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Abstract: We construct a stable solution of the problem of vortex reconnection
with the boundary in a superconductor under the planar approximation. That is a

solution of o )
— =Ah+e"Hy - =
o +e 0 n

such that h(0,t) — 0 as t — T. We give a precise description of the vortex near
the reconnection point and time.
We generalize the result to other quenching problems.
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1 Introduction

1.1 The physical motivation and results

We consider a Type II superconductor located in the region z > 0 of the
physical space R3. Under some conditions, the magnetic field develops a
particular type of line singularity called vortex (see Chapman, Hunton and
Ockendon [5] for more details and discussion). In general, a vortex is not
situated in a plane, but under some reasonable physical conditions, the
planar approximation is relevant. In this case, a vortex line at time t > 0
can be viewed as L(t) = {(z,y,2) = (x,0,h(z,t))|z € Q} where Q = (—1,1)
or ) =R, and h > 0 is a regular function. The physical derivation gives
that h(x,t) satisfies the following equation:

hi = haw + e "Hy — Fy(h) (I)



where Hj is the applied magnetic field assumed to be constant, Fj is a
regular function satisfying

1 1
Fo(k) ~ p and Fj(k) ~ —73 88 k — 0. (1)
We assume :
i) In the case where Q =R
Fy(k Ce=2k as k — 400
| Fy(k) Ce2k as k — +oo

(2)

a1 + by as x — +o0
—agx +by as x — —o0

e 2N 2

|
h(z,t)
h(z,t)

where a1 > 0 and ag > 0. For simplicity, we take by = by = 0 and a1 = as.
ii) In the case where Q = (—1,1),

h(1,£) = h(~1,) = 1. (3)

One can remark that boundary conditions of the type i) are closer to the
physical context. Nevertheless, boundary conditions of the type i) are
mostly considered in the literature in order to simplify the mathematical
approach of the problem.

Similar results can be shown with other types of boundary conditions
(mixed boundary conditions on bounded domains). Indeed, our analysis
will be local and therefore will not depend on boundary conditions.

Classical theory gives for any initial vortex line L(0) = {(z,0, ho(x))|x €
Q} where hg is positive, regular and satisfies boundary conditions, the ex-
istence and uniqueness of a solution to (I)-(2) and (I)-(3) locally in time.
Therefore, there exists a unique solution to (I) on [0,7") and either T' = +oc0

or T < +oo and in this case thn% imsf2 h(z,t) =0, i.e. h extinguishes in finite
—T xe

time, and if xg € Q is such that there exists (z,,t,) — (20,7) as n — 400
satisfying h(z,,t,) — 0 as n — 400, then x is an extinction point of h.

This phenomenon is called a vortex reconnection with the boundary (the
plane z = 0). Two questions arise:

- Question 1: Are there any initial data such that T < +o0?

- Question 2: What does the vortex look like at the reconnection time?

Equation (I) with a more general exponent can also appear in various
physical contexts (combustion for example), and the problem of reconnection
is known as the quenching problem.



Indeed, we consider
hy = Ah — F(h), h>0 (I1)
where

1
(H1) F e C>*(RY), F(k)~ ] and F' (k) ~ as k—0

O EBHL
with 8 > 0 and h is defined on a bounded domain Q C RY with boundary

condition h = 1 on Q. The case Q = RY can also be considered with
hypothesis (H1) and (H2) where

|F(k)| + |F'(k)] < Ce™* as k— 4o
(H2)
hz,t) ~ ailz| as |z| — +oo

Few results are known on equation (II). For f > 0, some criteria of
quenching are known for solutions defined on (—1,1) with Dirichlet bound-
ary conditions (or mixed boundary conditions) in dimension one (see Deng
and Levine [6], Guo [12], Levine [18]). Even in that case, few informations
are known on the solution at quenching except on the quenching rate (See
also Keller and Lowengrub [17] for formal asymptotic behavior). In partic-
ular, there is no answer to questions 1 and 2 for problem (I).

To answer questions 1 and 2, we will not use the classical approach
which consists in finding a general quenching criterion for initial data and
in studying the quenching behavior of the solution. As in [22] and [25], the
techniques we use here are the reverse: we study the quenching behavior of a
solution a priori, and using this information, we prove by a priori estimates
the existence of a solution which has all the properties we expect. Using
this type of approach, we prove then that this behavior is stable. Let us
first introduce:

- B+1)?

d(z) = (6+1+%\212)”(5+1), (4)
and Hy (v) defined by:
i) In the case Q = RY: H} () = H*(z — z9) where H* is defined by:

1
2272 317
H'(2) = [SHEEL]TT for fof < C(ar, B)
H*(z) = a1z for x| > 1 (5)

H*(z) > 0,|VH*(z)| >0 forx# 0and H* € C®(RN).



ii) In the case where 2 is bounded:

1
2|le—wzo|?] BHT .
Hyy (@) = [GHEE2L 7T for o — ao| < min (C(8), jd(xo,02))
Hi (z)= 1 for |z — 20| > 3d(z0,09)

Hy (r) > 0,[VH*(x)] >0 for z # xo and Hj € C*(Q\{z0}).
We also introduce H, the set to initial data:
H={key+H nW?>*®RY) | 1/ke L*®RM)}ifQ=RY  (6)

where ¢ € C®(RN), o = 0 for |z| < 1, ¥(z) = a1|z| for |z| > 2 and a; is
defined in (H2),

H={ke H' nWw?»>(Q) | 1/k € L®(Q)} if Q is bounded. (7)
We claim the following:

Theorem (Existence and stability of a vortex reconnection with
the boundary or quenching for equation (II) with 3 > 0)
Assume that Q = RN and F is satisfying (H1) and (H2), or Q is bounded
and F' is satisfying (H1).
1) (Existence) For all z¢ € 2, there exists a positive hg € H such that for
a Ty > 0, equation (II) with initial data hg has a unique solution h(z,t) on
[0,T) satisfying tliHTlo h(zo,t) = 0.
Furthermore,
i)
1/6+1
tiy | B0 ~ e =0
t—=To " h(zo + 2¢/—(Tp — t)log(To — t),t)  P(2)
it) h*(x) = tlir%) h(z,t) exists for all x € Q and h*(x) ~ Hy (z) as
Tr — Xg.
2)(Stability) For every € > 0, there exists a neighborhood Vy of hy in
H with the following property:
for each ho € Vo, there exist Ty > 0 and o satisfying

Ty — To| + |zo — Zo| < €

such that equation (II) with initial data ho has a unique solution h(z,t) on

[0,Tb) satisfying lim h(t,z¢) = 0. In addition,
t—Tp

Ty — t)1/B+1 1
_ liH} H~ ( 0 ) .

= co — 0,
t=To  h(Zg + z\/—(f0 —t)log(Tp —t),t) 2(2) It
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- h*(z) = lim h(z,t) exists for all x € Q and h*(z) ~ HZ (x) as x — To.
— 1o

Remark: In the case § = 1 (equation (I)), this Theorem implies that the

vortex connects with the boundary in finite time. Let us note that the profile

we obtain is C! (which is not true for 3 > 1). Using the precise estimate of

the behavior of h at extinction, it will be interesting to check the validity

of the planar approximation in the physical problem near the reconnection

time for a behavior like the one described in the theorem.

Remark: We can also consider a larger class of equations:

% = V.(A(z)Vh(z)) — b(z)F(h)
where F satisfies (H1) and (H2) with § > 0, A(z) is a uniformly elliptic
N x N matrix with bounded coefficients, b(z) is bounded, and b(zg) > 0.
Using the stability result and techniques similar to [21], we can construct
for arbitrary given k points in {2 a quenching solution h of equation (II)
which quenches at time T exactly at the given points. The local quenching
behavior of h near each of these points is the same as the one given in the
Theorem.
Remark: We have two types of informations on the singularity:
- Part i): it describes the singularity in some refined scale variable at zg
where we can observe the quenching dynamics. We point out that the esti-
mate we obtain is global (convergence takes place in L*°).
- Part ii): it describes the singularity in the original variables and shows its
influence on the regular part of the solution.
We see in the estimates that these two descriptions are related.
In order to see why such a profile is selected, see [22] and [25] for similar
discussions.
Remark: Part i) is valid only for some extinction solutions. We suspect
this kind of extinction behavior to be generic (see [15] for a related prob-
lem). Indeed, we suspect ourselves to be able to show existence of extinction
solutions of (I)-(2) such that:

h(z,t) — h(x)
where h(z) ~ C|z|¥, k € N and k > 2. Unfortunately, this kind of behavior
is suspected to be unstable.
1.2 Mathematical setting and strategy of the proof

The case Q = RY is different from the case € is a bounded domain in the
way how to treat the Cauchy problem outside the singularity.



Let us consider the problem of the existence of a solution such that )
and i) of the Theorem hold. We first note that once the existence result
is proved, the stability result can be proved in the same way as in [22]. In
order to prove the Theorem, we use the following transformation:

QB

u(z,t) = G (8)

where h is the extinction solution of (II) to be constructed, and « > 0. On
its existence interval [0,7"), u(t) satisfies

P 2
8_1: Au—a|v5| +f(u) (1)
where a = a(a, ) = 1+ é?
f(u) = aPTUE P(aFTuw) = uP + fi(u) with p = p(a, ) = W’
(9)
(H3) { fi € C(Ry), fi(v) = o(v?) and fi(v) = o(u?1) as v — 400
l<a< b,

and in the case Q = R,

(114) { F)|+ 17/ ()] < Cot exp(~aTFTu~E) as v — 0,

u(z,t) ~ a1|x| as |z| — 400

Now, with the transformation (o, ) — (a(a,3),p( B)), the problem of
finding a solution h of (II) such that hm 1nf h( t) = 0 is equivalent to the

problem of finding a solution u of (IH) such that
tim [[u(t) = = +oc.

(that is a solution of (IIT) which blows-up in finite time).
Problem (IIT) can be viewed as a gradient perturbation of the nonlinear
heat equation (a = 0)
0
8—1‘ = Au+ [uff "y (IV)
where u(x,t) is defined for v € RN, ¢+ >0, p > 1 and p < (N +2)/(N —2)
if N > 3.



For this equation, Ball [1], Kavian [16] and Levine [20] obtained ob-
structions to global existence in time, using monotony properties and the
maximum principle. Another method has been followed by Merle and Zaag
in [22] (see also Giga and Kohn [10], [9] and [8], Bricmont and Kupiainen [4],
Zaag [25]). Once an asymptotic profile (that is a function from which, after
a time dependent scaling, u(t) approaches as t — T') is derived formally, the
existence of a solution u(t) which blows-up in finite time with the suggested
profile is then proved rigorously, using analysis of equation (IV) near the
given profile and reduction of the problem to a finite dimensional one.

In the case a = 0, the existence and stability of a blow-up solution u(t)
of (IV) such that at the blow-up point x(:

th_I}% (T — t)P_ilu(xo + \/(T —t)log(T —t)z,t) — Po(2)||= =0

where ( 2
P—1)" o 1)
Bo(z) =(p—1+ L2 P
o(z) =(p—1+ p - )
is proved in [22]. Bricmont and Kupiainen obtained the existence result
using renormalization group theory (see [4]).

In these new variables, and with the introduction of

_1)2 1
Be) = (p— 1+ (o) P, (10)
and U () = aPHE (2) 7, (11)

1
W} Hif Q = RN, 29 = 0 and |z| < C(ay, ), the Theorem is

equivalent to the following Proposition:
Proposition 1 (Existence of blow-up solutions for equation (III))
Assume that Q = RY and f is satisfying (H3) and (H4), or Q is bounded
and f is satisfying (H3).
For each a € (1,p), for each xy € Q, there exist reqular initial data ug such
that equation (III) has a unique solution u(x,t) which blows-up at a time
To > 0 only at the point xg.
Moreover,
i) tl—i%} u(z,t) = u*(x) ezists for all x € Q\{xo} and u*(z) ~ U; (x) as
Tr — Xg.
i)
lim
t—Tp

(T — t)P_ilu(a:o + ((To — )| log(Ty — t)))22,t) - (I)(Z)HLOO =0.



Remark: This proposition provides us with a blow-up solution of (III) in
the case a € (1,p). Let us remark that we already know that blow-up occurs
in the case a < 1:

l1—a
-Ifa<landv=(1-a)»Tul™® then v satisfies:

ov p—a

E:AU%—U”, with p’:l_a>1. (12)
-Ifa=1and v=(p—1)logu, then v satisfies
0
8_: = Av+e". (13)

It is well-known that equations (12) and (13) (and then (III)) have blow-up
solutions.

We introduce similarity variables (see [10], [8] and [9])):

Y= s = loa(T — ), wrey(y,9) = (T = 7 Tu(z, 1), (14)

where z( is the blow-up point and T the blow-up time of u(t), a blow-up
solution of (III) to be constructed (we will focus on the study of solutions
that blow-up at one single point). We now assume zg = 0.
The study of the profile of w as t — T is then equivalent to the study of the
asymptotic behavior of wr ,, (noted w) as s — oo, and each result for u has
an equivalent formulation in terms of w. From equation (III), the equation
satisfied by w is the following: Vy € RY, Vs > —log T
2

aa—%: = Aw — %y.Vw— p@_u T _a|Vw|
where f1(v) = f(v) —oP and f satisfies (H3) and (H4).

The problem is then to find w a solution of (15) such that

+wp+e_%f1(ep_i1w) (15)

lw(y,s) — (I)(%)HLOO — 0 as s — +o0.

We introduce

(p—1) 77
2(p—a)s

ly,s) = (=) +

NE and q(y,s) = w(y,s) — ¢(y,s)  (16)

_1
where @ is introduced in (10) (the introduction of the term % is not

necessary but it simplifies the calculations).



Then q satisfies: Vy € RY, Vs > —log T
0 _ps_ s
0= (LH+V(y.)a+ B(@) +T(q) + Rly.s) + ¢ 7T fi(e7 (0 +4) (17)
with £L = A — %y.v +1, V(y,s) = pply,s)P~1 — 2o

p—1’
B(q) = (¢ +q)* — @ psop‘lq,

T(q) = —al VYL 1o IVeL R(y,5) = — 224+ Ap—Ly Vo £+ —alel,

Therefore, the question is to find w a solution of (15) or ¢ a solution of
(17) such that
Tim [lq(s)]z= = 0. (18)

The equation satisfied by ¢ is almost the same as in [22], except the term
T(q). Asin [22], we introduce estimates on ¢ in the blow-up region |z| < K
or ly| < Kop/s, and in the regular region |z| > Ky or |y| > Kyy/s where
z = % is the self-similar variable for q. The estimates of T'(¢) in the region

ly| < Ko+/s follow from regularizing effect of the heat flow. One can remark
that the Cauchy problem for an equation of the type % @ = Au— |Vu|? +uP
is suspected not to be solved in H' or WP+,

In the analysis of [22], the estimates in the region |y| > Ko+/s imply
smallness of ¢ only, and do not allow any control of 7'(q) in this region. In
other words, the analysis based on the method of [22], that is to estimate
the solution in the z variable is not sufficient and must be improved. For
this, we add estimates in three regions in a different variable scale (centered
in the original z variable not necessarily at the considered blow-up point)
using techniques similar to those used in [25] to derive the exact profile in =
variable: u(z,t) — u*(x) as t — T where u*(z) ~ U*(x) as z — 0 (see (11)
for U*). This part makes the originality of the paper. We expect that such
techniques can be useful in various supercritical problems.

