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Abstract: We construct a stable solution of the problem of vortex reconnection
with the boundary in a superconductor under the planar approximation. That is a
solution of

∂h

∂t
= ∆h+ e−hH0 −

1

h

such that h(0, t) → 0 as t → T . We give a precise description of the vortex near
the reconnection point and time.
We generalize the result to other quenching problems.
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1 Introduction

1.1 The physical motivation and results

We consider a Type II superconductor located in the region z > 0 of the
physical space R

3. Under some conditions, the magnetic field develops a
particular type of line singularity called vortex (see Chapman, Hunton and
Ockendon [5] for more details and discussion). In general, a vortex is not
situated in a plane, but under some reasonable physical conditions, the
planar approximation is relevant. In this case, a vortex line at time t ≥ 0
can be viewed as L(t) = {(x, y, z) = (x, 0, h(x, t))|x ∈ Ω} where Ω = (−1, 1)
or Ω = R, and h > 0 is a regular function. The physical derivation gives
that h(x, t) satisfies the following equation:

ht = hxx + e−hH0 − F0(h) (I)
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where H0 is the applied magnetic field assumed to be constant, F0 is a
regular function satisfying

F0(k) ∼
1

k
and F ′

0(k) ∼ − 1

k2
as k → 0. (1)

We assume :
i) In the case where Ω = R



















F0(k) ∼ Ce−2k as k → +∞
|F ′

0(k)| ≤ Ce−2k as k → +∞
h(x, t) ∼ a1x+ b1 as x→ +∞
h(x, t) ∼ −a2x+ b2 as x→ −∞

(2)

where a1 > 0 and a2 > 0. For simplicity, we take b1 = b2 = 0 and a1 = a2.
ii) In the case where Ω = (−1, 1),

h(1, t) = h(−1, t) = 1. (3)

One can remark that boundary conditions of the type i) are closer to the
physical context. Nevertheless, boundary conditions of the type ii) are
mostly considered in the literature in order to simplify the mathematical
approach of the problem.

Similar results can be shown with other types of boundary conditions
(mixed boundary conditions on bounded domains). Indeed, our analysis
will be local and therefore will not depend on boundary conditions.

Classical theory gives for any initial vortex line L(0) = {(x, 0, h0(x))|x ∈
Ω} where h0 is positive, regular and satisfies boundary conditions, the ex-
istence and uniqueness of a solution to (I)-(2) and (I)-(3) locally in time.
Therefore, there exists a unique solution to (I) on [0, T ) and either T = +∞
or T < +∞ and in this case lim

t→T
inf
x∈Ω

h(x, t) = 0, i.e. h extinguishes in finite

time, and if x0 ∈ Ω is such that there exists (xn, tn) → (x0, T ) as n → +∞
satisfying h(xn, tn) → 0 as n→ +∞, then x0 is an extinction point of h.

This phenomenon is called a vortex reconnection with the boundary (the
plane z = 0). Two questions arise:

- Question 1: Are there any initial data such that T < +∞?
- Question 2: What does the vortex look like at the reconnection time?

Equation (I) with a more general exponent can also appear in various
physical contexts (combustion for example), and the problem of reconnection
is known as the quenching problem.
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Indeed, we consider

ht = ∆h− F (h), h ≥ 0 (II)

where

(H1) F ∈ C∞(R∗
+), F (k) ∼ 1

kβ
and F ′(k) ∼ − β

kβ+1
as k → 0

with β > 0 and h is defined on a bounded domain Ω ⊂ R
N with boundary

condition h ≡ 1 on ∂Ω. The case Ω = R
N can also be considered with

hypothesis (H1) and (H2) where

(H2)

{

|F (k)| + |F ′(k)| ≤ Ce−k as k → +∞
h(x, t) ∼ a1|x| as |x| → +∞

Few results are known on equation (II). For β > 0, some criteria of
quenching are known for solutions defined on (−1, 1) with Dirichlet bound-
ary conditions (or mixed boundary conditions) in dimension one (see Deng
and Levine [6], Guo [12], Levine [18]). Even in that case, few informations
are known on the solution at quenching except on the quenching rate (See
also Keller and Lowengrub [17] for formal asymptotic behavior). In partic-
ular, there is no answer to questions 1 and 2 for problem (I).

To answer questions 1 and 2, we will not use the classical approach
which consists in finding a general quenching criterion for initial data and
in studying the quenching behavior of the solution. As in [22] and [25], the
techniques we use here are the reverse: we study the quenching behavior of a
solution a priori, and using this information, we prove by a priori estimates
the existence of a solution which has all the properties we expect. Using
this type of approach, we prove then that this behavior is stable. Let us
first introduce:

Φ̂(z) = (β + 1 +
(β + 1)2

4β
|z|2)1/(β+1), (4)

and H∗
x0

(x) defined by:
i) In the case Ω = R

N : H∗
x0

(x) = H∗(x− x0) where H∗ is defined by:

H∗(x) =
[

(β+1)2|x|2
−8β log |x|

]
1

β+1
for |x| ≤ C(a1, β)

H∗(x) = a1|x| for |x| ≥ 1
H∗(x) > 0, |∇H∗(x)| > 0 for x 6= 0 and H∗ ∈ C∞(RN ).

(5)
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ii) In the case where Ω is bounded:

H∗
x0

(x) =
[

(β+1)2 |x−x0|2
−8β log |x−x0|

]
1

β+1
for |x− x0| ≤ min

(

C(β), 1
4d(x0, ∂Ω)

)

H∗
x0

(x) = 1 for |x− x0| ≥ 1
2d(x0, ∂Ω)

H∗
x0

(x) > 0, |∇H∗(x)| > 0 for x 6= x0 and H∗
x0

∈ C∞(Ω\{x0}).

We also introduce H, the set to initial data:

H = {k ∈ ψ +H1 ∩W 2,∞(RN ) | 1/k ∈ L∞(RN )} if Ω = R
N (6)

where ψ ∈ C∞(RN ), ψ ≡ 0 for |x| ≤ 1, ψ(x) = a1|x| for |x| ≥ 2 and a1 is
defined in (H2),

H = {k ∈ H1 ∩W 2,∞(Ω) | 1/k ∈ L∞(Ω)} if Ω is bounded. (7)

We claim the following:

Theorem (Existence and stability of a vortex reconnection with
the boundary or quenching for equation (II) with β > 0)
Assume that Ω = R

N and F is satisfying (H1) and (H2), or Ω is bounded
and F is satisfying (H1).
1) (Existence)For all x0 ∈ Ω, there exists a positive h0 ∈ H such that for
a T0 > 0, equation (II) with initial data h0 has a unique solution h(x, t) on
[0, T0) satisfying lim

t→T0

h(x0, t) = 0.

Furthermore,
i)

lim
t→T0

‖ (T0 − t)1/β+1

h(x0 + z
√

−(T0 − t) log(T0 − t), t)
− 1

Φ̂(z)
‖L∞ = 0,

ii) h∗(x) = lim
t→T0

h(x, t) exists for all x ∈ Ω and h∗(x) ∼ H∗
x0

(x) as

x→ x0.
2)(Stability) For every ε > 0, there exists a neighborhood V0 of h0 in

H with the following property:
for each h̃0 ∈ V0, there exist T̃0 > 0 and x̃0 satisfying

|T0 − T̃0| + |x0 − x̃0| ≤ ε

such that equation (II) with initial data h̃0 has a unique solution h̃(x, t) on
[0, T̃0) satisfying lim

t→T̃0

h̃(t, x̃0) = 0. In addition,

- lim
t→T̃0

‖ (T̃0 − t)1/β+1

h̃(x̃0 + z
√

−(T̃0 − t) log(T̃0 − t), t)
− 1

Φ̂(z)
‖L∞ = 0,
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- h̃∗(x) = lim
t→T̃0

h̃(x, t) exists for all x ∈ Ω and h̃∗(x) ∼ H∗
x̃0

(x) as x→ x̃0.

Remark: In the case β = 1 (equation (I)), this Theorem implies that the
vortex connects with the boundary in finite time. Let us note that the profile
we obtain is C1 (which is not true for β > 1). Using the precise estimate of
the behavior of h at extinction, it will be interesting to check the validity
of the planar approximation in the physical problem near the reconnection
time for a behavior like the one described in the theorem.
Remark: We can also consider a larger class of equations:

∂h

∂t
= ∇.(A(x)∇h(x)) − b(x)F (h)

where F satisfies (H1) and (H2) with β > 0, A(x) is a uniformly elliptic
N ×N matrix with bounded coefficients, b(x) is bounded, and b(x0) > 0.
Using the stability result and techniques similar to [21], we can construct
for arbitrary given k points in Ω a quenching solution h of equation (II)
which quenches at time T exactly at the given points. The local quenching
behavior of h near each of these points is the same as the one given in the
Theorem.
Remark: We have two types of informations on the singularity:
- Part i): it describes the singularity in some refined scale variable at x0

where we can observe the quenching dynamics. We point out that the esti-
mate we obtain is global (convergence takes place in L∞).
- Part ii): it describes the singularity in the original variables and shows its
influence on the regular part of the solution.
We see in the estimates that these two descriptions are related.
In order to see why such a profile is selected, see [22] and [25] for similar
discussions.
Remark: Part ii) is valid only for some extinction solutions. We suspect
this kind of extinction behavior to be generic (see [15] for a related prob-
lem). Indeed, we suspect ourselves to be able to show existence of extinction
solutions of (I)-(2) such that:

h(x, t) → h∗k(x)

where h∗k(x) ∼ C|x|k, k ∈ N and k ≥ 2. Unfortunately, this kind of behavior
is suspected to be unstable.

1.2 Mathematical setting and strategy of the proof

The case Ω = R
N is different from the case Ω is a bounded domain in the

way how to treat the Cauchy problem outside the singularity.
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Let us consider the problem of the existence of a solution such that i)
and ii) of the Theorem hold. We first note that once the existence result
is proved, the stability result can be proved in the same way as in [22]. In
order to prove the Theorem, we use the following transformation:

u(x, t) =
α

α
β+1

h(x, t)α
(8)

where h is the extinction solution of (II) to be constructed, and α > 0. On
its existence interval [0, T ), u(t) satisfies

∂u

∂t
= ∆u−a |∇u|

2

u
+f(u) (III)

where a = a(α, β) = 1 + 1
α ,

f(u) = α
β

β+1u1+ 1
αF (α

1
β+1u−

1
α ) = up + f1(u) with p = p(α, β) =

1 + α+ β

α
,

(9)

(H3)

{

f1 ∈ C∞(R+), f1(v) = o(vp) and f ′1(v) = o(vp−1) as v → +∞
1 < a < p,

and in the case Ω = R
N ,

(H4)

{

|f(v)| + |f ′(v)| ≤ Cv1+ 1
α exp(−α

1
β+1v−

1
α ) as v → 0,

u(x, t) ∼ 1
a1|x| as |x| → +∞

Now, with the transformation (α, β) → (a(α, β), p(α, β)), the problem of
finding a solution h of (II) such that lim

t→T
inf
x∈R

h(x, t) = 0 is equivalent to the

problem of finding a solution u of (III) such that

lim
t→T

‖u(t)‖L∞ = +∞,

(that is a solution of (III) which blows-up in finite time).
Problem (III) can be viewed as a gradient perturbation of the nonlinear

heat equation (a = 0)

∂u

∂t
= ∆u+ |u|p−1u (IV)

where u(x, t) is defined for x ∈ R
N , t ≥ 0, p > 1 and p < (N + 2)/(N − 2)

if N ≥ 3.
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For this equation, Ball [1], Kavian [16] and Levine [20] obtained ob-
structions to global existence in time, using monotony properties and the
maximum principle. Another method has been followed by Merle and Zaag
in [22] (see also Giga and Kohn [10], [9] and [8], Bricmont and Kupiainen [4],
Zaag [25]). Once an asymptotic profile (that is a function from which, after
a time dependent scaling, u(t) approaches as t→ T ) is derived formally, the
existence of a solution u(t) which blows-up in finite time with the suggested
profile is then proved rigorously, using analysis of equation (IV) near the
given profile and reduction of the problem to a finite dimensional one.

In the case a = 0, the existence and stability of a blow-up solution u(t)
of (IV) such that at the blow-up point x0:

lim
t→T

‖(T − t)
1

p−1u(x0 +
√

(T − t) log(T − t)z, t) − Φ0(z)‖L∞ = 0

where

Φ0(z) = (p− 1 +
(p− 1)2

4p
z2)−1/(p−1)

is proved in [22]. Bricmont and Kupiainen obtained the existence result
using renormalization group theory (see [4]).

In these new variables, and with the introduction of

Φ(z) = (p− 1 +
(p− 1)2

4(p− a)
|z|2)−

1
p−1 . (10)

and U∗
x0

(x) = α
α

β+1H∗
x0

(x)−α, (11)

=
[

8(p−a)| log |x||
(p−1)2|x|2

]
1

p−1 if Ω = R
N , x0 = 0 and |x| ≤ C(a1, β), the Theorem is

equivalent to the following Proposition:

Proposition 1 (Existence of blow-up solutions for equation (III))
Assume that Ω = R

N and f is satisfying (H3) and (H4), or Ω is bounded
and f is satisfying (H3).
For each a ∈ (1, p), for each x0 ∈ Ω, there exist regular initial data u0 such
that equation (III) has a unique solution u(x, t) which blows-up at a time
T0 > 0 only at the point x0.

Moreover,
i) lim

t→T0

u(x, t) = u∗(x) exists for all x ∈ Ω\{x0} and u∗(x) ∼ U∗
x0

(x) as

x→ x0.
ii)

lim
t→T0

∥

∥

∥(T0 − t)
1

p−1u(x0 + ((T0 − t)| log(T0 − t)|) 1
2 z, t) − Φ(z)

∥

∥

∥

L∞
= 0.
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Remark: This proposition provides us with a blow-up solution of (III) in
the case a ∈ (1, p). Let us remark that we already know that blow-up occurs
in the case a ≤ 1:

- If a < 1 and v = (1 − a)
1−a
p−1 u1−a, then v satisfies:

∂v

∂t
= ∆v + vp′ with p′ =

p− a

1 − a
> 1. (12)

- If a = 1 and v = (p− 1) log u, then v satisfies

∂v

∂t
= ∆v + ev . (13)

It is well-known that equations (12) and (13) (and then (III)) have blow-up
solutions.

We introduce similarity variables (see [10], [8] and [9])):

y =
x− x0√
T − t

, s = − log(T − t), wT,x0(y, s) = (T − t)
1

p−1u(x, t), (14)

where x0 is the blow-up point and T the blow-up time of u(t), a blow-up
solution of (III) to be constructed (we will focus on the study of solutions
that blow-up at one single point). We now assume x0 = 0.
The study of the profile of u as t→ T is then equivalent to the study of the
asymptotic behavior of wT,x0 (noted w) as s→ ∞, and each result for u has
an equivalent formulation in terms of w. From equation (III), the equation
satisfied by w is the following: ∀y ∈ R

N , ∀s ≥ − log T :

∂w

∂s
= ∆w − 1

2
y.∇w − w

p− 1
− a

|∇w|2
w

+ wp + e−
ps

p−1 f1(e
s

p−1w) (15)

where f1(v) = f(v) − vp and f satisfies (H3) and (H4).
The problem is then to find w a solution of (15) such that

‖w(y, s) − Φ(
y√
s
)‖L∞ → 0 as s→ +∞.

