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We consider the following nonlinear heat equation

w = Au+|uPlu
{U(O) = o, (1)

where u : (z,t) € RV x [0,T) — R,
1<p, (N—2)p<N+2 and either up > 0 or (3N —4)p <3N +38. (2)

More general vector-valued heat equations can be considered with similar
results (see [MZ99] for more details) :

ur = Au+ F(lu|)u
{u(()) =y, 3)

where u : Q% [0,T) — RM, p satisfies (2), @ = RY or Q is a smooth bounded
convex domain of RN, F(|u|) ~ |[ulP~! as |u| — 400, and M € N.

We are interested in the blow-up phenomenon for (1). Many authors has
been interested in this topic. Let us mention for instance Friedman [Fri65],
Fujita [Fuj66], Ball [Bal77], Bricmont and Kupiainen [BKL94|, Chen and
Matano [CM89], Galaktionov and Vazquez [GV95], Giga and Kohn [GK89],
[GK87], [GK85], Herrero and Veldzquez [HV93], [HV92].

In the following, we consider u(t) a blow-up solution of (1) and denote its
blow-up time by 7. We aim at finding sharp uniform estimates at blow-up
and specifying the blow-up behavior of u(t). Such a study is done considering
equation (1) in its self-similar form : for all @ € RV, we define

r—a

. 5= —log(T 1), war(y,s) = (T — )i Tu(n,t).  (4)

y:



Therefore, w, 7 = w satisfies Vs > —log T, Vy € RV :

ow 1 w
— = — —q. - p—1 .
s Aw 5Y Vw pr—| + |w|P w (5)

Let us introduce the following Lyapunov functional associated with (5) :

1 1 1
E = — 2 — 2 _ P+1) d

)?
where p(y) = (271')7;772'
The question is to estimate w, 7(s) as s — 400, uniformly with respect to
a, whether a is a blow-up point or not (a is called a blow-up point if there
exists (an,t,) = (a,T) such that |u(a,,t,)| — +00).

Giga and Kohn showed that self-similar variables are convenient for de-
scribing the blow-up rate in the following sense : there exists €p(ug) > 0

such that Vs > s§(uo),

1
€0 < |w(s)|pe < —. (6)
€0
We first aim at sharpening this result in order to obtain compactness prop-

erties in our problem.

1 A Liouville Theorem for equation (5)

We are interested in classifying all global and bounded solutions of (5), for
all subcritical p :
p>1land (N—-2)p< N +2. (7)

We claim the following :

Theorem 1 (A Liouville Theorem for equation (5)) Assume (7)
and consider w a solution of (5) defined for all (y,s) € RN x R such that
Y(y,s) € RV xR, |w(y,s)| < C. Then, either w =0, or w =k or w(y,s) =
+(s — sg) where k = (p — 1)_P%1, s0 € R and ¢(s) = k(1 + es)_ﬁ.
Remark : ¢ is in fact an L* connection between two critical points of (5):
x and 0. Indeed,

= —% +¢P, p(—00) = K, p(+00) = 0.

Remark : A similar classification result can be obtained with a solution w
defined only on (—oo, s*) (see [MZ98]).

Theorem 1 has the following corollary :



Corollary 1 (A Liouville Theorem for equation (1)) Assume (7)
and consider u a solution of (1) defined for all (z,t) € RV x (—o0,0) such
1

that V(z,t) € RV x (—00,0), |u(z,t)| < C(—t) 7 1. Then, either u =0, or
1
u(z,t) = £6(T* —t) »-T for some T* > 0.

The proofs can be found in [MZ99] and [MZ98]. The key tools in the proof
are the following :

i) A classification of all possible linear behaviors of w(s) as s — —oo in
LA(EY) (L5 (®Y),

loc
ii) The following geometric transformations which keeps (5) invariant :

w(ya 3) - wa,b(ya 3) = ’U)(y + CLG%, s+ b)a

where a € RY and b € R,

iii) A blow-up criterion for (5) used for solutions close to the constant
point x (This criterion is also a blow-up criterion for (1) via the transfor-
mation (4)) :

If for some sp € R, I(w(sp)) > 0 where

p+1
— 2

Iw) = =28) + 2 ([ 1) Potiay) *
then w(s) blows up in finite time.
Remark : This criterion is sharp for solutions near constants. Indeed, if
w(sg) = Cp, then

w blows-up in finite time < |Co| > k & I(Cph) > 0.
Remark : The proof of the Liouville Theorem strongly relies on the exis-
tence of a Lyapunov functional for equation (5) and can not be extended to
other systems where the nonlinearity is not a gradient. In [Zaal, we go be-
yond this restriction and introduce new tools to prove a Liouville Theorem
of the same type for the following system

u = Au+ 0P, vy = Av +ul.