We first define for Ky > 0, ¢ > 0 and ¢ € [0,T") given, three regions covering
RY:

Pi(t) = {a|]z] < Koy/~(T — 1) log(T — 1)}
= {z | ly| < Kovs} = {o | |2] < Ko},

Pt) = {o %\/—(T—t)log(T—t)gmgeo}

5
€2

\f

= {wl—\f<|y|<6062} {w|—<|z|§

—=h

Py(t) = {z ||z 2 /4t ={z [ |yl = —62} {z ] |z] = \[



for i =1,2,3, Py = {(z,t) € RN x [0,T)|z € Pi(t)},

where s = —log(T' — t), y = \/7957 :%:

In P, the “extinction region” of h
of u), we make the change of variables (
analysis around the profile ®(y/+/s).
Outside the singularity in region P, we control h using classical parabolic
estimates on k, a rescaled function of h defined for x # 0 by

(T—t)| log(T—t)|’
hich is also the blow-up region
)

(w
14) and (16) to do an asymptotic

k(xz,&,71) = (T — t(x))_ﬁh(x + /T —t(x)&, (T — t(z))T + t(z))

where %\/(T —t(z))|log(T — t(x))| = |x| . From equation (II), we see that

k satisfies almost the same equation as h: V&€ € RN, Vr € [—%, 1):

ok B8 1
5, = D¢k — (T = 4(2)) 7T F((T — t(2)) 71 k)
-
where (T — £(2)) 75T F((T — t(2)) 7 Tk) ~ & as (T — t(x)) 7Tk — 0.
We will in fact prove that h behaves for || < ag+/|log(T —t(z))| and 7 €

[39::((;)) ,1) for some ty < T, like the solution of
Ok __1
or kB

In P5, the regular region, we estimate directly h. This will give the desired
estimate.

The proof of the existence result of the Theorem will be presented in
section 2. Assuming some a priori estimates in P;, P> and P3, we show in
section 2 that A(t) can be controlled near the profile by a finite dimensional
variable. Adjusting the finite dimensional parameters, we then conclude the
proof. We present a priori estimates in P; in section 3, and in P> and Pj in
section 4.

The authors thank R. Kohn who pointed out various references on this
problem. Part of this work was done while the second author was visiting
the Institute for Advanced Study.
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2 Existence of a blow-up solution for equation (16)

In this section, we give the proof of the existence result of the Theorem.
The proof will be given in the case Q@ = RY (we will mention the differences
with the case ) is bounded, when it is necessary, see section 4). We assume
N =1 in order to simplify the notations. The same calculations and proof
hold in a higher dimension (see [22] and [25]). We assume ¢y = 0 since (II)
is translation invariant. For simplicity in notations, we simplify hypothesis
(H1) and assume that

1

Yo e (0,1, F(v) = .

(19)
Same calculations holds without this simplification.

Let us first remark on the following about the Cauchy problem for equa-
tion (II).

Lemma 2.1 (Local Cauchy Problem for equation (II)) The local in
time Cauchy problem for equation (II) is well-posed in H where H is defined
by (7) if Q is bounded, and by (6) if 2 = R.

Moreover, in both cases, either the solution h exists for all time t > 0 or
only on [0,T) with T < 400, and in this case }1_1)1% gilelsfl h(z,t) = 0.

Proof: The case € is bounded follows from classical arguments.
For the case Q = R, we define h(z,t) by h(x,t) = ¢(z) + h(z,t). This
way, (II) is equivalent to

Using (H1) and (H2), we see by classical arguments that this equation
can be solved in H. [ |

Let us consider 8 > 0 and T' > 0, all fixed. The problem is to find t¢ < T
and hg such that the solution of equation (II) with data at to h(x,tg) = ho
extinguishes in finite time T > 0 at only one extinction point z = 0 and:

: T —t)Y/A+! 1
R O R (i) e =0 )
t=T " h(z\/—(T — t)log(T —t),t)  &(z)
- h*(x) = lim h(x,t) exists for all z € R and
t—T
h*(xz) > 0 for x # 0,h*(x) ~ H*(z) as x — 0 (22)

11



where ® and H* are introduced in (4) and (5).

As explained in the introduction, (21) and (22) follow from the control of
h(z,t) for t € [to,T) in three different scales, depending on the three regions
Pl, Pg, and P3.

a) In Py, the extinction region, we rescale h by means of (8), (14) and
(16) in order to define for t € [to,T'), ¢(s) where s = —log(T — t) and

1
vy ER, Q(y, 8) - (T - t) pilu(y \% T — t, t) - gO(y, 8)7
Vo € R, u(z,t) = abf+tTh(x,t)” and a > 0,
y (p-1) 7T (23)
ely,s) = (7)) + S
p:%ﬁﬂ, a:aTH, and @ is given in (10).

Remark: To prove the Theorem, we can take a = 1. Nevertheless, we need
to keep a > 0 general, if we want to deduce directly Proposition 1 from the
Theorem.
The equation satisfied by ¢ is (17): Vy € R, Vs > —log(T — ty):
dq

Fs = (LHV(@.9)a+B(@) + T(a) + Rly.s) + ¢ 7 fa(e7 (9 +0)) (24)

with £=A = 3y.V + 1, V(y, s) = pp(y, s)"~" = ;7.
B(q) = (¢ +q)" — ¢ — ppP~lq,

V+Vq|? Vl|? 0 V|2
T(q) = —a‘ﬁ 2V Ll Ry, s) = — 52+ Ap—1y. V- 24P —al¥el
1
filu) = amuHéF(aﬁu_é) — uP.
We note that £ is self-adjoint on D(L) C L?(R,du) with
_l?
dn(y) = = (25)
s 4m
and that its eigenvalues are {1 — |m € N}.
(5] ml
In one dimension, h,,(y) = Z ———(—1)"y™ 2" is the eigenfunction
= nl(m —2n)!
corresponding to 1 — 2. We introduce also ky, = hon/||hum |72 (R, @0d note

that Vect {h,, | m € N} is dense in L?(R,dpu).
We are interested in obtaining L*°(R) estimates for ¢. Since L*°(R) C
L?(R,du), we will expand ¢ (actually, a cut-off of ¢) with respect to the

12



eigenvalues of L. Nevertheless, the estimates we will obtain will be L and
not L2(R, du).

The control of h(t) for t € [to,T) in this region P; is equivalent to
the control of ¢(s) for s € [—log(T — tg),+00) in a set Vi, a(s) so that
Jim. llg(s)||Lee = 0. The definition of Vi, a(s) requires the introduction of

a cut-off function

X0 = ol ) (26)

where
Xo € C°(R1,[0,1]), xo=1o0n[0,1], xo =0 on [2,+00). (27)
b) In P», we control a rescaled function of h defined for z # 0 by V¢ € R,

VT € [?::((i)) ,1):

k(z,&,7) = (T — t(2)) T h(z + /T — t(2)E, (T — t(@))7 +t(z)),  (28)

where t(z) is defined by

ol = —~/ (T = t(2))[1og(T — t(z))| = % 0(x)|log0(x)|  (29)

with O(x) =T —t(x).
Let us note that 0(x) is related to the asymptotic profile H*(x).

Lemma 2.2 For fized Ky, we have:
~ 1
i) H*(x) ~ k(1)f(z)5+T as x — 0,

. * k(1 .
i) [VH @) ~ iy i t(a) 7

=

as t — 0 where

. (B+1)2KE 1
k(r) = (1 - —0y5aT,
() = (+ 1= ) + T (30)
Proof: From (29), we write:
log |x| = log % + 3log 0(z) + 3 log |log 6(z)| and
|z>  _ 2KE log 0(z)
—loglz| ™ 16 (x)logG(x)-&-log\log9(a:)\+210gﬁ4l' Therefore,
log O(x) ~ 2log |x| and 6(x) iﬁ asz — 0 (31)
K¢ [log || '

13



_1
Since H*(z) = k(1) [Kg%‘;'z”} 7+ and
1

LZRCI R

when z is small (see (5)), we

~ DKo \flog [a]| L KZNogla]]
get the conclusion. |
k satisfies almost the same equation as h: V7 € [toe_(;()x) , 1), V€ € R,
s
? = Ack — 0(2) P (0(x) 751 k). (32)
-

We will see that the estimates on k allow us to write 0(x) %F(9($)ﬁk‘) =
kiﬁ for suitable £. If we show that k(7) behaves like k (see (30)) which is a
solution of the ODE .

dk 1

dr kB
defined for 7 € [0,7) with 7 = 1+ CEUES S 1 and that [Vek(r)| <

643
%, then according to lemma 2.2, this yields that h(x,t) behaves in
ogf(x

P, like H*(z) and |Vh(z,t)| < C(Ky, A)|VH*(z)| if x and T — t¢ are small,
which is almost the estimate i) of the Theorem.

¢) In P3, we estimate directly h using the local in time well posedness of
the Cauchy problem for equation (III).

More formally, we define for each t € [to,T) a set S*(¢) depending on
some parameters so that h(t) € S*(t) means that h is controlled in the three
regions as described before. We show then that if V¢ € [to,T), h(t) € S*(t),
then (21) and (22) hold and the Theorem follows.

Let us define S*(t):

Definition of S*(t) and S*

I) Forallty < T, Ky >0,€6 >0,a90>0,A4>0,0 >0,Cy>0,Cy>0
and ng > 0, for all t € [to,T), we define S*(to, Ko, €0, o, 4, b9, Cg, Co, Mo, t)
as being the set of all functions h € H satisfying:

i) Estimates in P;: ¢(s) € Vg, a(s) where s = —log(T —t), q(s) is
defined in (23) and Vi, A(s) is the set of all functions r in WH*°(R) such
that

Irm(s)] < As™2 (m=0,1), Ira(s)] < A%s72logs,
r(y,s)] < AsTEAAH[YP),  re(y,s)] < AT (33)
(52 1y, 8)] < As2(1+ [y,
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where

{ re(y,s) = (1—x(y,s)ry), r(s) = P_(x(s)r),
formeN, rp(s) = [dpkn(y)x(y,s)r(y), ri(s) = Pir(x(s)r),
(34)

X is defined in (26), P_ and P, are the L?(R,du) projectors respectively on
Vect {hp|m > 3} and Vect {hy,|m > 2}, du, hy, and ky, are introduced in

(25).

ii) Estimates in P»: For all |z| € [B2\/(T —t)[log(T — t)], €],
T =7(x,t) = 55, and |¢] < agy/Tlog0(z)],

k(z,&,7) — k()| < 60, |Vek(z,&,7)| < m and |V2k(z,€,7)| < Cy

where k, k, t(z) and 0(z) are defined in (28), (30) and (29).

i) Estimates in P3: For all |x| > ¢, |h(x,t) — h(z,t0)] < no and
|Vh(z,t) — Vh(z,to)| < no.

II) For all ty < T we define S*(to, Ko, €0, a0, A, do, Cfy, Co,m0) =
{k S C([t07T)7H) | vt € [t(]vT)?k(t) € S*(to,Ko,Eo,Oéo,A, 5070670077707t)}'

Remark: Note that according to (25) and (34), we have for all » € L*>°(R),

<
—~~
<
~

I
(]

T (8)hm (y) + (Y, s) + ey, s), (35)
m=0
1
r(y) = Y rm(8)hm(y) +7L(y,s) +re(y, s). (36)
m=0

Therefore, i) yields an estimate on ||q(s)||z~ and || (g—g)J— (8)]| oo

Remark: The estimates on h are in W1 *°(R). In particular, they are global.
The estimates on g—g in Pp, V¢k in P, and on VA in P3 allow us to control
the term T'(q) appearing in the equation satisfied by ¢ (see (24)). We remark
that the estimate ¢(s) € Vi, a(s) describes h mainly in P;. The estimate
on ¢ involved in definition (33) is useful only in the frontier between P; and

Ps.

Now we show that if we find suitable parameters and initial data such
that h € S*(to, Ko, €0, o, 4, b9, C§, Co, no), then the Theorem holds.
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Proposition 2.1 (Reduction of the propf) For gz’ven to < T, Ky, eo,
ap, A, 0y, C}, Co and ny such that 5y < %k(l) and ng < %‘ ‘mf/ h(z,ty),

assume that h € S*(tg, Ko, €0, a0, A, 90, Cf, Co,m0). Then h(t) extinguishes
in finite time T only at the point xo = 0, that is thn% h(0,t) =0 and Vx # 0,

there exists n(x) > 0 such that

liminf min  A(z',t) > 0. (37)
t=T |a'—z|<n(z)

Moreover, with ® and H* defined by (4) and (5),

1
) (T —t)5+1 1
lim — = o (r) = 0, 38
t—>T”h (2+/—(T = t)log(T — t),t) <I>(z)”L (®) (38)
h*(x) = th_I)I% h(z,t) exists for all x € R and
h*(x) >0 for x #0 and h*(x) ~ H*(x) as x — 0. (39)

Proof: We assume that h € S*(to, Ko, €0, a0, A, 5, C§, Co,m9). One can re-
mark that once (38), (37) and (39) are proved, it follows that
i) th_)rr% h(0,t) = 0: h(t) extinguishes at time T" at the point = = 0,
ii) x = 0 is the only extinction point of h.
It remains then to prove (37), (38) and (39).

Proof of (37):
From 4ii) of Definition of S*(t), we know that if [x| > ¢, then Vt € [to,T),
h(z,t) = h(z,to) —no = inf, 50 h(z,to) — 0o = ;mfm%o h(z,t5)) > 0.
This yields (37) for |x| > €.

From i) of Definition of S*(t), we have V|z| € (0, €], for ¢ close enough
to T, [k(z,0,7(x,t)) — h(r(x,1))| < dy where 7(z,t) = 55}, Therefore,
k(x,0,7(z,t)) > k((z,t)) — 8o > k(1) — 8 > k(1) (from (30) and dy <
1j:(1)). From (28), it follows: h(z,t) > 1k(1)6(z)7T > 0. This yields (37)
for 0 < |z| < €p.

Proof of (38):

We consider ¢(s), the function introduced in (23). Let us show that

lg(8)|| oo m) — 0 as s — +oo0. (40)

From ) of the definition of S*(¢) and (35), we have Vs € [—log(T —t¢), +00),
q(s) € Vi,,a(s) and
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2
la(y. s)| = [1{y <205} (Z qm(8)hm(y) + q-(y, 8)> + ey 8)|

m=0

< py<aroys(As (1 + [yl) + A% logs(yl* +2) + As(1 + [y)) +
A?s712 < C(Ky, A)s~/? and (40) follows.

Let z € R and g(2) = |(T — t)YP*1 Jh(2/=(T — t)log(T — t),t) — <i>(1z) |.
We have
9(2)
< C(T — )77 P h(z/—(T — ) log(T — 1),t)~® — a1 d(2)~a
where & = max(a, 1).

Using (4) and (23), we have « = 1/(p —a) and 8 = (p — a)/(a — 1),

1

[0 —
therefore yern i

asva_ BT (B n? ., N (p—1)"Y@-D
aﬁ @(Z) - ( a + 4/6a |Z| ) SO(Z S S)_ 2(p—a)8 9
and (T — t)ﬁaﬁh 2y/—(T —t)1log(T —t),t)~“
:(T—tp Tu(zy/—(T —t) log( —1),t) with s = —log(T — t).

Combining this Vvlth (23) again, we get

1

9(2) < Cla, B) (la(zv/=Tog(T — 1), — log(T — t))| + 1/|log(T — t)|) *

< (lla(3)ll =y +1/110s(T — 1))
(38).

Qi

— 0 as t — T by (40). This yields

Proof of (39): From the proof of (37) and classical theory (see Merle
[21] for a similar problem), there exists a profile function h*(z) such that
Va # 0, thrr% h(z,t) = h*(x) > 0. To show that h*(x) ~ H*(z) as = — 0, we

give the following localization estimate:

Proposition 2.2 (Localization in P») Assume that k is a solution of

equation
1

kr = Ak — w7 (41)
for 7 €10, 70) with 7o < 1(< T) Assume in addition: VT € [0, 7],
i) For |§] < 280, [k(£,0) = k(0)] <6 and [VE(E,0)] <6,
it) For |¢] < B2, (&, 7) > 3h(7).
ii) For |6 < 2., |92h(e.7) < Co,
where k is mtmduced in (30). Then there exists € = €(0,&p) such that V1 €
[077—0]} fOT’A’§| < &o,
|k(&,7)—k(T)| <€ and |VE(, T)| <€, where e — 0 as 6 — 0 and & — +00.