We introduce

ϕ(y, s) = Φ(
y√
s
) +

(p− 1)
− 1

p−1

2(p− a)s
and q(y, s) = w(y, s) − ϕ(y, s) (16)

where Φ is introduced in (10) (the introduction of the term (p−1)
− 1

p−1

2(p−a)s is not

necessary but it simplifies the calculations).
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Then q satisfies: ∀y ∈ R
N , ∀s ≥ − log T :

∂q

∂s
= (L + V (y, s))q +B(q) + T (q) +R(y, s) + e−

ps
p−1 f1(e

s
p−1 (ϕ+ q)) (17)

with L = ∆ − 1
2y.∇ + 1, V (y, s) = pϕ(y, s)p−1 − p

p−1 ,

B(q) = (ϕ+ q)p − ϕp − pϕp−1q,

T (q) = −a |∇ϕ+∇q|2
ϕ+q +a |∇ϕ|2

ϕ , R(y, s) = −∂ϕ
∂s +∆ϕ− 1

2y.∇ϕ−
ϕ

p−1+ϕp−a |∇ϕ|2
ϕ .

Therefore, the question is to find w a solution of (15) or q a solution of
(17) such that

lim
s→∞

‖q(s)‖L∞ = 0. (18)

The equation satisfied by q is almost the same as in [22], except the term
T (q). As in [22], we introduce estimates on q in the blow-up region |z| ≤ K0

or |y| ≤ K0
√
s, and in the regular region |z| ≥ K0 or |y| ≥ K0

√
s where

z = y√
s

is the self-similar variable for q. The estimates of T (q) in the region

|y| ≤ K0
√
s follow from regularizing effect of the heat flow. One can remark

that the Cauchy problem for an equation of the type ∂u
∂t = ∆u− |∇u|2 + up

is suspected not to be solved in H1 or W 1,p+1.
In the analysis of [22], the estimates in the region |y| ≥ K0

√
s imply

smallness of q only, and do not allow any control of T (q) in this region. In
other words, the analysis based on the method of [22], that is to estimate
the solution in the z variable is not sufficient and must be improved. For
this, we add estimates in three regions in a different variable scale (centered
in the original x variable not necessarily at the considered blow-up point)
using techniques similar to those used in [25] to derive the exact profile in x
variable: u(x, t) → u∗(x) as t→ T where u∗(x) ∼ U∗(x) as x→ 0 (see (11)
for U∗). This part makes the originality of the paper. We expect that such
techniques can be useful in various supercritical problems.
We first define for K0 > 0, ε0 > 0 and t ∈ [0, T ) given, three regions covering
R

N :

P1(t) = {x | |x| ≤ K0

√

−(T − t) log(T − t)}
= {x | |y| ≤ K0

√
s} = {x | |z| ≤ K0},

P2(t) = {x | K0

4

√

−(T − t) log(T − t) ≤ |x| ≤ ε0}

= {x | K0

4

√
s ≤ |y| ≤ ε0e

s
2 } = {x | K0

4
≤ |z| ≤ e

s
2√
s
},

P3(t) = {x | |x| ≥ ε0/4} = {x | |y| ≥ ε0
4
e

s
2 } = {x | |z| ≥ e

s
2

√
s
},
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for i = 1, 2, 3, Pi = {(x, t) ∈ R
N × [0, T )|x ∈ Pi(t)},

where s = − log(T − t), y = x√
T−t

, z = y√
s

= x√
(T−t)| log(T−t)|

.

In P1, the “extinction region” of h (which is also the blow-up region
of u), we make the change of variables (14) and (16) to do an asymptotic
analysis around the profile Φ(y/

√
s).

Outside the singularity in region P2, we control h using classical parabolic
estimates on k, a rescaled function of h defined for x 6= 0 by

k(x, ξ, τ) = (T − t(x))
− 1

β+1h(x+
√

T − t(x)ξ, (T − t(x))τ + t(x))

where K0
4

√

(T − t(x))| log(T − t(x))| = |x| . From equation (II), we see that

k satisfies almost the same equation as h: ∀ξ ∈ R
N , ∀τ ∈ [− t(x)

T−t(x) , 1):

∂k

∂τ
= ∆ξk − (T − t(x))

β
β+1F ((T − t(x))

1
β+1k)

where (T − t(x))
β

β+1F ((T − t(x))
1

β+1k) ∼ 1
kβ as (T − t(x))

1
β+1k → 0.

We will in fact prove that h behaves for |ξ| ≤ α0

√

| log(T − t(x))| and τ ∈
[ t0−t(x)
T−t(x) , 1) for some t0 < T , like the solution of

∂k̂

∂τ
= − 1

k̂β
.

In P3, the regular region, we estimate directly h. This will give the desired
estimate.

The proof of the existence result of the Theorem will be presented in
section 2. Assuming some a priori estimates in P1, P2 and P3, we show in
section 2 that h(t) can be controlled near the profile by a finite dimensional
variable. Adjusting the finite dimensional parameters, we then conclude the
proof. We present a priori estimates in P1 in section 3, and in P2 and P3 in
section 4.

The authors thank R. Kohn who pointed out various references on this
problem. Part of this work was done while the second author was visiting
the Institute for Advanced Study.
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2 Existence of a blow-up solution for equation (16)

In this section, we give the proof of the existence result of the Theorem.
The proof will be given in the case Ω = R

N (we will mention the differences
with the case Ω is bounded, when it is necessary, see section 4). We assume
N = 1 in order to simplify the notations. The same calculations and proof
hold in a higher dimension (see [22] and [25]). We assume x0 = 0 since (II)
is translation invariant. For simplicity in notations, we simplify hypothesis
(H1) and assume that

∀v ∈ (0, 1], F (v) =
1

vβ
. (19)

Same calculations holds without this simplification.
Let us first remark on the following about the Cauchy problem for equa-

tion (II).

Lemma 2.1 (Local Cauchy Problem for equation (II)) The local in
time Cauchy problem for equation (II) is well-posed in H where H is defined
by (7) if Ω is bounded, and by (6) if Ω = R.

Moreover, in both cases, either the solution h exists for all time t > 0 or
only on [0, T ) with T < +∞, and in this case lim

t→T
inf
x∈Ω

h(x, t) = 0.

Proof: The case Ω is bounded follows from classical arguments.
For the case Ω = R, we define h̃(x, t) by h(x, t) = ψ(x) + h̃(x, t). This

way, (II) is equivalent to

h̃t = h̃xx − F (ψ(x) + h̃) + ψxx. (20)

Using (H1) and (H2), we see by classical arguments that this equation
can be solved in H.

Let us consider β > 0 and T > 0, all fixed. The problem is to find t0 < T
and h0 such that the solution of equation (II) with data at t0 h(x, t0) = h0

extinguishes in finite time T > 0 at only one extinction point x = 0 and:

- lim
t→T

‖ (T − t)1/β+1

h(z
√

−(T − t) log(T − t), t)
− 1

Φ̂(z)
‖L∞(R) = 0 (21)

- h∗(x) = lim
t→T

h(x, t) exists for all x ∈ R and

h∗(x) > 0 for x 6= 0, h∗(x) ∼ H∗(x) as x→ 0 (22)
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where Φ̂ and H∗ are introduced in (4) and (5).
As explained in the introduction, (21) and (22) follow from the control of

h(x, t) for t ∈ [t0, T ) in three different scales, depending on the three regions
P1, P2, and P3.

a) In P1, the extinction region, we rescale h by means of (8), (14) and
(16) in order to define for t ∈ [t0, T ), q(s) where s = − log(T − t) and



























∀y ∈ R, q(y, s) = (T − t)
1

p−1u(y
√
T − t, t) − ϕ(y, s),

∀x ∈ R, u(x, t) = α
α

β+1h(x, t)−α and α > 0,

ϕ(y, s) = Φ( y√
s
) + (p−1)

− 1
p−1

2(p−a)s ,

p = α+β+1
α , a = α+1

α , and Φ is given in (10).

(23)

Remark: To prove the Theorem, we can take α = 1. Nevertheless, we need
to keep α > 0 general, if we want to deduce directly Proposition 1 from the
Theorem.

The equation satisfied by q is (17): ∀y ∈ R, ∀s ≥ − log(T − t0):

∂q

∂s
= (L + V (y, s))q +B(q) + T (q) +R(y, s) + e−

ps
p−1 f1(e

s
p−1 (ϕ+ q)) (24)

with L = ∆ − 1
2y.∇ + 1, V (y, s) = pϕ(y, s)p−1 − p

p−1 ,

B(q) = (ϕ+ q)p − ϕp − pϕp−1q,

T (q) = −a |∇ϕ+∇q|2
ϕ+q +a |∇ϕ|2

ϕ , R(y, s) = −∂ϕ
∂s +∆ϕ− 1

2y.∇ϕ−
ϕ

p−1+ϕp−a |∇ϕ|2
ϕ ,

f1(u) = α
β

β+1u1+ 1
αF (α

1
β+1u−

1
α ) − up.

We note that L is self-adjoint on D(L) ⊂ L2(R, dµ) with

dµ(y) =
e−

|y|2

4√
4π

(25)

and that its eigenvalues are {1 − m
2 |m ∈ N}.

In one dimension, hm(y) =

[m
2

]
∑

n=0

m!

n!(m− 2n)!
(−1)nym−2n is the eigenfunction

corresponding to 1− m
2 . We introduce also km = hm/‖hm‖2

L2(R,dµ) and note

that Vect {hm | m ∈ N} is dense in L2(R, dµ).
We are interested in obtaining L∞(R) estimates for q. Since L∞(R) ⊂

L2(R, dµ), we will expand q (actually, a cut-off of q) with respect to the
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eigenvalues of L. Nevertheless, the estimates we will obtain will be L∞ and
not L2(R, dµ).

The control of h(t) for t ∈ [t0, T ) in this region P1 is equivalent to
the control of q(s) for s ∈ [− log(T − t0),+∞) in a set VK0,A(s) so that
lim

s→∞
‖q(s)‖L∞ = 0. The definition of VK0,A(s) requires the introduction of

a cut-off function

χ(y, s) = χ0(
|y|

K0
√
s
) (26)

where

χ0 ∈ C∞(R+, [0, 1]), χ0 ≡ 1 on [0, 1], χ0 ≡ 0 on [2,+∞). (27)

b) In P2, we control a rescaled function of h defined for x 6= 0 by ∀ξ ∈ R,

∀τ ∈ [ t0−t(x)
T−t(x) , 1):

k(x, ξ, τ) = (T − t(x))
− 1

β+1h(x+
√

T − t(x)ξ, (T − t(x))τ + t(x)), (28)

where t(x) is defined by

|x| =
K0

4

√

(T − t(x))| log(T − t(x))| =
K0

4

√

θ(x)| log θ(x)| (29)

with θ(x) = T − t(x).

Let us note that θ(x) is related to the asymptotic profile H ∗(x).

Lemma 2.2 For fixed K0, we have:

i) H∗(x) ∼ k̂(1)θ(x)
1

β+1 as x→ 0,

ii) |∇H∗(x)| ∼ 8
(β+1)K0

k̂(1)√
| log θ(x)|

θ(x)
1

β+1
− 1

2 as x→ 0 where

k̂(τ) = ((β + 1)(1 − τ) +
(β + 1)2

4β

K2
0

16
)

1
β+1 . (30)

Proof: From (29), we write:
log |x| = log K0

4 + 1
2 log θ(x) + 1

2 log | log θ(x)| and
|x|2

− log |x| =
2K2

0
16 θ(x)

log θ(x)

log θ(x)+log | log θ(x)|+2 log
K0
4

. Therefore,

log θ(x) ∼ 2 log |x| and θ(x) ∼ 8

K2
0

|x|2
| log |x|| as x→ 0. (31)

13



Since H∗(x) = k̂(1)
[

8|x|2
K2

0 | log |x||

]
1

β+1
and

|∇H∗(x)| ∼ 4
√

2
(β+1)K0

k̂(1)√
| log |x||

[

8|x|2
K2

0 | log |x||

]
1

β+1
− 1

2
when x is small (see (5)), we

get the conclusion.

k satisfies almost the same equation as h: ∀τ ∈ [ t0−t(x)
θ(x) , 1), ∀ξ ∈ R,

∂k

∂τ
= ∆ξk − θ(x)

β
β+1F (θ(x)

1
β+1k). (32)

We will see that the estimates on k allow us to write θ(x)
β

β+1F (θ(x)
1

β+1k) =
1

kβ for suitable ξ. If we show that k(τ) behaves like k̂ (see (30)) which is a
solution of the ODE

dk̂

dτ
= − 1

k̂β

defined for τ ∈ [0, T̂ ) with T̂ = 1 +
(β+1)K2

0
64β > 1, and that |∇ξk(τ)| ≤

C(K0,A)√
| log θ(x)|

, then according to lemma 2.2, this yields that h(x, t) behaves in

P2 like H∗(x) and |∇h(x, t)| ≤ C(K0, A)|∇H∗(x)| if x and T − t0 are small,
which is almost the estimate ii) of the Theorem.

c) In P3, we estimate directly h using the local in time well posedness of
the Cauchy problem for equation (III).

More formally, we define for each t ∈ [t0, T ) a set S∗(t) depending on
some parameters so that h(t) ∈ S∗(t) means that h is controlled in the three
regions as described before. We show then that if ∀t ∈ [t0, T ), h(t) ∈ S∗(t),
then (21) and (22) hold and the Theorem follows.

Let us define S∗(t):
Definition of S∗(t) and S∗

I) For all t0 < T , K0 > 0, ε0 > 0, α0 > 0, A > 0, δ0 > 0, C ′
0 > 0, C0 > 0

and η0 > 0, for all t ∈ [t0, T ), we define S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0, t)

as being the set of all functions h ∈ H satisfying:
i) Estimates in P1: q(s) ∈ VK0,A(s) where s = − log(T − t), q(s) is

defined in (23) and VK0,A(s) is the set of all functions r in W 1,∞(R) such
that










|rm(s)| ≤ As−2 (m = 0, 1), |r2(s)| ≤ A2s−2 log s,

|r−(y, s)| ≤ As−2(1 + |y|3), |re(y, s)| ≤ A2s−1/2

|(∂r
∂s )⊥(y, s)| ≤ As−2(1 + |y|3),

(33)
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where
{

re(y, s) = (1 − χ(y, s))r(y), r−(s) = P−(χ(s)r),
for m ∈ N, rm(s) =

∫

dµkm(y)χ(y, s)r(y), r⊥(s) = P⊥(χ(s)r),

(34)
χ is defined in (26), P− and P⊥ are the L2(R, dµ) projectors respectively on
Vect {hm|m ≥ 3} and Vect {hm|m ≥ 2}, dµ, hm and km are introduced in
(25).

ii) Estimates in P2: For all |x| ∈ [K0
4

√

(T − t)| log(T − t)|, ε0],
τ = τ(x, t) = t−t(x)

θ(x) , and |ξ| ≤ α0

√

| log θ(x)|,
|k(x, ξ, τ) − k̂(τ)| ≤ δ0, |∇ξk(x, ξ, τ)| ≤ C′

0√
| log θ(x)|

, and |∇2
ξk(x, ξ, τ)| ≤ C0

where k, k̂, t(x) and θ(x) are defined in (28), (30) and (29).

iii) Estimates in P3: For all |x| ≥ ε0
4 , |h(x, t) − h(x, t0)| ≤ η0 and

|∇h(x, t) −∇h(x, t0)| ≤ η0.

II) For all t0 < T we define S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0) =

{k ∈ C([t0, T ),H) | ∀t ∈ [t0, T ), k(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0, t)}.

Remark: Note that according to (25) and (34), we have for all r ∈ L∞(R),

r(y) =
2
∑

m=0

rm(s)hm(y) + r−(y, s) + re(y, s), (35)

r(y) =
1
∑

m=0

rm(s)hm(y) + r⊥(y, s) + re(y, s). (36)

Therefore, i) yields an estimate on ‖q(s)‖L∞ and ‖
(

∂q
∂y

)

⊥
(s)‖L∞ .

