Uniform blow-up estimates for nonlinear heat equations and applications

Frank Merle

IUF and Université de Cergy-Pontoise

Hatem Zaag

CNRS École Normale Supérieure

We consider the following nonlinear heat equation

$$\begin{cases}
 u_t = \Delta u + |u|^{p-1}u \\ u(0) = u_0,
\end{cases}$$
(1)

where $u:(x,t)\in\mathbb{R}^N\times[0,T)\to\mathbb{R}$,

$$1 < p$$
, $(N-2)p < N+2$ and either $u_0 \ge 0$ or $(3N-4)p < 3N+8$. (2)

More general vector-valued heat equations can be considered with similar results (see [MZ99] for more details):

$$\begin{cases}
 u_t = \Delta u + F(|u|)u \\
 u(0) = u_0,
\end{cases}$$
(3)

where $u: \Omega \times [0,T) \to \mathbb{R}^M$, p satisfies (2), $\Omega = \mathbb{R}^N$ or Ω is a smooth bounded convex domain of \mathbb{R}^N , $F(|u|) \sim |u|^{p-1}$ as $|u| \to +\infty$, and $M \in \mathbb{N}$.

We are interested in the blow-up phenomenon for (1). Many authors has been interested in this topic. Let us mention for instance Friedman [Fri65], Fujita [Fuj66], Ball [Bal77], Bricmont and Kupiainen [BKL94], Chen and Matano [CM89], Galaktionov and Vázquez [GV95], Giga and Kohn [GK89], [GK87], [GK85], Herrero and Velázquez [HV93], [HV92].

In the following, we consider u(t) a blow-up solution of (1) and denote its blow-up time by T. We aim at finding sharp uniform estimates at blow-up and specifying the blow-up behavior of u(t). Such a study is done considering equation (1) in its self-similar form: for all $a \in \mathbb{R}^N$, we define

$$y = \frac{x-a}{\sqrt{T-t}}, \ s = -\log(T-t), \ w_{a,T}(y,s) = (T-t)^{\frac{1}{p-1}}u(x,t).$$
 (4)

Therefore, $w_{a,T} = w$ satisfies $\forall s \ge -\log T, \ \forall y \in \mathbb{R}^N$:

$$\frac{\partial w}{\partial s} = \Delta w - \frac{1}{2}y \cdot \nabla w - \frac{w}{p-1} + |w|^{p-1}w. \tag{5}$$

Let us introduce the following Lyapunov functional associated with (5):

$$E(w) = \int_{\mathbb{R}^N} \left(\frac{1}{2} |\nabla w|^2 + \frac{1}{2(p-1)} |w|^2 - \frac{1}{p+1} |w|^{p+1} \right) \rho(y) dy$$

where $\rho(y) = \frac{e^{-\frac{|y|^2}{4}}}{(4\pi)^{N/2}}$.

The question is to estimate $w_{a,T}(s)$ as $s \to +\infty$, uniformly with respect to a, whether a is a blow-up point or not (a is called a blow-up point if there exists $(a_n, t_n) \to (a, T)$ such that $|u(a_n, t_n)| \to +\infty$).

Giga and Kohn showed that self-similar variables are convenient for describing the blow-up rate in the following sense: there exists $\epsilon_0(u_0) > 0$ such that $\forall s \geq s_0^*(u_0)$,

$$\epsilon_0 \le |w(s)|_{L^{\infty}} \le \frac{1}{\epsilon_0}.$$
 (6)

We first aim at sharpening this result in order to obtain compactness properties in our problem.

1 A Liouville Theorem for equation (5)

We are interested in classifying all global and bounded solutions of (5), for all subcritical p:

$$p > 1 \text{ and } (N-2)p < N+2.$$
 (7)

We claim the following:

Theorem 1 (A Liouville Theorem for equation (5)) Assume (7) and consider w a solution of (5) defined for all $(y,s) \in \mathbb{R}^N \times \mathbb{R}$ such that $\forall (y,s) \in \mathbb{R}^N \times \mathbb{R}, \ |w(y,s)| \leq C$. Then, either $w \equiv 0$, or $w \equiv \kappa$ or $w(y,s) = \pm \varphi(s-s_0)$ where $\kappa = (p-1)^{-\frac{1}{p-1}}$, $s_0 \in \mathbb{R}$ and $\varphi(s) = \kappa(1+e^s)^{-\frac{1}{p-1}}$.