17,
2
7)
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Proof: We prove in section 4 a more accurate version of this Proposition
(Proposition 4.1). One can adapt without difficulties the proof to the present
context. |

Let us apply this Proposition to k(x, £, 7) when z is near zero with 79 = 1
and & = |log O(x)|"/*. We first check all the hypothesizes of the Proposition:

Lemma 2.3 If x is small enough, then k(xz,£,7) satisfies (41) for |§] <
|log 0(x)|'/* and T € [0,1). Moreover,

i) sup |k(@,6,0) = k(0)| + [Vek(x,€,0)| < d(x) — 0 as z — 0,
|€]<[log O(z)[/
(42)
i1) for [¢] < |log ()| 5, Vr € [0,1), k(z,&,7) > Fh(),
iit) for |€] < |log0(fv)|%, V1 e [0,1), |V§k(w,§,7)| < Cy.
Combining this lemma and Proposition 2.2, we get V7 € [0,1), |k(x,&T) —
k(T)| < e(x) — 0 as x — 0. Using (28), (30) and letting 7 — 1, we obtain

. X 2 12\ BT
Q(x)_mh*(x)wk(l):<%>ﬁ . (43)

By lemma 2.2, we obtain h*(x) ~ H*(xz) as  — 0, which concludes the
proof of Proposition 2.1.

Proof of lemma 2.3:
i) and #i): Since (29) implies that 6(x) — 0 as * — 0, we have by

combining (38) and (28):
. r+&/0(x)
1/k(x,£,0) —1/®
A A e Y 1) ey o)

from (4), the first part of (42) follows.
From i) of the Definition of S*(t), we have |V¢k(z,£,0)| < m

and |V§k5(w,§,0)\ < O for |¢| < |log8(z)|[*/4, if z is small. This yields the
second part of i) and ii).

)] — 0 as = — 0. Hence,

i4): From i) of the Definition of S*(¢), it follows that for = small enough,
we have |k(z,£,7) — k(1) < do for [¢] < |log 0(z)|'/* and 7 € [0,1). Hence,
ii) follows from (30) since &y < %k(1). By the way, this implies that

|9(w)ﬁk(x,§,7)| < 1 for [¢] < |logf(x)|'/* and 7 € [0,1). Therefore,

it follows from (32) and (19) that k satisfies (41). [ |

From this Proposition, the proof of the Theorem reduces to find suitable
parameters tg < T, Ky, €, ag, A, o, Ch, Co, no and hg € H so that the
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solution h of equation (II) with data h(ty) = ho belongs to
S*(to, Ko, €0, &0, A, 50, 06, Co, 770).

Unfortunately, the spectrum of £ which greatly determines the dynamic
of ¢ (and then the dynamic of h too) contains two expanding eigenvalues: 1
and 1/2. Therefore, we expect that for most choices of initial data hg, the
corresponding ¢o(s) and ¢;(s) with s = —log(T" — t) will force h(t) to exit
S*(to, Ko, €0, &0, A, 50, 06, Co, o, t).

As a matter of fact, we will show through a priori estimates that for
suitably chosen tg < T', Ky, €, ag, A, do, C§, Co and 19, the control of h(t)
in S*(to, Ko, €0, a0, A, 0o, Cpy, Co,mo, t) for t € [to,T) reduces to the control
of (qo(s), ¢1(s)) in

Va(s) = [~As™2, As™2)? (44)

for s > —log(T — to) (go(s) and qi(s) correspond to expanding eigenvalues
in the ¢ variable). Hence, we will consider initial data hg depending on two
parameters (do,d;) € R?, and then, we will fix (dg,do) using a topological
argument so that (go(s), q1(s)) € Va(s) for all s > —log(T —t), which yields
h(t) € S*(to, Ko, €0, a0, A, do, Cy, Co, mo, t), thanks to the finite dimensional
reduction.

Let us define

1 1 z T
holdo.d1,2) = (T = 16) 107 {@(2) + (do + 2ol idre) | et

+H*(2)(1 — x1(z, to)) (45)
where z = x//(T — to)|log(T — to)],

x

X1($7t0) = X0 ( ) ) (46)
(T — t0)|log(T — o) 2

®, xo and H* are defined in (10), (27) and (5). The problem now reduces

to find (dg,d;) in some D C R? such that

h(d07 dl) S S*(t07 K07 €0, O, A7 507 067 CO7 7]0)

The proof is divided in two parts:

i) Finite dimensional reduction:

From the technique of a priori estimates, we find suitable parameters
to < T, Ko, €,20, A, 09, C}, Cp and 19 so that the following property is
true: Assume that for ¢, € [to,T'), we have Vt € [to, L],

h(t) S S*(to, Ko, €9, g, A, do, C(/), Co, o, t) and
h(t*) S 85*(t0, Ky, €9, g, A, dg, 06, Co, 10, t*), then
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(q0(54+), q1(5+)) € OVa(s,) where s, = —log(T — t.), qo and ¢y follow from ¢
by (34), ¢ and V(s) are defined in (23) and (44).

ii) Solution of the finite dimensional problem:

We use a topological argument to find a parameter (dg,d;) € R? such
that (qgo(s),q1(s)) € Va(s) for all s > —log(T — to), and therefore, h €
S*(to, Ko, €0, o, A, 60, C, Co, mp). This yields the Theorem.

Part I: A priori estimates of h(t), solution of equation (II) and
finite dimensional reduction

Step 0: Initialization of the problem

We claim the following lemma:

Lemma 2.4 (Initialization of the problem) There exists Ko > 0 such
that for each Ko > Ko and 61 > 0, a1 (Ko, 01) > 0 and C*(Ky) > 0 such
that Yoy < a1(Ko,01), Je1 (Ko, 01, a0) > 0, such that Vey < e1(Ko, o1, p),
vCy > 0, VA > 1, 3t1(Ko,01,€0,A,C1) < T such that Yty € [t1,T), there
exists a rectangle D(to, Ko, A) C R? with the following properties:

If h(x,to) is defined by (45), then:

1) V(do,d1) € D(to, Ko, A), h(to) € H defined in (6), (qo(s0),q1(s0)) €
VA(S()) defined in (44) and h(to) S S*(to,Ko,60,0&0,14,51,C*(Ko),cl,o,to),
with sy = —log(T — ty). More precisely:

lgo(s0)] < Asg®  ai(so)l < Asy?
2 2
l2(s0)] < sg7logso |a—(y,50)| < Csy*(1+[yl)
—-1/2 ) _
g5l <sg 7 1(5), sl < s+ ),
_1
|52 (v, 50)] <50 ° for [y] = Kov/s0,

for all |z| € [%\/(T —t)]log(T — t)],€0], 70 = toe_(i()x), and
6l < 200y Tog 0], [k(x.&,70) = k(mo)| < 81, [Veh(a, & m0)| < -0
and ]ng(aj,g,m)\ < C) where k, k, t(z) and 0(z) are defined in (28), (30)
and (29).
i) (do, d1) € D(to, Ko, A) < (g0(50),91(50)) € Va(s0),
(do, d1) € OD(to, Ko, A) < (q0(s0), q1(s0)) € IVa(s0),
(q0(0),q1(s0)) is an affine function of (do, d1) when (do,d1) € OD(to, Ko, A).

Proof: See Appendix A.

Step 1: A priori estimates
We now claim the following estimates:
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Proposition 2.3 (A priori estimates in P;) There exists Koz > 0 such
that for each Ko > Ko, there exists As(Ky) > 0 such that for each A >
As(Kp), €0 > 0 and C} < A3, there exist m2(ep) > 0 and ta2(Ko, €0, A, C}) <
T such that for each tg € [ta(Ko, €0, A, C}),T), do < %l;:(l), ag>0,Co>0
and 1y < n2(€p), we have the following property:

- if h(z,to) is given by (45) and if (do,d1) is chosen so that
(qo(s0),q1(s0)) € Va(so) defined in (44) with so = —log(T — tg),

- if for some t, € [to,T), we have
Vit € [to,t*], h(t) S S*(to,Ko,Go,ao,A,do,C(l),Co,no,t) then

lga(se)| < A%s?logs. — s, la-(y, )| < G721+ [y[*)
ey, 5.0)] < As (4 < 4sp

* 9

where s, = —log(T — t.), q is defined in (23) and the notation is given in

(34)-

Proof: See section 3. |

Proposition 2.4 (A priori estimates in Py) There exists Koz > 0 such
that for all Ko > Koz, 61 <1, & > 1, C§ > 0, Cf > 0 and C{* > 0 we
have the following property:
Assume that k is a solution of equation
ok 1
— =Ak— — 4
or kb (47)
forT e m,m) with0 <7 <71 <1 (< T)
Assume in addition: YT € |11, T9],
. =~ C//*
i) V€ € [—2&0,2&), |k(&§, 1) — k(m1)| < 61 and |VE(E, )| < =
ii) v € [ e, B0] | Vk(e, 7)| < L and |V2k(E,T)| < G,
i) V€ € [T, 2], k(€. ) > gh(r),
where k is given by (30). Then, for & > €03(Cy", C, Cy*) there exists
e = €(Ko, Clf,1,&) such that V€ € [—&o, &), VT € [11, T2),

k(&,7) — k(7)| < € and |Vk(E,T)| < %, where € — 0 as (01,&) —
(0,400).
Proof: See section 4. |

Proposition 2.5 (A priori estimates in P3) For alle >0, ¢g > 0, o9 >
0, and o1 > 0, there exists t4(e, €9, 00,01) < T such that ¥Vt € [t4,T), if h is
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a solution of (II) on [to,t.] for some t, € [to,T) satisfying
i) for |xz| € [, D], Vt € [to, 4],

o9 < h(z,t) < o1, |Vh(z,t)] < o1 and |V2h($,t)| <oy, (48)

ii) h(z,tg) = H*(z) for |x| > & where H* is defined by (5),
then for |x| € [, +00), Vt € [to, 1],

|h(z,t) — h(z,to)| + |Vh(x,t) — Vh(z,ty)| <e.
Proof: See section 4. [ ]

Step 2: Finite dimensional reduction
From Propositions 2.3, 2.4 and 2.5, we have the following:

Proposition 2.6 (Finite dimensional reduction) We can choose pa-
rameters to < T, Ko, €y, ap, A, d, C and Cy and ny such that the fol-
lowing properties hold: Assume that h(z,to) is given by (45) and (do,d1) €
D(to, K(), A) Then,

i) h(to) € H N S*(to, Ko, €0, v, A, o, C(,), Co, o, to)-

Assume in addition that for some t. € [ty,T'), we have ¥t € [to,t.],

h(t) S S*(to, Ko, €g, g, A, do, C(/), Co, o, t) and

h(t*) € 85*(t0, Ky, €9, g, A, g, 06, Co, 10, t*) then

i) (qo(ss), q1(5+)) € OVa(sy) where q is defined in (23) and s, = —log(T —
ty).

iii) (Transversality) there exists v9 > 0 such that Vv € (0,1p),

(qo(sx + 1), q1(se + 1)) & Va(se + 1) (hence

h(ts +v) & S*(to, Ko, €0, g, A, o, C(,), Co,no, t« +1)).

Proof. We proceed in two steps: we first show that we can fix K, dg and
Cy independently from A, take A > A7 and choose €y, ag, C), 1o and to in
terms of A, so that i) and 4i) hold. In the second step, we fix A and g so
that 4i7) holds too.

Proof of i) and ii)
It follows from the following lemma:

Lemma 2.5 There exist constants K, g, Co, and A7 > 0 such that for all
A > Az, there exist €g(A) > 0, ap(A), C{(A), n7(A) and t7(A) < T such
that for all ng < n7 and tg € [t7,T), and under the hypotheses of Proposition
2.6, i) and i) hold.
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Proof

Let us first choose suitably the constants, and then show that ¢) and i)
of Proposition 2.6 follow for this choice.

All the constants we are referring to below appear either in lemma 2.4
or Propositions 2.3, 2.4 or 2.5.

We proceed in ten steps:
1) Fix K() = 4HlaX(K01, KOQ, K()g).
ii) Fix §p = %min(l%(l), 1) (note that k(1) depends only on Kj). Fix
Co = 1. Let A7(Kjy) be large enough so that A7 > max(1, A2(Ky)) and
for all A > A7(Ky), A3 > C}(A) where we introduce

C(/)(A) = 4max <03A2Kg + Hv(i)|’Loo(B(072KO)) (ﬁ—l—l()f)(o C*( )) with

C*(Ky) defined in lemma 2.4 and C3 a constant which is independent of all
the parameters and appears in lemma 2.6.

Consider A any number larger than A7(Kjy), and consider C{j(A).

iii) Applying Proposition 2.4 with Ky, C§ = 2, C§(A) = 2Cy(A) and
Cy(A) = 1CH(A), we get £5(A) > 1 and 67(A) < 1 such that for all & > &

and 6; < 47, the conclusion of the Proposition holds with € = %0.

iv) Let 61(A) = min(367(A), ) and Cy = 1
v) We claim the following lemma:

Lemma 2.6 VA > Az, there exist as(Ko,01(A)) > 0 such that for all cg <
as, there exists e5(ag, A) > 0 such that for all ¢g < e5(c, A), there are
ts(eo, A) < T and ns(eg, A) > 0 such that for all ny < ns(eo, A) and ty €
[t5(607A)7T);

if for all t € [to,t.], h(t) € S*(to,Ko,eo,ao,A 50,00,00,770, t) for some
ts € [to,T), then we have for |z| € [52\/(T — t.)[log(T — t.)], €o)

i) For [¢] < Zagy/Tlog 0(2)] and for all T € [max(0, toe_é()x)), t*e_(;() )].
k(z,.,.) satisfies (47) and, |Vek(x,&, 1) < 26,4 |V gk(:r,ﬁ,T)\ < 2C)

[log 0()|’
and k(xz,&,7) > 51@(7‘).
i1) For €| < 2ap+/|logO(x)| and T = max(to(;(i()x),O): |k(z,&,7) — 1%(7‘)| <&

CH(A)
and [Vek(w,&,7)| < b=

Proof. We focus on the proof of the fact that for |x| € (0,¢q], for [£| <

Lagy/| log 0(z)|, for ¢t € [max(0,¢(x)),T), we have

204 (A)

‘vfk(xvgvT)‘ < m

(49)
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where 7 = %, and : for |z| € (0, €], for [£| < 2a0+/|log (z)],

|k (x, &, 70(2)) — k(ro(2))| < 61 (50)
1Co(4)
and |Vek(z, &, m0(x))| < m

where 7o(x) = max(tog(i()m) ,0).
The other estimates follow by similar techniques.
Let 0 > 0 to be fixed later. If ay < ay(Ky,d) for some az(Kpy,d) > 0,

then we have from (29): for |¢| < 2ap+/|log0(x)|,

(1= 0[] < [z +&/0(x)] < (1 +0)[x]. (52)

Proof of (49):

From (28), we have

Vek(z,€,7) = 0(z) T T3Vh(z + 4/0(2), ). (53)

Let us denote x + £/0(x) by X and distinguish three cases:

- Case where | X| < &0 /(T —1)[Tog(T — 1)]:
From (8), we write Vi(X,t) =C X“l (X,1).
From 1) of the Definition of S*(¢), we get

1
T — )7 Tu(X, ) — B(———t—
(T —t)r=Tu(X,1) ( (T—t)|log(T—t)|)|

— X K CA2K?
= |q(m,—10g(T - t)) + 2(p—a)|10g(T—t)|| < \/|10g(T3t)| by lemma B.1.