Remark: The estimates on h are inW 1,∞(R). In particular, they are global.
The estimates on ∂q

∂y in P1, ∇ξk in P2 and on ∇h in P3 allow us to control
the term T (q) appearing in the equation satisfied by q (see (24)). We remark
that the estimate q(s) ∈ VK0,A(s) describes h mainly in P1. The estimate
on qe involved in definition (33) is useful only in the frontier between P1 and
P2.

Now we show that if we find suitable parameters and initial data such
that h ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0), then the Theorem holds.
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Proposition 2.1 (Reduction of the proof) For given t0 < T , K0, ε0,
α0, A, δ0, C

′
0, C0 and η0 such that δ0 ≤ 1

2 k̂(1) and η0 ≤ 1
2 inf
|x|≥ε0/4

h(x, t0),

assume that h ∈ S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0). Then h(t) extinguishes

in finite time T only at the point x0 = 0, that is lim
t→T

h(0, t) = 0 and ∀x 6= 0,

there exists η(x) > 0 such that

lim inf
t→T

min
|x′−x|≤η(x)

h(x′, t) > 0. (37)

Moreover, with Φ̂ and H∗ defined by (4) and (5),

lim
t→T

‖ (T − t)
1

β+1

h(z
√

−(T − t) log(T − t), t)
− 1

Φ̂(z)
‖L∞(R) = 0, (38)

h∗(x) = lim
t→T

h(x, t) exists for all x ∈ R and

h∗(x) > 0 for x 6= 0 and h∗(x) ∼ H∗(x) as x→ 0. (39)

Proof: We assume that h ∈ S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0). One can re-

mark that once (38), (37) and (39) are proved, it follows that
i) lim

t→T
h(0, t) = 0: h(t) extinguishes at time T at the point x = 0,

ii) x = 0 is the only extinction point of h.
It remains then to prove (37), (38) and (39).

Proof of (37):
From iii) of Definition of S∗(t), we know that if |x| ≥ ε0

4 , then ∀t ∈ [t0, T ),
h(x, t) ≥ h(x, t0) − η0 ≥ inf |x|≥ ε0

4
h(x, t0) − η0 ≥ 1

2 inf |x|≥ ε0
4
h(x, t0)) > 0.

This yields (37) for |x| ≥ ε0.

From ii) of Definition of S∗(t), we have ∀|x| ∈ (0, ε0], for t close enough

to T , |k(x, 0, τ(x, t)) − ĥ(τ(x, t))| ≤ δ0 where τ(x, t) = t−t(x)
θ(x) . Therefore,

k(x, 0, τ(x, t)) ≥ k̂(τ(x, t)) − δ0 ≥ k̂(1) − δ0 ≥ 1
2 k̂(1) (from (30) and δ0 ≤

1
2 k̂(1)). From (28), it follows: h(x, t) ≥ 1

2 k̂(1)θ(x)
1

β+1 > 0. This yields (37)
for 0 < |x| < ε0.

Proof of (38):
We consider q(s), the function introduced in (23). Let us show that

‖q(s)‖L∞(R) → 0 as s→ +∞. (40)

From i) of the definition of S∗(t) and (35), we have ∀s ∈ [− log(T−t0),+∞),
q(s) ∈ VK0,A(s) and
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|q(y, s)| = |1{|y|≤2K0
√

s}

(

2
∑

m=0

qm(s)hm(y) + q−(y, s)

)

+ qe(y, s)|

≤ 1{|y|≤2K0
√

s}(As
−2(1 + |y|) + A2s−2 log s(|y|2 + 2) + As−2(1 + |y|3)) +

A2s−1/2 ≤ C(K0, A)s−1/2 and (40) follows.
Let z ∈ R and g(z) = |(T − t)1/β+1/h(z

√

−(T − t) log(T − t), t) − 1
Φ̂(z)

|.
We have
g(z)

≤ C|(T − t)
α

β+1α
α

β+1h(z
√

−(T − t) log(T − t), t)−α − α
α

β+1 Φ̂(z)−α| 1
ᾱ

where ᾱ = max(α, 1).
Using (4) and (23), we have α = 1/(p − a) and β = (p − a)/(a − 1),

therefore α
β+1 = 1

p−1 ,

α
α

β+1 Φ̂(z)−α = (
β + 1

α
+

(β + 1)2

4βα
|z|2)−

1
p−1 = ϕ(z

√
s, s) − (p− 1)−1/(p−1)

2(p− a)s
,

and (T − t)
α

β+1α
α

β+1h(z
√

−(T − t) log(T − t), t)−α

= (T − t)
1

p−1u(z
√

−(T − t) log(T − t), t) with s = − log(T − t).
Combining this with (23) again, we get

g(z) ≤ C(α, β)
(

|q(z
√

− log(T − t),− log(T − t))| + 1/| log(T − t)|
)

1
ᾱ

≤ C
(

‖q(s)‖L∞(R) + 1/| log(T − t)|
)

1
ᾱ → 0 as t → T by (40). This yields

(38).

Proof of (39): From the proof of (37) and classical theory (see Merle
[21] for a similar problem), there exists a profile function h∗(x) such that
∀x 6= 0, lim

t→T
h(x, t) = h∗(x) > 0. To show that h∗(x) ∼ H∗(x) as x→ 0, we

give the following localization estimate:

Proposition 2.2 (Localization in P2) Assume that k is a solution of
equation

kτ = ∆k − 1

kβ
(41)

for τ ∈ [0, τ0) with τ0 ≤ 1(< T̂ ). Assume in addition: ∀τ ∈ [0, τ0],
i) For |ξ| ≤ 2ξ0, |k(ξ, 0) − k̂(0)| ≤ δ and |∇k(ξ, 0)| ≤ δ,
ii) For |ξ| ≤ 7ξ0

4 , k(ξ, τ) ≥ 1
2 k̂(τ).

iii) For |ξ| ≤ 7ξ0
4 , |∇2k(ξ, τ)| ≤ C0,

where k̂ is introduced in (30). Then there exists ε = ε(δ, ξ0) such that ∀τ ∈
[0, τ0], for |ξ| ≤ ξ0,
|k(ξ, τ)− k̂(τ)| ≤ ε and |∇k(ξ, τ)| ≤ ε, where ε→ 0 as δ → 0 and ξ0 → +∞.
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Proof: We prove in section 4 a more accurate version of this Proposition
(Proposition 4.1). One can adapt without difficulties the proof to the present
context.

Let us apply this Proposition to k(x, ξ, τ) when x is near zero with τ0 = 1
and ξ0 = | log θ(x)|1/4. We first check all the hypothesizes of the Proposition:

Lemma 2.3 If x is small enough, then k(x, ξ, τ) satisfies (41) for |ξ| ≤
| log θ(x)|1/4 and τ ∈ [0, 1). Moreover,

i) sup
|ξ|≤| log θ(x)|1/4

|k(x, ξ, 0) − k̂(0)| + |∇ξk(x, ξ, 0)| ≤ δ(x) → 0 as x→ 0,

(42)

ii) for |ξ| ≤ | log θ(x)| 14 , ∀τ ∈ [0, 1), k(x, ξ, τ) ≥ 1
2 k̂(τ),

iii) for |ξ| ≤ | log θ(x)| 14 , ∀τ ∈ [0, 1), |∇2
ξk(x, ξ, τ)| ≤ C0.

Combining this lemma and Proposition 2.2, we get ∀τ ∈ [0, 1), |k(x, ξ, τ) −
k̂(τ)| ≤ ε(x) → 0 as x→ 0. Using (28), (30) and letting τ → 1, we obtain

θ(x)−
1

β+1h∗(x) ∼ k̂(1) =

(

(β + 1)2K2
0

64β

)
1

β+1

. (43)

By lemma 2.2, we obtain h∗(x) ∼ H∗(x) as x → 0, which concludes the
proof of Proposition 2.1.

Proof of lemma 2.3:
i) and iii): Since (29) implies that θ(x) → 0 as x → 0, we have by

combining (38) and (28):

sup
|ξ|≤| log θ(x)|1/4

|1/k(x, ξ, 0) − 1/Φ̂(
x+ ξ

√

θ(x)
√

θ(x)| log θ(x)| )| → 0 as x → 0. Hence,

from (4), the first part of (42) follows.

From ii) of the Definition of S∗(t), we have |∇ξk(x, ξ, 0)| ≤ C′
0√

| log θ(x)|
and |∇2

ξk(x, ξ, 0)| ≤ C0 for |ξ| ≤ | log θ(x)|1/4, if x is small. This yields the
second part of i) and iii).

ii): From ii) of the Definition of S∗(t), it follows that for x small enough,
we have |k(x, ξ, τ) − k̂(τ)| ≤ δ0 for |ξ| ≤ | log θ(x)|1/4 and τ ∈ [0, 1). Hence,
ii) follows from (30) since δ0 ≤ 1

2 k̂(1). By the way, this implies that

|θ(x)
1

β+1k(x, ξ, τ)| ≤ 1 for |ξ| ≤ | log θ(x)|1/4 and τ ∈ [0, 1). Therefore,
it follows from (32) and (19) that k satisfies (41).

From this Proposition, the proof of the Theorem reduces to find suitable
parameters t0 < T , K0, ε0, α0, A, δ0, C

′
0, C0, η0 and h0 ∈ H so that the
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solution h of equation (II) with data h(t0) = h0 belongs to
S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0).

Unfortunately, the spectrum of L which greatly determines the dynamic
of q (and then the dynamic of h too) contains two expanding eigenvalues: 1
and 1/2. Therefore, we expect that for most choices of initial data h0, the
corresponding q0(s) and q1(s) with s = − log(T − t) will force h(t) to exit
S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t).

As a matter of fact, we will show through a priori estimates that for
suitably chosen t0 < T , K0, ε0, α0, A, δ0, C

′
0, C0 and η0, the control of h(t)

in S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0, t) for t ∈ [t0, T ) reduces to the control

of (q0(s), q1(s)) in
V̂A(s) ≡ [−As−2, As−2]2 (44)

for s ≥ − log(T − t0) (q0(s) and q1(s) correspond to expanding eigenvalues
in the q variable). Hence, we will consider initial data h0 depending on two
parameters (d0, d1) ∈ R

2, and then, we will fix (d0, d0) using a topological
argument so that (q0(s), q1(s)) ∈ V̂A(s) for all s ≥ − log(T − t), which yields
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t), thanks to the finite dimensional

reduction.
Let us define

h0(d0, d1, x) = (T − t0)
1

β+1α
1

β+1

{

Φ(z) + (d0 + d1z)χ0(
|z|

K0/16
)

}− 1
α

χ1(x, t0)

+H∗(x)(1 − χ1(x, t0)) (45)

where z = x/
√

(T − t0)| log(T − t0)|,

χ1(x, t0) = χ0

(

x

(T − t0)
1
2 | log(T − t0)|

p
2

)

, (46)

Φ, χ0 and H∗ are defined in (10), (27) and (5). The problem now reduces
to find (d0, d1) in some D ⊂ R

2 such that
h(d0, d1) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0).

The proof is divided in two parts:
i) Finite dimensional reduction:
From the technique of a priori estimates, we find suitable parameters

t0 < T , K0, ε0,α0, A, δ0, C
′
0, C0 and η0 so that the following property is

true: Assume that for t∗ ∈ [t0, T ), we have ∀t ∈ [t0, t∗],
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) and

h(t∗) ∈ ∂S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0, t∗), then
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(q0(s∗), q1(s∗)) ∈ ∂V̂A(s∗) where s∗ = − log(T − t∗), q0 and q1 follow from q
by (34), q and V̂A(s) are defined in (23) and (44).

ii) Solution of the finite dimensional problem:
We use a topological argument to find a parameter (d0, d1) ∈ R

2 such
that (q0(s), q1(s)) ∈ V̂A(s) for all s ≥ − log(T − t0), and therefore, h ∈
S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0). This yields the Theorem.

Part I: A priori estimates of h(t), solution of equation (II) and
finite dimensional reduction

Step 0: Initialization of the problem
We claim the following lemma:

Lemma 2.4 (Initialization of the problem) There exists K01 > 0 such
that for each K0 ≥ K01 and δ1 > 0, ∃α1(K0, δ1) > 0 and C∗(K0) > 0 such
that ∀α0 ≤ α1(K0, δ1), ∃ε1(K0, δ1, α0) > 0, such that ∀ε0 ≤ ε1(K0, δ1, α0),
∀C1 > 0, ∀A ≥ 1, ∃t1(K0, δ1, ε0, A,C1) < T such that ∀t0 ∈ [t1, T ), there
exists a rectangle D(t0,K0, A) ⊂ R

2 with the following properties:
If h(x, t0) is defined by (45), then:

i) ∀(d0, d1) ∈ D(t0,K0, A), h(t0) ∈ H defined in (6), (q0(s0), q1(s0)) ∈
V̂A(s0) defined in (44) and h(t0) ∈ S∗(t0,K0, ε0, α0, A, δ1, C

∗(K0), C1, 0, t0),
with s0 = − log(T − t0). More precisely:

|q0(s0)| ≤ As−2
0 |q1(s0)| ≤ As−2

0

|q2(s0)| ≤ s−2
0 log s0 |q−(y, s0)| ≤ Cs−2

0 (1 + |y|3)
|qe(y, s0)| ≤ s

−1/2
0 |

(

∂q
∂y

)

⊥
(y, s0)| ≤ s−2

0 (1 + |y|3),

| ∂q
∂y (y, s0)| ≤ s

− 1
2

0 for |y| ≥ K0
√
s0,

for all |x| ∈ [K0
4

√

(T − t)| log(T − t)|, ε0], τ0 = t0−t(x)
θ(x) , and

|ξ| ≤ 2α0

√

| log θ(x)|, |k(x, ξ, τ0) − k̂(τ0)| ≤ δ1, |∇ξk(x, ξ, τ0)| ≤ C∗(K0)√
| log θ(x)|

and |∇2
ξk(x, ξ, τ0)| ≤ C1 where k, k̂, t(x) and θ(x) are defined in (28), (30)

and (29).

ii) (d0, d1) ∈ D(t0,K0, A) ⇔ (q0(s0), q1(s0)) ∈ V̂A(s0),

(d0, d1) ∈ ∂D(t0,K0, A) ⇔ (q0(s0), q1(s0)) ∈ ∂V̂A(s0),

(q0(s0), q1(s0)) is an affine function of (d0, d1) when (d0, d1) ∈ ∂D(t0,K0, A).

Proof: See Appendix A.

Step 1: A priori estimates
We now claim the following estimates:
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Proposition 2.3 (A priori estimates in P1) There exists K02 > 0 such
that for each K0 ≥ K02, there exists A2(K0) > 0 such that for each A ≥
A2(K0), ε0 > 0 and C ′

0 ≤ A3, there exist η2(ε0) > 0 and t2(K0, ε0, A,C
′
0) <

T such that for each t0 ∈ [t2(K0, ε0, A,C
′
0), T ), δ0 ≤ 1

2 k̂(1), α0 > 0, C0 > 0
and η0 ≤ η2(ε0), we have the following property:

- if h(x, t0) is given by (45) and if (d0, d1) is chosen so that
(q0(s0), q1(s0)) ∈ V̂A(s0) defined in (44) with s0 = − log(T − t0),

- if for some t∗ ∈ [t0, T ), we have
∀t ∈ [t0, t∗], h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) then

|q2(s∗)| ≤ A2s−2
∗ log s∗ − s−3

∗ , |q−(y, s∗)| ≤ A
2 s

−2
∗ (1 + |y|3)

|qe(y, s∗)| ≤ A2

2 s
−1/2
∗ , |( ∂q

∂y )⊥(y, s∗)| ≤ A
2 s

−2
∗ (1 + |y|3),

where s∗ = − log(T − t∗), q is defined in (23) and the notation is given in
(34).