Remark: φ is in fact an L^{∞} connection between two critical points of (5): κ and 0. Indeed,

$$\dot{\varphi} = -\frac{\varphi}{p-1} + \varphi^p, \ \varphi(-\infty) = \kappa, \ \varphi(+\infty) = 0.$$

Remark: A similar classification result can be obtained with a solution w defined only on $(-\infty, s^*)$ (see [MZ98]).

Theorem 1 has the following corollary:

Corollary 1 (A Liouville Theorem for equation (1)) Assume (7) and consider u a solution of (1) defined for all $(x,t) \in \mathbb{R}^N \times (-\infty,0)$ such that $\forall (x,t) \in \mathbb{R}^N \times (-\infty,0), |u(x,t)| \leq C(-t)^{-\frac{1}{p-1}}$. Then, either $u \equiv 0$, or $u(x,t) = \pm \kappa (T^*-t)^{-\frac{1}{p-1}}$ for some $T^* \geq 0$.

The proofs can be found in [MZ99] and [MZ98]. The key tools in the proof are the following:

- i) A classification of all possible linear behaviors of w(s) as $s \to -\infty$ in $L^2_\rho(\mathbb{R}^N)$ $(L^\infty_{loc}(\mathbb{R}^N))$,
 - ii) The following geometric transformations which keeps (5) invariant:

$$w(y,s) \to w_{a,b}(y,s) = w(y + ae^{\frac{s}{2}}, s + b),$$

where $a \in \mathbb{R}^N$ and $b \in \mathbb{R}$,

iii) A blow-up criterion for (5) used for solutions close to the constant point κ (This criterion is also a blow-up criterion for (1) via the transformation (4)):

If for some $s_0 \in \mathbb{R}$, $I(w(s_0)) > 0$ where

$$I(w) = -2E(w) + \frac{p-1}{p+1} \left(\int_{\mathbb{R}^N} |w(y)|^2 \rho(y) dy \right)^{\frac{p+1}{2}},$$

then w(s) blows up in finite time.

Remark: This criterion is sharp for solutions near constants. Indeed, if $w(s_0) \equiv C_0$, then

w blows-up in finite time $\Leftrightarrow |C_0| > \kappa \Leftrightarrow I(C_0) > 0$.

Remark: The proof of the Liouville Theorem strongly relies on the existence of a Lyapunov functional for equation (5) and can not be extended to other systems where the nonlinearity is not a gradient. In [Zaa], we go beyond this restriction and introduce new tools to prove a Liouville Theorem of the same type for the following system

$$u_t = \Delta u + v^p$$
, $v_t = \Delta v + u^q$.

2 Localization at blow-up

We assume again (2). The estimate (6) of Giga and Kohn gives compactness in the problem. Using a compactness procedure in the singular zone of \mathbb{R}^N (which is, say $\{y \mid |w(y,s)| \geq \frac{\kappa}{2}\}$), we find a solution satisfying the hypotheses of Theorem 1. Therefore, Δw is small with respect to $|w|^p$ in this singular zone (or equivalently, Δu is small with respect to $|u|^p$). A

subcritical localization procedure introduced by Zaag [Zaa98] (under the level of the constant κ) allows us to propagate this estimate towards the intermediate zone between the singular and the regular one. We claim the following:

Theorem 2 (Comparison with the associated ordinary differential equation) Assume (2) and consider $T \leq T_0$ and $||u_0||_{C^2(\mathbb{R}^N)} \leq C_0$. Then, $\forall \epsilon > 0$, there is $C(\epsilon, C_0, T_0)$ such that $\forall (x, t) \in \mathbb{R}^N \times [0, T)$,

$$|u_t - |u|^{p-1}u| \le \epsilon |u|^p + C.$$

Remark: This way, we prove that the solution of the PDE (1) can be uniformly and globally in space-time compared to a solution of an ODE (localized by definition). Note that the condition $u(0) \in C^2(\mathbb{R}^N)$ is not restrictive because of the regularizing effect of the Laplacian.

