(σ)‖L∞ ≤ A′′σ−
1
2 ,

then, ∀s ∈ [σ, σ + ρ∗]

|α2(s)| ≤ A′′ log σ
s2

+ (s− σ)Cmax(A′, A′′′)s−3,

|α−(y, s)| ≤ C(e−
1
2
(s−σ)A′′′ + e−(s−σ)2A′′)(1 + |y|3)s−2,

‖αe(s)‖L∞ ≤ C(A′′e−
(s−σ)

p +A′′′e(s−σ))s−
1
2 ,

where

K(s, σ)q(σ) = α(y, s) =
2

∑

m=0

αm(s)hm(y) + α−(y, s) + αe(y, s). (47)

c)∀ρ∗ > 0, ∃s10(ρ∗) such that ∀σ ≥ s10(ρ
∗), ∀s ∈ [σ, σ + ρ∗],

|γ2(s)| ≤ (s− σ)Cs−3,

|γ−(y, s)| ≤ (s− σ)C(1 + |y|3)s−2,

where

∫ s

σ
dτK(s, τ)R(τ) = γ(y, s) =

2
∑

m=0

γm(s)hm(y) + γ−(y, s) + γe(y, s).

Proof:
see Appendix A.
Using the above lemma and simple calculation, we derive the following:
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Corollary 3.1 ∀s ≥ τ ≥ 1 with s ≤ 2τ ,

|
∫

K(s, τ, y, x)(1+|x|m)dx| ≤ C

∫

e(s−τ)L(y, x)(1+|x|m)dx ≤ es−τ (1+|y|m).

(48)

ii) Estimates on B:

Lemma 3.6 ∀A > 0, ∃s11(A) such that ∀τ ≥ s11(A), q(τ) ∈ VA(τ) implies

|χ(y, τ)B(q(y, τ))| ≤ C|q|2 (49)

and
|B(q)| ≤ C|q|p̄ (50)

with p̄ = min(p, 2).

Proof: Let A > 0. If q(τ) ∈ VA(τ), then ‖q(τ)‖L∞ ≤ C(A)τ−1/2 ≤ 1
2f(2K0),

if τ ≥ s11(A) (Cf Definition 3.2, (7) for f and (26) for K0).
(49) and (50) are equivalent to 1), 2) and 3), with

1) p ≥ 2 and |B(q)| ≤ C|q|2,
2) p < 2 and |χ(y, τ)B(q(y, τ))| ≤ C|q|2,
3) p < 2 and |B(q)| ≤ C|q|p.

We prove 1), 2) and 3).
For 1), we Taylor expand B(q), and use the boundedness of |ϕ| and |q|.
2) holds if χ(y, τ) = 0. Otherwise, we have |y| ≤ 2K0

√
τ . Again, we

Taylor expand B(q): χ(y, τ)|B(q)| ≤ Cχ(y, τ)|q|2 ∫ 1
0 (1 − θ)|ϕ + θq|p−2dθ,

and conclude writing χ(y, s)|ϕ+ θq|p−2 ≤ χ(y, s)(|ϕ| − |q|)p−2 ≤ (f(2K0) −
1
2f(2K0))

p−2 = C.

For 3), we write B(q)
|q|p = |1+ξ|p−1(1+ξ)−1−pξ

|ξ|p by setting ξ = q
ϕ . We easily check

that this expression is bounded for ξ → 0 and ξ → ∞.

iii) Estimate on R:

Lemma 3.7 ∃s12 > 0 ∀τ ≥ s12,

|R(y, τ)| ≤ C

τ
. (51)

Proof:

From (18) and (14), we compute: ϕyy = −p−1
2pτ f

p + (p−1)2

4pτ2 y2f2p−1, ϕs =

− p−1
4pτ2 y

2fp + κ
2pτ2 , and ϕp − ϕ

p−1 − 1
2yϕy = [f + κ

2pτ ]p − κ
2p(p−1)τ − f

p−1 +

28



p−1
4pτ y

2fp = − κ
2p(p−1)τ + [f + κ

2pτ ]p − fp, using a Lipschitz property and
simple calculations, the conclusion follows.

iv) Estimates on q in VA:
From Definition 3.2, we simply derive the following:

Lemma 3.8 ∃s13 > 0 ∀A > 0, ∀τ ≥ s13, if q(τ) ∈ VA(τ), then

|q(y, τ)| ≤ CA2τ−2 log τ(1 + |y|3) (52)

and
|q(y, τ)| ≤ CA2τ−1/2. (53)

Step 2: Conclusion of the Proof of Lemma 3.4

We choose s0 ≥ ρ∗ in all cases so that if s0 ≤ σ ≤ τ ≤ σ+ ρ and ρ ≤ ρ∗,
we have σ−1 ≤ 2s−1 and τ−1 ≤ 2s−1.

Ii) linear term in I) :
We apply b) of lemma 3.5 with A′ = A, A′′ = A2 and A′′′ = A. Take
s5(A, ρ

∗) = s9(A,A
2, A, ρ∗).

IIi) linear term in II) :
We apply b) of lemma 3.5 with A′ = A, A′′ = Ã and A′′′ = Ã.

Iii) nonlinear term:
-β2(s):
By definition, β2(s) =

∫

dµ(y)k2(y)χ(y, s)β(y, s).
=

∫

dµ(y)k2(y)χ(y, s)
∫ s
σ dτ

∫

K(s, τ, y, x)B(q(x, τ))dx = I + II, where
I =

∫

dµ(y)k2(y)χ(y, s)
∫ s
σ dτ

∫

K(s, τ, y, x)χ(x, τ)B(q(x, τ))dx, and
II =

∫

dµ(y)k2(y)χ(y, s)
∫ s
σ dτ

∫

K(s, τ, y, x)(1 − χ(x, τ))B(q(x, τ))dx.
For I we write:
|I| ≤

∫

dµ(y)|k2(y)|
∫ s
σ dτ

∫

|K(s, τ, y, x)|χ(x, τ)|B(q(x, τ))|dx
≤ C

∫

dµ(y)|k2(y)|
∫ s
σ dτ

∫

|K(s, τ, y, x)||q(x, τ)|2dx (Cf (49))
≤ C

∫

dµ(y)|k2(y)|
∫ s
σ dτ

∫

|K(s, τ, y, x)|A4τ−4(log τ)2(1 + |x|6)dx (Cf (52))
≤ CA4

∫

dµ(y)|k2(y)|
∫ s
σ dττ

−4(log τ)2es−τ (1 + |y|6) (Cf corollary 3.1)
≤ CA4

∫

dµ(y)|k2(y)|(1 + |y|6)(s− σ)σ−4(log s)2es−σ

≤ CA4(s − σ)es−σ( s
2 )−4(log s)2 (we take s0 ≥ ρ∗ so that s ≤ σ + ρ∗ ≤

σ + s0 ≤ σ + σ = 2σ)
For II, we use (50) and (53) to have:

|II| ≤ C
∫

e−
y2

4 dyχ(y, s)|k2(y)|
∫ s
σ dτ

∫

dx(1 − χ(x, τ))
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es−σ√
4π(1−e−(s−τ))

exp[− (ye−(s−τ)/2−x)2

4(1−e−(s−τ))
]A2p̄τ−p̄/2.

Now, we have e
1
2
[− y2

4
− (ye−t/2−x)2

4(1−e−t)
] ≤ e−c(K0)s ≤ e−Cs, for |y| ≤ 2K0

√
s and

|x| ≥ K0
√
τ (if s0 ≥ ρ∗). Hence, we derive

|II| ≤ C
∫

e−
y2

8 dy|k2(y)|
∫ s
σ dτ

∫

dx(1 − χ(x, τ))
es−σ√

4π(1−e−(s−τ))
exp[−1

2
(ye−(s−τ)/2−x)2

4(1−e−(s−τ))
]e−CsA2p̄τ−p̄/2.

Using a variable change in x, and carrying all calculation, we bound |II| by
(s− σ)e−Cs, for s ≥ s14(A, ρ

∗). Adding the bounds for I and II, and taking
σ ≥ s15(A, ρ

∗), we obtain the estimate for β2(s).
-β−(y, s) :

Using (50), (52), and (48), and computing as before yields |β(y, s)| ≤
CA2p̄(s − σ)e(s−σ)(1 + |y|3)p̄( log s

s2 )p̄. If we multiply this term by χ(s) and

bound in it |y|3p̄−3 by (
√
s)3p̄−3, we obtain |βb(y, s)| ≤ CA2p̄(s−σ)e(s−σ)(1+

|y|3)(√s)3p̄−3( log s
s2 )p̄, hence |βb(y, s)| ≤ CA2p̄(s − σ)e(s−σ)(1 + |y|3) (log s)p̄

s(p̄+3)/2 ,
which implies simply the estimate for β− (for σ ≥ s16(ρ

∗) and some ε1(p)).
-βe(y, s):

Using (50), (53), and (48), and computing as before yields |β(y, s)| ≤
CA2p̄(s − σ)e(s−σ)s−

1
2
p̄. From this, we derive directly the estimate for βe

(for σ ≥ s17(ρ
∗) and some ε2(p)).