Proof: See section 3.

Proposition 2.4 (A priori estimates in P2) There exists K03 > 0 such
that for all K0 ≥ K03, δ1 ≤ 1, ξ0 ≥ 1, C∗

0 > 0, C ′∗
0 > 0 and C ′′∗

0 > 0 we
have the following property:
Assume that k is a solution of equation

∂k

∂τ
= ∆k − 1

kβ
(47)

for τ ∈ [τ1, τ2) with 0 ≤ τ1 ≤ τ2 ≤ 1 (< T̂ ).
Assume in addition: ∀τ ∈ [τ1, τ2],

i) ∀ξ ∈ [−2ξ0, 2ξ0], |k(ξ, τ1) − k̂(τ1)| ≤ δ1 and |∇k(ξ, τ1)| ≤ C′′∗
0
ξ0

,

ii) ∀ξ ∈ [− 7ξ0
4 ,

7ξ0
4 ], |∇k(ξ, τ)| ≤ C′∗

0
ξ0

and |∇2k(ξ, τ)| ≤ C∗
0 ,

iii) ∀ξ ∈ [− 7ξ0
4 ,

7ξ0
4 ], k(ξ, τ) ≥ 1

2 k̂(τ),

where k̂ is given by (30). Then, for ξ0 ≥ ξ03(C
′∗
0 , C

∗
0 , C

′′∗
0 ) there exists

ε = ε(K0, C
′∗
0 , δ1, ξ0) such that ∀ξ ∈ [−ξ0, ξ0], ∀τ ∈ [τ1, τ2],

|k(ξ, τ) − k̂(τ)| ≤ ε and |∇k(ξ, τ)| ≤ 2C′′∗
0

ξ0
, where ε → 0 as (δ1, ξ0) →

(0,+∞).

Proof: See section 4.

Proposition 2.5 (A priori estimates in P3) For all ε > 0, ε0 > 0, σ0 >
0, and σ1 > 0, there exists t4(ε, ε0, σ0, σ1) < T such that ∀t ∈ [t4, T ), if h is
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a solution of (II) on [t0, t∗] for some t∗ ∈ [t0, T ) satisfying
i) for |x| ∈ [ ε0

6 ,
ε0
4 ], ∀t ∈ [t0, t∗],

σ0 ≤ h(x, t) ≤ σ1, |∇h(x, t)| ≤ σ1 and |∇2h(x, t)| ≤ σ1, (48)

ii) h(x, t0) = H∗(x) for |x| ≥ ε0
6 where H∗ is defined by (5),

then for |x| ∈ [ ε0
4 ,+∞), ∀t ∈ [t0, t∗],

|h(x, t) − h(x, t0)| + |∇h(x, t) −∇h(x, t0)| ≤ ε.

Proof: See section 4.

Step 2: Finite dimensional reduction
From Propositions 2.3, 2.4 and 2.5, we have the following:

Proposition 2.6 (Finite dimensional reduction) We can choose pa-
rameters t0 < T , K0, ε0, α0, A, δ0, C

′
0 and C0 and η0 such that the fol-

lowing properties hold: Assume that h(x, t0) is given by (45) and (d0, d1) ∈
D(t0,K0, A). Then,
i) h(t0) ∈ H ∩ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t0).

Assume in addition that for some t∗ ∈ [t0, T ), we have ∀t ∈ [t0, t∗],
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) and

h(t∗) ∈ ∂S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0, t∗) then

ii) (q0(s∗), q1(s∗)) ∈ ∂V̂A(s∗) where q is defined in (23) and s∗ = − log(T −
t∗).
iii) (Transversality) there exists ν0 > 0 such that ∀ν ∈ (0, ν0),
(q0(s∗ + ν), q1(s∗ + ν)) 6∈ V̂A(s∗ + ν) (hence
h(t∗ + ν) 6∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t∗ + ν)).

Proof: We proceed in two steps: we first show that we can fix K0, δ0 and
C0 independently from A, take A ≥ A7 and choose ε0, α0, C

′
0, η0 and t0 in

terms of A, so that i) and ii) hold. In the second step, we fix A and t0 so
that iii) holds too.

Proof of i) and ii)
It follows from the following lemma:

Lemma 2.5 There exist constants K0, δ0, C0, and A7 > 0 such that for all
A ≥ A7, there exist ε0(A) > 0, α0(A), C ′

0(A), η7(A) and t7(A) < T such
that for all η0 ≤ η7 and t0 ∈ [t7, T ), and under the hypotheses of Proposition
2.6, i) and ii) hold.
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Proof
Let us first choose suitably the constants, and then show that i) and ii)

of Proposition 2.6 follow for this choice.
All the constants we are referring to below appear either in lemma 2.4

or Propositions 2.3, 2.4 or 2.5.
We proceed in ten steps:

i) Fix K0 = 4max(K01,K02,K03).
ii) Fix δ0 = 1

4 min(k̂(1), 1) (note that k̂(1) depends only on K0). Fix
C0 = 1. Let A7(K0) be large enough so that A7 ≥ max(1, A2(K0)) and
for all A ≥ A7(K0), A

3 ≥ C ′
0(A) where we introduce

C ′
0(A) = 4max

(

C3A
2K3

0 + ‖∇Φ̂‖L∞(B(0,2K0)),
20k̂(1)

(β+1)K0
, C∗(K0)

)

with

C∗(K0) defined in lemma 2.4 and C3 a constant which is independent of all
the parameters and appears in lemma 2.6.
Consider A any number larger than A7(K0), and consider C ′

0(A).
iii) Applying Proposition 2.4 with K0, C

∗
0 = 2, C ′∗

0 (A) = 2C ′
0(A) and

C ′′∗
0 (A) = 1

4C
′
0(A), we get ξ∗0(A) ≥ 1 and δ∗1(A) ≤ 1 such that for all ξ0 ≥ ξ∗0

and δ1 ≤ δ∗1 , the conclusion of the Proposition holds with ε = δ0
2 .

iv) Let δ1(A) = min( 1
2δ

∗
1(A), δ0) and C1 = 1

2 .
v) We claim the following lemma:

Lemma 2.6 ∀A ≥ A7, there exist α5(K0, δ1(A)) > 0 such that for all α0 ≤
α5, there exists ε5(α0, A) > 0 such that for all ε0 ≤ ε5(α0, A), there are
t5(ε0, A) < T and η5(ε0, A) > 0 such that for all η0 ≤ η5(ε0, A) and t0 ∈
[t5(ε0, A), T ),
if for all t ∈ [t0, t∗], h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) for some

t∗ ∈ [t0, T ), then we have for |x| ∈ [K0
4

√

(T − t∗)| log(T − t∗)|, ε0]:
i) For |ξ| ≤ 7

4α0

√

| log θ(x)| and for all τ ∈ [max(0, t0−t(x)
θ(x) ), t∗−t(x)

θ(x) ]:

k(x, ., .) satisfies (47) and, |∇ξk(x, ξ, τ)| ≤ 2C′
0(A)√

| log θ(x)|
, |∇2

ξk(x, ξ, τ)| ≤ 2C0

and k(x, ξ, τ) ≥ 1
2 k̂(τ).

ii) For |ξ| ≤ 2α0

√

| log θ(x)| and τ = max( t0−t(x)
θ(x) , 0): |k(x, ξ, τ)− k̂(τ)| ≤ δ1

and |∇ξk(x, ξ, τ)| ≤ C′
0(A)

4
√

| log θ(x)|
.

Proof: We focus on the proof of the fact that for |x| ∈ (0, ε0], for |ξ| ≤
7
4α0

√

| log θ(x)|, for t ∈ [max(0, t(x)), T ), we have

|∇ξk(x, ξ, τ)| ≤
2C ′

0(A)
√

| log θ(x)|
(49)

23



where τ = t−t(x)
θ(x) , and : for |x| ∈ (0, ε0], for |ξ| ≤ 2α0

√

| log θ(x)|,

|k(x, ξ, τ0(x)) − k̂(τ0(x))| ≤ δ1 (50)

and |∇ξk(x, ξ, τ0(x))| ≤
1
4C

′
0(A)

√

| log θ(x)| (51)

where τ0(x) = max( t0−t(x)
θ(x) , 0).

The other estimates follow by similar techniques.
Let δ > 0 to be fixed later. If α0 ≤ α7(K0, δ) for some α7(K0, δ) > 0,

then we have from (29): for |ξ| ≤ 2α0

√

| log θ(x)|,

(1 − δ)|x| ≤ |x+ ξ
√

θ(x)| ≤ (1 + δ)|x|. (52)

Proof of (49):
From (28), we have

∇ξk(x, ξ, τ) = θ(x)−
1

β+1
+ 1

2∇h(x+ ξ
√

θ(x), t). (53)

Let us denote x+ ξ
√

θ(x) by X and distinguish three cases:

- Case where |X| ≤ K0
4

√

(T − t)| log(T − t)|:
From (8), we write ∇h(X, t) = C ∇u

u1+ 1
α

(X, t).

From i) of the Definition of S∗(t), we get

|(T − t)
1

p−1u(X, t) − Φ( X√
(T−t)| log(T−t)|

)|

= |q( X√
T−t

,− log(T − t)) + κ
2(p−a)| log(T−t)| | ≤ CA2K3

0√
| log(T−t)|

by lemma B.1.

Moreover,

|∇u(X, t) − (T − t)
− 1

p−1
− 1

2 | log(T − t)|− 1
2∇Φ( X√

(T−t)| log(T−t)|
)| =

(T − t)−
1

p−1
− 1

2 |∇q( X√
T−t

,− log(T − t))|
≤ (T − t)−

1
p−1

− 1
2 | log(T − t)|− 1

2CA2K3
0 (see the proof of lemma B.1)

Hence, by (9), we obtain:

|(T − t)
− 1

β+1
+ 1

2∇h(X, t) − | log(T − t)|− 1
2∇Φ̂( X√

(T−t)| log(T−t)|
)|

≤ C3A2K3
0√

| log(T−t)|
and

|∇h(X, t)| ≤
(

C3A
2K3

0 + ‖∇Φ̂‖L∞(B(0,K0))

)

(T − t)
1

β−1
− 1

2 | log(T − t)|− 1
2 .

This gives by (53):

|∇ξk(x, ξ, τ)| ≤
(

T−t
θ(x)

)
1

β+1
− 1

2 | log(T − t)|− 1
2C ′

0(A).
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Since (1−δ)|x| ≤ |X| (see (52)) and |X| ≤ K0

√

(T − t)| log(T − t)|, we have
|x| ≤ K0

4(1−δ)

√

(T − t)| log(T − t)|.
From (29), we have |x| → θ(x) is an increasing function. Therefore,

θ(x) ≤ θ( K0
4(1−δ)

√

(T − t)| log(T − t)|) ∼ 8
K2

0

K2
0 (T−t)| log(T−t)|

16(1−δ)2 1
2
| log(T−t)| = (T−t)

(1−δ)2 by

(31). Moreover, we have t ≥ t(x), therefore, T − t ≤ θ(x). Hence,

|∇ξk(x, ξ, τ)| ≤ 2C ′
0(A)| log θ(x)|− 1

2 if δ is small enough.

- Case where |X| ∈ [K0
4

√

(T − t)| log(T − t), ε0]:

We write ∇h(X, t) = θ(X)
1

β+1
− 1

2∇ξk(X, 0,
t−t(X)
θ(X) ). This gives by (53):

∇ξk(x, ξ, t) =
(

θ(X)
θ(x)

)
1

β+1
− 1

2 ∇ξk(X, 0,
t−t(X)
θ(X) ).

From ii) of the Definition of S∗(t), we obtain:

|∇ξk(x, ξ, τ)| ≤ C ′
0(A)| log θ(x)|− 1

2 × θ(X)
1

β+1
− 1

2 | log θ(X)|−
1
2

θ(x)
1

β+1
− 1

2 | log θ(x)|−
1
2

.

Using (52) and taking δ small enough, this yields

|∇ξk(x, ξ, τ)| ≤ 2C ′
0(A)| log θ(x)|− 1

2 .

- Case |X| ≥ ε0: If η0 ≤ δ min
|x′|≥ε0

|∇h(x′, t0)|, then we have from iii) of

the Definition of S∗(t):
|∇h(X, t)| ≤ (1 + δ)|∇h(X, t0)| ≤ (1 + δ)|∇h(γx, t0)| where γ = 1 − δ if
β > 1 and γ = 1 + δ if β ≤ 1 (see (52)).
From lemma 2.2, we get:

|∇h(X, t)| ≤ (1 + δ) 10k̂(1)
(β+1)K0

θ(γx)
1

β+1
− 1

2 | log θ(γx)|− 1
2 .

Arguing as before, we obtain from (53):

|∇ξk(x, ξ, τ)| ≤ 20k̂(1)
(β+1)K0

| log θ(x)|− 1
2 ≤ 2C ′

0(A)| log θ(x)|− 1
2 if δ is small

enough. This concludes the proof of (49).

Proof of (50):
If |x| ≥ K0

4

√

(T − t0)| log(T − t0)|, then (29) yields t(x) ≤ t0 and τ0(x) =
t0−t(x)

θ(x) . Hence, (50) follows from lemma 2.4.

If |x| ≤ K0
4

√

(T − t0)| log(T − t0)|, then t(x) ≥ t0 and τ0(x) = 0. From (28)
and (30), we let X = x+ ξ

√

θ(x) and write:

|k(x, ξ, 0)−k̂(0)| = |θ(x)−
1

β+1h(X, t(x))−
(

(β + 1) + (β+1)2

4β
K2

0
16

)

1
β+1 | ≤ I+II

where I = |θ(x)−
1

β+1h(X, t(x)) −
(

(β + 1) + (β+1)2

4β
|X|2

θ(X)| log θ(x)|

)
1

β+1 |

and II = |
(

(β + 1) + (β+1)2

4β
|X|2

θ(X)| log θ(x)|

)
1

β+1 −
(

(β + 1) + (β+1)2

4β
K2

0
16

)

1
β+1 |.

From i) of the Definition of S∗(t), (23) and the fact that

|X| ≤ (1 + δ)|x| ≤ (1+δ)K0

4

√

θ(x)| log θ(x)| ≤ K0

√

θ(x)| log θ(x)|, we get
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I ≤ CA2K3
0 | log θ(x)|−

1
2 ≤ CA2K3

0 | log(T − t0)|−
1
2 , since

|x| ≤ K0
4

√

(T − t0)| log(T − t0)|. Now, if T−t0 is small enough, then I ≤ δ1
2 .

From (52) and (29), we have (1−δ)2 K2
0

16 ≤ |X|2
θ(X)| log θ(X)| ≤ (1+δ)2

K2
0

16 . Hence,

if δ is small enough, we obtain II ≤ δ1
2 .

This concludes the proof of (50).

Proof of (51):
If |x| ≥ K0

4

√

(T − t0)| log(T − t0)|, then (29) yields t(x) ≤ t0 and τ0(x) =
t0−t(x)

θ(x) . Hence, lemma 2.4 yields: for |ξ| ≤ 2α0

√

| log θ(x)|,
|∇ξk(x, ξ, τ0(x))| ≤ C∗(K0)| log θ(x)|−

1
2 ≤ 1

4C
′
0(A).

If |x| ≤ K0
4

√

(T − t0)| log(T − t0)|, then t(x) ≥ t0 and τ0(x) = 0. With

X = x + ξ
√

θ(x), we write: ∇ξk(x, ξ, 0) = θ(x)−
1

β+1
+ 1

2∇h(X, t(x)). Ar-
guing as for the first case in the proof of (49), we get: |∇ξk(x, ξ, 0)| ≤
[

C3A
2K3

0 + ‖∇Φ̂‖L∞(B(0,K0))

]

| log θ(x)|− 1
2 ≤ 1

4C
′
0(A)| log θ(x)|− 1

2 .