2 Localization at blow-up

We assume again (2). The estimate (6) of Giga and Kohn gives compactness
in the problem. Using a compactness procedure in the singular zone of
RV (which is, say {y | |w(y,s)| > £}), we find a solution satisfying the
hypotheses of Theorem 1. Therefore, Aw is small with respect to |w[? in
this singular zone (or equivalently, Awu is small with respect to |ulP). A



subcritical localization procedure introduced by Zaag [Zaa98] (under the
level of the constant k) allows us to propagate this estimate towards the
intermediate zone between the singular and the regular one. We claim the
following :

Theorem 2 (Comparison with the associated ordinary differential
equation) Assume (2) and consider T < Ty and ||lu||c2gny < Co. Then,
Ve > 0, there is C(e,Co, To) such that ¥(z,t) € RV x [0,T),

lug — |ulP~tu| < elulP + C.

Remark : This way, we prove that the solution of the PDE (1) can be
uniformly and globally in space-time compared to a solution of an ODE
(localized by definition). Note that the condition u(0) € C?*(RY) is not
restrictive because of the regularizing effect of the Laplacian.

Remark : Many striking corollaries can be derived from this theorem. It
implies in particular that no oscillation is possible near a blow-up point a,
and that |u(z,t)| = +oo as (z,t) — (a,T). Moreover, Yey > 0, there exists
to(eo) < T such that for all b € RV, if |u(b, )| < (1 — eo)w(T — )71 for
some t € [ty,T), then b is not a blow-up point (this specifies more precisely
a former result by Giga and Kohn where ty = to(ep, a)).

3 Optimal L* estimates at blow-up

We still assume (2). Using estimate (6) and the Liouville Theorem, we make
a compactness argument to get the following sharp estimates :

Theorem 3 (L™ refined estimates for w(s)) Assume that (2) holds.
Then, there ezist positive constants C; for 1+ = 1,2,3 such that if u is a
solution of (1) which blows-up at time T and satisfies u(0) € C3(RY), then
Ve > 0, there exists s1(€) > —logT such that Vs > si, Va € RV,

lwar(s)llze < m+(5E+65,  [Vwar(s)le < <L,
IV2wer(s)e < 2, IV3war(s)lree < o5

Remark : In the case N = 1, Herrero and Veldzquez (Filippas and Kohn
also) proved some related estimates, using a Sturm property introduced in
particular by Chen et Matano (the number of space oscillations is a decreas-
ing function of time).

Remark : The constant ]g—; is optimal (see Herrero and Veldzquez, Bric-
mont and Kupiainen, Merle and Zaag).



4 Different notions of blow-up profiles and the sta-
bility question

We assume (2). We consider a € RV, a blow-up point of u(t), solution of
(1). From translation invariance, we can assume a = 0. We would like to
know whether u(t) (or wor(s) defined in (4)) has a universal behavior or
not, as t = T (or s = +00).

Filippas, Kohn, Liu, Herrero et Velazquez prove that w behaves in two
- either VR > 0, sup

distinct ways :
Q. ) LN zl: ) o ( 1 )
w ,S - H - -— - = _
Iy\SR Y 2p8 2 k=1 yk 31+6

as s — +oo, for some § > 0 where [ € {1,..., N}, Q is a N x N orthogonal
matrix and I; is the [ x [ identity matrix.