Finally, we take σ ≥ max(s15, s16, s17)) = s5(A, ρ
∗) and ε = min(ε1, ε2)

to have the conclusion.

iii) corrective term:
For γ2 and γ−, we use c) of lemma 3.5. For γe, we start from (51) and
write γe(y, s) = (1 − χ(y, s))γ(y, s) = (1 − χ)

∫ s
σ dτ

∫

dxK(s, τ, y, x)R(x, τ),
and then as in ii), |γe(y, s)| ≤ C

∫ s
σ dτ

∫

dxe(s−τ)L(y, x)C
τ = C

∫ s
σ

dτ
t e

s−τ ≤
C
s (s− σ)es−σ ≤ (s− σ)s−

3
4 , if σ ≥ s10(ρ

∗).

4 Stability

In this section, we give the proof of Theorem 2. As in section 3, we consider
N = 1 for simplicity, but the same proof holds in higher dimension. We will
mention at the end of the section how to adapt the proof to the case N ≥ 2.
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4.1 Case N = 1:

Let us consider û0 an initial data in H, constructed in Theorem 1. Let û(t)
be the solution of equation (1):

ut = ∆u+ |u|p−1u, u(0) = û0.

Let T̂ be its blow-up time and â be its blow-up point.
We know from (35) that there exists Â > 0, ŝ0 > log T̂ such that ∀s ≥ ŝ0,

q̂T̂ ,â(s) ∈ VÂ(s), where q̂T̂ ,â is defined in (13) by:

q̂T̂ ,â(y, s) = e−
s

p−1 û(â+ ye−
s
2 , T̂ − e−s) − [

κ

2ps
+ (p− 1 +

(p− 1)2

4ps
y2)−

1
p−1 ].

Remark: Following Remark 1.2, we can consider a more general û0, that
is û0 with the following property:
∃(T̂ , â), ∃Â, ŝ0 such that ∀s ≥ ŝ0, q̂T̂ ,â(s) ∈ VÂ(s). From Definition 3.2, the

definition of q̂T̂ ,â(s), and Proposition 3.1, û(t) blows up at time T̂ at one
single point â, and behaves as the conclusion of Theorem 1.

We want to prove that there exists a neighborhood V′ of û0 in H with
the following property:

∀u0 ∈ V′, u(t) blows-up in finite time T at only one blow-up point
a, where u(t) is the solution of equation (1) with initial data u(0) = u0.
Moreover, u(t) satisfies:

lim
t→T

(T − t)
1

p−1u(a+ ((T − t)| log(T − t)|) 1
2 z , t) = f(z) (54)

uniformly in z ∈ IR, with

f(z) = (p− 1 +
(p− 1)2

4p
z2)−

1
p−1 .

The proof relays strongly on the same ideas as the proof of Theorem
1: use of finite dimensional parameters, reduction to a finite dimensional
problem and continuity. For Theorem 2, we introduce a one-parameter
group, defined by:

(T, a) −→ qT,a,

where qT,a is defined by (13), for a given solution u(t) of equation (1)
with initial data u0. This one-parameter group has an important prop-
erty: ∀(T, a), qT,a is a solution of equation (15). Therefore, our purpose is
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to fine-tune the parameter (T, a) in order to get (T (u0), a(u0)) such that
qT (u0),a(u0)(s) ∈ VA0(s), for s ≥ s0, A0 and s0 are to be fixed later. Hence,
through the reduction to a finite dimensional problem, we give a geometrical
interpretation of our problem, since we deal with finite dimensional func-
tions depending on finite dimensional parameters through a one-parameter
group.

As indicated in the formulation of the problem in section 2 and used in
section 3 (Definitions 3.1 and 3.2), it is enough to prove the following:

Proposition 4.1 (Reduction) There exist A0 > 0, s0 > 0, D0 neighbor-
hood of (T̂ , â) in IR2, and V′ neighborhood of û0 in H with the following
property:
∀u0 ∈ V′,∃(T ,a) ∈ D′ such that ∀s ≥ s0, qT,a(s) ∈ VA0(s), where qT,a is
defined by (13), and u(t) is the solution of equation (1) with initial data
u(0) = u0. (We keep here the (T , a) dependence for clearness).

Indeed, once this proposition is proved, (54) follows directly from (3), (13)
and definitions 3.1, 3.2. Proposition 3.1 applied to u(x − a, t) then shows
directly that u(t) blows-up at time T at one single point: x = a.

The proof relays strongly on the same ideas as those developed in section
3, and geometrical interpretation of T and a. Let us explain briefly its main
ideas:

-In a first part, as before, we reduce the control of all the components of
q to a problem of control (q0, q1)(s), uniformly for u0 ∈ V∞ and (T, a) ∈ D1

(where V∞ and D1 are respectively neighborhoods of û0 and (T̂ , â)).
-In a second part, we focus on the finite dimensional variable (q0, q1)(s),

and try to control it. We study the behavior of q̂T,a under perturbations

in (T, a) near (T̂ , â) (and some topological structure related to these). We
then extend the properties of q̂ to q, for u0 near û0. We conclude the proof
proceeding by contradiction to reach a topological obstruction (using Index
Theory).

The constant C again denotes a universal one independent of variables,
only depending upon constants of the problem such as p.

For each initial data u0, u(t) denotes the solution of (1) satisfying u(0) =
u0, and for each (T, a) ∈ IR2, wT,a and qT,a denote the auxiliary functions
derived from u by transformations (3) and (13).

Part I: Initialization and reduction to a finite dimensional prob-
lem
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In this section, we first use continuity arguments to show that for A, s0 large
enough (to be fixed later), for (u0, T, a) close to (û0, T̂ , â), qT,a is defined at
s = s0, and satisfies qT,a(s0) ∈ VA(s0) (Step 1). After, we aim at finding
(T, a) such that qT,a(s) in VA(s) for s ≥ s0. For this purpose, we reduce
through a priori estimates the control of qT,a(s) in VA(s) to the control of

(q0,T,a, q1,T,a)(s) in V̂A(s) for s ≥ s0 (Step 2).
Step 1: Initialization

We use here the fact that q̂T̂ ,â(s) ∈ VÂ(s) for any s ≥ ŝ0, and the continuity
of qT,a with respect to initial data u0 and (T, a), to insure that for fixed

s0 ≥ ŝ0, qT,a(s0) ∈ V2Ã(s0), for (u0, T, a) close to (û0, T̂ , â). Hence, if A is
large enough, we have qT,a(s0) ∈ VA(s0) and qT,a(s0) is “small” in a way.

Lemma 4.1 (Initialization) For each s0 > ŝ0 there exist V∞ neighbor-
hood of û0 in H and D1(s0) neighborhood of (T̂ , â) in IR2, such that for each
u0 ∈ V∞, (T, a) ∈ D1(s0), q(T, a, s) is defined (at least) for s ∈ (− log T, s0],
and qT,a(s0) ∈ V2Â(s0).

Proof of Lemma 4.1:
∀T > 0, ∀a ∈ IR, qT,a(s) is defined on:

(− log T,+∞), if T ≤ T̂ , or (− log T,− log(T − T̂ )), if T > T̂ .
Therefore, qT,a(s) is defined on (− log T, s0] for T near T̂ .

i) Reduction to the continuity of qT,a(s0) ∈ L∞(IR)
Let s0 > ŝ0. It is enough to prove that ∀ε > 0, there exist V and D such
that ∀u0 ∈ V, (T, a) ∈ D,

‖qT,a(s0) − q̂T̂ ,â(s0)‖L∞(IR) ≤ ε. (55)

Indeed, if it is the case, then,

∀m ∈ {0, 1, 2}, |qm,T,a(s0) − q̂m,T̂ ,â(s0)| ≤ Cε, (56)

|q−,T,a(y, s0) − q̂−,T̂ ,â(y, s0)| ≤ Cε(1 + |y|2), (57)

‖qe,T,a(s0) − q̂e,T̂ ,â(s0)‖L∞(IR) ≤ Cε. (58)

(56) and (58) follow directly from (55). For (57), write
q−(y, s) = χ(y, s)q(y, s) − ∑2

m=0 qm(s)hm(y), and use (55) and (56).
Using q̂T̂ ,â(s0) ∈ VÂ(s0) and taking ε > 0 small enough yields the conclusion
of lemma 4.1.

ii) Continuity of qT,a(s0) ∈ L∞(IR)
We have:

qT,a(y, s0) − q̂T̂ ,â(y, s0) = wT,a(y, s0) − ŵT̂ ,â(y, s0)
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= e
− s0

p−1 {u(e−s0/2y + a, T − e−s0) − û(e−s0/2y + â, T̂ − e−s0)}
= e−

s0
p−1 {u(e−s0/2y + a, T − e−s0) − û(e−s0/2y + a, T − e−s0)}

+e
− s0

p−1 {û(e−s0/2y + a, T − e−s0) − û(e−s0/2y + â, T − e−s0)}
+e−

s0
p−1 {û(e−s0/2y + â, T − e−s0) − û(e−s0/2y + â, T̂ − e−s0)}.