This concludes the proof of (51) and the proof of lemma 2.6.

vi) We now fix α0(A) = min( 1
2α1(K0, δ1(A)), α5(K0, δ1(A)), 1). We also fix

ε0(A) ≤ min(ε1(K0, δ1(A), α0(A)), ε5(α0(A), A)) such that
α0(A)

√

| log θ(ε0)| ≥ ξ∗0(A).
vii) Then, we take η7(A) = 1

2 min(η2(ε0(A)), η5(ε0(A), A)) and consider η0 ≤
η7.
viii) By direct parabolic estimates, it is easy to see that there exists t6(A) <
T such that for all t0 ∈ [t6, T ), if
h(t0) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C1, η0, t0) and ∀t ∈ [t0, t

′],
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t), then

h(t′) ∈ S∗(t0,K0, ε0, α0, A, δ0, C
′
0,

3
4 , η0, t

′).

ix) Let σ0(A) = 1
2 k̂(1)θ(

ε0
6 )

1
β+1 and σ1(A) = max( 3

2 k̂(0)θ(
ε0
4 )

1
β+1 ,

C ′
0

θ(
ε0
6

)
1

β+1
− 1

2
√

| log θ(
ε0
6

)|
, C ′

0
θ(

ε0
4

)
1

β+1
− 1

2
√

| log θ(
ε0
4

)|
, C0θ(

ε0
6 )

1
β+1

−1).

x) Let t7(A) = max(t1(K0, δ1(A), ε0(A), A,C1), t2(K0, ε0(A), A,C ′
0(A)),

t4(
η0

2 , ε0, σ0, σ1), t5(ε0(A), A), t6(A)), and consider t0 an arbitrary number in
[t7(A), T ).

Now, we show that i) and ii) of Proposition 2.6 hold for this choice. Let
us assume that h(t0) is given by (45) and (d0, d1) ∈ D(t0,K0, A). Then,
lemma 2.4 applies and h(t0) ∈ H ∩ S∗(t0.K0, ε0.α0, A, δ1, C

∗(K0), 0, t0).
Since δ1 ≤ δ0, C

∗(K0) ≤ C ′
0 and 0 < η0, i) follows.

We now assume that in addition, we have ∀t ∈ [t0, t∗],
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) and
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h(t∗) ∈ ∂S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0, t∗) for some t∗ ∈ [t0, T ). Accord-

ing to the Definition of S∗(t), three cases may occur:

Case 1: q(s∗) ∈ ∂VK0,A(s∗). From ii) of lemma 2.4, Proposition 2.3 and

i) of the Definition of S∗(t), we have (q0(s∗), q1(s∗)) ∈ ∂V̂A(s∗) which is i)
of Proposition 2.6.

Case 2: There exist x and ξ such that
|x| ∈ [K0

4

√

(T − t∗)| log(T − t∗)|, ε0] and |ξ| ≤ α0

√

| log θ(x)|, and either

|k(x, ξ, τ1) − k̂(τ1)| = δ0 or |∇ξk(x, ξ, τ1)| =
C′

0√
| log θ(x)|

or |∇2
ξk(x, ξ, τ1)| =

C0 = 1, where τ1 = t∗−t(x)
θ(x) < 1.

According to viii) and lemma 2.4, we have |∇2
ξk(x, ξ, τ∗)| ≤ 3

4 . Let τ0 =

max( t0−t(x)
θ(x) , 0) and ξ0 = α0

√

| log θ(x)|. Note that ξ0 ≥ α0

√

| log θ(ε0)| ≥ ξ∗0 .
Since α0 ≤ 1, it follows from lemma 2.6:
- For |ξ| ≤ 2α0

√

| log θ(x)|, |k(x, ξ, τ0) − k̂(τ0)| ≤ δ1 and |∇ξk(x, ξ, τ0)| ≤
C′

0(A)

4
√

| log θ(x)|
≤ C′

0(A)
4ξ0

.

- For |ξ| ≤ 7
4α0

√

| log θ(x)| and for all τ ∈ [τ0, τ1]: k(x, ., .) satisfies (87) and

|∇ξk(x, ξ, τ)| ≤ 2C′
0(A)
ξ0

, |∇2
ξk(x, ξ, τ)| ≤ 2C0 and k(x, ξ, τ) ≥ 1

2 k̂(τ).
Applying Proposition 2.4 yields:
For |ξ| ≤ α0

√

| log θ(x)|, |k(x, ξ, τ1) − k̂(τ1)| ≤ δ0
2 and |∇ξk(x, ξ, τ1)| ≤

2 1
4
C′

0(A)√
| log θ(x)|

<
C′

0(A)√
| log θ(x)|

, which contradicts the hypotheses of Case 2.

Case 3: There exists x ∈ R such that |x| ≥ ε0
4 and |h(x, t∗)−h(x, t0)| = η0

or |∇h(x, t∗) − ∇h(x, t0)| = η0. From ii) of the Definition of S(t), we
have: ∀t ∈ [t0, t∗], for |x| ∈ [ ε0

6 ,
ε0
4 ]: |k(x, 0, τ) − k̂(τ)| ≤ δ0, |∇ξk(x, 0, τ)| ≤

C′
0√

| log θ(x)|
and |∇2

ξk(x, 0, τ)| ≤ C0, where τ = t−t(x)
θ(x) . Using (28) and the fact

that δ0 ≤ 1
2 k̂(1) ≤ 1

2 k̂(0), we obtain:

1
2 k̂(1)θ(x)

1
β+1 ≤ h(x, t) ≤ 3

2 k̂(0)θ(x)
1

β+1 , |∇h(x, t)| ≤ C ′
0

θ(x)
1

β+1
− 1

2√
| log θ(x)|

and

|∇2h(x, t)| ≤ C0θ(x)
1

β+1
−1

. Therefore, σ0(A) ≤ h(x, t) ≤ σ1(A),
|∇h(x, t)| ≤ σ1 and |∇2h(x, t)| ≤ σ1. From (45), we have h(x, t0) = H∗(x)
for |x| ≥ ε0

6 . Hence, Proposition 2.5 applies and we get: |h(x, t)−h(x, t0)|+
|∇h(x, t) −∇h(x, t0)| ≤ η0

2 < η0, which contradicts the hypotheses of Case
3.

This concludes the proof of i) and ii) of Proposition 2.6.

Proof of iii):
Let us recall that K0, δ0 and C0 are fixed independently of A, where A
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is taken larger than some A7 > 0, ε0, α0 and C ′
0 are fixed in terms of A,

and t0 ∈ [t7(A), T ), η0 ≤ η7(A), for some t7(A) < T . and η7(A) > 0. Let us
prove this lemma:

Lemma 2.7 There exists A8 > 0 such that for all A ≥ A8, there exist
t8(A) < T and η8(A) such that for all t0 ∈ [t8, T ) and η0 ≤ η8(A), and
under the hypotheses of Proposition 2.6, the conclusion iii) holds.

Proof: From lemma 2.5, we have: ∀t ∈ [t0, t∗],
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) and (q0(s∗), q1(s∗)) ∈ ∂V̂A(s∗),

which means that qm(s∗) = εAs−2
∗ for some m ∈ {0, 1} and ε ∈ {−1, 1}.

From (44), the conclusion follows if we show that ε dqm

ds (s∗) > 0.

From (24) and (34), we have:
∫

χ(s∗)
∂q
∂s(s∗)kmdµ =

∫

χ(s∗)Lq(s∗)kmdµ+
∫

χ(s∗)
[

V (s∗)q(s∗) +B(q) + T (q) +R(s∗) + e
− ps∗

p−1 f1(e
s∗

p−1 (ϕ+ q))
]

kmdµ.

If we take t0 ∈ [t11(K0, ε0(A), A, 0, C ′
0), T ) and η0 ≤ η11(ε0(A)), then we get

from lemma 3.2 (see section 3):

|dqm
ds

(s∗) − (1 − m

2
)qm(s∗)| ≤

C6

s2∗

for some C6 independent from all the other constants. Since qm(s∗) = εAs−2
∗ ,

we have εdqm

ds (s∗) > 0 for A ≥ 4C6.

Conclusion of the proof: If we take A = max(A7, A8) and
η0 = min(η7(A), η8(A), 1

2 min
|x|≥ ε0

4

h(x, t0)) ( min
|x|≥ ε0

4

h(x, t0) > 0 according to (45)

and (5)), and t0 = max(t7(A), t8(A)), then both i) and ii) of Proposition
2.6 hold. This concludes the proof of Proposition 2.6. Let us note that with
this choice, the reduction of the proof of Proposition 2.1 holds.

Part II: Topological argument
From Proposition 2.6, we claim that there exist (d0, d1) ∈ D(t0,K0, A)

such that h(d0, d1) ∈ S∗(t0,K0, ε0, α0, A, δ0, C
′
0, C0, η0). The proof is similar

to the analogous one in [22], let us give its main ideas.
We proceed by contradiction: From i) of Proposition 2.6, we have

∀(d0, d1) ∈ D(t0,K0, A),
h(d0, d1, t0) ∈ H∩S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t0). Therefore, we define

for each (d0, d1) ∈ D(t0,K0, A) a time t∗(d0, d1) as being the infinitum of all
t ∈ [t0, T ) such that
h(d0, d1, t) 6∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t). By ii) of Proposition 2.6,

we have
(q0, q1)(d0, d1, s∗(d0, d1)) ∈ ∂V̂A(s∗(d0, d1)) where s∗ = − log(T − t∗).
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Hence, we can define from (44) the following function:

Ψ : D(t0,K0, A) → ∂C
(d0, d1) → s∗(d0 ,d1)2

A (q0, q1)(d0, d1, s∗(d0, d1))

where C is the unit square of R
2.

Now we claim

Proposition 2.7 i) Ψ is a continuous mapping from D(t0,K0, A) to ∂C.
ii) There exists a non trivial affine function T : D(t0,K0, A) → C such

that Ψ ◦ T−1
|∂C = Id|∂C.

Proof: The proof is very similar to the proof of Proposition 3.3 in [22], that
is the reason why we give only the important arguments.

i) follows from the continuity in H of the solution h(t) at a fixed time t
with respect to initial data, and the transversality property iii) of Proposi-
tion 2.6.

From ii) of lemma 2.4, we have ∀(d0, d1) ∈ ∂D(t0,K0, A), s∗(d0, d1) = s0
and ii) follows.

From Proposition 2.7, a contradiction follows (Index Theory). Therefore,
there exist (d0, d1) ∈ D(t0,K0, A) such that
h(d0, d1) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0). By Proposition 2.1 and the

Conclusion of the proof of Proposition 2.6, the main Theorem follows.

3 A priori estimates of u(t) in the blow-up zone

This section is devoted to the proof of Proposition 2.3. Let us consider
t0 < T , K0, ε0, α0, A, δ0, C

′
0, C0 and η0. We assume that (d0, d1) is

chosen so that (q0(s0), q1(s0)) ∈ V̂A(s0) where s0 = − log(T − t0), and that
∀t ∈ [t0, t∗], h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) for some t∗ ∈ [t0, T ).

Then we improve some of the bounds given in i) of the Definition of
S∗(t) for h(t∗). More precisely, we improve the bounds of q2(s∗), q−(y, s∗),

qe(y, s∗) and
(

∂q
∂y

)

⊥
(y, s∗) with s∗ = − log(T − t∗).

For this purpose, we consider the equation (24) satisfied by q(s) and the
one satisfied by ∂q

∂y (s) as well as their integral formulations:

0 = −∂q
∂s

+(L+V (y, s))q+B(q)+T (q)+R(y, s)+e−
ps

p−1 f1(e
s

p−1 (ϕ+q)) (54)
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with L = ∆ − 1
2y.∇ + 1, V (y, s) = pϕ(y, s)p−1 − p

p−1 ,

B(q) = (ϕ+ q)p − ϕp − pϕp−1q,

T (q) = −a |∇ϕ+∇q|2
ϕ+q +a |∇ϕ|2

ϕ , R(y, s) = −∂ϕ
∂s +∆ϕ− 1

2y.∇ϕ−
ϕ

p−1+ϕp−a |∇ϕ|2
ϕ ,

f1(u) = α
β

β+1u1+ 1
αF (α

1
β+1u−

1
α ) − up,

if r(y, s) = ∂q
∂y (y, s) then

∂r

∂s
= (L − 1

2
+ V )r +

∂

∂y
(B(q) + T (q))(y, s) +R1(y, s)

+e−s(
∂ϕ

∂y
+ r)f ′1(e

s
p−1 (ϕ+ q))

with R1(y, s) = ∂R
∂y (y, s) + ∂V

∂y q(y, s),
if K(s, σ) andK1(s, σ) are respectively the fundamental solution of L+V

and L− 1
2 + V (note that K1(s, σ) = e−

s−σ
2 K(s, σ)), then for s ≥ σ ≥ s0:

q(s) = K(s, σ)q(σ) +

∫ s

σ
dτK(s, τ)(B(q(τ)) + T (q(τ))) +

∫ s

σ
dτK(s, τ)R(τ)

(55)

+

∫ s

σ
dτK(s, τ)e

− pτ
p−1 f1(e

τ
p−1 (ϕ(τ) + q(τ))),

and

r(s) = K1(s, σ)r(σ) +

∫ s

σ
dτK1(s, τ)(

∂

∂y
(B(q) + T (q))(τ) +R1(τ)) (56)

+

∫ s

σ
dτK1(s, τ)e

−τ (
∂ϕ

∂y
(τ) + r(τ))f ′1(e

τ
p−1 (ϕ(τ) + q(τ))).

We proceed in two steps: in Step 1, using the fact that
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) for t ∈ [T − e−σ, T − e−(σ+ρ)] for

some σ ≥ s0 and ρ ≥ 0, we derive bounds on terms in the right hand side of
equation (54) truncated by χ and projected on h2, and on terms in the right
hand sides of equations (55) and (56), expanded respectively as in (35) and
(36).

In Step 2, we use these bounds and these equations to find new bounds
on q−, qe and r⊥ on one hand, and a bound on dq2

ds (s) on the other hand.
This latter bound yields a better estimate on q2(s) (this estimate is obtained
differently from the analogous term in [22] and [25]) .

Step 1: A priori estimates of q(s)
We first show that if (d0, d1) is chosen so that (q0(s0), q1(s0)) ∈ V̂A(s0),

then q(s0) is strictly included in VK0,A(s0). In other words, at initial time

30



s0, the finite dimensional variable (q0(s0), q1(s0)) determines the size of the
hole function q(s0). In fact we have an estimate more precise than the one
in lemma 2.4:

Lemma 3.1 For each A > 0, there exists s2(A) > 0 such that for each
s0 ≥ s2(A) and K0 > 20, if h(x, t0) is given by (45) and (d0, d1) is chosen
so that (q0(s0), q1(s0)) ∈ V̂A(s0), then

|q2(s0)| ≤ s−2
0 log s0, |q−(y, s0)| ≤ Cs−2

0 (1 + |y|3),
|qe(y, s0)| ≤ s

−1/2
0 , |r⊥(y, s0)| ≤ s−2

0 (1 + |y|3),

and |r(y, s0)| ≤ s
−1/2
0 for |y| ≥ K0

√
s0.

Proof: The proof is included in the proof of lemma 2.4: See the end of its
Step 2.