Remark: Many striking corollaries can be derived from this theorem. It implies in particular that no oscillation is possible near a blow-up point a, and that $|u(x,t)| \to +\infty$ as $(x,t) \to (a,T)$. Moreover, $\forall \epsilon_0 > 0$, there exists $t_0(\epsilon_0) < T$ such that for all $b \in \mathbb{R}^N$, if $|u(b,t)| \le (1-\epsilon_0)\kappa(T-t)^{-\frac{1}{p-1}}$ for some $t \in [t_0,T)$, then b is not a blow-up point (this specifies more precisely a former result by Giga and Kohn where $t_0 = t_0(\epsilon_0,a)$).

3 Optimal L^{∞} estimates at blow-up

We still assume (2). Using estimate (6) and the Liouville Theorem, we make a compactness argument to get the following sharp estimates:

Theorem 3 (L^{∞} refined estimates for w(s)) Assume that (2) holds. Then, there exist positive constants C_i for i=1,2,3 such that if u is a solution of (1) which blows-up at time T and satisfies $u(0) \in C^3(\mathbb{R}^N)$, then $\forall \epsilon > 0$, there exists $s_1(\epsilon) \geq -\log T$ such that $\forall s \geq s_1, \forall a \in \mathbb{R}^N$,

$$\begin{array}{rclcrcl} \|w_{a,T}(s)\|_{L^{\infty}} & \leq & \kappa + (\frac{N\kappa}{2p} + \epsilon)\frac{1}{s}, & \|\nabla w_{a,T}(s)\|_{L^{\infty}} & \leq & \frac{C_1}{\sqrt{s}}, \\ \|\nabla^2 w_{a,T}(s)\|_{L^{\infty}} & \leq & \frac{C_2}{s}, & \|\nabla^3 w_{a,T}(s)\|_{L^{\infty}} & \leq & \frac{C_3}{s^{3/2}}. \end{array}$$

Remark: In the case N=1, Herrero and Velázquez (Filippas and Kohn also) proved some related estimates, using a Sturm property introduced in particular by Chen et Matano (the number of space oscillations is a decreasing function of time).

Remark: The constant $\frac{N\kappa}{2p}$ is optimal (see Herrero and Velázquez, Bricmont and Kupiainen, Merle and Zaag).

4 Different notions of blow-up profiles and the stability question

We assume (2). We consider $a \in \mathbb{R}^N$, a blow-up point of u(t), solution of (1). From translation invariance, we can assume a = 0. We would like to know whether u(t) (or $w_{0,T}(s)$ defined in (4)) has a universal behavior or not, as $t \to T$ (or $s \to +\infty$).

Filippas, Kohn, Liu, Herrero et Velázquez prove that \boldsymbol{w} behaves in two distinct ways :

- either
$$\forall R > 0$$
, $\sup_{|y| \leq R} \left| w(Qy, s) - \left[\kappa + \frac{\kappa}{2ps} \left(l - \frac{1}{2} \sum_{k=1}^{l} y_k^2 \right) \right] \right| = O\left(\frac{1}{s^{1+\delta}} \right)$ as $s \to +\infty$, for some $\delta > 0$ where $l \in \{1, ..., N\}$, Q is a $N \times N$ orthogonal matrix and I_l is the $l \times l$ identity matrix.

- or
$$\forall R > 0$$
, $\sup_{|y| \le R} |w(y, s) - \kappa| \le C(R)e^{-\lambda_0 s}$ for some $\lambda_0 > 0$.

From a physical point of view, these results do not tell us much about the transition between the singular zone ($w \ge \alpha$ where $\alpha > 0$) and the regular one ($w \simeq 0$). In [MZ99], we specify this transition by proving the existence of a profile in the variable $z = \frac{y}{\sqrt{s}}$.

Theorem 4 (Existence of a blow-up profile for equation (1))

Assume (2) holds. There exists $l \in \{0, 1, ..., N\}$ and a $N \times N$ orthogonal matrix Q such that $w(Q(z)\sqrt{s}, s) \to f_l(z)$ uniformly on compact sets $|z| \leq C$,

where
$$f_l(z) = (p-1 + \frac{(p-1)^2}{4p} \sum_{i=1}^l |z_i|^2)^{-\frac{1}{p-1}}$$
 if $l \ge 1$ and $f_0(z) = \kappa = (p-1)^{-\frac{1}{p-1}}$.

This result has been proved by Velázquez in [Vel92]. However, the convergence speed depends on the considered blow-up point in [Vel92], whereas they are uniform in [MZ99]. This uniformity allows us to derive the stability of the profile f_N in [FKMZ].