Since u0 → u(t) ∈ C∞([
∧T −e−∧∫′

∈ , ∧T − e−∫′
∈ ], C∞(IR)) is defined and continuous

(for u0 near û0), we have the conclusion.

Step 2: Uniform finite dimensional reduction
This step is similar to Step 2 of Part 1 in the proof of Theorem 1. Here
we show that for A and s0 to be fixed later, if qT,a(s0) is “small” in VA(s0),
then, the control of qT,a(s) in VA(s) for s ≥ s0 reduces to the control of

(q0,T,a, q1,T,a)(s) in V̂A(s).

Lemma 4.2 (Control of q by (q0, q1) in VA) There exists A2 > 2Â
such that for each A ≥ A2, there exists s2(A) > 0 such that for each s0 ≥
s2(A), we have the following properties:

i) For any q, solution of equation (15), satisfying
- q(s0) ∈ V2Â(s0) and,
- for s1 ≥ s0, ∀s ∈ [s0, s1], q(s) ∈ VA(s),
we have: ∀s ∈ [s0, s1],

|q2(s)| ≤ A2s−2 log s− s−3

|q−(y, s)| ≤ A

2
(1 + |y|3)s−2

‖qe(s)‖L∞ ≤ A2

2
√
s
.

Moreover,
ii) For any q, solution of equation (15), satisfying

- q(s0) ∈ V2Â(s0)(⊂ VA(s0)),
- For s∗ > s0, q(s) ∈ VA(s) ∀s ∈ [s0, s∗], and
-q(s∗) ∈ ∂VA(s∗),
we have (q0, q1)(s∗) ∈ ∂V̂A(s∗), and there exists δ0 > 0 such that ∀δ ∈ (0, δ0),
(q0, q1)(s∗ + δ) 6∈ V̂A(s∗ + δ), (hence, q(s∗ + δ) 6∈ VA(s∗ + δ)).

Proof:
i) We apply Proposition 3.4 with Ã = max(2Â, (2Â)2), and take A2 =
max(Ã2, 2Â), and s2(A) = max(ŝ0 + 1, s̃2(Ã, A)) to have the conclusion.
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ii) We apply i) with s1 = s∗, and use Definition 3.1. Then, we apply lemma
3.2.

Part II: Topological argument
Below, we use the notations qT,a(s) = q(T, a, s), qT,a(y, s) = q(T, a, y, s),
qm,T,a(s) = qm(T, a, s).
In Part 1, we have reduced the problem to a finite dimensional one: for
each u0 close to û0, we have to find a parameter (T, a) = (T (u0), a(u0))
near (T̂ , â) such that (q0, q1)(T, a, s) ∈ VA(s) for s ≥ s0. We first study the
behavior of q̂(T, a) for (T, a) close to (T̂ , â). Then, we show a stability result
on this behavior for u0 near û0. Therefore, for a given u0, we proceed by
contradiction to prove Proposition 4.1, which implies Theorem 2.

Step 1: Study of q̂(T, a)
We study the behavior of q̂(T, a) for (T, a) close to (T̂ , â) in IR2.

Proposition 4.2 (Behavior of q̂(T, a) near (T̂ , â)) There exists A4 > 0
such that for each A ≥ A4, there exists s4(A) > 0 with the following prop-
erty:
For each s0 ≥ s4(A), there exists D4(s0) neighborhood of (T̂ , â) such that
for each (T, a) ∈ D4(s0)\{(T̂ , â)},
i) q̂(T, a, s) is defined for s ∈ (− log T, s0] and q̂(T, a, s0) ∈ VA(s0),
ii) ∃s∗(T, a) > s0 such that ∀s ∈ [s0, s∗(T, a)], q̂(T, a, s) ∈ VA(s) and
q̂(T, a, s∗(T, a)) ∈ ∂VA(s∗(T,A)), and if we define

Ψû0 : D4(s0)\{(T̂ , â)} −→ IR2 (59)

(T, a) −→ ŝ∗(T, a)
2

A
(q̂0, q̂1)(T, a, ŝ∗(T, a))

then Im(Ψû0) ⊂ ∂C, where C is the unit square of IR2.
Moreover,
iii)Ψû0 is continuous,
iv) ∀ε > 0, there exists a curve Γε ∈ D4(s0) such that d(Γε,Ψû0 , 0) = −1,
and ∀(T, a) ∈ Γε, |(T, a) − (T̂ , â)| ≤ ε.

Proof:
In order to prove i), ii), and iii), we take A ≥ A5 withA5 = max(2Â, A2, A3),
s0 ≥ s5(A) = max(ŝ0 + 1, s2(A), s3(A)), D5(s0) = D1(s0) (with the nota-
tions of lemma 4.1). For such A and s0, we can apply lemma 4.1, and lemma
4.2.
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Proof of i):
By lemma 4.1, ∀(T, a) ∈ D5(s0), q̂(T, a, s) is defined (at least) for s ∈
(− log T, s0] and q̂(T, a, s0) ∈ V2Â(s0) ⊂ VA(s0), which proves i).

Proof of ii):
We claim that ∀(T, a) ∈ D5(s0)\{(T̂ , â)}, ∃s(T, a) > s0such that q̂(T, a, s) 6∈
VA(s). Indeed:

Case 1: T > T̂ :
Since q̂(T, a, y, s) = e−

s
p−1 û(a+ ye−

s
2 , T − e−s)−ϕ(y, s), q̂(T, a, s) is defined

on [s0,− log(T − T̂ )) and not after. Suppose that q̂(T, a, s) does not leave
VA(s) for s ∈ [s0,− log(T − T̂ )), then, ∀y ∈ IR, ∀s ∈ [s0,− log(T − T̂ )),

|q̂(T, a, y, s)| ≤ C(A)√
s

(Cf Definition 3.2).

Since û(x, t) = (T − t)
− 1

p−1 (q̂(T, a, x−a√
T−t

,− log(T − t)) + ϕ( x−a√
T−t

,− log(T −
t))), lim supt→T̂ ‖û(t)‖L∞(IR) ≤ CT,T̂ ,A < +∞. This contradicts the fact

that û(t) blows up at time T̂ .
Case 2: T ≤ T̂ and (T, a) 6= (T̂ , â):

q̂(T, a, s) is defined on [s0,+∞). Suppose that q̂(T, a, s) does not leave VA(s)

for s ∈ [s0,+∞). Then, ∀y ∈ IR, ∀s ∈ [s0,+∞), |q̂(T, a, y, s)| ≤ C(A)√
s

(Cf

Definition 3.2). Hence, by (13),

limt→T ‖(T − t)
1

p−1u(a+
√

(T − t)| log(T − t)|z, t)− f(z)‖L∞ = 0, and from
Proposition 3.1, u(t) blows up at time T at one single point; x = a. Since
(T, a) 6= (T̂ , â), we have a contradiction. Therefore, q̂(T, a, s) leaves VA(s)
for s ≥ s0.

In conclusion, we derive: ∀(T, a) ∈ D\{(T̂ , â)}, ∃s∗(T, a) > s0 such that
∀s ∈ [s0, s∗(T, a)], q̂(T, a, s) ∈ VA(s) and q̂(T, a, s∗(T, a)) ∈ ∂VA(s∗(T,A)).
( ŝ∗(T, a) > s0 since q̂(T, a, s) is in V2Â(s0) which is strictly included in
VA(s0)). If now we define Ψû0 by (59), then we see from lemma 4.2 that
Im(Ψû0) ⊂ ∂C.

Proof of iii):
Let (T, a) ∈ D5(s0)\(T̂ , â). We have explicitly for m = 0, 1:
q̂m(T, a, s) =

∫

dµkm(y)χ(y, s)q̂(T, a, y, s)

=
∫

dµkm(y)χ(y, s)e−
s

p−1 û(a + ye−s/2, T − e−s) − ∫

dµkm(y)χ(y, s)ϕ(y, s).
From the continuity of u(x, t) with respect to (x, t), and ii) of lemma

4.2, ŝ∗(T, a) and ŝ∗(T,a)2

A (q0, q1)(T, a, ŝ∗(T, a)) are continuous with respect
to (T, a).

Proof of iv):
Let ε > 0. We now construct Γε satisfying d(Γε,Ψû0 , 0) = −1 and ∀(T, a) ∈
ΓA,s1 , |(T, a) − (T̂ , â)| ≤ ε. This will be implied by the following:
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Lemma 4.3 There exists A6 > 0 such that ∀A ≥ A6, ∃s6(A) > 0 satisfying
the following property:
∀s0 ≥ s6(A), ∃D6(s0) neighborhood of (T̂ , â) such that ∀ε > 0,
∃s1(A, ε, s0) > s0, ∃Γε, a 1-manifold in D6(s0) satisfying:
∀(T, a) ∈ Γε, |(T, a) − (T̂ , â)| ≤ ε
∀s ∈ [s0, s1], q̂(T, a, s) ∈ VA(s),

(q̂0, q̂1)(T, a, s1) ∈ ∂V̂A(s1),

d(Γε, (q̂0, q̂1)(., ., s1), 0) = −1. (60)

a) Proof of lemma 4.3: The proof is not difficult, but it is a bit technical.
See Appendix B for more details.

b) Lemma 4.3 implies iv):
Let A4 = max(A5, A6), and A ≥ A4. Let s4(A) = max(s5(A), s6(A)), and
s0 ≥ s4(A). Let D4(s0) = D5(s0) ∩D6(s0), and ε > 0.
Then, according to the beginning of Proof of Proposition 4.2, i) ii) and iii)
hold. We take now s1 = s1(A, ε, s0) and Γε. By lemma 4.3, we see that

∀(T, a) ∈ Γε, s∗(T, a) = s1, and Ψû0(T, a) =
s2
1

A (q̂0, q̂1)(T, a, s1). From (60),
we derive, d(Γε,Ψû0 , 0) = −1, which concludes the proof of Proposition 4.2.