Moreover,

_+_l . _1 X —
IVu(X,8) = (T =) 771> [log(T = )| 2 VO(mestimr=s )| =

11
(T —t)y » 12 |VQ(\/%7 —log(T" —t))|

<(T - t)_ﬁ_% |log(T" — t)\_%C’AzKS’ (see the proof of lemma B.1)
Hence, by (9), we obtain:

141 1o X

(T~ 8) 7T 2VAX, 1) — [log(T — )] 2 V(o t )|

< _C3A’KG

/| log(T—1)] L
. 11 —1

VA(X, 8)] < (CsA2K + [Vl o (500 ) (T — 17T 2| log(T — )| =

This gives by (53):
_1 1
Vek(z,&,7) < (354)7 7 [log(T — 1) "2C}(A).

and
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Since (1 5)\m[ < |X] (see (52)) and |X| < Ko\/(T — t)[log(T — t)[, we have
2] < 1o T~ D log T = )]
From (29), we have |z| — 6(z) is an increasing function. Therefore,

8 K2(T—t)|log(T—t)] _ (T—t
9(:1;) < 9( 4(1— 6) \/(T - t)’ IOg(T - t)’) ~ K_g 16(01—5)2%\1§g(T—t)| - ((1_5))2 by
(31). Moreover, we have ¢t > t(z), therefore, ' — ¢ < 6(x). Hence,

|Vek(z,&,7)| < 2CH(A)|log 0(3:)\_% if ¢ is small enough.

- Case where |X| € [%\/( —t)]log( —t),€0):
We write VA(X,t) = O(X) wr 2V§k:(X O,tg&)i)). This gives by (53):

1
0(X t—t(X
Vek(z,&,t) = (9((x)))ﬁ T Vek(X0, G(gf)))'
From i) of the Definition of S*(t), we obtam
Vek(a,€.7)] < C5(4)] log ()] 4 T _hosot}
6(2) 7T 2| log o()| 2

Using (52) and taking ¢ small enough, this yields

[Vek(x, &, 7)| < 2C(A) log ()] 2.
- Case | X| > €p: If no < & min |Vh(z',t0)|, then we have from iii) of

|2'|>€0
the Definition of S*(t):
IVA(X,t)] < (14 0)|Vh(X,to)|] < (1 +96)|Vh(yx,to)| where v = 1 — 4 if
B>landy=1+3dif B <1 (see (52)).
From lemma 2.2, we get:

10k(1) T3 -1
VA, )] < (1+6) 98- 0(y2) 772 | log () 2.

Arguing as before, we obtain from (53):

|Vek(z,6,7)| < 5293(1 |log 0(x)| "2 < 2C4(A)|log 6(z)| "2 if § is small

enough. This concludes the proof of (49).
Proof of (50):
If |z| > KO\/ —to)|log(T — to)|, then (29) yields t(z) < to and m9(z) =

W Hence, (50) follows from lemma 2.4.

If |z| < KO\/ —to)|log(T — to)|, then t(x) > tg and 7o(x) = 0. From (28)
and (30), we let X =z + £+/0(x) and write:

(2,6, 0)—h(O)] = [02) TTh(X, 1)) — (8 + 1) + CE2ER) T | < oy

,_.

__L 2 2
where I = [0(x) FTh(X, t(x)) — (8 +1) + CHE X 7T |

1
— B+1)? X|? B+1 6+1)? Kj ﬁ+1
and H—|((5+1)+ ( 45) 9(X)‘|1o|ge(x)\)ﬁ+1 - ((5+1) ( 45) 16) |
From i) of the Definition of S *( ), (23) and the fact that
X[ < (1+0)]a| < LK /5 log (x)] < Kov/0(x)log ()], we get
| X] <( g g g
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I< CA2KS’|log€(:U)|_% < AQKO\log( —t0)|_%, since

lz| < B2\ /(T —10)[log(T — to)]. Now, if Tt is small enough, then I<%
K2 X2

From (52) and (29), we have (1-0)? 38 < W (1+9)? —g Hence

if § is small enough, we obtain 11 < 571
This concludes the proof of (50).

Proof of (51):
If |z| > KO\/ —to)| log(T — tp)|, then (29) yields t(z) < ty and mo(z) =
toe(;()x). Hence, lemma 2.4 yields: for |£]| < 2ag+/|log8(z)],

-1
Vek(z, & ()| < C*(Ko)|log 0(x)| "2 < 7CH(A).
If |z| < KO\/ —to )| log(T — to)|, then t(z) > to and 1o(x) = 0. With
X = o+ £/0(x), we write: Vek(z,€,0) = 0(x) T IVA(X, t(z)). Ar-
guing as for the first case in the proof of (49), we get: |V¢k(x,&,0)] <
~ 1 1

[CoA2 K + V8 a1 | 1108 (@) ~F < 2CH(4)| g B(a)| 3.

This concludes the proof of (51) and the proof of lemma 2.6. [ |

vi) We now fix ag(A) = min(2aq (Ko, 61(A)), a5 (Ko, 81(A4)),1). We also fix
€0(A) < min(e; (Ko, d1(A),ap(A)),e5(ap(A), A)) such that

A)y/[log b(eo)| = &5(A)

vii) Then, we take 77(A) = 3 min(n2(eo(A)), 75 (e0(A), A)) and consider 7o <
-
viii) By direct parabolic estimates, it is easy to see that there exists tg(A) <
T such that for all ¢y € [ts,T), if
(to) € S*(to, Ky, €g, ap, A 50, CO? Cl 70, to) and Vt € [to,t ],
( ) e S* (to,Kg, €0, 00, A, b, CO’ C(),’I?o, ) then
(t/) S S*(to, KQ, €0, O, A (50, CO? 4,7’]0, )
ix) Let o¢(A) = %k:( )0(%
ST, p()TH
O Vhogd()1” 0 \/l10g0(F
x) Let t7(A) = max(t1 (Ko,
t4(772_07 €0, 00, 01)7 t5(€0( )7
[t7(A)7 T)‘

Now, we show that i) and i) of Proposition 2.6 hold for this choice. Let
us assume that h(to) is given by (45) and (do,d1) € D(to, Ko, A). Then,
lemma 2.4 applies and h(tg) € H N S*(ty.Ko, €o-a, 4,1, C*(Kyp),0,tp).
Since §; < dp, C*(Kp) < Cp and 0 < 1, ) follows.

We now assume that in addition, we have V¢ € [to, t.],
h(t) S S*(to, Ko, €0, O, A, 50, C(/), Co, 10, t) and

)

)

71 and o1 (A) = max(3k(0)0(¢

Ny

— MIH\—/

7009(—0)‘*__1)-

|
51(A) (A)vAv Cl)7t2(K07EO(A)>A706(A))7
),t6(A)), and consider ty an arbitrary number in
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h(ts) € 0S*(to, Ko, €0, 0, A, 60, C}, Co, Mo, ts) for some t, € [tg,T). Accord-
ing to the Definition of S*(t), three cases may occur:

Case 1: ¢(sx) € OV, a(s«). From i) of lemma 2.4, Proposition 2.3 and
i) of the Definition of S*(t), we have (qo(s«),q1(s+)) € OVa(sx) which is 7)
of Proposition 2.6.

Case 2: There exist  and £ such that
lz| € [%\/(T—t*)Hog(T—t*)Leo] and [£] < agy/|logf(z)|, and either

‘k(xvaTl) - l%(Tl)‘ = 50 or |v5k(x7§77—1)’ = m or |v§k(‘r7£77—1)’ =
Co =1, where m = L (t()x) < 1.

According to viii) and lemma 2.4, we have |V k(z,&,7,)| < 2. Let 79 =

max(to (t) 0) and &y = ap+/|log 8(z)|. Note that &y > ap+/| log9 €0)| > &6

Since ag < 1 it follows from lemma 2 6:

- For |¢] < 2a9+/|log0(x)]|, |k(x, &, m0) — k:(To)| < 01 and |Vek(z, &, )| <
C’(A) < 1 (A)

44/|1og ()| — 450 '

- For |¢] S Tag \log 9( )| and for all 7 € [rg, 1]: k(z,.,.) satisfies (87) and

|Vek(z,&,7)| < 2k(x,&,7)| < 2Cp and k(z,&,7) > 1k(7).

Applying Pr0p051t10n 2 4 ylelds R

For [¢] < aoy/[logf(z)], |k(z,&,m) — k(m)] < % and |Vek(z,&m)| <

210’( ) Cy(4)

Vlogb(z)| = /Ilogb(x)]’
Case 3: There exists € R such that [z| > @ and |h(z,t.)—h(z,t0)| = 10

or |Vh(z,ty) — Vh(z,tg)] = no. From ii) of the Definition of S(t), we

have: Vt € [to, t.], for |2] € [2, L]: |k(z,0,7) — k(1)| < do, |Vek(2,0,7)| <

which contradicts the hypotheses of Case 2.

% and |V2 (x,0,7)| §6 70?), where 7 = t;fig)c). Using (28) and the fact
that g < ( ) < % (0), we obtain:
SR)0() T < A1) < FRO) T, VA, 1)] < CHUATE and
|V2h(x,t)| 00 (x )m_ Therefore, 0¢(A) < h(x,t) < o1(A),

|

<C
|Vh(x,t) § and |V2h(z,t)| < o1. From (45), we have h(x,tq) = H*(z)
for |z| > ¢ Hence Proposition 2.5 applies and we get: |h(x,t) — h(z,to)|+
|Vh(x,t) — Vh(z,to)| < B < no, which contradicts the hypotheses of Case
3.

This concludes the proof of 7) and i) of Proposition 2.6.

Proof of iii):

Let us recall that Ko, dp and Cy are fixed independently of A, where A
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is taken larger than some A7 > 0, €y, o and C} are fixed in terms of A,
and tg € [t7(A),T), no < n7(A), for some t7(A) < T. and n7(A) > 0. Let us
prove this lemma:

Lemma 2.7 There exists Ag > 0 such that for all A > Ag, there exist
ts(A) < T and ns(A) such that for all ty € [ts,T) and no < ns(A4), and
under the hypotheses of Proposition 2.6, the conclusion iii) holds.

Proof. From lemma 2.5, we have: Yt € [to, t.], R

h(t) € S*(t07 K07 €0, @, A7 607 C(/)7 007 Mo, t) and (qO(S*)a q1 (3*)) € aVA(S*)a
which means that g,,(s.) = eAs;? for some m € {0,1} and ¢ € {—1,1}.
From (44), the conclusion follows if we show that edg;" (s«) > 0.

From (24) and (34), we have: [ X(s*)%(s*)kzmdu = [ x(s:)Lq(sx)kmdu+
_Psx Sx_
S x(s2) [V(s)a(s.) + B(a) + T(q) + R(s.) + ¢ 71 fi(er1 (¢ + q))| kmdps
If we take tg € [t11(Ko,€0(A), A,0,C}),T) and no < n11(e0(A)), then we get
from lemma 3.2 (see section 3):

de m Oﬁ
= — - < —
o (5.) = (1 = ()] <

for some Cg independent from all the other constants. Since g, (s.) = eAs; 2,
we have 6’{1—;”(3*) > 0 for A > 4Cs. [ |

Conclusion of the proof: If we take A = max(Az, Ag) and

no = min(n7(A), ns(A), 3 millz h(z,to)) ( rnilll h(z,tp) > 0 according to (45)
|z|>5 |z|>5

and (5)), and ty = max(t7(A),ts(A)), then both i) and i) of Proposition
2.6 hold. This concludes the proof of Proposition 2.6. Let us note that with
this choice, the reduction of the proof of Proposition 2.1 holds. |

Part II: Topological argument

From Proposition 2.6, we claim that there exist (dgy,d;) € D(to, Ko, A)
such that h(dy,dy) € S*(to, Ko, €0, o, A, 09, C§y, Co,no). The proof is similar
to the analogous one in [22], let us give its main ideas.

We proceed by contradiction: From i) of Proposition 2.6, we have
V(do, dl) S D(to, Koy, A),
h(do,d1,to) € HNS*(tg, Ko, €9, g, A, do, 06, Co,no,to). Therefore, we define
for each (do, d1) € D(to, Ko, A) a time t,(do, d1) as being the infinitum of all
t € [to,T') such that
h(do,d1,t) & S*(to, Ko, €0, 0, A, 09, Cfy, Co, Mo, t). By ii) of Proposition 2.6,
we have

(g0, q1)(do, d1, sx(do, dy)) € OVa(s5(do,d1)) where s, = —log(T — t..).
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Hence, we can define from (44) the following function:

v . D(to,Kg,A) — 0C
Sx 2
(do,d1) - %(%Mﬂ)(do,dl,S*(do,dl))

where C is the unit square of R?.
Now we claim

Proposition 2.7 i) ¥ is a continuous mapping from D(tgy, Ko, A) to OC.
it) There exists a non trivial affine function T : D(tg, Ko, A) — C such
that W o Tze = Idjoc.

Proof: The proof is very similar to the proof of Proposition 3.3 in [22], that
is the reason why we give only the important arguments.

i) follows from the continuity in H of the solution h(t) at a fixed time ¢
with respect to initial data, and the transversality property iii) of Proposi-
tion 2.6.

From i7) of lemma 2.4, we have V(dg, dy) € 0D(to, Ko, A), s«(dp,d1) = so
and 1i7) follows. [ |

From Proposition 2.7, a contradiction follows (Index Theory). Therefore,
there exist (dg,d1) € D(to, Ko, A) such that
h(do,d1) € S*(to, Ko, €0, a0, A, 0o, Cf), Co,mo). By Proposition 2.1 and the
Conclusion of the proof of Proposition 2.6, the main Theorem follows.

3 A priori estimates of u(¢) in the blow-up zone

This section is devoted to the proof of Proposition 2.3. Let us consider
to < T, Ko, €, ag, A, 0o, Cf, Co and ng. We assume that (do,dy) is
chosen so that (go(s0),q1(s0)) € Va(so) where so = — log(T — tg), and that
Vit € [to, t*], h(t) € S*(to, Ky, €0, g, A, g, 06, Co, 1o, t) for some t, € [to, T).

Then we improve some of the bounds given in i) of the Definition of
S*(t) for h(t.). More precisely, we improve the bounds of ga2(sx), g—(y, S«),
qe(y, s+) and (g—g)J— (y, sx) with s, = —log(T — t.).

For this purpose, we consider the equation (24) satisfied by ¢(s) and the
one satisfied by g—g(s) as well as their integral formulations:

0= —%+(£+V(y,8))(]+B(q)—|—T(q)+R(y, s)+e 71 fi(er T (ptq)) (54)
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with £= A~ 3y.V+1, V(y.s) = pely, s)" ' = 321,
B(g) = (¢ +a)f — ¢ — g,

V4V v 0 v
T(q) = - ‘B“f;qq' +al%25 R(y,5) = — 92+ Ap— Ly Vo & +oP—alVek,
) = 0Tt Plartid)

if r(y, )—g (y,s) then

G = (L= 5+ V)t o (B + T(@) () + Baly:)
+e—5(g—§ + 1) f{(e7 T (¢ +q)

with Ri(y,5) = 92(y,5) + 3 a(y, ),
if K(s,0) and K1 (s, o) are respectively the fundamental solution of £L+V

and £ — £ +V (note that Ky(s,0) = e "2 K(s,0)), then for s > o > sq:

g(s) = K(s,0)q(c) + / " drK (s, 7)(B(q(r)) + T(q(7))) + / drK (s, 7)R(7)
v (55)
+ [ drk (s, m)e AT (olr) +a(r),

and

() = Kals.o)r(o) + [ drs (5,15 (Bla) + T(@)(r) + Ba() - (650

+f ° dTm(s,T)e—T(g—j(T) + (D) FLE7T (o(7) + a(7))-

We proceed in two steps: in Step 1, using the fact that
h(t) S S*(to, Ky, €9, g, A, g, 06, Co, 1o, t) for t € [T —e 2, T — 6_(U+p)] for
some o > sg and p > 0, we derive bounds on terms in the right hand side of
equation (54) truncated by x and projected on he, and on terms in the right
hand sides of equations (55) and (56), expanded respectively as in (35) and
(36).

In Step 2, we use these bounds and these equations to find new bounds
on q_, ¢ and r; on one hand, and a bound on ddi;(s) on the other hand.
This latter bound yields a better estimate on g2(s) (this estimate is obtained

) (
differently from the analogous term in [22] and [25]) .