Now we consider σ ≥ s0 and ρ ∈ [0, ρ∗]. We suppose that
∀t ∈ [T − e−σ, T − e−(σ+ρ)] h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t). Then

we give bounds on terms in right hand sides of equations (54), (55) and (56),
expanded as in (34).
Remark: In fact, we give in lemma 3.2 estimates on equation (54) projected
on hm with m = 0, 1 or 2. Only m = 2 is useful for the proof of Proposition
2.3. The estimates for m = 0 or 1 are in a large part the same, they are
useful for the proof of Proposition 2.6.

Lemma 3.2 There exists K11 > 0 and A11 > 0 such that for each K0 ≥
K11, ε0 > 0, A ≥ A11, ρ

∗ > 0, C ′
0 > 0, there exists t11(K0, ε0, A, ρ

∗, C ′
0) with

the following property:
∀t0 ∈ [t11(K0, ε0, A, ρ

∗, C ′
0), T ), ∀ρ ∈ [0, ρ∗], for all δ0 ≤ 1

2 k̂(1), α0 > 0,
C0 > 0 and η0 ≤ η11(ε0) for some η11(ε0) > 0, assume that

- h(x, t0) is given by (45) and (d0, d1) is chosen so that (q0(s0), q1(s0)) ∈
V̂A(s0)

- for some σ ≥ − log(T − t0), we have ∀t ∈ [T − e−σ, T − e−(σ+ρ)]
h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t). Then, ∀s ∈ [σ, σ + ρ],

I) Equation (54): If m = 0, 1 or 2,

|
∫

χ(y, s)km(y)
∂q

∂s
(y, s)dµ− q′m(s)| ≤ e−s (57)

|
∫

χ(y, s)km(y)Lq(y, s)dµ− (1 − m

2
)qm(s)| ≤ e−s (58)
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|
∫

χ(y, s)km(y)V (y, s)q(y, s)dµ| ≤ s−5/2 (59)

|
∫

χ(y, s)km(y)B(q)(y, s)dµ| ≤ Cs−3 (60)

|
∫

χ(y, s)km(y)T (q)(y, s)dµ| ≤ s−2−1/4 (61)

|
∫

χ(y, s)km(y)R(y, s)dµ| ≤ Cs−2 (62)

|
∫

χ(y, s)km(y)e−
ps

p−1 f1(e
s

p−1 (ϕ+ q))dµ| ≤ e−s. (63)

If m = 2, then we have more precisely:

|
∫

χ(y, s)k2(y)V (y, s)q(y, s)dµ +
2p

s(p− a)
q2(s)| ≤ CAs−3 (64)

|
∫

χ(y, s)k2(y)T (q)(y, s)dµ − 2a

s(p− a)
q2(s)| ≤ CAs−3 (65)

|
∫

χ(y, s)k2(y)R(y, s)dµ| ≤ Cs−3 (66)

II) Equation (55):
Case σ ≥ s0:

|α−(y, s)| ≤ C(Ae−(s−σ)/2 +A2e−(s−σ)2)s−2(1 + |y|3) (67)

|αe(y, s)| ≤ C(A2e−(s−σ)/p +AK3
0e

s−σ)s−1/2 (68)

where α(s) = K(s, σ)q(σ) is expanded as in (35),

|β−(y, s)| ≤ C(s− σ)s−2(1 + |y|3) (69)

|βe(y, s)| ≤ (s− σ)s−1/2 (70)

where β(s) =
∫ s
σ dτK(s, τ) (B(q(τ)) + T (q(τ))),

|γ−(y, s)| ≤ C(s− σ)s−2(1 + |y|3) (71)

|γe(y, s)| ≤ CK3
0 (s− σ)es−σs−1/2 (72)

(73)

where γ(s) =
∫ s
σ dτK(s, τ)R(τ) is expanded as in (35),

|δ−(y, s)| ≤ C(s− σ)s−2(1 + |y|3) (74)

|δe(y, s)| ≤ C(s− σ)s−1/2 (75)

where δ(s) =
∫ s
σ dτK(s, τ)e−

ps
p−1 f1(e

τ
p−1 (ϕ+ q)) is expanded as in (35).
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Case σ = s0: More precisely,

|α−(y, s)| ≤ Cs−2(1 + |y|3) (76)

|αe(y, s)| ≤ CK3
0e

s−σs−1/2. (77)

III) Equation (56):
Case σ ≥ s0:

|P⊥(χ(s)K1(s, σ)r(σ))| ≤ C(Ae−(s−σ)/2 + C(K0)C
′
0e

−(s−σ)2)
1 + |y|3
s2

(78)

|P⊥(χ(s)

∫ s

σ
dτK1(s, τ)

∂

∂y
(B(q) + T (q))(τ))| ≤ C(s− σ)1/2 1 + |y|3

s2
(79)

|P⊥(χ(s)

∫ s

σ
dτK1(s, τ)R1(τ))| ≤ C(s− σ)

1 + |y|3
s2

(80)

|P⊥(χ

∫ s

σ
dτK1(s, τ)e

−τ (
∂ϕ

∂y
+ r)f ′1(e

τ
p−1 (ϕ+ q))| ≤ C(s− σ)

1 + |y|3
s2

(81)

where P⊥ is defined in (34).
Case σ = s0: More precisely,

|P⊥(χ(s)K1(s, σ)r(σ))| ≤ Cs−2(1 + |y|3). (82)

Proof: See Appendix B.

Step 2: Lemma 3.2 implies Proposition 2.3
Let K0 ≥ K02 > 0, ε0 > 0, A ≥ A2(K0) > 0 where A2(K0) will be fixed
later, and C ′

0 ≤ A3. Let t0 > 0 to be fixed in [t2(K0, ε0, A,C
′
0), T ) (where

t2(K0, ε0, A,C
′
0) will be defined later). Consider δ0 ≤ 1

2 k̂(1), α0 > 0, C0 > 0
and η0 ≤ η2(ε0). Let h(d0, d1) be a solution of equation (II) with initial data
(45) defined on [t0, t∗] with t∗ ∈ [t0, T ), such that
- (d0, d1) is chosen so that (q0(s0), q1(s0)) ∈ V̂A(s0) (s0 = − log(T − t0) and
q is defined by (23)),
- ∀t ∈ [t0, t∗], h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) and

q(s∗) ∈ ∂VK0,A(s∗).
We want to show that

|q2(s∗)| ≤ A2s−2
∗ log s∗ − s−3

∗ , |q−(y, s∗)| ≤ A
2 s

−2
∗ (1 + |y|3)

|qe(y, s∗)| ≤ A2

2 s
−1/2
∗ , |r⊥(y, s∗)| ≤ A

2 s
−2
∗ (1 + |y|3) (83)

where

r(y, s) =
∂q

∂y
(y, s).
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We consider ρ1(K0, A) ≥ ρ2(K0, A) two positive numbers (which will be
fixed later in terms of K0 and A). The conclusion follows if we treat Case
1 where s∗ − s0 ≤ ρ1 and then Case 2 where s∗ − s0 ≥ ρ2. The proof
relies strongly on estimates of lemma 3.2. Therefore, we suppose K0 ≥ K11,
A ≥ A11, C

′
0 ≤ A3, t0 ≥ max(t11(K0, ε0, A, ρ1, C

′
0), t11(K0, ε0, A, ρ2, C

′
0)),

s0 = − log(T − t0) ≥ max(ρ1, ρ2), ε0 > 0, δ0 ≤ 1
2 k̂(1), C0 > 0 and η0 ≤

η11(ε0).

Case 1: s∗ − s0 ≤ ρ1(K0, A)
We apply lemma 3.2 with A, ρ∗ = ρ1, ρ = s∗ − s0 and σ = s0.
From equation (54) with m = 2, we obtain: ∀s ∈ [s0, s∗],

|q′2(s) + 2s−1q2(s)| ≤ CAs−3 + 2e−s ≤ CAs−3. Therefore, ∀s ∈ [s0, s∗],
| d
ds(s

2q2(s))| ≤ CAs−1, and then, using s∗ ≤ 2s0 (indeed, s∗ = s0 + ρ ≤
s0 + ρ1 ≤ 2s0), we obtain |q2(s∗)| ≤ s−2

∗ s20|q2(s0)| + 2A(s∗ − s0)s
−3
∗ . Us-

ing |q2(s0)| ≤ s−2
0 log s0 which follows from lemma 3.1, we get |q2(s∗)| ≤

s−2
∗ log s∗ + CA(s∗ − s0)s

−3
∗ . Together with estimates concerning equations

(55) and (56) in lemma 3.2, we obtain:

|q2(s∗)| ≤ s−2
∗ log s∗ + 2C1As

−2
∗

|q−(y, s∗)| ≤ C1(1 + s∗ − s0)s
−2
∗ (1 + |y|3)

|qe(y, s∗)| ≤ C1K
3
0e

s∗−s0(1 + s∗ − s0)s
−1/2
∗

|r⊥(y, s∗)| ≤ C1(1 + (s∗ − s0)
1/2 + (s∗ − s0))s

−2
∗ (1 + |y|3)

≤ 2C1(1 + s∗ − s0)s
−2
∗ (1 + |y|3).

To have (83), it is enough to have

1 ≤ A2

2
, 2C1(1 + s∗ − s0) ≤

A

2
, and C1K

3
0e

s∗−s0(1 + s∗ − s0) ≤
A2

2
(84)

on one hand and

2C1As
−2
∗ ≤ A2

2

log s∗
s2∗

− s−3
∗ (85)

on the other hand.
If we restrict ρ1 to satisfy 2C1(1+ρ1) ≤ A/2 and C1K

3
0e

ρ1(1+ρ1) ≤ A2/2
(which is possible with ρ1 = 3/2 logA for A ≥ A6(K0) large enough), then
(84) is satisfied, since s∗− s0 ≤ ρ1. Now if s0 ≥ s6(A), then (85) is satisfied.
Thus (83) is satisfied also. This concludes Case 1.

Case 2: s∗ − s0 ≥ ρ2(K0, A)
We apply lemma 3.2 with A, ρ = ρ∗ = ρ2 and σ = s∗−ρ2. From equation

(54) with m=2, we obtain ∀s ∈ [σ, s∗], |q′2(s) + 2s−1q2(s)| ≤ CAs−3. Using
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the same argument as Case 1 and |q2(σ)| ≤ A2σ−2 log σ, and then estimates
on equation (55) and (56), we obtain:

|q2(s∗)| ≤ A2s−2
∗ log(s∗ − ρ2) + 2C2Aρ2s

−3
∗

|q−(y, s∗)| ≤ C2(Ae
−ρ2/2 +A2e−ρ2

2 + ρ2)s
−2
∗ (1 + |y|3)

|qe(y, s∗)| ≤ C2(A
2e−ρ2/p +AK3

0e
ρ2 +K3

0ρ2e
ρ2)s

−1/2
∗

|r⊥(y, s∗)| ≤ C2(Ae
−ρ2/2 + C(K0)C

′
0e

−ρ2
2 + ρ2

1/2 + ρ2)s
−2
∗ (1 + |y|3).

Since C ′
0 ≤ A3, in order to obtain (83), it is enough to have

fA,ρ2(s∗) ≥ 0

C2(Ae
−ρ2/2 +A2e−ρ2

2 + ρ2) ≤ A
2

C2(A
2e−ρ2/p +AK3

0e
ρ2 +K3

0ρ2e
ρ2) ≤ A2

2

C2(Ae
−ρ2/2 + C(K0)A

3e−ρ2
2 + ρ2

1/2 + ρ2) ≤ A
2

(86)

with fA,ρ2(s∗) = A2s−2
∗ log s∗ − s−3

∗ −
[

A2s−2
∗ log(s∗ − ρ2) + 2C2Aρ2s

−3
∗
]

.
We now fix ρ2 so that C2K

3
0Ae

ρ2 = A2/8, i.e. ρ2 = log
(

A/(8C2K
3
0 )
)

.
Then, the conclusion follows if A is large enough. Indeed, for all A > 1, we
write

|fA,log A

8C2K3
0

(s∗) − s−3
∗

(

A2 log
A

8C2K3
0

− 2C2A log
A

8C2K3
0

− 1

)

|

≤
A2(log A

8C2K3
0
)2

s2(s− log A
8C2K3

0
)2
.

Then we take A ≥ A7(K0, C
′
0) for some A7(K0) such that

A2 log
A

8C2K3
0

− 2C2A log
A

8C2K3
0

− 1 ≥ 1

C2(A(
A

8C2K3
0

)−1/2 +A2e
−(log A

8C2K3
0

)2

+ log
A

8C2K3
0

) ≤ A

2

C2(A
2(

A

8C2K3
0

)−1/p +AK3
0

A

8C2K3
0

+K3
0 log

A

8C2K3
0

A

8C2K3
0

) ≤ A2

2

C2(A(
A

8C2K3
0

)−1/2 + C(K0)A
3e

−(log A

8C2K3
0

)2

+ (log
A

8C2K3
0

)1/2

+ log A
8C2K3

0
) ≤ A

2 .
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Afterwards, we take s0 ≥ s7(K0, A) so that ∀s ≥ s0,
A2(log A

8C2K3
0
)2s−2(s− log A

8C2K3
0
)−2 ≤ s−3/2.

This way, (86) is satisfied for A ≥ A7(K0) and s0 ≥ s7(K0, A). This
concludes Case 2.

We remark that for A ≥ A8(K0), we have ρ1 = 3
2 logA ≥ log A

8C2K3
0

= ρ2.

If we take nowK02 = K11, A2(K0) = max(A11, A6(K0), A7(K0), A8(K0))
and t2 = max(t11(K0, ε0, A, ρ1(A), C ′

0), T − e−ρ1(A),
t11(K0, ε0, A, ρ2(K0, A), C ′

0), T − e−ρ2(K0,A), T − e−s6(A), T − e−s7(K0,A)),
η2(ε0) = η11(ε0), then we conclude the proof of Proposition 2.3.

4 A priori estimates in P2 and P3

In this section, we estimate directly the solutions of equation (II).

4.1 Estimates in P2

Let us recall that k̂(τ) =
(

(β + 1)(1 − τ) + (β+1)2

4β
K2

0
16

)

1
β+1

and that it is

defined for τ ∈ [0, T̂ ] with T̂ > 1.

Proposition 4.1 There exists K03 > 0 such that for all K0 ≥ K03, δ1 ≤ 1,
ξ0 ≥ 1 and C∗

0 > 0, C ′∗
0 > 0, C ′′∗

0 > 0 we have the following property:
Assume that k is a solution of equation

∂k

∂τ
= ∆k − 1

kβ
(87)

for τ ∈ [τ1, τ2) with 0 ≤ τ1 ≤ τ2 ≤ 1 (< T̂ ). Assume in addition: ∀τ ∈
[τ1, τ2],

i) ∀ξ ∈ [−2ξ0, 2ξ0], |k(ξ, τ1) − k̂(τ1)| ≤ δ1 and |∇k(ξ, τ1)| ≤ C′′∗
0
ξ0

,

ii) ∀ξ ∈ [− 7ξ0
4 ,

7ξ0
4 ], |∇k(ξ, τ)| ≤ C′∗

0
ξ0

and |∇2k(ξ, τ)| ≤ C∗
0 ,

iii) ∀ξ ∈ [− 7ξ0
4 ,

7ξ0
4 ], k(ξ, τ) ≥ 1

2 k̂(τ). Then, for ξ0 ≥ ξ03(C
′∗
0 , C

∗
0 , C

′′∗
0 ) there

exists ε = ε(K0, C
′∗
0 , δ1, ξ0) such that ∀ξ ∈ [−ξ0, ξ0], ∀τ ∈ [τ1, τ2],

|k(ξ, τ) − k̂(τ)| ≤ ε and |∇k(ξ, τ)| ≤ 2C′′∗
0

ξ0
, where ε → 0 as (δ1, ξ0) →

(0,+∞).