Step 2: Behavior of q(T, a) for u0 near û0.
Now, we fix A0 = 1 + sup(2Â, A2, A3, A4), and then

s0 = s0(A0) = sup(ŝ0, s2(A0), s3(A0), s4(A0)). Applying lemma 4.1 gives us
V∞, and D1(s0). We then fix D0 = D1(s0) ∩D4(s0). Applying proposition
4.2 with s0 and ε0 > 0 small enough gives us the curve Γ0 = Γε0 , included
in D0. We consider now Γ0 as fixed.

Our purpose is to show that for u0 near û0, the behavior of q(T, a) on
the curve Γ0 = Γ(û0) is the same as q̂(T, a). More precisely, we have:

Proposition 4.3 (Stability result on the behavior on Γ0, for u0 near
û0) ∀ε > 0, ∃Vε ⊂ V∞, neighborhood of û0 such that ∀u0 ∈ Vε, ∀(T, a) ∈ Γ0,
i) q(T, a, s) is defined for s ∈ (− log T, s0] and q(T, a, s0) ∈ VA0(s0),
ii) ∃s∗(T, a) > s0 such that ∀s ∈ [s0, s∗(T, a)], q(T, a, s) ∈ VA0(s), and
(q0, q1)(T, a, s∗(T, a)) ∈ ∂V̂A0(s∗(T, a)). Then we can define

Ψu0 : γ −→ ∂C (61)

(T, a) −→ s∗(T, a)
2

A0
(q0, q1)(T, a, s∗(T, a))
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where C is the unit square of IR2.
Moreover,
iii) Ψu0 is a continuous mapping from Γ0 to ∂C,
iv) ‖Ψu0 |Γ0

− Ψû0 |Γ0
‖L∞(Γ0) ≤ ε

Proof:
We first show a local result, then by compactness arguments we conclude
the proof. We claim the following:

Lemma 4.4 (Punctual stability on Γ0) ∀ε > 0, ∀(T, a) ∈ Γ0, ∃Dε,T,a

neighborhood of (T, a) in D0, ∃Vε,T ,a neighborhood of û0 in V such that:
∀(T ′, a′) ∈ Dε,T,a, ∀u0 ∈ Vε,T ,a,
i) q(T ′, a′, s) is defined (at least) for s ∈ (− log T, s0] and q(T ′, a′, s0) ∈
VA0(s0),
ii)∃s∗(T ′, a′) > s0 such that ∀s ∈ [s0, s∗(T ′, a′)], q(T ′, a′, s) ∈ VA0(s), and
(q0, q1)(T

′, a′, s∗(T ′, a′)) ∈ ∂V̂A0(s∗(T
′, a′)).

Moreover,

|s∗(T
′, a′)2

A0
(q0, q1)(T

′, a′, s∗(T
′, a′))−s∗(T

′, a′)2

A0
(q̂0, q̂1)(T

′, a′, ŝ∗(T
′, a′))| ≤ ε.

(62)

We remark that Proposition 4.3 follows from lemma 4.4. Indeed, for ε > 0,
from lemma we write:

Γ0 ⊂ ∪(T,a)∈Γ0
Dε,T,a,

and using the compactness of Γ0, we have the conclusion.

Proof of Lemma 4.4
We have explicitly for u0 ∈ H, s ∈ (− log T,− log(T−T̂ )) if T > T̂ , otherwise
s ∈ (− log T,+∞), and m = 0, 1
qm,T,a(s) =

∫

dµkm(y)χ(y, s)q(T, a, y, s)

=
∫

dµkm(y)χ(y, s)e
− s

p−1u(a + ye−s/2, T − e−s) −
∫

dµkm(y)χ(y, s)ϕ(y, s).
Therefore, using the continuity of u(x, t) with respect to (u0, x, t),
(q0, q1)(T, a, s) is a continuous function of (u0, T, a, s). Using this fact and
the transversality of (q̂0, q̂1)(T, a, ŝ∗(T, a)) on V̂A0(s∗(T, a)) (lemma 4.2 ii)),
i) and ii) follow then easily.
This concludes the proof of Proposition 4.3.

Step 3: The conclusion of the proof
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From continuity properties of the topological degree, there exists ε1 >
0 such that ∀Ψ ∈ C(−′, IR

∈) satisfying ‖Ψ − Ψû0‖L∞(Γ0) ≤ ε1, we have
d(Γ0,Ψ, 0) = −1.
Applying Proposition 4.3, with ε = ε1, we have ∀u0 ∈ Vε∞, d(Γ0,Ψu0 , 0) =
−1.
We claim that the conclusion of Proposition 4.1 follows with A0, s0, D0 and
V′ = Vε∞. Indeed, by contradiction as in section 3: suppose that for u0 ∈ V′,
we have ∀(T, a) ∈ D0, there exists s ≥ s0, q(T, a, s) 6∈ VA0(s). Let s∗(T, a)
be the infimum of all these s. We now remark that Ψu0 is defined on D0

(lemma 4.1 and lemma 4.2). Ψu0 is continuous from D0 to ∂C (see proof of
Proposition 4.2 iii), and d(Γ0,Ψu0 , 0) = 0, which is a contradiction. Hence
Proposition 4.1 is proved, which concludes the proof of Theorem 2.

4.2 Case N ≥ 2:

Let us consider û0 an initial data in H, constructed in Theorem 1. Let û(t)
be the solution of equation (1):

ut = ∆u+ |u|p−1u, u(0) = û0.

Let T̂ be its blow-up time and â be its blow-up point.
Although the proof of Theorem 1 was given in 1 dimension, we know

that there exists Â > 0, ŝ0 > log T̂ such that ∀s ≥ ŝ0, q̂T̂ ,â(s) ∈ VÂ(s),
where:
- q̂T̂ ,â is defined in (13) by:

qT̂ ,â(y, s) = e
− s

p−1 û(â+ ye−
s
2 , T̂ − e−s)− [

Nκ

2ps
+ (p− 1 +

(p− 1)2

4ps
|y|2)−

1
p−1 ],

and
-Definitions 3.1 and 3.2 are still good to define VÂ(s), if we understand qm(s)
to be a vector valued function, as defined in section 2 (see (27) and (28)),
and |qm(s)| to be the supremum of of all coordinates of qm(s). (By the same
way, the definition of V̂A(s) given in 3.3 is good here).

With these adaptations, our purpose is summarized in the following
Proposition, analogous to Proposition 4.1:

Proposition 4.4 (Reduction) There exist A0 > 0, s0 > 0, D0 neighbor-
hood of (T̂ , â) in IR1+N , and V′ neighborhood of û0 in H with the following
property:
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∀u0 ∈ V′,∃(T ,a) ∈ D′ such that ∀s ≥ s0, qT,a(s) ∈ VA0(s), where qT,a is
defined by (13), and u(t) is the solution of equation (1) with initial data
u(0) = u0.

Indeed, once this proposition is proved, from (3), (13) and definitions 3.1,
3.2, we have:

lim
t→T

(T − t)
1

p−1u(a+ ((T − t)| log(T − t)|) 1
2 z , t) = f(z)

uniformly in z ∈ IRN , with

f(z) = (p− 1 +
(p− 1)2

4p
|z|2)−

1
p−1 .

Proposition 3.1 (which is true in N dimensions) applied to u(x− a, t) then
shows directly that u(t) blows-up at time T at one single point: x = a.

Formally, the proof in the case N ≥ 2 and in the case N = 1 have exactly
the same steps with the same statements of Propositions and lemmas, under
the following obvious changes:

-(T̂ , â), (T, a) and (T ′, a′) are in IR1+N , and every neighborhood of such
a point is a neighborhood in IR1+N .

-In Part 2, C denotes the unit (1+N)-cube of IR1+N , Γ (and Γε, Γ0,...)
is a Lipschitz N-submanifold of IR1+N , forming the boundary of a bounded
connected Lipschitz open set of IR1+N , and all introduced topological degrees
different from zero are equal to (−1)N .

Moreover, the proofs can be adapted without difficulty to the case N ≥ 2,
even:
-the proof of Proposition 4.2, which relays on results of section 3 (subsection
3.3 and lemma 3.2) that are true in N dimensions (In particular, the lemma
3.5 of Bricmont and Kupiainen, with the adaptation IR → IRN ).
-the construction of Γε given in Appendix B can be simply adapted to the
case N ≥ 2.