Step 1: A priori estimates of ¢(s) X
We first show that if (dp,d;) is chosen so that (go(s0),q1(s0)) € Va(so),
then g(sp) is strictly included in Vi, a(so). In other words, at initial time

30



S0, the finite dimensional variable (go(so), ¢1(s0)) determines the size of the
hole function ¢(sp). In fact we have an estimate more precise than the one
in lemma 2.4:

Lemma 3.1 For each A > 0, there exists sa(A) > 0 such that for each
s0 > s2(A) and Ko > 20, if h(z,to) is given by (45) and (do,d1) is chosen
so that (qo(s0),q1(s0)) € Va(so), then

|q2(80)| < 862 lOg S0, |Q—(y7 50)| < 0562(1 + |y|3)7
—1/2 _
14y, 50)] <557 71 (y,50)] < s52(1+ |y[®),

and |r(y, so)| < 381/2 for |y| > Ko+/50-

Proof. The proof is included in the proof of lemma 2.4: See the end of its
Step 2. |

Now we consider o > sg and p € [0, p*]. We suppose that

Vit € [T —e 7, T — 6_(0+p)] h(t) S S*(to, Ky, €9, g, A, b, 06, Co, 10, t). Then
we give bounds on terms in right hand sides of equations (54), (55) and (56),
expanded as in (34).

Remark: In fact, we give in lemma 3.2 estimates on equation (54) projected
on hy, with m = 0,1 or 2. Only m = 2 is useful for the proof of Proposition
2.3. The estimates for m = 0 or 1 are in a large part the same, they are
useful for the proof of Proposition 2.6.

Lemma 3.2 There exists K11 > 0 and A1 > 0 such that for each Ko >
Ki1, €6 >0, A> Aqq, p* >0, C) > 0, there exists t11(Ko, €0, A, p*, C{)) with
the following property:

Vto € [t11(Ko, €0, A, p*, CL), T), ¥p € [0, p*], for all 5o < $k(1), ag > 0,
Co > 0 and ng < n11(€g) for some n1(eg) > 0, assume that
- h(z,to) is given by (45) and (do, d1) is chosen so that (qo(s0), q1(s0)) €
Va(so)

- for some o > —log(T — ty), we have ¥t € [T — e 7, T — e~ (710)]
h(t) € S*(to,Ko,60,@0,14,(50,06,00,7’]0,15). Then, Vs € [U,U + p],

I) Equation (54): If m = 0,1 or 2,

[ 3 D Ry, ) — ()] < e G7)

| [ Xk )0 )it = (1= Fhan(s)] < e (58)
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| / X s s)d| < Cs7
[ xtw.s S| < 5T
|/ yv d,U| < 08_2

[ Xy sMnl)e P AETT (@ + )dal < e

If m = 2, then we have more precisely:

2p _3
<
\/X (y, 5)k2(y )a(y, s)dp + S — a)cp(s)] < CAs
2a _3
| e () @) g 9) —(p )q2<s>r < Oas

A\

Q

[V2)
o

|/ (s | <

II) Equation (55):
Case o > sgp:

O(Ae™ (=02 4 A2~ (=) 572(1 4 [y )
C(A%e (9P 1 AKSes~7)s71/2

where a(s) = K(s,0)q(o) is expanded as in (35),

< CO(s—oa)s (1 +yf)
< (s—o)s™?

where y(s) = [7drK (s, 7)R(T) is expanded as in (35),

C(s —o)s™*(1 + lyl)
C(s —o)s™ /2

where §(s) = [7 dTK(s,T)e_%fl(eﬁ(go +q)) is expanded as in (35).
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Case 0 = sg: More precisely,

la_(y,s)] < Cs72(1+[yf) (76)
lae(y,s)] < CK3e*=7s /2, (77)
III) Equation (56):
Case o > sg:
P K < C(Ae—=2 4 (Ko=) L 1Y
|PL(x(s)K1(s,0)r(0))] < C(Ae + C(Ko)Cpe ) 2 (78)
s 0 1+ Jy?
PLGS) [ ik 7)o (B) + T@) ()] < OG5 = o) 22 ()
s 1+ Jy|?
\PL(X(S)/ drEy(s, 7) B (7)) < Cs = 0)—45—— (80)
s _r 0 T 14+ |yl?
P [ drasn)e T (GE 40T 0+ 0)] < 06— )5 )
where P, is defined in (34).
Case 0 = sg: More precisely,
|PL(x(s)K1(s,0)r(0))| < Cs2(1+ |y|*). (82)
Proof. See Appendix B. |

Step 2: Lemma 3.2 implies Proposition 2.3
Let Ko > Koo >0, ¢ >0, A> AQ(K()) > 0 where AQ(K()) will be fixed
later, and C} < A3. Let tg > 0 to be fixed in [ta(Ko,€o, A, C}),T) (where
to(Ko, €0, A, Cf)) will be defined later). Consider §p < %fc(l), ag>0,Cyp>0
and 1y < n2(€g). Let h(dp,d;) be a solution of equation (II) with initial data
(45) defined on [tg,t] with t. € [to,T), such that
- (do, dy) is chosen so that (qo(s0),q1(s0)) € Va(so) (so = —log(T — to) and
q is defined by (23)),
-Vt e [to, t*], h(t) S S*(to, Ko, €, g, A, do, C(/), Co, o, t) and
q(s«) € OV, A(S4).

We want to show that

lga(s:)| < A5 2logs. — 573, |g-(y,s.)] < As2(1+|yP) (83
2 —1/2 _
gy, s.)| < As M ri(y,se)] < As2(1+ |y
where 9
_0q
’I"(y, S) - ay(yvs)
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We consider p1(Ko, A) > p2(Kp, A) two positive numbers (which will be
fixed later in terms of Ky and A). The conclusion follows if we treat Case
1 where s, — s9 < p; and then Case 2 where s, — sg > ps. The proof
relies strongly on estimates of lemma 3.2. Therefore, we suppose Ky > K1,
A > Ay, 06 < A3, to > InaX(tn(K(),Eo,A,pl,Cé),tn(Ko,Eo,A,pg,Cé)),

so = —log(T — ty) > max(p1,p2), €0 > 0, oy < %k(l), Cy > 0 and ny <
m1(€o)-

Case 1: s, — so < p1(Ko, A)

We apply lemma 3.2 with A, p* = p1, p = s, — so and g = sp.

From equation (54) with m = 2, we obtain: Vs € [sq, 54/,
|gh(s) + 257 Lqa(s)| < CAs™3 +2e7% < CAs™3. Therefore, Vs € [sq, 54,
|d%(52q2(s))| < CAs™!, and then, using s, < 2sg (indeed, s, = s¢ + p <
s0 + p1 < 2s0), we obtain |ga(s.)| < s;283|qa(s0)| + 2A4(ss — s0)s5 3. Us-
ing |g2(s0)| < sy2log sy which follows from lemma 3.1, we get |ga(ss)| <
572 log sy + CA(sy — 50)s;>. Together with estimates concerning equations
(55) and (56) in lemma 3.2, we obtain:

lga(s:)] < s:2logs, + 20 As; >
la-(y: 5| < CLl+ 50— s0)s. (L + [y[)
ge(w.5)| < CuEGen (1 + 5, — so)s. 2
ri(y sl < Crl+ (50— 50) " + (52— 50))5, 2 (1 + [y]*)
< 201(1+ se = s0)s 2 (L+ [yl

To have (83), it is enough to have

A2 A 3 _S«—S A2
].S 77 201(1+3*_80)§ 57 and ClK()e * 0(]‘+8*_80)§ 7 (84)
on one hand and 421
20, As7? < =B -3 (85)

on the other hand.

If we restrict py to satisfy 207 (1+p1) < A/2 and C1 KZef (1+4p1) < A?/2
(which is possible with p; = 3/2log A for A > Ag(Kp) large enough), then
(84) is satisfied, since s, — sg < p1. Now if sg > sg(A), then (85) is satisfied.
Thus (83) is satisfied also. This concludes Case 1.

Case 2: s, — so > p2(Ko, A)

We apply lemma 3.2 with A, p = p* = ps and 0 = s, —p2. From equation
(54) with m=2, we obtain Vs € [0, 5.], |gh(s) + 25 q2(s)| < CAs~3. Using
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the same argument as Case 1 and |g2(0)| < A%0~?log o, and then estimates
on equation (55) and (56), we obtain:

lga(s.)| < APs.?log(s. — pa) + 202 Apas,”
0,50 < Co(Ae™ /2 4 A% 4 po)s (1 + [yf*)
lGe(y,5.)] < Ca(A%e /P 4 AK3eP + K3pye?)sy '/
ri(y,s)| < Ca(AeP/? 4 C(Ko)Che ™ + pa'/? + po)s 2(1 + [yl®).

Since C}y < A3, in order to obtain (83), it is enough to have

f@m (S*)
Co(A%2e=P2/P 4 AKBeP? + K3 poef?)
)

02(Ae—p2/2 + C(KO)A?,e—pg +p21/2 + po

IN AN IN IV

with fa p,(s«) = A%s;2log s, — 573 — [A2s; 2 log (s, — pa) + 2C2Ap2s,3].

We now fix ps so that CoK3Aef? = A?/8, ie. ps = log (4/(8C2K})).
Then, the conclusion follows if A is large enough. Indeed, for all A > 1, we
write

A A

-3 2

) —s;% (A2 —205Alog ——— — 1

|fA,10g SC;KS’ (S ) $ ( Og 802KS, 2 Og 802KS, ) |
A2(log A )2

8C2 K3

= SQ(S_IOgﬁ)2.

Then we take A > A7(Ky, Cy) for some A7(Kjp) such that

A A
A1 —209Alog ———— —1 > 1
08 SCQKS’ 241508 SCQKS’ -
A ~(log —4—)? A
A -1/2 A2 8CH K 1 e < 2
ClAgerg) A votlesgaTa) S 5
A A A A A2
A2 APy AK3 L K3log — ) <
Ul Garg) AR TR e TEsa R S 2
A —(log —4)> A
Co(A —-1/2 O(K, A3 8CH K| 1 A N1)/2
2( (SCQKS’) + ( 0) € 0 +(0g 8CQKS’)

+1log schg) <3
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Afterwards, we take so > s7(Kp, A) so that Vs > s,
A2 (log 86’;4[{3)28_2(8 — log 86’;4[{3)_2 < s73/2.
This way, (86) is satisfied for A > A7(Kjp) and sg > s7(Kp, A). This

concludes Case 2.

We remark that for A > Ag(Ky), we have p; = %logA > log 802%1{: = pa.
0
If we take now K02 = KH, AQ(K()) = max(An, AG(K()), A7(K0), Ag(Ko))

and ty = max(t1 (Ko, €0, 4, p1(A),Ch), T — e~ 1A
t11 (Ko, €0, A, pa (Ko, A), Ch), T — e~ P20 A) 7 e=s6(A) 1 e=s7(KoA)y
n2(e0) = m1(eo), then we conclude the proof of Proposition 2.3.

4 A priori estimates in P, and P;

In this section, we estimate directly the solutions of equation (II).

4.1 Estimates in P,

1
Let us recall that k(t) = ((ﬂ—i— DNA—-71)+ (6151)2 %21) 7' and that it is
defined for 7 € [0, 7] with T > 1.

Proposition 4.1 There exists Koz > 0 such that for all Ko > Koz, 01 <1,
& >1 and C§ >0, CJ* > 0, CJ* > 0 we have the following property:
Assume that k is a solution of equation

ok 1

Ak — —

or kb (87)
for 7 € [r,m) with 0 < 71 < 1 < 1 (< T). Assume in addition: Y7 €
[7—1) 7—2] ’ .
Z) v§ € [_2507260]; |k(£a7-1) - (Tl)| < 51 and |Vk(£a7-l)| < %;

ii) V¢ € [0, 0] |Vk(e, )| < - and [V2K(E,7)| < C5,
iii) V€ € [ T80 o) k(g 1) > Lk(r). Then, for & > €o3(Cl, Cg, C4*) there

1

2
exists € = €(Ko, CJ*, 01,&0) such that V& € [—&o, &, VT € [11, 2],
|k(&,7) — k()] < € and |VE(E,T)] < 2?8 , where € — 0 as (01,&) —
(0,400).

Proof: We can assume 71 = 0 and 7 = 19 < 1.
Step 1: Gradient estimate
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Lemma 4.1 Under the assumptions of Proposition 4.1, we have
Ve € [ %0, 5], Vr € [0,70) [VR(E, )| < 223 - if &0 = &03(Cg", €5, Cp)-
Proof: We have V¢ € [—2&p, 2&], V7 € [0, 0],

0 Vk

From iii), we have for \§| < 750 ’kﬁ+1| <1 for Kq large. If 6 = |Vh|?, then,
by a direct calculation, 28kA (ak) < Af and 6, < AG + C0 for |x| < 720.
Let us consider x; € COO(]RN) such that x1(xz) =1 for |z| < %, x1(x) =0
for |x| > %, 0<x1 <1, |Vx < 5% and |[Ayi| < %. Then, 6; = x10
satisfies the following inequality:

917_ § A@l — 2VX1.V9 — AX19 + 001
< A+ C(Cy, Cp)&o

2 : _ ,—CT
1{@§Ix|§2£o} + C0y. With 0y = e=“~76;, we have

1152
/% 2 0
Oar < D02+ CUCE O™ 350y oy 201 0.5 02(0) S =
Therefore, by the maximum principle, V¢ € [—%, %] V1 € [0,70], (&, 7) <

1% 2
S+ C(Clr, C5)265 %' Hence, for [¢] < 22, vr € [0,1], [V(E, 7)| <

0
Cll* C Cl* C* _ 2 20 % *
& %e g < e, if & > &u3(Cy, G5, Cg™), which yields the

conclusion.

Step 2: Estimates on &
We are now able to conclude the proof of Proposition 4.1.

Lemma 4.2 For |¢| < &, V7 € [0,70], we have |k(€,7) — k(7)| < €, where
e — 0 as &y — +oo and 61 — 0.

Proof: Let us consider k; a solution of equation (87) such that V¢ € [—2,2],
V7 € [0,70], [k1(€,0) — k(0)| < 61, |[VE1(€,7)| < €. Let us show that for |¢] <
2, V1 € [0, 70), |k1(0,7) — k()] < C(Ko)e + 6; where C(Kp) is independent
from e.

We have VT € [0, o], kl(O T) = ‘B;(O 1l Jigj<2 k1(&, 7)dz + ka(7), and
kl(o = ‘BQ 1 me kl(& d{ + k3(7), where | B2(0)] is the volume of the

sphere of radius 2 in RV, ||ka||z < 2€ and ||k3||z~ < Ce.
In the distribution sense, for € small enough, considering

k(r) = _|le(0)| Jiej<2 *1(€,7)d, we have

1 d];: 1
e Ce e + Ce




and |k(0) — k(0)| < Ce + 6;.

Together with (87), we obtain by classical a priori estimates that V7 €
[0,70), |k(T) — k(7)| < C(Ko)e + 01 (since C; < |k(r)| < C(Kp)) and
therefore V|¢| < 2, V7 € [0,70], [hi(0,7) — h(7)] < C(Ko)e + 6;. Applying
this result to hi1(§,7) = h(1,§ — xg) for g € [—& + 2,& — 2], from the
assumption and step 1 we obtain lemma 4.2.

Lemmas 4.1 and 4.2 yield Proposition 4.1.

4.2 Estimates in P;

We claim the following

Proposition 4.2 For all € > 0, ¢g > 0, g9 > 0, and o1 > 0, there exists
ta(€,€0,00,01) < T such that ¥t € [t4,T), if h is a solution of (II) on [to,t.]
for some t, € [to,T) satisfying
i) for || € [, %), Vi € [to, ],

< h(x,t) < o1, |Vh(x,t)| < o1 and |V2h($,t)| <oy, (88)

i) h(x,to) = H*(z) for |z| > § where H* is defined by (5), then for |x| €
(D, 400), Vt € [to, 4],

|h(z,t) — h(z,t0)| + |Vh(z,t) — Vh(z,to)| <e.