-or VR >0, sup |w(y,s) — k| < C(R)e ¢ for some \g > 0.
ly|<R

From a physical point of view, these results do not tell us much about the
transition between the singular zone (w > « where a > 0) and the regular
one (w ~ 0). In [MZ99], we specify this transition by proving the existence
of a profile in the variable z = %

Theorem 4 (Existence of a blow-up profile for equation (1))
Assume (2) holds. There exists | € {0,1,...,N} and a N x N orthogonal
matriz Q such that w(Q(z)\/s,s) — fi(z) uniformly on compact sets |z| < C,

l
where fi(z) = (p— 1+ ZZ 3" 5277 if 1> 1 and fo(2) = 5 = (p -
. i=1

1) 71,
This result has been proved by Veldzquez in [Vel92]. However, the con-
vergence speed depends on the considered blow-up point in [Vel92], whereas
they are uniform in [MZ99]. This uniformity allows us to derive the stability
of the profile fy in [FKMZ].

Using renormalization theory, Bricmont and Kupiainen prove in [BK94]
the existence of a solution of (5) such that

Y C
Vsl T s
Merle and Zaag prove the same result in [MZ97], thanks to a technique of

finite-dimension reduction. They also prove the stability of such a behavior
with respect to initial data, in a neighborhood of the constructed solution.

Vs > so, VyERN’|w(y73)_fN( )lS



In [Zaa98] and [Vel92], it is proved that in this case, u(z,t) = u*(z) as

1
t — T uniformly on RV \{0} and that u*(z) ~ [%] P~T a5 z — 0.
One interesting problem is to relate all known blow-up profiles’ notions :
profiles for |y| bounded, MS bounded or x ~ 0. We prove in the following
that all these descriptions are equivalent, in the case of single point blow-up
with a non degenerate profile (generic case). This answers many questions

which arose in former works.

Theorem 5 (Equivalence of blow-up behaviors at a blow-up point)
Assume (2) and consider a be an isolated blow-up point of u(t) solution
of (1). The following behaviors of u(t) and wer(s) (defined in (4)) are
equivalent :
K 1 1
i) VR >0, sup ‘w Y,S) — [ﬁ-l—— N— Z|y]? H =0(—> as s — +0oo,
) sup wty,9) =[5+ 50V = gl | <o ]
i) VR > 0, sup |w(zv/s,s) — fo(z)] = 0 as s = +oo with fo(z) =
|z|[<R
_1)2 _ 1
(= 1+ 25 1P) 7T,
i4i) Jeg > 0 such that for all |z — a| < €, u(z,t) - u*(z) ast — T and
1
u*(z) ~ [%”_‘%‘ﬁg] " as T — a.

A further application of the Liouville Theorem is the stability of the be-
havior described in Theorem 5, with respect to perturbations in initial data.
Using a dynamical system approach, we prove in [FKMZ], with Fermanian
the following :

Theorem 6 (Stability of the blow-up profile) Assume (7) and consi-
der a(t) a blow-up solution of (1) with initial data @y which blows-up at
t =T at only one point a =0 and satisfies (6). Assume that

forall|z| > R and t € [0,T), |u(z,t)| < M.

and that the function 'u?oj(y, s) defined in (4) satisfies uniformly on compact
sets of RN \

dyplys) = v (v - 120, 0
Then, there is a neighborhood V in L* of ug such that for all ug € V the
solution of (1) with initial data ug blows-up at time T = T'(ug) at a unique
point a = a(ug) and the function we r(y,s) defined in (4) satisfies uniformly
on compact sets of RN

'wa,T(ya S) — K s—q—oo %(N -

6



Moreover, (a(ug), T (uo)) goes to (0,T) as ug goes to .

Remark : This results generalizes the stability result of [MZ97]. Note that
unlike most applications of the Liouville Theorem, this result is valid for all
subcritical p. In [FKZ], the same result is proved (only under the condition
(2)), by a completely different approach based on the Liouville Theorem and
on [MZ97].

Remark : In [FKMZ], we prove the stability with respect to initial data of
the blow-up behavior with the minimal speed

()|l < C(T — 1) 7 (9)

for all subcritical p (that is under the condition (7)). Note that this result
is obvious under the weaker assumption (2), for Giga and Kohn proved in
[GK87] that all blow-up solutions satisfy (9). No blow-up rate estimate is
known if

up has no sign and (3N —4)p > 3N — 8.

Therefore, our result is meaningful in this last case.

References

[Bal77] J. M. Ball. Remarks on blow-up and nonexistence theorems for
nonlinear evolution equations. Quart. J. Math. Ozford Ser. (2),
28(112):473-486, 1977.