A Proof of lemma 3.5

In this appendix, we prove lemma 3.5. Equation (15) has been studied in [3],
hence, our analysis will be very close to [3] (the proof is essentially the same
as in [3]). Lemma 3.5 relays mainly on the understanding of the behavior of
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the kernel K(s, σ, y, x) (see (20)). This behavior follows from a perturbation
method around e(s−σ)L(y, x).

Step 1: Perturbation formula for K(s, σ, y, x)

Since L is conjugated to the harmonic oscillator e−x2/8Lex2/8 = ∂2− x2

16 +
1
4 +1, we use the definition (20) of K and give a Feynman-Kac representation
for K:

K(s, σ, y, x) = e(s−σ)L(y, x)

∫

dµs−σ
yx (ω)e

∫ s−σ

0
V (ω(τ),σ+τ)dτ (63)

where dµs−σ
yx is the oscillator measure on the continuous paths ω : [0, s−σ] →

IR with ω(0) = x, ω(s− σ) = y, i.e. the Gaussian probability measure with
covariance kernel Γ(τ, τ ′)

= ω0(τ)ω0(τ
′)+2(e−

1
2
|τ−τ ′|− e− 1

2
|τ+τ ′| + e−

1
2
|2(s−σ)−τ ′+τ |− e− 1

2
|2(s−σ)−τ ′−τ |,

(64)
which yields

∫

dµs−σ
yx ω(τ) = ω0(τ) with

ω0(τ) = (sinh s−σ
2 )−1(y sinh τ

2 + x sinh s−σ−τ
2 ).

We have in addition

eθL(y, x) =
eθ

√

4π(1 − e−θ)
exp[−(ye−θ/2 − x)2

4(1 − e−θ)
].

Now, we derive from (63) a simplified expression for K(s, σ, y, x) consid-
ered as a perturbation of e(s−σ)L(y, x). In order to simplify the notation, we
write from now on (ψ,ϕ) for

∫

dµ(y)ψ(y)ϕ(y).

Lemma A.1 (Bricmont-Kupiainen) ∀s ≥ σ ≥ 1 with s ≤ 2σ, the kernel
K(s, σ, y, x) satisfies

K(s, σ, y, x) = e(s−σ)L(y, x)(1 +
1

s
P1(s, σ, y, x) + P2(s, σ, y, x))

where P1 is a polynomial

P1(s, σ, y, x) =
∑

m,n≥0,m+n≤2

pm,n(s, σ)ymxn

with |pm,n(s, σ)| ≤ C(s− σ) and

|P2(s, σ, y, x)| ≤ C(s− σ)(1 + s− σ)s−2(1 + |y| + |x|)4.

Moreover, |(k2, (K(s, σ) − (σs−1)2)h2)| ≤ C(s− σ)(1 + s− σ)s−2.
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Proof: See lemma 5 in [3].

Step 2: Conclusion of the proof of lemma 3.5

Proof of a): From (16), it follows easily that V (y, s) ≤ Cs−1. Using this
estimate and (63), we write:

|K(s, τ, y, x)| ≤ e(s−τ)L(y, x)
∫

dµs−τ
yx (ω)e

∫ s−τ

0
C(τ+t)−1dt

≤ e(s−τ)L(y, x)
∫

dµs−τ
yx (ω)(sτ−1)C ≤ Ce(s−τ)L(y, x) since s ≤ 2τ and dµs−τ

yx

is a probability.

Proof of c): See lemma 2 in [3].

Proof of b): We consider A′ > 0, A′′ > 0, A′′′ > 0 and ρ∗ > 0. Let s0 ≥
ρ∗, σ ≥ s0 and q(σ) satisfying (46). We want to estimate some components
of α(y, s) = K(s, σ)q(σ) (see (47)) for each s ∈ [σ, σ + ρ∗].

Since σ ≥ s0 ≥ ρ∗, we have: ∀τ ∈ [σ, s], τ ≤ s ≤ 2τ . Therefore,
up to a multiplying constant, any power of any τ ∈ [σ, s] will be bounded
systematically by the same power of s during the proof.

i) Estimate of α2(s):
α2(s) = (k2, χ(., s)K(s, σ)q(σ))

= σ2s−2q2(σ) + (k2, (χ(., s) − χ(., σ))σ2s−2q(σ))
+(k2, χ(., s)(K(s, σ) − σ2s−2)q(σ)).

From (46), (21) and (26), we have |σ2s−2q2(σ)| ≤ A′′s−2 log σ and

|(k2, (χ(., s) − χ(., σ))σ2s−2q(σ))| ≤ Ce−Cσσ−3/2(s− σ)σ2s−2 max(A′′,A′′′)√
σ

≤ CA′(s− σ)s−3 for σ ≥ s0 ≥ s1(A
′, A′′, A′′′, ρ∗).

We write (k2, χ(., s)(K(s, σ) − σ2s−2)q(σ)) as
∑2

r=0 br + b− + be where
br = (k2, χ(., s)(K(s, σ) − σ2s−2)hr)qr(σ),
b− = (k2, χ(., s)(K(s, σ) − σ2s−2)q−(σ)) and be = (k2, χ(., s)(K(s, σ) −
σ2s−2)qe(σ)).

For r = 0 or 1, we use lemma A.1, corollary 3.1, (21), (46), the fact that
e(s−σ)Lhr = e(1−r/2)(s−σ)hr and (k2, hr) = 0, and derive |br| =
|(k2, χ(., s)(K(s, σ)−e(s−σ)L)hr)qr(σ)+(k2, χ(., s)(e(s−σ)L−σ2s−2)hr)qr(σ)|
≤ CA′(s− σ)s−3 + Ce−Cs(s− σ) ≤ CA′(s− σ)s−3 ≤ CA′(s− σ)s−3.

We have by lemma A.1 and the same arguments |b2| = |(k2, (K(s, σ) −
σ2s−2)h2)q2(σ)+(k2, (−1+χ(., s))(K(s, σ)−σ2s−2)h2)q2(σ)| ≤ C(s−σ)(1+
s− σ)s−2A′′s−2 log s+ Ce−Cs(s− σ) ≤ CA′(s− σ)s−3

if σ ≥ s0 ≥ s2(A
′, A′′, ρ∗).

b− can be treated exactly as b0, it is bounded by C(s− σ)A′′′s−3.
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Since K(s, σ)− σ2s−2 = K(s, σ)− e(s−σ)L + (e(s−σ)L − 1) + (1− σ2s−2),
we write be = be,1+be,2+be,3 with be,1 = (k2, χ(., s)(K(s, σ)−e(s−σ)L)qe(σ)),
be,2 = (k2, χ(., s)

∫ s−σ
0 dτLeτLqe(σ)), be,3 = (k2, χ(., s)(1 − σ2s−2)qe(σ)).

From (46), we bound be,3 by C(s−σ)s−1A′′σ−1/2e−Cσ ≤ C(s− σ)A′s−3

if σ ≥ s0 ≥ s3(A
′, A′′, ρ∗). Since L is self-adjoint, |be,2| ≤

∫ e−y2/4√
4π

dyL(k2χ(., s))(y)
∫ s−σ
0 dτ

∫

dx e(s−σ)√
4π(1−e−1)

exp[− (ye−τ/2−x)2

4(1−e−τ ) ]A′′σ−1/2.

Now, we have e
1
2
[− y2

4
− (ye−τ/2−x)2

4(1−e−τ )
] ≤ e−C(K0)s ≤ e−2s, for |y| ≤ 2K0

√
s

and |x| ≥ K0
√
σ (if K0 is big enough and s0 ≥ ρ∗). Hence, |be,2| ≤

CA′′s−1/2
∫

e−y2/8dy
∫ s−σ
0 dτ

∫

dx e−s√
4π(1−e−1)

exp[−1
2

(ye−τ/2−x)2

4(1−e−τ ) ]

≤ CA′′s−1/2(s− σ)e−s ≤ CA′(s− σ)s−3 if σ ≥ s0 ≥ s4(A
′, A′′, ρ∗).

Using these techniques and lemma A.1 we bound be,1 in the same way.
Adding all these bounds yields the bound for |α2(s)|.

ii) Estimate of α−(y, s):
By definition, α−(y, s)

= P−(χ(., s)K(s, σ)q(σ)) = P−(χ(., s)K(s, σ)q−(σ))

+
2

∑

r=0

qr(σ)P−(χ(., s)K(s, σ)hr) + P−(χ(., s)K(s, σ)qe(σ)) (65)

where P− is the L2(IR, dµ) projector on the negative subspace of L (see
subsection 2.2). In order to bound the first term, we proceed as in [3]

K(s, σ)q−(σ) =

∫

dxex
2/4K(s, σ, ., x)f(x) (66)

where f(x) = e−x2/4q−(x, σ). From Step 1, we have ex2/4K(s, σ, y, x) =
N(y, x)E(y, x) with

N(y, x) = [4π(1 − e−(s−σ)]−1/2es−σex
2/4e

− (y−e−(s−σ)/2x)2

4(1−e−(s−σ)) (67)

and E(y, x) =
∫

dµs−σ
yx (ω)e

∫ s−σ

0
V (ω(τ),σ+τ)dτ . Let f0 = f and for m ≥ 1,

f (−m−1)(y) =
∫ y
−∞ dxf (−m)(x). From (46) and the following lemma, we can

bound f (−m):

Lemma A.2 |f (−m)(y)| ≤ CA′′′s−2(1 + |y|3)3−me−y2/4.
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Proof: See lemma 6 in [3].
By integrating by parts, we rewrite (66) as:

(K(s, σ)q−(σ))(y) =
2

∑

r=0

(−1)r+1
∫

∂r
xN(y, x)∂xE(y, x)f (−r−1)(x)dx

−
∫

∂3
xN(y, x)E(y, x)f (−3)(x)dx. (68)

From (67), we get for s− σ ≥ 1 and r ∈ {0, 1, 2, 3}
|∂r

xN(y, x)| ≤ Ce−
r(s−σ)

2 (1 + |y| + |x|)rex
2/4e(s−σ)L(y, x).