Proof:

Let us obtain the estimates on & for [z| > <. The estimates on Vh can be
obtained similarly. We argue by contradiction. Let us consider t. € (to,t.)
such that V¢ € [to, t),

1A (2, t) = h(z, t0)l oo (o> 0y < € and [[A(z;te) = P2, t0)|| oo (o> 0) = €
(89)

We can assume € < 1 min H*(x). We can remark that (5) implies that
|| >

|h(x,to)] = H*(x) > Co(eo) > 0 for |z[ > €, therefore, we have

|F'(h(x,t))| < C(eo) for [x] > ¢ and t € [to,t ).

From assumption 7), we have i 111 fact V¢ € [to,te], for @ <|z| < ¢, h(x,t) >
oo > 0 and |F(h(z,t))| < C’(ao) We then consider hl(a: t) = Xl( Yh(z,t)
where Xl € C>®(RN, |0, 1]) x1 = 1 for [z] > 2, x; = 0 for 2] < ¢
Vx| < € - and |Ay;| << a We then have:

oh
8; = Ahy — 2Vx1.Vh — Ax1h — x1F(h).
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Since Vt € [to,ts], 2V x1.Vh| + |[Ax1h| < C(eo,al)l{%)qﬂse?o}(x), we write

P~ Ah+ filw 1)~ F(B)

with |f1(z,t)] < C’(eo,al)l{%g|r|§%o}(a:).

Let us now consider the case of a bounded domain {2 and the case ) =
RV, since there is a small difference in the proof.

i) Q is a bounded domain:

In this case, ~
Vit € [to, te), hi(t) — S(t —to)hi(to) = ftto dsS(t —s)[fi(x,t) — x1F(h)] where
S(.) is the linear heat flow. Hence,
|h1(t) = h1(to)|zee < [ha(t) =S (t—to)hi(to)|Lee +[S(E—t0)h1(to) —h1(to)|Lee <
Ji ds[|S(t — 5) fi(s)| oo + |S(t — 5)C(€0, 00)x1 F (h)| <]
+|S(t = to)hi(to) — hi(to)| Lo~
< J1 ds[== | fo(s) 1 + 1S(t — 5)C(e0, 00) Ly ]
—|—|S(t — to)hl(to) - hl(t0)|Loo
< C(ep,00,01)vt —to+ |S(t —to)x1H" — x1 H*| .
Now, if tg € [t5(e, €0, 00,01),T), then we have |hy(tc) —h1(to)|L~ < §, which
is a contradiction with (89).

Therefore, Vt € [to, t.] |h(x,t) — h(x,t0)|Loo(‘x‘2%o) <e.

ii) Case Q = RV: we define ho(z,t) = (z) + hi(z,t) where ¢(z) is
introduced in the introduction (such that ¢» € C*®°(RY), v = 0 on [~1,1],
Y(x) = aq|z| for |x| > 2). From the fact that % = Ahg+ F(ho(x)+9(z))+
A and that for |v| > 1, |F(v)| + |[F'(v)| < Ce™, we obtain using similar
techniques:

Yt € [to, t«), |ha(x,t) — ha(z,t9)|L~ < € or equivalently: Vt € [to,ts),
|hi(z,t) — hi(z,t0)|re < €. This concludes the proof of Proposition 4.2.

A Proof of lemma 2.4

We must show that for suitable (dg, d1) € R?, the estimates of the Definition
of S*(t) hold for t = ty. Since estimate ¢ii) holds obviously, we show in a
first step that h(ty) € H and estimate ii) holds, for all choices of (dg,dy),
provided that ¢y is near T. Then, in step 2, we find D(tg, Ky, A) such
that V(do,d1) € D(to, Ko, A), q(s0) € Vi, A(S0), where ¢ is the function
introduced in (23).

Step 1: Estimate ii) of the Definition of S*(t)
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Let us first remark that from (45), (5) and (6), we have h(tg) € v+ H! N
W2 (R). Moreover, one can see from (45), (10), (27) and (5) that Vz € R,
h(z,to) > C(to,do,d1,€0) > 0. Therefore, h(tg) € H.

Let us consider ty < T, Kq, €, ag, 01, and Cq, and show that if these
constants are suitably chosen, then for |x| € [%\/(T — to)|log(T — to), €o]
and |£| < 2a0+/|log 6(z)], we have

to—t($> ~ to—t($> ok C*(K())
i) F () <o gl < T 00

and |V§k| < C} where k, k, t(x) and 0(x) are defined in (28), (30) and (29).

[k (2, &,

Let us first introduce some useful notations:

K 1 P
b0 =T — to, r(to) = —/follog fo| and R(to) = 65 [logfo|%,  (91)

and remark that thanks to (31), we have for fixed Ko:

16 64 _
O(r(to)) ~ 0o, O(R(tg)) ~ —500|logboP~, 6(2R(t)) ~ ﬁ90| log fo[P 1,
0

K2
log 8(r(to)) ~ log 8(R(tg)) ~ log O(2R(to)) ~ log by as tg — T (92)
If ap < @ and ¢ < C(al,ﬁ) then it follows from (29) that for |z| €
[ (o), €0] and €] < 2ap+/|log O(x)|, we have [£1/0(x)] < |m| and
r(to) _ lal
2 = 2
Therefore, we get from (28), (45), and (27): for |z| € [r(to),e€o] and
€] < 2a0+/[log O(x)],

k(x7£7t00_(t§ )) X1$+g\/ tO II 1_X1 117+§\/ tO

ol - <o e fotw) < dal < 2o < c@p). (09)

(94)
with (1) = ()7 é(%) and (IT) = 0(z)" 77 H*(z + £/8()).

Estimate on k:
By linearity and (46), it is enough to prove that for |x| € [r(to), 2R(to)]
and [¢] < 2a0+/[log0(z)],

'(1) _k (L 9_(;5‘7“))‘ < % (95)
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and for |z| € [R(to),e0] and |£| < 2y |log 0(z)|,

() <

We begin with (95). From (4) and (30), we have:
1
to—t(x) 0 (B+1)? |z+€64/0(x)|? | PH1
0 =k (77| = |<(5+1>( %)+ ()|10g90|)
z+ )|2 K2 L
(<5+1><9m>+<ﬁ 3 16)"“|<cr' Sosrar — 1817

|log00| 16
ﬁ+1 /log 6(x
< CKO | logeo KO\/| 10g90| - ]'
Since |z| € [r(to), R(to)] and [¢]| < 2a+/|log 6(z)|, we have

2 2
Ig@RE))] (1 _ 4o log0e] |
( “hogdo (L 47%)) —ls ( ogdo KO\/log00> -1

2

< < log(li(grézo))) (1+4;_(;)> _1. (97)

1
B+T

From (97) and (92), we find a5(Kop, d1) and t5(Ko,d1) < T such that Vay <
as, Vig € [tg,,T),

7 (to—t(x T log 6( 4¢ 2 _ 1155 < 0
(D) k( )|<OK I log(T— to +K0\/\10g(T—to)|| 1 < 21

Now, we treat (96). Let |z| € [R(t0),€0] and [£] < 2a0+/|logf(z)]. We
have from (94), (5), (29) and (30),

1

(1) = [ lere oI FH
866(x)|log |z+&+/8(z)]|

to—t(x)

n - ""(—Oem)

_’ (B+1)2 w/\log&? Y|4¢)2 | BT

yiEmy
and

(B+1)%| 52 \/[10g (@) [+€]
80 log|z+¢+/0()|

1

- [en (aty) + R

80 10g |z+&+/0 ()|

(12 (Voo w2\ 7
S R ey e T ARG (o)
< C[(I1) + (12)] N
B+1 1

+1

Ko Mogb@l+e|” k2
|log |2+&+/0(x)]| 8

Let us bound (I7). Since [£] < 2ap |log 0(x)|, we have from (29),

Ko /Togb@l+aoy/Tlog0@I|” K2
) < |3
(@)l < [log [2-+a0+/0(2)] 1og 0(@)] | 5

with (.[1) =

and (Iy) = ’%

ﬁ+l

41



1
log 6(x K 2 K? pe
- 1ogx+1§g((1—3-%8) (_O + Oé()) TO ’

Since |z| < €y and log 0(x) ~ 2log |x| as x — 0 (see (31)), we find ag(Kp, 01)
such that for each ay < ag(Kp,d1), there is €5(Ky, d1, ) such that for all
€0 < (Ko, 01, ap), for |x| € [R(tp), 0] and |£] < 2ap+/|logO(x)|, we have

()] < % (98)

Let us bound (I3). Slnce \a:| > R(to), we have from (92), |(I2)| <

‘Q(Rg&o)) e < C(Ky)|log 00| . Therefore, if tg > t6(Ko,01), then

)
)< 2
Combining (98) and (99), we get: If ag < (Ko, 01), €0 < e(Ko, 01, a0)
and to > t6(Ko, 1), then for |x| € [R(to), €0] and || < 2ap+/|log O(x)], (96)
holds.

(99)

FEstimate on ‘glg

From (94), we have for |z| € [r(to), €0] and |£| < 2ap+/|log b(z)],

(a: g, to@(i(x)) E, + Ey + E3 where

_ (o \FT (@) x+ &y (@
b= (O(x)) \/90|log90|vq) («/90|log90 ) eVl ( |
100
— O(x)? FIVH" x+§\/ )1 —x1(z + 6/0(z), t0),  (101)

E3:E49( )2 ﬁ+1 33‘—{—5\/ to Wlth (102)
: +£/0(x)

E, =077 (2 H*(z + 6,/0(z

1T <\/00\10g00|>

In order to get the estimate on 85, it is enough to show that

for 2] € [r(to), 2R (1] and [¢] < 200/ log0(a), |By] < — o),
Tog ()
(103)
for || € [R(to). eo] and [¢] < 2a0y/log b)), [Ba] < —CLD_  (104)
|log 0(x)]
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for || € [R(to). 2R(t0)] and [¢] < 200,/|1og 6(x)], B3| < 1oge<) 1l
(105)

We begin with Ey. Let |z| € [r(to), 2R(t9)] and [£| < 2a9+/|log0(x)|. From
A 1—
(4), it follows that |[V®(z)| < C’\z|ﬁ_+€‘ Therefore, by (100),
; 0(x +€+/0(x B+1
|E1| < ( 60))ﬁ Vo |lf)g)0 | =
R () [og o I)
< [log fo| FT0(x)? FTC(B )leﬁ+1 ( (93))
1 1

< O(Ko)|log 0(x)|~2[log | ‘*“|10g9( )7t (by (29))
< C(Kqo)|log 0(x)| "% | log 6| 77| log 6 (r(t)) [ (since |z] > r(to))
< O(Ko)|log 6(z)|~2 for to > t:(Ky) (use (92)), which implies (103)

Now we treat Eo. Let |x| € [R(to),€0] and [£] < 2a0+/|logf(z)|. From

1 1
(101), we have |Ey| < 0(z)2 A1 |VH*(x + £/0(x))]
1 1
< f(x)2 B |VH*(yz)| with v = 3 is 3 < 1 and v = 3 if 3 > 1 (use (93)
and (5)). According to lemma 2.2,
1 1 1 1

« - O(yz) B+ 2 o O(x)B+1 2 .. .
|VH*(yz)| C’(Ko)i‘ ] C (Ko)il sy 28 0. This implies
(104) for € < e7(Kp).

Now we show the bound on E3. We consider |z| € [R(to),2R(t9)] and
€] < 2ap+/|log(x)|, and find a bound on F4. From (102),

_ (B+1)? Ja+£/0()| ﬁ+1 1) _la+6B@P_] 7
E4 - |:(ﬁ+1)90+ |10g00| :| 33 \log|x+§ /_9($ ||

-

. From

(93) and (91), we have
(B+1)? |z + &/0())2
alto) < (B+1)00 + s Ca
(to) < (B+ 1)t 43 | log 6| (fo)
(B+1)? |z +&/0(x)) < Calto)
86 |loglz +&\/0(z)|| ~
with a(fo) ~ Cfl| log folP~". Therefore, | E4| < C [fo log fol? ] 7
6+1 22— ,
(ﬁ =+ 1)90 + T+ g\/—| (10g90 |log |z+&+/ 9(27)”)}

+ |z+€+/6(x)|? log |z+€+/0(2)]
) |og 60| log [++£ /6(x)| fo

< C [fo]log o|P~1] 57T |6y + 60| log 6o|P~2 log log fo| (use (93), (91) and
|z| € [R(to),2R(to)]). Hence

and a(tg) <

_L
<C [90|10g00|p_1] B+L 16

|E4|<00ﬂ+1|1og00| [1+|1og90|P Zloglogfo| . (106)
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Using (46) and (27), we have

aXl
Or

From (92) and the fact that |z| € [R(to), 2R(t9)], we have
B(x)? P < 0 (6R(to))2 T < C(Ko) [fo]log olP~1 ]2~ 7T if to > ts(Ko),
withd=2if >1landd=1if 8 < 1.

Combining this with (102), (106) and (107), we get
|Es| < C(Ko)|log 6| P+2 [1+4 |log6p|P~2loglogfy] < |log 0|2 if to >
ts(Kp).

Since log 6y ~ log@(R(ty)) as tg — T (see (92)) and R(tg) < |z|, this
yields (105) for tg > to(Kp).

The expected bound (90) on a—’g follows from (103), (104) and (105).

< €07 %[ log fy| 5. (107)

Estimate on Ak:
In the same way, we show that if ty > t19(Ko, €0, C1), then

for || € [r(to), co] and [¢| < 2a0/Tog 0(x)], we have |VZk(z, g,t “fﬂ | <O

Step 2: Estimate i) of the Definition of S*(t)
From (23) and (45), we have:

1o |yl K (\y!)

\/_ \/_K0/16) 2(p—a)so” /50K
(108)

Using (34), (26), (25) and simple calculations, and taking Ky > 20, we have:
if tg > t11, then

x(y,50)q(y, s0) = (do + dy

qo(so) = do on(%)dﬂ ~ S on(\/MKO)d

o) =4 [Exo(o s, 1o
and
w(so) = do(1+0(e™) = 5omm O(™)  (110)
Qils0) = j;_0<1+0< ) (111)
QQ(SO) = doO( )+O( _SO) (112)

_1
la-(y. 50)| < Ce™*0(1 + |dol) (1 + |y[?) + Cldu]sy *e~*ly|
o (1= Xo(724) + (1do| + [d =) (1 = xo( o).
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Since Vn € N, |xo(2) — 1| < Cy|2|", and Ky > 20, we get

C\(L+1yP)

|4-(y, 50)| < (Idol| + |di| + —) 73 (113)
S0 SO

Let us show that o
|ge(y, s0)| < —. (114)
50

From (23), we have ge(y, s0) = Q1 + Q2 where Q2 = 5725=(1 — x(y,5)) <

_%0 _a_
Csyt and Q1 = (1 — x(y,5)) % - CIJ(\/LS—O) with 2 = ye=*°/2 and
to = T — e %0,
If |x| < R(top) (see (91) for R(tg)), then we have from (45), (46) and (27)
Q1 =0.
If |x| > R(to), then we have from (10), (45), (91), (9) and easy calculations:

S0
() < B(“A)) < syt and

h(z, to) > x1(z, to)(T — to)FF1C [@(6

+ (1= xu(z, t0)) H* (R(to))

1

> C(T — tg) Fisg.