Using renormalization theory, Bricmont and Kupiainen prove in [BK94] the existence of a solution of (5) such that

$$\forall s \ge s_0, \ \forall y \in \mathbb{R}^N, |w(y,s) - f_N(\frac{y}{\sqrt{s}})| \le \frac{C}{\sqrt{s}}.$$

Merle and Zaag prove the same result in [MZ97], thanks to a technique of finite-dimension reduction. They also prove the stability of such a behavior with respect to initial data, in a neighborhood of the constructed solution.

In [Zaa98] and [Vel92], it is proved that in this case, $u(x,t) \to u^*(x)$ as $t \to T$ uniformly on $\mathbb{R}^N \setminus \{0\}$ and that $u^*(x) \sim \left[\frac{8p|\log|x|}{(p-1)^2|x|^2}\right]^{\frac{1}{p-1}}$ as $x \to 0$. One interesting problem is to relate all known blow-up profiles' notions:

profiles for |y| bounded, $\frac{|y|}{\sqrt{s}}$ bounded or $x \simeq 0$. We prove in the following that all these descriptions are equivalent, in the case of single point blow-up with a non degenerate profile (generic case). This answers many questions which arose in former works.

Theorem 5 (Equivalence of blow-up behaviors at a blow-up point) Assume (2) and consider a be an isolated blow-up point of u(t) solution of (1). The following behaviors of u(t) and $w_{a,T}(s)$ (defined in (4)) are equivalent:

i)
$$\forall R > 0$$
, $\sup_{|y| \le R} \left| w(y, s) - \left[\kappa + \frac{\kappa}{2ps} (N - \frac{1}{2}|y|^2) \right] \right| = o\left(\frac{1}{s}\right) \text{ as } s \to +\infty$,

$$ii) \,\, orall R \,>\, 0, \, \sup_{|z|\leq R} \left|w(z\sqrt{s},s)-f_0(z)
ight| \,\,
ightarrow \,\, 0 \,\,\, as \,\, s \,\,
ightarrow \,\, +\infty \,\,\, with \,\, f_0(z) \,=\,$$

$$(p-1+\frac{(p-1)^2}{4p}|z|^2)^{-\frac{1}{p-1}}$$

$$\begin{array}{c} |z| \leq R \\ (p-1+\frac{(p-1)^2}{4p}|z|^2)^{-\frac{1}{p-1}}, \\ iii) \; \exists \epsilon_0 > 0 \; such \; that \; for \; all \; |x-a| \leq \epsilon_0, \; u(x,t) \to u^*(x) \; as \; t \to T \; \; and \\ u^*(x) \sim \left[\frac{8p|\log|x-a|}{(p-1)^2|x-a|^2} \right]^{\frac{1}{p-1}} \; as \; x \to a. \end{array}$$

A further application of the Liouville Theorem is the stability of the behavior described in Theorem 5, with respect to perturbations in initial data. Using a dynamical system approach, we prove in [FKMZ], with Fermanian the following:

Theorem 6 (Stability of the blow-up profile) Assume (7) and consi $der \ \tilde{u}(t)$ a blow-up solution of (1) with initial data \tilde{u}_0 which blows-up at t=T at only one point $\tilde{a}=0$ and satisfies (6). Assume that

for all
$$|x| \ge R$$
 and $t \in [0, \tilde{T}), |\tilde{u}(x, t)| \le M$.

and that the function $\tilde{w}_{0,\tilde{T}}(y,s)$ defined in (4) satisfies uniformly on compact sets of \mathbb{R}^N

$$\tilde{w}_{0,\tilde{T}}(y,s) - \kappa \underset{s \to +\infty}{\sim} \frac{\kappa}{2ps} \left(N - \frac{|y|^2}{2}\right). \tag{8}$$

Then, there is a neighborhood V in L^{∞} of \tilde{u}_0 such that for all $u_0 \in V$ the solution of (1) with initial data u_0 blows-up at time $T = T(u_0)$ at a unique point $a = a(u_0)$ and the function $w_{a,T}(y,s)$ defined in (4) satisfies uniformly on compact sets of \mathbb{R}^N

$$w_{a,T}(y,s) - \kappa \underset{s \to +\infty}{\sim} \frac{\kappa}{2ps} (N - \frac{\mid y \mid^2}{2}).$$

Moreover, $(a(u_0), T(u_0))$ goes to $(0, \tilde{T})$ as u_0 goes to \tilde{u}_0 .