Using the integration by parts formula for Gaussian measures (see [11]),
we have:

∂xE(y, x) =
1

2

∫ s−σ

0

∫ s−σ

0
dτdτ ′∂xΓ(τ, τ ′)

∫

dµs−σ
yx (ω)V ′(ω(τ), σ + τ)

V ′(ω(τ ′), σ + τ ′)e
∫ s−σ

0
dτ ′′V (ω(τ ′′),σ+τ ′′) (69)

+
1

2

∫ s−σ

0
dτ∂xΓ(τ, τ)

∫

dµs−σ
yx (ω)V ′′(ω(τ), σ + τ)e

∫ s−σ

0
dτ ′′V (ω(τ ′′),σ+τ ′′).

By (16), we have V (y, s) ≤ Cs−1 and |dnV
dyn | ≤ Cs−n/2 for n = 0, 1, 2.

Combining this with (64) and using s ≤ 2σ we have
∫

dµs−σ
yx (ω)e

∫ s−σ

0
dτ ′′V (ω(τ ′′),σ+τ ′′) ≤ C and |∂xE(y, x)| ≤ Cs−1(s−σ)(1+s−

σ)(|y| + |x|).
Using (46), (68) and all these bounds, we get

|(K(s, σ)q−(σ))(y)| ≤ CA′′′s−2e−(s−σ)/2(1 + |y|3) if σ ≥ s0 ≥ s5(ρ
∗) and

s− σ ≥ 1. This yields |(P−χ(., s)K(s, σ)q−(σ))(y)| ≤ CA′′′s−2e−(s−σ)/2(1 +
|y|3) if s− σ ≥ 1. For s− σ ≤ 1, we use directly lemma A.1, corollary 3.1,
(46) and C ≤ e−(s−σ)/2 to get the same estimate.

Now, we consider the second term in (65) (r = 0, 1, 2). From corollary
3.1, lemma A.1, and the fact that |y| ≤ 2K0s

1/2, we obtain:

|qr(σ)(χ(., s)K(s, σ)hr)(y) − qr(σ)e(s−σ)(1−r/2)(χ(., s)hr)(y)|
≤ Cmax(A′, A′′)s−3+1/2 log s.(s− σ)(1 + s− σ)es−σ(1 + |y|3) (70)

Hence P−{qr(σ)(χ(., s)K(s, σ)hr)(y) − qr(σ)e(s−σ)(1−r/2)(χ(., s)hr)(y)} sat-
isfies the same bound. Since P−hr = 0 and |(1 − χ(., s))hr | ≤ Cs−1/2(1 +
|y|3), we can bound qr(σ)e(s−σ)(1−r/2)P−(χ(., s)hr) by (70). Hence, the sec-
ond term of (65) is bounded by CA′′′s−2e−(s−σ)/2(1 + |y|3) if σ ≥ s0 ≥
s6(A

′, A′′, A′′′, ρ∗).

44



For the last term in (65), we use (46) and a) of lemma 3.5 to get

‖(1 + |y|3)−1χ(., s)K(s, σ)qe(σ)‖L∞ ≤ CA′′es−σs−1/2 sup
y,x

(1 + |y|3)−1

. exp[−1

2

(x− ye−(s−σ)/2)2

4(1 − e−(s−σ))
]χ(y, σ + (s− σ))(1 − χ(x, σ))

≤
{

CA′′s−2 s− σ ≤ t0
e−s s− σ ≥ t0

for a suitable constant t0. This yields a bound on the last term in (65) which
can be written as CA′′e−(s−σ)2s−2(1 + |y|3) for σ ≥ s0 large enough.

Hence, combining all bounds for terms in (65), we have

|α−(y, s)| ≤ Cs−2(A′′′e−(s−σ)/2 +A′′e−(s−σ)2)(1 + |y|3).

Estimate of αe(y, s):
We write αe(y, s) = (1−χ(y, s))K(s, σ)q(σ) = (1−χ(y, s))K(s, σ)(qb(σ)

+qe(σ)). From (46) and corollary 3.1, we have |qb(y, s)| ≤ CA′′′σ−1/2 and
‖(1 − χ(y, s))K(s, σ)qb(σ)‖L∞ ≤ A′′′es−σs−1/2 if σ ≥ s0 ≥ s7(A

′, A′′, A′′′).
Using (46) and the following lemma from [3]:

Lemma A.3 ‖K(s, σ)(1 − χ(σ))‖L∞ ≤ Ce−(s−σ)/p

we have ‖(1−χ(y, s))K(s, σ)qe(σ)‖L∞ ≤ A′′e−(s−σ)/ps−1/2, which yields the
conclusion.

This concludes the proof of lemma 3.5.

B Proof of lemma 4.3

Let us recall lemma 4.3:

Lemma B.1 There exists A6 > 0 such that ∀A ≥ A6, ∃s6(A) > 0 satisfying
the following property:
∀s0 ≥ s6(A), ∃D6(s0) neighborhood of (T̂ , â) such that ∀ε > 0,
∃s1(A, ε, s0) > s0, ∃Γε, a 1-manifold in D6(s0) satisfying:
∀(T, a) ∈ Γε, |(T, a) − (T̂ , â)| ≤ ε
∀s ∈ [s0, s1], q̂(T, a, s) ∈ VA(s),

(q̂0, q̂1)(T, a, s1) ∈ ∂V̂A(s1), (71)

d(Γε, (q̂0, q̂1)(., ., s1), 0) = −1. (72)

45



In this lemma, we want to control the evolution of q̂(T, a, s) in VA(s),
for (T, a) close to (T̂ , â). Hence, in a first step, we use q̂T̂ ,â(s) ∈ VÂ(s)
∀s ≥ ŝ0, to give estimates on different components of q̂T,a(s), for (T, a) near

(T̂ , â). From these estimates, we introduce a function (q̃0, q̃1)(T, a, s) close
to (q̂0, q̂1)(T, a, s), but much more simple, and show that (q̃0, q̃1) satisfies
properties analogous to (71) and (72). Therefore, we extend this result to
(q̂0, q̂1), by continuity, and then finish the proof of lemma 4.3.

Step 1: Asymptotic development of q̂(T, a) for (T, a) near (T̂ , â)
Applying (13) and (3), one time to (T̂ , â) and one time to (T, a), we write:

q̂(T, a, y, s) = {(1 − τ)
− 1

p−1 q̂(T̂ , â,
y + α√
1 − τ

, s− log(1 − τ))} (73)

+ {(1 − τ)
− 1

p−1 (p− 1 +
(p− 1)2(y + α)2

4p(1 − τ)(s− log(1 − τ))
)
− 1

p−1

− (p− 1 +
(p− 1)2y2

4ps
)−

1
p−1 }

+ {(1 − τ)−
1

p−1
κ

2p(s− log(1 − τ))
− κ

2ps
},

with τ = (T − T̂ )es, and α = (a− â)es/2. Now, we use q̂(T̂ , â, s) ∈ VÂ(s) for
s ≥ ŝ0, to give a development of q̂T,a(y, s), when |τ | ≤ 1

2 , and |α| ≤ 1
2 .

Lemma B.2 (development of q̂(T, a) near (T̂ , â)) There exists s7 > 0
such that ∀s ≥ s7, ∀(T, a) ∈ IR2 satisfying |(T − T̂ )es| ≤ 1

2 and |(a− â)e s
2 | ≤

1
2 , we have:

q̂0(T, a, s) = q̃0(T, a, s) +O(
log s

s5/2
+

τ√
s

+ τ2 + α2 1

s
) (74)

q̂1(T, a, s) = q̃1(T, a, s) +O(
α log s

s2
+
α2

s
+
τ

s
+

log s

s3
)

∂q̂0
∂T

(T, a, s) =
∂q̃0
∂T

(T, a, s) + es(O(τ + s−1/2)), (75)

∂q̂0
∂a

(T, a, s) =
∂q̃0
∂a

(T, a, s) + es/2O(
log s

s2
+

|α|
s

), (76)

∂q̂1
∂T

(T, a, s) =
∂q̃1
∂T

(T, a, s) + esO(
1√
s
), (77)

∂q̂1
∂a

(T, a, s) =
∂q̃1
∂a

(T, a, s) + es/2O(
|τ |
s

+
1

s2
+

|α|
s

) (78)
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with

q̃0(T, a, s) = − 5κ

8ps2
+ τ

κ

p− 1
(79)

q̃1(T, a, s) = −α
s

κ

2p
,

and τ = (T − T̂ )es and α = (a− â)e
s
2 .