Therefore, by (9), |Q1] < Csy!, which yields (114).
By analogous calculations, one can easily obtain:

9q (Ido| + ld1| +1/s0) (1 + |yl*)
— <
(7) eol<c = o

and |22y, s0)| < 5" for y] > Koy/5o.
From (109), one sees that g : (do,d1) — (qo(s0),q1(s0)) is an affine
function. Let us introduce D(tg, Ko, A) = g+ ([—A, AP). D(tg, Ko, A) is

29 22
50" %0

(115)

obviously a rectangle.
If (do,d1) € D(to, Ko, A), or equivalently |g,,(so)| < S% for m = 0,1,
0

then, from (110) and (111), we obtain |dg| < Csy' and |d;| < CA553/2.
Combining this with (112), (113), (114) and (115), we obtain VA > 0, there
exists t12(A) < T such that for each tg € [t12,T):

g2(s0)] < sa2/log s0, lg—(y. 0] < Cs*(1+yP),
—1/2 ] _

gy so)l <o 1(5), sl < sg(+ P,

\g—g(y, s0)| < 351 for |y| > Ko+/So

and q(so) € Vi,a(s0)-
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Now, putting the conclusions of Steps 1 and 2 together and taking
K01 = 20, Oq(Ko,(Sl) = min (%,%(Kg,dl),aﬁ(Ka,él)), 61(K0,51,0(0) =

min (%C(alv ﬁ)? 66(K07 517 Oé()), 67(K0))7 tl(K07 517 €0, A7 Cl) =

max (t5(Ko, 1), t6(Ko, 61), t7(Ko), ts(Ko), to(Ko), t10(Ko, €0, C1), t11,
t12(A)), we reach the conclusion of lemma 2.4 7). i) is obviously true by
construction and by (109). [ |

B Proof of lemma 3.2

We start with some technical results on equations (54), (55) and (56) (Step
1). In Step 2, we conclude the proof of lemma 3.2.

Step 1: Estimates on equations (54), (55) and (56)
i) Sizes of ¢ and Vq:

Lemma B.1 For all Ky > 1 and ¢y > 0, there exists t1(Ko,¢€9) such that
Vto € [t1,T), for all A > 1, ag > 0, Cy > 0, C) > 0, & < k(1) and
no < mi(eo) for some ni(eg) > 0, we have the following property: Assume
that h(x,to) is given by (45) and that for some t € [to,T), we have h(t) €
S*(to,Ko,eo,Oéo,A, 50,06,00,t), then:

) laly, 5)| < CAPKGs—/3 and |q(y,5)| < CA%slogs(1 + [y),

i) |Vq(y,s)| < C(Ko, ChA%s~ Y2, |Vq(y,s)| < C(Ko, Ch)A%s 2 logs(1 +
ly?), (1 = x(y,s))Vq(y,s)| < C(Ko)Cés_%, where s = —log(T —t) and q
is defined in (23).

Proof:

i): From i) of the definition of S*(t), we have ¢(s) € Vi, a(s). Therefore,
the proof of lemma 3.8 in [22] holds.

i1): Arguing similarly as for i), we obtain from ) of the definition of S*(t)
and (26):

AZK}
7
Since |Vo(y,s)| < Cs™ /2 and s~ /2 < s72|y|? for |y| > Koy/s and Ko > 1,

we have to prove that |(1—x(y,))V(g+ ¢)(y, s)| < C(Ko)Chs~/? in order
to conclude the proof.

IX(y,$)Valy,s)| < CA* 1+ [y]*) and |x(y, s)Va(y,s)| < C

log s
52 (
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From (23), this reduces to show that V¢ > tg, for |z| > r(t),

)Gty
Val(z,£) = C(a) JZE (2,) < C(Ko, Oy L “(f;(T — (116)
where r(t) = Koy/(T — )] log(T — 1)]. (117)

Let us consider two cases:

Case 1: |z| € [r(t),e0]. We use the information contained in i) of the
definition of S*(¢). From (28), we have

1

h(z,t) = 0(x)F 1 k(x,0,7(z,t)) (118)
and Vaoh(z,t) = 0(z) 77 2 Vek(z,0,7(z,t))  (119)
with 7(x,t) = t;(tg). Therefore, since p = %ﬁﬂ,
Vh (2 11y |Vek
)=o) PO e o 10, (120)

Using the definition of S*(t), we have for |z| € [r(¢), €]

N o/
Ik (z,0,7(x, 1)) — k()] < 8 and |Vek(z,0,7(z, 1)) € ———0—v. (121)
¢ VIog ()]
Since &y < 1k(1), (120) and (29) yield for |z| € [r(t), €o):
VA B L Y ] ) ) B
) < <
() = CURG iaggmy = S s
with C(Ky) = I;(())LD‘H' Since r(t) — 0 as t — T (see (117)), we have from
(31)
00 (1) ~ = "D logb(r(t) ~ logr(t) ast — T (123)
~N —m— ~J e .
T Kg 0] a og ogr(t) as
Using (117), we get
(O T @y T

Mog@(r(0))]  /Ilog(T — )]

47



for some constant Cy. Therefore, if ty € [t2(Ky),T) for some to(Kp) < T,
then we have for t > ¢
G0 B ) Bl
4 .
[ og(6(r(£)))] | log(T" —t)]
Using (122) and (124), we find (116) for |z| € [r(t), €o], provided that to €
[t2 (K0)7 T)
Case 2: |z| > €. We use here the information contained in 7ii) of the
definition of S*(t), which asserts that
|h(z,t) — h(z,t0)| < mo and |Vh(x,t) — Vh(z,t0)| < no

for |z| > €. Let n1(e0) = 5 mln{ mm |h(z,t0)], n‘nn |Vh(z,t9)|}. Accord-

ing to (45) and (5), we have 771(60) > 0 If no < mi(ep), we get for |z| > €:
|Vh| |Vh| |V H*|

(124)

Rt (z,1) < Cha+1 (, t0) = OH*(oH—l)( z)
from (45). Therefore, proving (116) for all ¢ > ¢ reduces to prove it for
t = to. From (5), one easily remarks that %(:r) < C(ep) for |z| > €.

Therefore, if tog € [t4(€p),T) for some t4(ep) < T', then we get (116) for t = .

This concludes the proof of (116) for ¢t = ty and |z| > €, hence for t > ¢
and |z| > €p. Thus, with ¢;(Ko, e9) = max(ta(Kp),ts(€o)), this concludes
the proof of (116) and the proof of lemma B.1. [ |

i1) Estimates on K and Kj:

As we remarked before, Ki(s,0) = e (*=9)/2K(s,0). Hence, any esti-
mate on K holds for K; with the adequate changes.

Since K is the fundamental solution of £ —1/2 + V and L£L—1/2is

conjugated to the harmonic oscillator e=**/8(£ — 1/2)e**/8 = 92 — 22/16 +
1/4 4+ 1/2, we give a Feynman-Kac representation for K7:
Ki(s,0,y,2) = =YD (g 2) E(s, 0,y, 7) (125)
where
8 0y, T /dﬂ V(w(r),0+7)dT (126)

and dj;, 7 is the oscillator measure on the continuous paths w : [0, s—0] — R

with w(0) = z, w(s — o) = y, i.e. the Gaussian probability measure with

covariance kernel I'(1, 77)

= wo(T)wo(T) +2(e~ 2T — g2l 4 gm 3R —0) =747l _ o= g[2As—0)=7~7],
(127)
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which yields [ dp;,°w(T) = wo(7) with
wo(7) = (sinh 252) ! (ysinh 4 @ sinh £=%=7).
We have in addition
- /2 o—0/2 _ 22
T T S (y )

dm(1 — e=9) m]- (128)

Using this formulation for K, we give estimates on the dynamics of K
and K7 in the following lemma:

Lemma B.2 i) Vs > 7 > 1 with s < 27, [|K(s,7,y,2)|(1 + |z|™)dz <
(1 + y|™).

i1) There exists Ko > 0 such that for each Ky > Ko, A’ > 0, A” > 0,
A" >0, p* > 0, there exists
s9(Ko, A', A", A" p*) with the following property: Vsg > s2, assume that for
o > so, q(o) is expanded as in (35) and satisfies

lgm(0)] < Ao2,m=0,1, |g(0)
lg—(y,0)] < A"+ yP)o? ey, o)

then, Vs € (0,0 + p*]

A"(log o)o 2,

<
< A”O'_%,

la-(y,s)| < Clem 707" 4 A" ) (L [yP)s,
(s—0)

lae(y,s)] < C(A"e 7 + A”’Kg’e(s_”))s_%,

where a(y, s) = K(s,0)q(o) is expanded as in (35).
iii) There exists K3 > 0 such that for each Ky > Kz, A’ > 0, A” > 0,

A" >0, A" >0, p* > 0, there exists
sg(Ko, A/, A", A" A" p*) with the following property: Vsg > s3, assume
that for o > sg, r(o) is expanded as in (36) and satisfies
Alo=2, |r1(0)] < A’(logo)o~2,

1

ro(o)] <
A"+ |yP)o?, re(y, o) < A™o72,

<
Ir-(y,0)| <

then, Vs € [o,0 + p*]
PL(X(s) K1 (s, 0)r(0))] < C(e7 207D A 4 A" e=6=0") (1 4 [y*)s 2.

Proof: See corollary 3.1 in [22] for 7). See Lemma 3.5 in [22] for 4i).
Since K1 (s,0) = e~ *=9)/2K (s, 0), and ii) and iii) have similar structure,
one can adapt without difficulty the proof of i) (given in [22]) to get iii).H

iii) Estimates on B(q):
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Lemma B.3 VK, > 1, VA > 1, Js5(Ko, A) such that Vs > s5(A, Kp),
q(5) € Vico,a(s) implies |x(y, s)B(a(y, s))| < C(Ko)lg|* and |B(q)| < Clql”
with p = min(p, 2).

Proof: See Lemma 3.6 in [22]. |

iv) Estimates on T(q):

Lemma B.4 For all Ky > 1, A > 1 and ¢y > 0, there exists tg(Kp, €9, A) <
T and 776(60) such that for each to € [t(Ko,€0,A),T), ag > 0, Cj > 0,
do < 1k(1), Co > 0 and 1y < ne(eo):

th(ZL‘ to) is given by (45) and h(t) € S*(to, Ko, €0, 0, 4, do, C}), Co, Mo, t) for
some t € [to,T), then

|Z/|2 1 12
—lal + 7 ql* + |Val?),

(129)

(. 8)(T(g) + 2a%w>| < C(Ko, Ay, )%y

X )T(@)] < C(Ko, A)x(y,s) (s~ gl + s /2|Vq|) (130)
(1= x(y, )T ()] < C(Ko,Cp)min(s™",s™2[y|*) (131)

where s = —log(T —t) and q is defined in (23).

Proof:
Proof of (129) and (180): They both follow from the Taylor expansion
2 2
of F(0) = — Witf@qu + W@' for 6 € [0,1]. Let us compute
Vep+6V Vq.(Vp+6V

F'(0) = ql ($+€q)q| _9 q(@f@q ‘1)’

— _9,21Vetov |2 Vq.(Ve+6Vq) |Vq|?
F(0) = -2 ($+9 )q +4q q(eof;?q) L - 2030

From F(1) = F(0) + F'(0) + [, (1 — 0)F'(6)df, we write

2
x(y,5)T(q) = ax(y, s)(q N;;’ - 2VQ-%) + afol(l —0)x(y,s)F"(0)do.

Using (23), lemma B.1 and (26), we claim that for so > s7(A4, Ko), Vs > so,
2 2

VO € [0,1], [Vy| < Cs_%, WQ’%‘ < C"i’—‘g and

[x(y; ) F"(0)] < C(Ko, A)x(y, s)(s™al* + [Val*)

< C(Ky, A)(s7Yq| + 572|Vq|). Therefore, (129) and (130) follow.

Proof of (131): From (23), we have W“O'Q (y,s) < Cs~1. Therefore, if
Ky > 1, (26) implies that (1 — x(y,s)) =2 WW' (y, s) < min(Cs™t, Cs=2/2|y}3).
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In order to prove (131), it then remains to prove that

(1 - x(, >>'ijf?f'2<y,s> < min(Cs™!, Cs™/2|y[*), or simply, for |y| >

Kov/s, Wf;'rzq' (y,5) < Cs~ 1, since Cs~1 < Cs™52|y|? for |y| > Ko\/s, if
Ko > 1.
From (23), this reduces to show that Vt > tq, for |x| > r(t),

(T —t) 71
|log(T" — )]

where r(t) is introduced in (117). The proof of (132) is in all its steps
completely analogous to the proof of (116) given during the course of the
proof of lemma B.1, that is the reason why we escape it here. |

[Vul? VA

(@,t) = Cla) gz (@, 1) < C(Ko, Co)

(132)

v) Estimates on R(y,T):

Lemma B.5 Vy € R, Vs > 1,|R(y,s)] < Cs~!,
|R(y,s) — Ci(p,a)s™2 < Cs™3(1 + |y|*) for some C1(p,a) € R, and

%y, 5)| < Cs~ P(|y| + [y|*) where p = min(p,2).

Proof: From (54), we have

0 1 \Y
R(y,s)z—a—f—l—AgD—§y.V<p—]%+gDp—a‘ :f

2
o B (p_ o o P it R '}
ply,s) =@+ —, &= (p—1+bz7) »7, b W—a =5 (133)

sy and £ = (p — 1) »=1. Therefore,

_ bz2 4pb? 2
R(y.s) = pirEE (P 1) o+ (pp 1)z e 134
— PP > p_4ab22<1>2p ( )
G-Ds TP T D% ¢

Proof of |R(y,s)| < Cs~!: It follows form (134), and the fact that
|20, + & < O, p ! < &L and |®P — ¢P| < Cas™?

Proof of |R(y,s) — C1(p,a)s™2| < Cs73(1 + |y[*): If |z| > 1, then 1 <
sHyl? and [R(y, s) — Ci(p,a)s2| < O~ x (s~ Ly[)? < Cs3(1 + [y,
Let us focus on the case |z| < 1. The method we use consists in expanding
each term of (134) in terms of powers of s~! and z2. From (133), one can
easily obtain the following bounds: for |z| <1, Vs > 1,

b _ _
|DP — KP + (pl’_'f)3z2| < Oz, |02~ — 271 < C22,
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a2
P — @P — E2pr1 %@p—ﬂ < Os72, |orL —

|PP=2 — kP2 < O2? and ]%p — el < Cos7L
Combining all these bounds with (134) and (133), and using |z| < 1, we get
the result.

o1 + el < O

Proof of |‘g—1;(y, s)| < Cs™P(|y| + |y|*): The proof is completely similar
to the above estimates. We just give its main steps. First, use (134) to
compute %—};. Then, show that Yy € R, Vs > 1, |%—1;(y,s)| < Cs%_ﬁ, in
the same way as for |R(y,s)| < Cs~!. Therefore, if |z| > 1, this gives the
expected bound. If |z| < 1, expand all the terms with respect to s and 22
to conclude. |

vi) Estimates on f1:
Lemma B.6 Yu >0, |fi(u)| +|fi(w)] < C.

Proof: According to (24), (H2) and (19), we have:
fi(u) = T E F(aFTu ) -, fi(u) = —F'(@FTu ) — pur,
Yo € (0, 1] F(v ) =0 P Vu>1, |F(v)| < Ce ™ < C. Therefore,
- 1faﬁ+1u_3 <1, then f1(u) = f{(u) =
L if Py > 1, then u < a1 and |fi(uw)| + |fi(w)] < C(a). [ |

Step 2: Conclusion of the proof

Here, we use the lemmas of Step 1 in order to conclude the proof. There-
fore, we assume that Ky > max(1, K9, K3), ¢g >0, A > 1,
to > max (1 (Ko, €0), T — exp(—sa2(Ko, 4, A2, A, p*)),
T— exp(_SQ(K()v 07 Ov 07 10*))7 T—- eXp(_SQ(K()v Av 1, C’ p*))7
T — exp(—s3(Ko,CA,CA?,CA,C(Ko)C}, p*)),
T - eXp( s3(Ko,CA,C,1,1,p%)), T — exp(—s5(Ko, 4)), te (Ko, €0, 4)),
dp < k:( ), ap >0, Cy >0, Cy >0, no < min (n1(€), n6(€0))-

We consider o > —log(T — tp) and p < p*, and suppose that Vt €
[T —e 9, T — 6_(0+p)], h(t) S S*(to, Ky, €9, a9, A, b, C(/), C(),t). Using the
definition of S*(¢), and the lemmas of Step 1, we start the proof of the
estimates of lemma 3.2.