Remark: This results generalizes the stability result of [MZ97]. Note that unlike most applications of the Liouville Theorem, this result is valid for all subcritical p. In [FKZ], the same result is proved (only under the condition (2)), by a completely different approach based on the Liouville Theorem and on [MZ97].

Remark: In [FKMZ], we prove the stability with respect to initial data of the blow-up behavior with the minimal speed

$$||u(t)||_{L^{\infty}} \le C(T-t)^{-\frac{1}{p-1}}$$
 (9)

for all subcritical p (that is under the condition (7)). Note that this result is obvious under the weaker assumption (2), for Giga and Kohn proved in [GK87] that all blow-up solutions satisfy (9). No blow-up rate estimate is known if

$$u_0$$
 has no sign and $(3N-4)p \geq 3N-8$.

Therefore, our result is meaningful in this last case.

References

- [Bal77] J. M. Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. (2), 28(112):473-486, 1977.
- [BK94] J. Bricmont and A. Kupiainen. Universality in blow-up for non-linear heat equations. *Nonlinearity*, 7(2):539–575, 1994.
- [BKL94] J. Bricmont, A. Kupiainen, and G. Lin. Renormalization group and asymptotics of solutions of nonlinear parabolic equations. *Comm. Pure Appl. Math.*, 47(6):893–922, 1994.
- [CM89] X. Y. Chen and H. Matano. Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations. J. Differential Equations, 78(1):160–190, 1989.
- [FKMZ] C. Fermanian Kammerer, F. Merle, and H. Zaag. Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. preprint.
- [FKZ] C. Fermanian Kammerer and H. Zaag. Boundedness till blowup of the difference between two solutions to the semilinear heat equation. preprint.

- [Fri65] A. Friedman. Remarks on nonlinear parabolic equations. In Proc. Sympos. Appl. Math., Vol. XVII, pages 3–23. Amer. Math. Soc., Providence, R.I., 1965.
- [Fuj66] H. Fujita. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I, 13:109–124, 1966.
- [GK85] Y. Giga and R. V. Kohn. Asymptotically self-similar blow-up of semilinear heat equations. *Comm. Pure Appl. Math.*, 38(3):297–319, 1985.
- [GK87] Y. Giga and R. V. Kohn. Characterizing blowup using similarity variables. *Indiana Univ. Math. J.*, 36(1):1–40, 1987.
- [GK89] Y. Giga and R. V. Kohn. Nondegeneracy of blowup for semilinear heat equations. *Comm. Pure Appl. Math.*, 42(6):845–884, 1989.
- [GV95] V. A. Galaktionov and J. L. Vázquez. Geometrical properties of the solutions of one-dimensional nonlinear parabolic equations. *Math. Ann.*, 303:741–769, 1995.
- [HV92] M. A. Herrero and J. J. L. Velázquez. Flat blow-up in onedimensional semilinear heat equations. Differential Integral Equations, 5(5):973–997, 1992.
- [HV93] M. A. Herrero and J. J. L. Velázquez. Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 10(2):131–189, 1993.
- [MZ97] F. Merle and H. Zaag. Stability of the blow-up profile for equations of the type $u_t = \Delta u + |u|^{p-1}u$. Duke Math. J., 86(1):143–195, 1997.
- [MZ98] F. Merle and H. Zaag. Optimal estimates for blowup rate and behavior for nonlinear heat equations. *Comm. Pure Appl. Math.*, 51(2):139–196, 1998.
- [MZ99] F. Merle and H. Zaag. A Liouville theorem for vector-valued nonlinear heat equations and applications. *Math. Annalen*, 1999. to appear.
- [Vel92] J. J. L. Velázquez. Higher-dimensional blow up for semilinear parabolic equations. Comm. Partial Differential Equations, 17(9-10):1567–1596, 1992.

- [Zaa] H. Zaag. A liouville theorem and blow-up behavior for a vector-valued nonlinear heat equation with no gradient structure. preprint.
- [Zaa98] H. Zaag. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15(5):581–622, 1998.

Address:

Département de mathématiques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, B.P. 222, Pontoise, 95 302 Cergy-Pontoise cedex, France. Département de mathématiques et applications, École Normale Supérieure, 45 rue d'Ulm, 75 230 Paris cedex 05, France.

e-mail: merle@math.pst.u-cergy.fr, Hatem.Zaag@ens.fr