Moreover,

|q̂2(T, a, s)| ≤ C
log s

s2
+ C

|τ |
s

+ Cτ2

|q̂−(T, a, y, s)| ≤ C(1 + |y|3)( 1

s2
+

|τ | + |α|
s3/2

)

|q̂e(T, a, y, s)| ≤ C√
s
.

Proof of lemma B.2:
The idea is simple: for s ≥ ŝ0, , we try to express each component of q̂(T, a)
in terms of the corresponding component of q̂(T̂ , â), and bound the residual
terms using q̂(T̂ , â, s) ∈ VÂ(s) and other estimates that follow from.

Hence, we first give various estimates following from q̂(T̂ , â, s) ∈ VÂ(s), and
then , we prove only some of the estimates in lemma B.2, since the other
estimates can be obtained in the same way.

i) We write the estimates following from q̂(T̂ , â, s) ∈ VÂ(s).

Lemma B.3 (Consequences of q̂(T̂ , â, s) ∈ VÂ(s)) ∃s16 > 0, ∀s ≥ s16,

|q̂(T̂ , â, y, s)| ≤ C√
s
, (80)

|q̂b(T̂ , â, y, s)| ≤
C log s

s2
(1 + |y|3), (81)

q̂0(T̂ , â, s) = − 5κ

8ps2
+ o(

1

s2
), |∂q̂0

∂s
(T̂ , â, s)| ≤ C

s2
, (82)

|q̂1(T̂ , â, s)| ≤ C
log s

s3
, (83)

|∂q̂
∂s

(T̂ , â, y, s)| ≤ C
1 + |y|√

s
, (84)
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Proof of lemma B.3:
(80) and (81) follow directly from Definition 3.2.
After some simple calculations, we show that

∫

dµχ(y, s)R(y, s) = 5κ
8ps2 +

O(s−3). As in the proof of lemma 3.2, we write the equation satisfied by
q0(s):

dq̂0
ds

(T̂ , â, s) = q̂0(T̂ , â, s) +
5κ

8ps2
+O(

log s

s3
),

which implies (82).
By the same way, we write:

dq̂1
ds

(T̂ , â, s) =
1

2
q̂1(T̂ , â, s) +O(

log s

s3
),

which yields (83).
From (80), we derive that r = ∂q

∂s satisfies

∂r

∂s
=
∂2r

∂y2
− 1

2
y
∂r

∂y
+A(y, s)r +D(y, s),

with |A(y, s)| ≤ C and, if p ≥ 3
2 |D(y, s)| ≤ C

s , otherwise, |D(y, s)| ≤ C

sp− 1
2
.

By parabolic regularity, (84) follows.

ii) Proof of some estimates in lemma B.2: (74) and (75)
(The other estimates follow from similar techniques).

From (73), we have: q̂0(T, a, s) = I1 + I2 + I3, with

I1 = (1 − τ)−
1

p−1
∫

dµ(y)χ(y, s)q̂(T̂ , â, y+α√
1−τ

, s− log(1 − τ)),

I2 = (1 − τ)
− 1

p−1
∫

dµ(y)χ(y, s)(p − 1 + (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) )
− 1

p−1

−
∫

dµ(y)χ(y, s)(p− 1 + (p−1)2y2

4ps )
− 1

p−1

I3 =
∫

dµ(y)χ(y, s){(1 − τ)
− 1

p−1 κ
2p(s−log(1−τ)) − κ

2ps}.
-I3: We have easily: |I3| ≤ C|τ |s−1.
-I2: Since all quantities appearing in I2 are bounded, we can write:

I2 = O(e−s)+
∫

dµ(y){(p−1+ (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) )
− 1

p−1−(p−1+ (p−1)2y2

4ps )−
1

p−1 }
+ τ

p−1

∫

dµ(y)(p− 1 + (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) )
− 1

p−1 +O(τ2),

= O(e−s) +O(τ2)

+
∫

dµ(y){ (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) −
(p−1)2y2

4ps } −1
p−1(p− 1 + (p−1)2y2

4ps )
−1− 1

p−1

+O(
∫

dµ(y){ (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) −
(p−1)2y2

4ps }2)

48



+ τκ
p−1 + τ

p−1{
∫

dµ(y)(p− 1 + (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) )
− 1

p−1 −
∫

dµ(y)κ}, hence,

|I2− τκ
p−1 | ≤ Ce−s+Cτ2+C|τ |s−1+Cα2s−1+Cτ2s−2+Cα2s−2+Cα4s−2+

C|τ |s−1. Therefore,
|I2 − τκ

p−1 | ≤ Ce−s + Cτ2 + C|τ |s−1 + Cα2s−1.
-I1: Using (80), we write:

I1 = O(τs−1/2)+
∫

dµ(y)χ(y, s)q̂(T̂ , â, y+α√
1−τ

, s− log(1− τ)). If we introduce

a new integration variable: z = y+α√
1−τ

, we obtain: I1 = O(τs−1/2) +L1 +L2

with

L1 =
∫

χ(z, s− log(1 − τ))q̂(T̂ , â, z, s− log(1 − τ))
exp(− (z

√
1−τ−α)2

4
)

4π dz, and

L2 =
∫

{χ(z
√

1 − τ − α, s) − χ(z, s− log(1 − τ))}q̂(T̂ , â, z, s− log(1 − τ))

exp(− (z
√

1−τ−α)2

4
)

4π dz.

L1 =
∫

χ(z, s− log(1 − τ))q̂(T̂ , â, z, s− log(1 − τ))
exp(− z2

4
)

4π exp( τz2

4 )

exp(2αz
√

1−τ−α2

4 )dz

= O(τs−1/2) +
∫

χ(z, s− log(1 − τ))q̂(T̂ , â, z, s− log(1 − τ))
exp(− z2

4
)

4π {1 + 2αz
√

1−τ−α2

4 + 1
2(2αz

√
1−τ−α2

4 )2
∫ 1
0 exp(ξ( 2αz

√
1−τ−α2

4 ))dξ}dz.
Using (81), we obtain: L1 = O(τs−1/2)+q̂0(T̂ , â, s−log(1−τ))+αq̂1(T̂ , â, s−
log(1 − τ)) +O(α2s−2 log s). By (82) and (83), we have:
L1 = − 5κ

8ps2 +O(τs−1/2) +O(s−3) +O(α2s−2 log s).

|L2| ≤ C
∫

| z
√

1−τ−α√
s

− z√
s−log(1−τ)

|(|q̂b(T̂ , â, z, s−log(1−τ))|+|q̂e(T̂ , â, z, s−
log(1 − τ))|) exp(−Cz2)dz.
Using (81) for qb, (80) for qe, and the fact that qe ≡ 0 for |z| ≤ K0

√
s yields:

L2 ≤ C{|τ |s−1/2 + |α|s−1/2}(s−2 log s+ e−s). In conclusion,
I1 = − 5κ

8ps2 + O(τs−1/2) + O(s−5/2) + O(α2s−2 log s). Adding I1, I2 and I3
yields (74).

We compute ∂q̂0

∂τ instead of ∂q̂0

∂T , and then we use ∂q̂0

∂T = es ∂q̂0

∂τ to conclude.
With the previous notations, we write:
∂q̂0

∂τ (T, a, s) = ∂I1
∂τ + ∂I2

∂τ + ∂I3
∂τ .

∂I3
∂τ :

∂I3
∂τ = 1

p−1(1 − τ)−1− 1
p−1 κ

2p(s−log(1−τ)) (1 − 1
s−log(1−τ) ), and |∂I3

∂τ | ≤ Cs−1.

∂I2
∂τ :

∂I2
∂τ
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= 1
p−1(1 − τ)−1− 1

p−1
∫

dµ(y)χ(y, s)(p − 1 + (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) )
− 1

p−1 + (1 −
τ)

− 1
p−1

∫

dµ(y)χ(y, s) 1
p−1

(p−1)2(y+α)2(1−(s−log(1−τ)))
4p(1−τ)2(s−log(1−τ))2 (p−1+ (p−1)2(y+α)2

4p(1−τ)(s−log(1−τ)) )
−1− 1

p−1 .

Computing as for I2, we obtain: ∂I2
∂τ = O(τ) + κ

p−1 +O(s−1).

∂I1
∂τ :

∂I1
∂τ = M1 +M2 +M3 with

M1 = 1
p−1(1 − τ)−1− 1

p−1
∫

dµ(y)χ(y, s)q̂(T̂ , â, y+α√
1−τ

, s− log(1 − τ)),

M2 = 1
p−1(1 − τ)−

1
p−1

∫

dµ(y)χ(y, s) y+α
2(1−τ)3/2

∂q̂
∂y (T̂ , â, y+α√

1−τ
, s− log(1 − τ)),

M3 = 1
p−1(1 − τ)

− 1
p−1

∫

dµ(y)χ(y, s) 1
1−τ

∂q̂
∂s(T̂ , â,

y+α√
1−τ

, s− log(1 − τ)),

From (80), (84), and integration by parts we derive: | ∂I1
∂τ | ≤ |M1| + |M2| +

|M3| ≤ Cs−1/2.
this concludes the proof of lemma B.2.