Below, O(f) stands for a function bounded by f and not by C'f. We use
the notations introduced in (34).

I) Equation (54)
Since q,(s) = & [ x (¥, $)km (¥)a(y, s)dp = [ £ (Xq)kmdp, we obtain:
S x (s 8)km (U) 5 (0, 8)dps — @i (5)] = | [ 55, 9)km (¥)a(y, s)dpl



< CAQﬁge_zs by lemma B.1, (25) and (26). If so > s12(Kop, A), then (57)

>~ s1
follows.

Since L is self adjoint and Lk, = (1 — &)k, there exist two polyno-

mials P, and @, such that | [ x(y,s)km(y)Lq(y,s)dp — (1 — 5 )gm(s)| =
2

| SIL((8)km) = x()kma(s)dpl = | (55 Pon(y) + 55 Qm(y))a(s)dpl

< CA?K3s™1/2¢72% by lemma B.1, (25) and (26). Therefore,

| [ x(y, $)km (y)Lq(y, s)dp| < e 5 if sg > s13(Ko, A), which yields (58).

From (54), |V (y,s)| < Cs~ (1 + |y|?). Therefore,
| [ x(y, $)km (y)V (y, s)du| < CA%s3logs < s75/2 for s > s34(A), by lemma
B.1 and (25). This yields (59).

From lemmas B.3 and B.1, and (25), we have

| x(y, )km (y) B(q)(y, s)du| < C(Ko)A's™*(log 5)*.
Now, if sg > s15(Kp, A), then (60) follows.

By lemmas B.4 and B.1, and (25), we write:
| [ x(y, 8)k2(9)T(q)(y, s)dp| < s7271/* for s > s36(Ko, A), which is (61).
From (54), |V (y,s) + 2p/(s(p — a))ks| < Cs™2(1 + |y|*). Since |qo(s)| +
lqa(s)] < CAs™2 follows from q(s) € Vi, a(s), and since [ x(s)k3q(s)du =
q2(s) + coqo(s) + caqa(s), we get (64) for sg > s7(A).

From lemma B.5, we have |R(y, s)| < C(s72 + s73Jy|?). Using (25), we
get (62).

From lemma B.6, we have \e_z%fl(ezﬁ(go +q))| < Ce 71, Therefore,
as before, | [ x(y, 8)km(y)e 71 f1(e7 1 (¢ + q))du| < Ce »1 < e for s
large and (63) follows.

From (54), |V (y, ) + 2p/(s(p — a))ka| < Cs*(1 + |y[*). Since |qo(s)| +
lga(s)] < CAs™2 follows from q(s) € Vi, a(s), and since [ x(s)k3q(s)du =
q2(8) + coqo(s) + caqa(s), we get (64) for sg > s7(A).

By lemmas B.4 and B.1, and (25), we write:
| x(y, $)k2 ()T (q)(y, s)dp + E| < 72 for so > s16(Ko, A, Cp), where
E = a/4[Vq(y,s)(x(y, 5) 22y — 2)e W/ ) /Ar)dy
~a/4 ] a(y,5)V-(x(y ) Vo p(y* — 2)e” V1% /) dy
= 0(e™*) = a/4] aly, s)x(y, $)V-(Veo/ oy = 2)e W11/ VAm)dy.

By simple calculation,
IV-(Veo/ply? — 2)e W/ V) = (ha(y) + ha(y) /) (s(p — a)).e W/ v/
< P(|y|)e~¥I*/4/s2 where P is a polynomial. Hence E = O(C A2 *log s) —
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E/SS(P — a))(842(s) + caq4(s)) = O(CAs™) — 2a/(s(p — a))qz(s) and (65)

(66) follows from lemma B.5, (26) and (25).

II) Equation (55)
(67) and (68) follow from lemma B.2 7i) applied with A’ = A” = A and
A" = A2,
Lemmas B.3 and B.1 yield
[B(q(z,7))| < Clg(z, 7)|P < CAP1=P(log 7)P(1 + |z[*)P.
Lemmas B.4 and B.1 yield
T (q(z, 7)) < |x(x,7)T(q(z, 7)) +|(1 = x(z,7))T(q(x,7))|
< C(Ko, A)r=?log 7(1 + |z|*) + C(Ko, C)7=5/2|z|.
Therefore,

(log )P
T2P

log T

(1+12) + =5

IB(q(r)) + T(a(r)| < C(Ko, A, Ch) { (1+ |x|3>} .
(135)
This way, |3(y, )| = | [ drK(s,7) (B(g(r)) + T(q(r)))
< [ dr [ de|K (s, 7,9,2)| [Bla(z, 7)) + T(q(r)) 7
< C(Ko, A, CY) [° dr {m-2P(log 7P [ de|K (s, 7,y,2)|(1 + |2]*7)
+75/2 log 7 [dz|K(s,7,y,z)|(1+ ]a:|3)}

< C(Ko, A, CH)(s —o)es™7 {s_2ﬁ(log SYP(1+ |yP) 4+ s/ log s(1 + \y|3)}
if s > p* (Indeed, s<o+p<o+p* <o+ sy <20 <27, and lemma B.2
applies). Hence,

IX(y,5)B(y, s)| < C(Ko, A, Cp)(s — 0)e” 7 {s~*P(log s)P(1 + |y’ |y*P )
+575/2log s(1+ [y*)}

< C(Ko, A, Cp)(s — 0)e*=7 {s7*P(log 5)P(1 + [y/* (Kov/5)*P %)

572 log s(1+ [yf")} < (s— 0)s2(1+ [yP), if s0 > sar(Ko, A,p, Cf) (use
p > 1). This yields |3, (s)| < C(s — o)s™2 for m = 0,1,2 and then (69).

Lemmas B.3 and B.1 yield |B(q(z,7))| < Clq(x, 7)|P < CKP A2P7=/2,
Lemmas B.4 and B.1 yield
IT(q(z,7))| < C(Ko, A)7~1 + C(Ko, CH)T7 1.
Therefore, |B(q(7)) + T(q(1))| < C(Ko, A, Ch)T7P/2,
This way, | [2 drK (s, 7) (B(a(r)) + T(a(r))]
< [ dr [ dalK (s, 7,9, 2)|| Ba(z, 7)) + T(q(z.7)|
< C(Ko, A,Cb) [2drr=P/? [ do|K (s, T,y,)|
< C(Ko, A,Cl)s7P/%(s — 0)e* 7 if 59 > p* (Indeed, s < 27 and lemma B.2
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applies). Hence |B.(y,s)| < C(Ko, A,Ch)s P2(s — 0)e?” < (s — o)s~ Y2 if
so > s18(4, p*, Cy) (use p > 1). This yields (70).

Lemma B.5 implies that V7 > 1, V2 € R, |R,(7)] < C772, m = 0,1,
|Ro(7)| < CT2log T, |R_(z,7)] < C772(1 + |z]3) and |Re(z,7)| < Cr~ /2,
Applying lemma B.2 ii) with A’ = A” = A” = C and then integrating with
respect to 7 € [o, s] yields (71) and (72).

From lemma B.6, we have \e_%fl(eﬁ(go +q)| < Ce 7T, Therefore,
[0(y,s)| = |K(s,7‘)e_1%f1(ezﬁ(g0 +4q)) < Ces~Te T according to i) of
lemma B.2. Hence,

I3 K(s,7)e 7T fu(em T (9 + )| < s — o)~
<C(s— U)e”*e_ﬁ% if s9 > p*,
< (s —0)s72if s > s19(A, p*). As before, this implies (74) and (75).

po
p—1

From lemma 3.1 we have |g,,(s0)| < Asg?, m = 0,1,
a2(50)] < 5521050, la_(y50)] < Cs52(1 + [yl®) and lau(y, 50)| < 55> T
we apply lemma B.2 i7) with A’ = A, A” =1, A” = C, then (76) and (77)
follow.

III) Equation (56)

From definition 34, we have for m =0, 1,
rm(0) = [ Va(y,o)x(y, o)km(y)dp
= — [ a(y, o)V (x(y, 0)kme ¥/ /v/Am)dy
=0(e™) = [ q(y, 0)x(y, @)V (ke /% /) dy
=0(e %)+ (m+1) [ q(y, 0)x(y, 8)km1(y)dp = O(e™7) + (m 4 1)gm41(0).
Hence, if 0 > sg > sa1, then |rg(0)] < CAc~2 and |ri(0)] < CA%02logo.
We have |r (y,0)| < Ao=2(1+|y|3) since q(0) € Vi, a(c) (see the definition
of §*(t)), and |re(y,o)| < C(Ko)Cho~? by lemma B.1. Now, we apply
lemma B.2 iii) with A’ = A" = CA, A" = CA? and A™ = C(K,)C}, to
conclude the proof of (78)

Estimate (79) is harder than estimate (78) because it involves a parabolic
estimate on the kernel K.

Setting I(z,7) = B(q(z, 7)) + T(q(z, 7)), we write
Ki1(s,7) 55 (B(q) + T())(7) = [ dwe D E D (y, 0) B(s, 7,y,0) G (2, 7)
= (I) + (I1) with (I) = — [ dzd,e " EY2 (y 2)E(s, 7,y,z)I(x,7) and
(IT) = — [ daet=E=2) (y )9, E(s, ,y,2)I(x, ). Let us first bound (I).
From (128), (1) =

(s—T1)/2 2 x— —(s—71)/2 —(s—71)/2_.\2
f d.’]: \/47‘_6(1_6,(5,7-)) ifr(]_y_eef(sf'r))) eXp (_ (Zi(l_e—(sf'rx)‘)) ) E(87 T? y7 x)‘[(x7 7—)

If s9 > p*, then 0 < E(s,7,y,z) < C (use for this V(x,7) < C7~! which is a
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consequence of (54), (126), dug, " is a probability and s <o +p <o +p* <
o+ 59 <20 < 27). Using (135), we get

< / e(s—7)/2 dz 2|y8_(5_"')/2—x\
|(I)| - C(KO’A7 CO)\/47r(1—e—(S—T)) f \/47r(1—e—(5—7')) x \/471'(1—6—(5—"')) X

—(s—7)/2_ 2 o= = 5 _
exp (— Y5 ) (777 (log 7)P(1 + [af*7) + 7752 log (1 + o))

:c—ye_(s_T)/Q

where p = min(p,2) > 1. With the change of variables £ = by et
m(l—e 577

(1)] < C(Ko. A, Cé)\/% {72 (log 7)P x

Jdelele € (1 + |§\/47r(1 — e (s77)) — ye~(5=T)/23P) 4 775/2 Jog 7
J dgléle** (1 + lgyan(1L = e=67) = yee=I/2) b hence (1)

< O(Ko, A, C)) 1+ [y*") +

e(s—7)/2 log 7)P log
{LeD L1+ )
Vi —e-6-ny L7

(136)
Let us bound (/1) now. Using the integration by parts formula for
Gaussian measures (see [11]), we have 0,E(s,0,y,z):

1 S—T S—T
- 5/0 /0 dﬁdTg@zF(ﬁ,Tg)/de;T(w)V’(w(ﬁ),a~I—T1)><

V'(w(r),o + T2)ef0577 sV (w(rs),o+73) (137)
+3 / dr10, (11,71 /du w)V"(w(m1), a—|—Tl)efosqdT3V(W(T3)70+73)‘

By (54), we have ~1/2 for n = 0,1,2. Combining this with
(127) and (137), we get (for s0 > p*)
|0:E(s,0,y,2)| < Cs™ (s —7)(1+s—7)(Jy| + |z]).
Using this, (128) and (135), we obtain
(y (s T)/2_z

UT)] < b2 [t oxp (B ) (ol + o)
CsHs—7)(1+s—7)C (Ko, A, C}) {772P(log 7)P(1 + |z|P)
+7752log T(1 + |x|3)}

Arguing as for (I), we get:

((IT)] < C(Ko, A, Cg)e™ 2 (s = 7)(1 45 = 7)s 7' (1 + |y])x

[k gy + BT ). (139)
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Combining (136) and (138), we obtain
| J; drKi(s, )G ()] < C(Ko, A, Cg) {s~*(log 5)P(1 + [y|*P)

+579/2log s(1 + \y|3)} X

s el(s—7)/2 (5—7)/2( 0 _ . 1
i { e 4 s = )k s = ) (1 )
< C(Ky, A, CY) {8_2’7(10g $)P(1 + |y[*P) + s7%/log s} X
(e5=\/s —o4+e=/2((s—0)24+(s—0)%)s~(1+]|y|)) (so > p*, which implies
27 > s). Multiplying this by x(y, s) and replacing some |y| by 2Kg+/s, we
get: Vs € [o,0 + pl,
X(,8) [ drEa(s, 7) 2 ()| < O, A,Ch) {5~ T2 1 5752} (1 + [y)x
Vs —7(el” 4 e 2 (pr32 4 p*P/2)s71/2) If 5 > 50 > sp2(A, p*), then
Ix(y,s) [2 dTKl(S,T)g—Z‘Z(T” < Cs2/s=7(1+|yl®) (use p > 1). Therefore,
|PL(X(y,5) [ drKi(s, 1) 55 (T)| < Cs ™25 = 7(1+ [y[).
This concludes the proof of (79).

By definition, R;(x,7) = %—I;(.T,T) + %—‘;q(x,r). From (54), we have
%—Z(w, )| = 2pbp(x, T)P~2(p — 1 + ba?/7)"P/ P~ Vpr~1 with
b= (p—1)?/(4(p — a)). Setting z = z7~ /2, we easily see that
%—Z(wm)] < C7~Y2. Using lemmas B.1 and B.5, we get
|Ri(w,7)] < CT=HP)(|z] + |2f*) + C A>T log 7(1 + |zf?)
< Cr=@F+e®)(1 4 |z[%) with ey(p) > 0 if sg > s33(A). Therefore,
|K1(87 T)RI(T)| = | f K1(87 Y, x)Rl (.ZU, T)dl‘|
< Cr=Cre®) [k, (s, 7, y,2)(1 + |2]*)dz
< Or~@reeP)els=7)/2(1 4 |y|?) by lemma B.2 7). Hence,
| [ drEq (s, 7)Ri(7)| < C(L+ [yf) [ drr= CHea®lelsm)/2
< C(s — 0)els=0)/25=C+e®) (1 4 |y|3) if 0 > 59 > p*.

Now, if o > 59 > s23(p*), then
| [ drKi(s, T)Ru(7)| < C(s — a)er 25~ CHe®) (1 4 |yf?)
< (s —0)s2(1 + |y|?). By classical arguments, this yields (80).

From lemmas B.2 and B.6, and the fact that ‘g—g‘ < C171/2, we have:
‘6_7(2—5 —I—T)f{(ep%l(go—i—q)’ < C(Ky, Ch)A2r=1/2¢=7 . Therefore, i) of lemma
B.2 yields:
|K1(s,7')e_7(g—“§ +7)fl(er T (p+q))| < C(Ko, Ch)A2e = 77 1/2e~7. Hence,
2 dr (s, m)e (22 4+ 1) FU(e7T (6 + )] < (Ko, Ch)A%(s — 0)e 57
< C(Ky, C))A2%(s — 0)el” s~ /272 if 59 > p*
< (s—0)s 2 if s > s94(Ko, A, p*). Thus, by classical arguments, (81) follows.
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Since 7, (sg) = O(e™%0) + (m + 1)gm+1(S0), we have from lemma 3.1
Iro(so)| < CAsy?, |ri(so)| < Csg?logso, |ri(y,s0)] < sg2(1+ |y) and
Ire(y, s0)| < 361/2. Applying lemma 7ii) of B.2 with A’ = CA, A" = C,
A" = A" =1 yields (82).
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