Proof: We can assume τ1 = 0 and τ2 = τ0 ≤ 1.
Step 1: Gradient estimate
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Lemma 4.1 Under the assumptions of Proposition 4.1, we have

∀ξ ∈ [−5ξ0
4 ,

5ξ0
4 ], ∀τ ∈ [0, τ0] |∇k(ξ, τ)| ≤ 2C′′∗

0
ξ0

, if ξ0 ≥ ξ03(C
′∗
0 , C

∗
0 , C

′′∗
0 ).

Proof: We have ∀ξ ∈ [−2ξ0, 2ξ0], ∀τ ∈ [0, τ0],

∂

∂τ
∇k = ∆(∇k) + β

∇k
kβ+1

.

From iii), we have for |ξ| ≤ 7ξ0
4 , | 1

kβ+1 | ≤ 1 for K0 large. If θ = |∇h|2, then,

by a direct calculation, 2 ∂k
∂ξ ∆

(

∂k
∂ξ

)

≤ ∆θ and θτ ≤ ∆θ + Cθ for |x| ≤ 7ξ0
4 .

Let us consider χ1 ∈ C∞(RN ) such that χ1(x) = 1 for |x| ≤ 3ξ0
2 , χ1(x) = 0

for |x| ≥ 7ξ0
4 , 0 ≤ χ1 ≤ 1, |∇χ1| ≤ C

ξ0
and |∆χ1| ≤ C

ξ2
0
. Then, θ1 = χ1θ

satisfies the following inequality:
θ1τ ≤ ∆θ1 − 2∇χ1.∇θ − ∆χ1θ + Cθ1
≤ ∆θ1 + C(C ′∗

0 , C
∗
0 )ξ−2

0 1{ 3ξ0
2

≤|x|≤2ξ0} +Cθ1. With θ2 = e−Cτθ1, we have

θ2τ ≤ ∆θ2 + C(C ′∗
0 , C

∗
0 )ξ−2

0 1{ 3ξ0
2

≤|x|≤2ξ0} and 0 ≤ θ2(0) ≤
C ′′∗

0
2

ξ20
.

Therefore, by the maximum principle, ∀ξ ∈ [− 5ξ0
4 ,

5ξ0
4 ],∀τ ∈ [0, τ0], θ(ξ, τ) ≤

C′′∗
0

2

ξ2
0

+ C(C ′∗
0 , C

∗
0 )2ξ−2

0 e−C′ξ2
0 . Hence, for |ξ| ≤ 5ξ0

4 , ∀τ ∈ [0, 1], |∇k(ξ, τ)| ≤
C′′∗

0
ξ0

+
C(C′∗

0 ,C∗
0 )

ξ0
e−C′ξ2

0 ≤ 2C′′∗
0

ξ0
, if ξ0 ≥ ξ03(C

′∗
0 , C

∗
0 , C

′′∗
0 ), which yields the

conclusion.

Step 2: Estimates on k
We are now able to conclude the proof of Proposition 4.1.

Lemma 4.2 For |ξ| ≤ ξ0, ∀τ ∈ [0, τ0], we have |k(ξ, τ) − k̂(τ)| ≤ ε, where
ε→ 0 as ξ0 → +∞ and δ1 → 0.

Proof: Let us consider k1 a solution of equation (87) such that ∀ξ ∈ [−2, 2],
∀τ ∈ [0, τ0], |k1(ξ, 0)− k̂(0)| ≤ δ1, |∇k1(ξ, τ)| ≤ ε. Let us show that for |ξ| ≤
2, ∀τ ∈ [0, τ0], |k1(0, τ) − k̂(τ)| ≤ C(K0)ε+ δ1 where C(K0) is independent
from ε.

We have ∀τ ∈ [0, τ0], k1(0, τ) = 1
|B2(0)|

∫

|ξ|≤2 k1(ξ, τ)dx + k2(τ), and
1

k1(0,τ)β = 1
|B2(0)|

∫

|ξ|≤2
1

k1(ξ,τ)β dξ + k3(τ), where |B2(0)| is the volume of the

sphere of radius 2 in R
N , ‖k2‖L∞ ≤ 2ε and ‖k3‖L∞ ≤ Cε.

In the distribution sense, for ε small enough, considering
k̃(τ) = 1

|B2(0)|
∫

|ξ|≤2 k1(ξ, τ)dξ, we have

− 1

k̃β
−Cε ≤ dk̃

dτ
≤ − 1

k̃β
+ Cε
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and |k̃(0) − k̂(0)| ≤ Cε+ δ1.
Together with (87), we obtain by classical a priori estimates that ∀τ ∈

[0, τ0], |k̃(τ) − k̂(τ)| ≤ C(K0)ε + δ1 (since C1 ≤ |k̂(τ)| ≤ C ′
1(K0)) and

therefore ∀|ξ| ≤ 2, ∀τ ∈ [0, τ0], |h1(0, τ) − ĥ(τ)| ≤ C(K0)ε + δ1. Applying
this result to h1(ξ, τ) = h(τ, ξ − x0) for x0 ∈ [−ξ0 + 2, ξ0 − 2], from the
assumption and step 1 we obtain lemma 4.2.

Lemmas 4.1 and 4.2 yield Proposition 4.1.

4.2 Estimates in P3

We claim the following

Proposition 4.2 For all ε > 0, ε0 > 0, σ0 > 0, and σ1 > 0, there exists
t4(ε, ε0, σ0, σ1) < T such that ∀t ∈ [t4, T ), if h is a solution of (II) on [t0, t∗]
for some t∗ ∈ [t0, T ) satisfying
i) for |x| ∈ [ ε0

6 ,
ε0
4 ], ∀t ∈ [t0, t∗],

σ0 ≤ h(x, t) ≤ σ1, |∇h(x, t)| ≤ σ1 and |∇2h(x, t)| ≤ σ1, (88)

ii) h(x, t0) = H∗(x) for |x| ≥ ε0
6 where H∗ is defined by (5), then for |x| ∈

[ ε04 ,+∞), ∀t ∈ [t0, t∗],

|h(x, t) − h(x, t0)| + |∇h(x, t) −∇h(x, t0)| ≤ ε.

Proof:
Let us obtain the estimates on h for |x| ≥ ε0

4 . The estimates on ∇h can be
obtained similarly. We argue by contradiction. Let us consider tε ∈ (t0, t∗)
such that ∀t ∈ [t0, tε),

‖h(x, t) − h(x, t0)‖L∞(|x|≥ ε0
4

) ≤ ε and ‖h(x, tε) − h(x, t0)‖L∞(|x|≥ ε0
4

) = ε.

(89)
We can assume ε ≤ 1

4 min
|x|≥ ε0

6

H∗(x). We can remark that (5) implies that

|h(x, t0)| = H∗(x) > C0(ε0) > 0 for |x| ≥ ε0
6 , therefore, we have

|F (h(x, t))| ≤ C(ε0) for |x| ≥ ε0
6 and t ∈ [t0, tε).

From assumption i), we have in fact ∀t ∈ [t0, tε], for ε0
6 ≤ |x| ≤ ε0

4 , h(x, t) ≥
σ0 > 0 and |F (h(x, t))| ≤ C(σ0). We then consider h1(x, t) = χ1(x)h(x, t)
where χ1 ∈ C∞(RN , [0, 1]), χ1 ≡ 1 for |x| ≥ ε0

5 , χ1 ≡ 0 for |x| ≤ ε0
6 ,

|∇χ1| ≤ C
ε0

and |∆χ1| ≤ C
ε20

. We then have:

∂h1

∂t
= ∆h1 − 2∇χ1.∇h− ∆χ1h− χ1F (h).

38



Since ∀t ∈ [t0, t∗], |2∇χ1.∇h| + |∆χ1h| ≤ C(ε0, σ1)1{ ε0
6
≤|x|≤ ε0

5
}(x), we write

∂h1

∂t
= ∆h1 + f̃1(x, t) − χ1F (h)

with |f̃1(x, t)| ≤ C(ε0, σ1)1{ ε0
6
≤|x|≤ ε0

5
}(x).

Let us now consider the case of a bounded domain Ω and the case Ω =
R

N , since there is a small difference in the proof.
i) Ω is a bounded domain:
In this case,

∀t ∈ [t0, tε), h1(t)−S(t− t0)h1(t0) =
∫ t
t0
dsS(t− s)[f̃1(x, t)−χ1F (h)] where

S(.) is the linear heat flow. Hence,
|h1(t)−h1(t0)|L∞ ≤ |h1(t)−S(t−t0)h1(t0)|L∞+|S(t−t0)h1(t0)−h1(t0)|L∞ ≤
∫ t
t0
ds[|S(t− s)f̃1(s)|L∞ + |S(t− s)C(ε0, σ0)χ1F (h)|L∞ ]

+|S(t− t0)h1(t0) − h1(t0)|L∞

≤
∫ t
t0
ds[ ds√

t−s
|f̃1(s)|LN + |S(t− s)C(ε0, σ0)1{Ω}|L∞ ]

+|S(t− t0)h1(t0) − h1(t0)|L∞

≤ C(ε0, σ0, σ1)
√
t− t0 + |S(t− t0)χ1H

∗ − χ1H
∗|L∞ .

Now, if t0 ∈ [t5(ε, ε0, σ0, σ1), T ), then we have |h1(tε)−h1(t0)|L∞ ≤ ε
2 , which

is a contradiction with (89).
Therefore, ∀t ∈ [t0, t∗] |h(x, t) − h(x, t0)|L∞(|x|≥ ε0

4
) ≤ ε.

ii) Case Ω = R
N : we define h2(x, t) = ψ(x) + h1(x, t) where ψ(x) is

introduced in the introduction (such that ψ ∈ C∞(RN ), ψ ≡ 0 on [−1, 1],
ψ(x) = a1|x| for |x| ≥ 2). From the fact that ∂h2

∂t = ∆h2+F (h2(x)+ψ(x))+
∆ψ and that for |v| ≥ 1, |F (v)| + |F ′(v)| ≤ Ce−v, we obtain using similar
techniques:
∀t ∈ [t0, t∗), |h2(x, t) − h2(x, t0)|L∞ ≤ ε or equivalently: ∀t ∈ [t0, t∗),
|h1(x, t) − h1(x, t0)|L∞ ≤ ε. This concludes the proof of Proposition 4.2.

A Proof of lemma 2.4

We must show that for suitable (d0, d1) ∈ R
2, the estimates of the Definition

of S∗(t) hold for t = t0. Since estimate iii) holds obviously, we show in a
first step that h(t0) ∈ H and estimate ii) holds, for all choices of (d0, d1),
provided that t0 is near T . Then, in step 2, we find D(t0,K0, A) such
that ∀(d0, d1) ∈ D(t0,K0, A), q(s0) ∈ VK0,A(s0), where q is the function
introduced in (23).

Step 1: Estimate ii) of the Definition of S∗(t)
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Let us first remark that from (45), (5) and (6), we have h(t0) ∈ ψ+H1∩
W 2,∞(R). Moreover, one can see from (45), (10), (27) and (5) that ∀x ∈ R,
h(x, t0) ≥ C(t0, d0, d1, ε0) > 0. Therefore, h(t0) ∈ H.

Let us consider t0 < T , K0, ε0, α0, δ1, and C1, and show that if these
constants are suitably chosen, then for |x| ∈ [ K0

4

√

(T − t0)| log(T − t0), ε0]
and |ξ| ≤ 2α0

√

| log θ(x)|, we have

|k(x, ξ, t0 − t(x)

θ(x)
) − k̂

(

t0 − t(x)

θ(x)

)

| ≤ δ1, |
∂k

∂ξ
| ≤ C∗(K0)

√

| log θ(x)| , (90)

and |∇2
ξk| ≤ C1 where k, k̂, t(x) and θ(x) are defined in (28), (30) and (29).

Let us first introduce some useful notations:

θ0 = T − t0, r(t0) =
K0

4

√

θ0| log θ0| and R(t0) = θ
1
2
0 | log θ0|

p
2 , (91)

and remark that thanks to (31), we have for fixed K0:

θ(r(t0)) ∼ θ0, θ(R(t0)) ∼
16

K2
0

θ0| log θ0|p−1, θ(2R(t0)) ∼
64

K2
0

θ0| log θ0|p−1,

log θ(r(t0)) ∼ log θ(R(t0)) ∼ log θ(2R(t0)) ∼ log θ0 as t0 → T. (92)

If α0 ≤ K0
16 and ε0 ≤ 2

3C(a1, β), then it follows from (29) that for |x| ∈
[r(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|, we have |ξ
√

θ(x)| ≤ |x|
2 and

r(t0)

2
≤ |x|

2
= |x| − |x|

2
≤ |x+ ξ

√

θ(x)| ≤ 3

2
|x| ≤ 3

2
ε0 ≤ C(a1, β). (93)

Therefore, we get from (28), (45), and (27): for |x| ∈ [r(t0), ε0] and
|ξ| ≤ 2α0

√

| log θ(x)|,

k(x, ξ,
t0 − t(x)

θ(x)
) = (I)χ1(x+ ξ

√

θ(x), t0) + (II)(1 − χ1(x+ ξ
√

θ(x), t0))

(94)

with (I) =
(

θ0
θ(x)

)
1

β+1 Φ̂(
x+ξ

√
θ(x)√

θ0| log θ0|
) and (II) = θ(x)

− 1
β+1H∗(x+ ξ

√

θ(x)).

Estimate on k:
By linearity and (46), it is enough to prove that for |x| ∈ [r(t0), 2R(t0)]

and |ξ| ≤ 2α0

√

| log θ(x)|,
∣

∣

∣

∣

(I) − k̂

(

t0 − t(x)

θ(x)

)∣

∣

∣

∣

≤ δ1
2

(95)
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and for |x| ∈ [R(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|,
∣

∣

∣

∣

(II) − k̂

(

t0 − t(x)

θ(x)

)∣

∣

∣

∣

≤ δ1
2
. (96)

We begin with (95). From (4) and (30), we have:
∣

∣

∣(I) − k̂
(

t0−t(x)
θ(x)

)
∣

∣

∣ = |
(

(β + 1)( θ0
θ(x)) + (β+1)2

4β

|x+ξ
√

θ(x)|2
θ(x)| log θ0|

)
1

β+1

−
(

(β + 1)( θ0
θ(x)) + (β+1)2

4β
K2

0
16

)

1
β+1 | ≤ C| |x+ξ

√
θ(x)|2

θ(x)| log θ0| − K2
0

16 |
1

β+1

≤ CK
2

β+1

0

∣

∣

∣

∣

|
√

log θ(x)
log θ0

+ 4ξ

K0

√
| log θ0|

|2 − 1

∣

∣

∣

∣

1
β+1

.

Since |x| ∈ [r(t0), R(t0)] and |ξ| ≤ 2α0

√

| log θ(x)|, we have
(

√

log(θ(R(t0)))
log θ0

(1 − 4 α0
K0

)

)2

− 1 ≤
(

√

log θ(x)
log θ0

+ 4ξ

K0

√
log θ0

)2

− 1

≤
(

√

log(θ(r(t0)))

log θ0
(1 + 4

α0

K0
)

)2

− 1. (97)

From (97) and (92), we find α5(K0, δ1) and t5(K0, δ1) < T such that ∀α0 ≤
α5, ∀t0 ∈ [t5, T ),

|(I) − k̂
(

t0−t(x)
θ(x)

)

| ≤ CK
2

β+1

0 ||
√

log θ(x)
log(T−t0) + 4ξ

K0

√
| log(T−t0)|

|2 − 1|
1

β+1 ≤ δ1
2 .