Step 2: Behavior of (q̂0, q̂1) near blow-up
We use the explicit asymptotic development given in lemma B.2 to construct
a 1-manifold Γ̃ that is mapped by (q̂0, q̂1) into ∂V̂A(s).

Lemma B.4 (Behavior of (q̂0, q̂1)) ∃C0 = C0(p), ∃A9 > 0 ∀A ≥ A9,
∃s9(A) > 0 ∀s ≥ s9(A), ∃ΓA,s rectangle in

DA,s = (T̂ , â) + (−C0Ae
−ss−2, C0Ae

−ss−2) × (−C0Ae
− s

2 s−1, C0Ae
− s

2 s−1)

such that ∀(T, a) ∈ ΓA,s, (q̂0, q̂1)(T, a, s) ∈ ∂V̂A(s),
and d(ΓA,s, (q̂0, q̂1)(., ., s), 0) = −1.

Proof:
Since (q̃0, q̃1) given in (79) is almost the linear part of (q̂0, q̂1) (see lemma
B.2), we can first show for (q̃0, q̃1) an analogous version of lemma B.4, then
use lemma B.2 to conclude. We use scaling arguments to get uniform esti-
mates in s. Indeed, let us introduce:

Q̃ = (Q̃0, Q̃1) : (−C0A,C0A)2 −→ IR2 (85)

(τ̃ , α̃) −→ 1

A
(−5κ

8p
+ τ̃

κ

p− 1
,−α̃ κ

4p
),

and

Q̂s = (Q̂0, Q̂1)s : (−C0A,C0A)2 −→ IR2 (86)

(τ̃ , α̃) −→ s2

A
(q̂0, q̂1)(T̂ +

τ̃

ess2
, â+

α̃

e
s
2 s1

, s),
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where C0 = C0(p). Note that Q̃ is independent of s, and that

(q̃0, q̃1)(T, a, s) =
A

s2
(Q̃0, Q̃1)((T − T̂ )ess2, (a− â)e

s
2 s).

(q̂0, q̂1)(T, a, s) =
A

s2
(Q̂0, Q̂1)s((T − T̂ )ess2, (a− â)e

s
2 s).

The conclusion of lemma B.4 follows if we show that there exists a 1-manifold
Γ̃ in (−C0A,C0A)2 such that ∀(τ̃ , α̃) ∈ Γ̃, Q̂s(τ̃ , α̃) ∈ ∂C, and d(Γ̃, Q̂s, 0) =
−1. From lemma B.2, we compute for s ≥ s17(A): ‖Q̃− Q̂s‖C1((−CA,CA)2) ≤
C log s
A
√

s
→ 0 when s→ +∞.

It is easy to see that ∀η ∈ [0, 1), ∃Γ̃η rectangle such that ∀(τ̃ , α̃) ∈ Γ̃η,
Q̃(τ̃ , α̃) ∈ (1 + η)∂C, and d(Γ̃η , Q̃, 0) = −1.
From the continuity of topological degree, we know that there exist η0 >
0, ε0 > 0 such that for each curve Γ̃ (indexed by ∂C) satisfying ‖Γ̃ −
Γ̃0‖L∞(∂C) ≤ η0

√
2 (Γ̃0 itself is indexed by ∂C), for each continuous function

Q : (−C0A,C0A)2 −→ IR2 satisfying ‖Q̃−Q‖L∞((−C0A,C0A)2) ≤ ε0, we have:

d(Γ̃, Q, 0) = −1.
Since we have ‖Q̃ − Q̂s‖L∞((−C0A,C0A)2) ≤ C log s

A
√

s
, and from (85) Jac Q̃ =

− κ2

4p(p−1)A2 < 0, we can take s large enough, (s ≥ s11(A, ε0, η0)) so that:

−∀(τ̃ , α̃) ∈ Γ̃η0 , Q̂s(τ̃ , α̃) ∈ ext(1 +
η0

2
)C, (87)

−∀(τ̃ , α̃) ∈ (−C0A,C0A)2, JacQ̂s(τ̃ , α̃) < 0, (88)

-∀ω ∈ ImQ̂s ∩ ImQ̃, if ω = Q̂s(ξ) then

|ξ − Q̃−1(ω)| ≤ η0, (89)

−‖Q̃− Q̂s‖L∞((−C0A,C0A)2) ≤ ε0. (90)

By (90) and (87), we have d(Γ̃η0 , Q̂s, 0) = −1. Therefore, by (87), ∀ω ∈
(1+ η0

4 )C, d(Γ̃η0 , Q̂s, ω) = −1 (the degree is the same in the same component

of IR2\Q̂s(Γ̃η0)). Combining this with (88) and the definition of topological
degree for C1 functions yields ∀ω ∈ (1 + η0

4 )C, there exists a unique(τ̃ , α̃) ∈
IR2 such that Q̂s(τ̃ , α̃) = ω. Hence, Q̂s is a diffeomorphism from (Q̂s)

−1((1+
η0

4 )C) onto (1 + η0

4 )C. Thus there exists a piecewise C1 1-manifold Γ̃ interior

to Γ̃η0 , such that Q̂s maps Γ̃ onto ∂C (Γ̃ is diffeomorphic to ∂C). By (89),
|Γ̃ − Γ̃0,A| ≤ η0. Therefore, we derive: d(Γ̃, Q̂s, 0) = −1. This concludes the
proof of lemma B.4.
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Step 3: Conclusion of the proof of lemma 4.3
We take A ≥ A9, s0 ≥ max(ŝ0+1, s7, s9(A)) and ε > 0. ∀s1 > s0, we consider
DA,s1 and ΓA,s1 given by lemma B.4. If s1 ≥ s12(A, ε, s0), then ∀(T, a) ∈
ΓA,s1 , |(T, a)−(T̂ , â)| ≤ ε, and (T, a) ∈ D1(s0) (with the notations of lemma

4.1). Therefore, for such s1, we have |(T−T̂ )es1 | ≤ CA
s2
1

and |(a−â)e
s1
2 | ≤ CA

s1
.

This implies ∀s ∈ [s0, s1], |(T − T̂ )es| ≤ CA
s2 and |(a− â)e

s
2 | ≤ CA

s .
What we want to do now is to show that ∀s ∈ [s0, s1], q̂(T, a, s) ∈ VA(s).
By lemma B.2, we have:
For s0 ≥ s13(A), ∀(T, a) ∈ ΓA,s1 , ∀s ∈ [s0, s1]:

|q̂0(T, a, s)| ≤ CA

s2
(91)

|q̂1(T, a, s)| ≤ CA

s2
(92)

|q̂2(T, a, s)| ≤ C
log s

s2
(93)

|q̂−(T, a, y, s)| ≤ C(1 + |y|3) 1

s2
(94)

|q̂e(T, a, y, s)| ≤ C√
s
. (95)

Therefore, if A ≥ A14,

|q̂2(T, a, s)| ≤ A2 log s

s2
, |q̂−(T, a, y, s)| ≤ A(1 + |y|3) 1

s2
, |q̂e(T, a, y, s)| ≤

A2

√
s
.

(96)
It remains for us to show that |q̂m(T, a, s)| ≤ A

s2 , for m = 0, 1.
Following the proof of lemma 3.2, we easily prove:

Lemma B.5 (Transversality property) ∃A15 > 0, ∀A ≥ A15, ∃s15(A)
such that ∀s0 ≥ s15(A), ∀s1 > s0, for any solution q of (15), satisfying:
-Properties (91) to (95), for s ∈ [s0, s1],
-∃s ∈ (s0, s1] such that (q0, q1)(s) ∈ ∂V̂A(s),
we have the following property:
∃δ > 0 such that ∀s− ∈ (s− δ, s), (q0, q1)(s−) ∈ int(V̂A(s−)).

If A ≥ A15 and s0 ≥ s15(A), then by lemma B.5, ∀(T, a) ∈ ΓA,s1

∀s ∈ [s0, s1), (q̂0, q̂1)(T, a, s) ∈ int(V̂A(s)). (97)
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Indeed, this follows if we apply lemma B.5 to s1 ((q̂0, q̂1)(s1) ∈ ∂V̂A(s1) by
lemma B.4) and to s ∈ (s0, s1], and use
I = {s ∈ [s0, s1)|∀s′ ∈ [s, s1), (q̂0, q̂1)(T, a, s

′) ∈ int(V̂A(s′))}.
The conclusion of lemma 4.3 follows for A ≥ A6 = max(A9, A14, A15),
s0 ≥ max(ŝ0 + 1, s7, s9(A), s13(A), s15(A)), D6(s0) = D1(s0), and for ε > 0,
s1 = s12(A, ε, s0) and Γε = ΓA,s1 .
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