[BK94] J. Bricmont and A. Kupiainen. Universality in blow-up for non-
linear heat equations. Nonlinearity, 7(2):539-575, 1994.

[BKL94] J. Bricmont, A. Kupiainen, and G. Lin. Renormalization group
and asymptotics of solutions of nonlinear parabolic equations.
Comm. Pure Appl. Math., 47(6):893-922, 1994.

[CM89] X. Y. Chen and H. Matano. Convergence, asymptotic periodic-
ity, and finite-point blow-up in one-dimensional semilinear heat
equations. J. Differential Equations, 78(1):160-190, 1989.

[FKMZ] C. Fermanian Kammerer, F. Merle, and H. Zaag. Stability of the
blow-up profile of non-linear heat equations from the dynamical
system point of view. preprint.

[FKZ] C. Fermanian Kammerer and H. Zaag. Boundedness till blow-
up of the difference between two solutions to the semilinear heat
equation. preprint.



[Fri65]

[Fuj66]

[GKS85]

[GKS87]

[GKS89]

[GV95]

[HV92]

[HV93]

[MZ97]

[MZ98]

[MZ99]

[Vel92]

A. Friedman. Remarks on nonlinear parabolic equations. In Proc.
Sympos. Appl. Math., Vol. XVII, pages 3-23. Amer. Math. Soc.,
Providence, R.I., 1965.

H. Fujita. On the blowing up of solutions of the Cauchy problem
for uy = Au+ult®. J. Fac. Sci. Univ. Tokyo Sect. I, 13:109-124,
1966.

Y. Giga and R. V. Kohn. Asymptotically self-similar blow-up of
semilinear heat equations. Comm. Pure Appl. Math., 38(3):297—
319, 1985.

Y. Giga and R. V. Kohn. Characterizing blowup using similarity
variables. Indiana Univ. Math. J., 36(1):1-40, 1987.

Y. Giga and R. V. Kohn. Nondegeneracy of blowup for semilinear
heat equations. Comm. Pure Appl. Math., 42(6):845-884, 1989.

V. A. Galaktionov and J. L. Vazquez. Geometrical properties
of the solutions of one-dimensional nonlinear parabolic equations.
Math. Ann., 303:741-769, 1995.

M. A. Herrero and J. J. L. Veldzquez. Flat blow-up in one-
dimensional semilinear heat equations. Differential Integral Equa-
tions, 5(5):973-997, 1992.

M. A. Herrero and J. J. L. Veldzquez. Blow-up behaviour of
one-dimensional semilinear parabolic equations. Ann. Inst. H.
Poincaré Anal. Non Linéaire, 10(2):131-189, 1993.

F. Merle and H. Zaag. Stability of the blow-up profile for equations
of the type uy = Au+|u[P~tu. Duke Math. J., 86(1):143-195, 1997.

F. Merle and H. Zaag. Optimal estimates for blowup rate and
behavior for nonlinear heat equations. Comm. Pure Appl. Math.,
51(2):139-196, 1998.

F. Merle and H. Zaag. A Liouville theorem for vector-valued non-
linear heat equations and applications. Math. Annalen, 1999. to
appear.

J. J. L. Velazquez. Higher-dimensional blow up for semilinear
parabolic equations. Comm. Partial Differential Equations, 17(9-
10):1567-1596, 1992.



[Zaa) H. Zaag. A liouville theorem and blow-up behavior for a
vector-valued nonlinear heat equation with no gradient structure.

preprint.

[Zaa98] H. Zaag. Blow-up results for vector-valued nonlinear heat equa-
tions with no gradient structure. Ann. Inst. H. Poincaré Anal.
Non Linéaire, 15(5):581-622, 1998.

Address :

Département de mathématiques, Université de Cergy-Pontoise, 2 avenue
Adolphe Chauvin, B.P. 222, Pontoise, 95 302 Cergy-Pontoise cedex, France.
Département de mathématiques et applications, Ecole Normale Supérieure,
45 rue d’Ulm, 75 230 Paris cedex 05, France.

e-mail : merle@math.pst.u-cergy.fr, Hatem.Zaag@ens.fr