Now, we treat (96). Let |x| ∈ [R(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|. We
have from (94), (5), (29) and (30),

(II) =

[

(β+1)2 |x+ξ
√

θ(x)|2

8βθ(x)| log |x+ξ
√

θ(x)||

]
1

β+1

=

[

(β+1)2|K0
4

√
| log θ(x)|+ξ|2

8β| log |x+ξ
√

θ(x)||

]
1

β+1

and
∣

∣

∣(II) − k̂
(

t0−t(x)
θ(x)

)
∣

∣

∣

=

∣

∣

∣

∣

∣

[

(β+1)2|K0
4

√
| log θ(x)|+ξ|2

8β| log |x+ξ
√

θ(x)||

]
1

β+1

−
[

(β + 1)
(

θ0
θ(x)

)

+
(β+1)2K2

0
64β

]

1
β+1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(β+1)2

8β

(

∣

∣

K0
4

√
| log θ(x)|+ξ

∣

∣

2

| log |x+ξ
√

θ(x)||
− K2

0
8

)

− (β + 1)
(

θ0
θ(x)

)

∣

∣

∣

∣

∣

1
β+1

≤ C [(I1) + (I2)]

with (I1) =

∣

∣

∣

∣

∣

∣

∣

K0
4

√
| log θ(x)|+ξ

∣

∣

2

| log |x+ξ
√

θ(x)||
− K2

0
8

∣

∣

∣

∣

∣

1
β+1

and (I2) =
∣

∣

∣

θ0
θ(x)

∣

∣

∣

1
β+1 .

Let us bound (I1). Since |ξ| ≤ 2α0

√

| log θ(x)|, we have from (29),

|(I1)| ≤
∣

∣

∣

∣

∣

∣

∣

K0
4

√
| log θ(x)|+α0

√
| log θ(x)|

∣

∣

2

| log |x+α0

√
θ(x)| log θ(x)|||

− K2
0

8

∣

∣

∣

∣

∣

1
β+1
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=

∣

∣

∣

∣

∣

log θ(x)

log x+log(1+
4α0
K0

)

(

K0
4 + α0

)2
− K2

0
8

∣

∣

∣

∣

∣

1
β+1

.

Since |x| ≤ ε0 and log θ(x) ∼ 2 log |x| as x→ 0 (see (31)), we find α6(K0, δ1)
such that for each α0 ≤ α6(K0, δ1), there is ε6(K0, δ1, α0) such that for all
ε0 ≤ ε6(K0, δ1, α0), for |x| ∈ [R(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|, we have

|(I1)| ≤
δ1
2
. (98)

Let us bound (I2). Since |x| ≥ R(t0), we have from (92), |(I2)| ≤
∣

∣

∣

θ0
θ(R(t0))

∣

∣

∣

1
β+1 ≤ C(K0)| log θ0|−

(p−1)
β+1 . Therefore, if t0 ≥ t6(K0, δ1), then

|(I2)| ≤
δ1
2
. (99)

Combining (98) and (99), we get: If α0 ≤ α6(K0, δ1), ε0 ≤ ε6(K0, δ1, α0)
and t0 ≥ t6(K0, δ1), then for |x| ∈ [R(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|, (96)
holds.

Estimate on ∂k
∂ξ :

From (94), we have for |x| ∈ [r(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|,
∂k
∂ξ (x, ξ, t0−t(x)

θ(x) ) = E1 +E2 +E3 where

E1 =

(

θ0
θ(x)

)
1

β+1
√

θ(x)
√

θ0| log θ0|
∇Φ̂

(

x+ ξ
√

θ(x)
√

θ0| log θ0|

)

χ1(x+ ξ
√

θ(x), t0),

(100)

E2 = θ(x)
1
2
− 1

β+1∇H∗(x+ ξ
√

θ(x))(1 − χ1(x+ ξ
√

θ(x), t0)), (101)

E3 = E4θ(x)
1
2
− 1

β+1
∂χ1

∂x
(x+ ξ

√

θ(x), t0) with (102)

E4 = θ
1

β+1

0 Φ̂

(

x+ ξ
√

θ(x)
√

θ0| log θ0|

)

−H∗(x+ ξ
√

θ(x)).

In order to get the estimate on ∂k
∂ξ , it is enough to show that

for |x| ∈ [r(t0), 2R(t0)] and |ξ| ≤ 2α0

√

| log θ(x)|, |E1| ≤
C(K0)

√

| log θ(x)|
,

(103)

for |x| ∈ [R(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|, |E2| ≤
C(K0)

√

| log θ(x)|
, (104)

42



for |x| ∈ [R(t0), 2R(t0)] and |ξ| ≤ 2α0

√

| log θ(x)|, |E3| ≤
C(K0)

√

| log θ(x)|
.

(105)
We begin with E1. Let |x| ∈ [r(t0), 2R(t0)] and |ξ| ≤ 2α0

√

| log θ(x)|. From

(4), it follows that |∇Φ̂(z)| ≤ C|z|
1−β
β+1 . Therefore, by (100),

|E1| ≤
(

θ0
θ(x)

)
1

β+1

√
θ(x)√

θ0| log θ0|
|x+ξ

√
θ(x)|

1−β
β+1

(θ0| log θ0|)
1−β

2(β+1)

≤ | log θ0|−
1

β+1 θ(x)
1
2
− 1

β+1C(β)|x|
1−β
β+1 (by (93))

≤ C(K0)| log θ(x)|−
1
2 | log θ0|−

1
β+1 | log θ(x)|

1
β+1 (by (29))

≤ C(K0)| log θ(x)|−
1
2 | log θ0|−

1
β+1 | log θ (r(t0)) |

1
β+1 (since |x| ≥ r(t0))

≤ C(K0)| log θ(x)|−
1
2 for t0 ≥ t7(K0) (use (92)), which implies (103).

Now we treat E2. Let |x| ∈ [R(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|. From

(101), we have |E2| ≤ θ(x)
1
2
− 1

β+1 |∇H∗(x+ ξ
√

θ(x))|
≤ θ(x)

1
2
− 1

β+1 |∇H∗(γx)| with γ = 3
2 is β ≤ 1 and γ = 1

2 if β > 1 (use (93)
and (5)). According to lemma 2.2,

|∇H∗(γx)| ∼ C(K0)
θ(γx)

1
β+1

− 1
2√

| log θ(γx)|
∼ C ′(K0)

θ(x)
1

β+1
− 1

2√
| log θ(x)|

as x → 0. This implies

(104) for ε ≤ ε7(K0).

Now we show the bound on E3. We consider |x| ∈ [R(t0), 2R(t0)] and
|ξ| ≤ 2α0

√

| log θ(x)|, and find a bound on E4. From (102),

E4 =

[

(β + 1)θ0 + (β+1)2

4β

|x+ξ
√

θ(x)|2
| log θ0|

]
1

β+1

−
[

(β+1)2

8β

|x+ξ
√

θ(x)|2

| log |x+ξ
√

θ(x)||

]
1

β+1

. From

(93) and (91), we have

α(t0) ≤ (β + 1)θ0 +
(β + 1)2

4β

|x+ ξ
√

θ(x)|2
| log θ0|

≤ Cα(t0)

and α(t0) ≤
(β + 1)2

8β

|x+ ξ
√

θ(x)|2
| log |x+ ξ

√

θ(x)|| ≤ Cα(t0)

with α(t0) ∼ Cθ0| log θ0|p−1. Therefore, |E4| ≤ C
[

θ0| log θ0|p−1
]− β

β+1

×
∣

∣

∣

∣

(β + 1)θ0 + (β+1)2

8β |x+ ξ
√

θ(x)|2
(

2
| log θ0| −

1

| log |x+ξ
√

θ(x)||

)∣

∣

∣

∣

≤ C
[

θ0| log θ0|p−1
]− β

β+1

∣

∣

∣

∣

θ0 +
|x+ξ

√
θ(x)|2

| log θ0|| log |x+ξ
√

θ(x)||

∣

∣

∣

∣

log
|x+ξ

√
θ(x)|2

θ0

∣

∣

∣

∣

∣

∣

∣

∣

≤ C
[

θ0| log θ0|p−1
]− β

β+1
∣

∣θ0 + θ0| log θ0|p−2 log log θ0
∣

∣ (use (93), (91) and
|x| ∈ [R(t0), 2R(t0)]). Hence

|E4| ≤ Cθ
1

β+1

0 | log θ0|−
(p−1)β

β+1

[

1 + | log θ0|p−2 log log θ0
]

. (106)

43



Using (46) and (27), we have
∣

∣

∣

∣

∂χ1

∂x

∣

∣

∣

∣

≤ Cθ
− 1

2
0 | log θ0|−

p
2 . (107)

From (92) and the fact that |x| ∈ [R(t0), 2R(t0)], we have:

θ(x)
1
2
− 1

β+1 ≤ θ (δR(t0))
1
2
− 1

β+1 ≤ C(K0)
[

θ0| log θ0|p−1
]

1
2
− 1

β+1 if t0 ≥ t8(K0),
with δ = 2 if β ≥ 1 and δ = 1 if β < 1.

Combining this with (102), (106) and (107), we get

|E3| ≤ C(K0)| log θ0|−p+ 1
2
[

1 + | log θ0|p−2 log log θ0
]

≤ | log θ0|−
1
2 if t0 ≥

t8(K0).
Since log θ0 ∼ log θ(R(t0)) as t0 → T (see (92)) and R(t0) ≤ |x|, this

yields (105) for t0 ≥ t9(K0).

The expected bound (90) on ∂k
∂ξ follows from (103), (104) and (105).

Estimate on ∆k:
In the same way, we show that if t0 ≥ t10(K0, ε0, C1), then

for |x| ∈ [r(t0), ε0] and |ξ| ≤ 2α0

√

| log θ(x)|, we have |∇2
ξk(x, ξ,

t−t(x)
θ(x) | ≤ C1.

Step 2: Estimate i) of the Definition of S∗(t)
From (23) and (45), we have:

χ(y, s0)q(y, s0) = (d0 + d1
y√
s0

)χ0(
|y|√

s0K0/16
) − κ

2(p− a)s0
χ0(

|y|√
s0K0

).

(108)
Using (34), (26), (25) and simple calculations, and taking K0 ≥ 20, we have:
if t0 ≥ t11, then

q0(s0) = d0
∫

χ0(
|y|√

s0K0/16 )dµ− κ
2(p−a)s0

∫

χ0(
|y|√
s0K0

)dµ,

q1(s0) = d1√
s0

∫ y2

2 χ0(
|y|√

s0K0/16)dµ,
(109)

and

q0(s0) = d0(1 +O(e−s0)) − κ

2(p− a)s0
+O(e−s0) (110)

q1(s0) =
d1√
s0

(1 +O(e−s0)) (111)

q2(s0) = d0O(e−s0) +O(e−s0), (112)

|q−(y, s0)| ≤ Ce−s0(1 + |d0|)(1 + |y|2) + C|d1|s
− 1

2
0 e−s0 |y|

+ κ
2(p−a)s0

(1 − χ0(
|y|

K0
√

s0
)) + (|d0| + |d1

y√
s0
|)(1 − χ0(

|y|√
s0K0/16 )).
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Since ∀n ∈ N, |χ0(z) − 1| ≤ Cn|z|n, and K0 ≥ 20, we get

|q−(y, s0)| ≤ (|d0| + |d1| +
C

s0
)
(1 + |y|3)
s
3/2
0

. (113)

Let us show that

|qe(y, s0)| ≤
C

s0
. (114)

From (23), we have qe(y, s0) = Q1 +Q2 where Q2 = κ
2(p−a)s0

(1 − χ(y, s)) ≤

Cs−1
0 and Q1 = (1 − χ(y, s))

[

e
−

s0
p−1 α

α
β+1

h(x,t0)α − Φ( y√
s0

)

]

with x = ye−s0/2 and

t0 = T − e−s0 .
If |x| ≤ R(t0) (see (91) for R(t0)), then we have from (45), (46) and (27)
Q1 = 0.
If |x| ≥ R(t0), then we have from (10), (45), (91), (9) and easy calculations:

Φ( y√
s0

) ≤ Φ( e
s0
2 R(t0)√

s0
) ≤ Cs−1

0 and

h(x, t0) ≥ χ1(x, t0)(T − t0)
1

β+1C

[

Φ( e
s0
2 R(t0)√

s0
)

]− 1
α

+ (1−χ1(x, t0))H
∗(R(t0))

≥ C(T − t0)
1

β+1 s
1
α
0 .

Therefore, by (9), |Q1| ≤ Cs−1
0 , which yields (114).

By analogous calculations, one can easily obtain:

|
(

∂q

∂y

)

⊥
(y, s0)| ≤ C

(|d0| + |d1| + 1/s0)√
s0

(1 + |y|3)
s
3/2
0

(115)

and | ∂q
∂y (y, s0)| ≤ s−1

0 for |y| ≥ K0
√
s0.

From (109), one sees that g : (d0, d1) → (q0(s0), q1(s0)) is an affine

function. Let us introduce D(t0,K0, A) = g−1
(

[− A
s2
0
, A

s2
0
]2
)

. D(t0,K0, A) is

obviously a rectangle.
If (d0, d1) ∈ D(t0,K0, A), or equivalently |qm(s0)| ≤ A

s2
0

for m = 0, 1,

then, from (110) and (111), we obtain |d0| ≤ Cs−1
0 and |d1| ≤ CAs

−3/2
0 .

Combining this with (112), (113), (114) and (115), we obtain ∀A > 0, there
exists t12(A) < T such that for each t0 ∈ [t12, T ):

|q2(s0)| ≤ s−2
0 log s0, |q−(y, s0)| ≤ Cs−2

0 (1 + |y|3),
|qe(y, s0)| ≤ s

−1/2
0 , |

(

∂q
∂y

)

⊥
(y, s0)| ≤ s−2

0 (1 + |y|3),
| ∂q
∂y (y, s0)| ≤ s−1

0 for |y| ≥ K0
√
s0

and q(s0) ∈ VK0,A(s0).
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Now, putting the conclusions of Steps 1 and 2 together and taking

K01 = 20, α1(K0, δ1) = min
(

K0
4 , α5(K0, δ1), α6(K0, δ1)

)

, ε1(K0, δ1, α0) =

min
(

2
3C(a1, β), ε6(K0, δ1, α0), ε7(K0)

)

, t1(K0, δ1, ε0, A,C1) =

max (t5(K0, δ1), t6(K0, δ1), t7(K0), t8(K0), t9(K0), t10(K0, ε0, C1), t11,
t12(A)), we reach the conclusion of lemma 2.4 i). ii) is obviously true by
construction and by (109).

B Proof of lemma 3.2

We start with some technical results on equations (54), (55) and (56) (Step
1). In Step 2, we conclude the proof of lemma 3.2.

Step 1: Estimates on equations (54), (55) and (56)

i) Sizes of q and ∇q:

Lemma B.1 For all K0 ≥ 1 and ε0 > 0, there exists t1(K0, ε0) such that
∀t0 ∈ [t1, T ), for all A ≥ 1, α0 > 0, C0 > 0, C ′

0 > 0, δ0 ≤ 1
2 k̂(1) and

η0 ≤ η1(ε0) for some η1(ε0) > 0, we have the following property: Assume
that h(x, t0) is given by (45) and that for some t ∈ [t0, T ), we have h(t) ∈
S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, t), then:

i) |q(y, s)| ≤ CA2K3
0s

−1/2 and |q(y, s)| ≤ CA2s−2 log s(1 + |y|3),
ii) |∇q(y, s)| ≤ C(K0, C

′
0)A

2s−1/2, |∇q(y, s)| ≤ C(K0, C
′
0)A

2s−2 log s(1 +

|y|3), |(1 − χ(y, s))∇q(y, s)| ≤ C(K0)C
′
0s

− 1
2 , where s = − log(T − t) and q

is defined in (23).

Proof:
i): From i) of the definition of S∗(t), we have q(s) ∈ VK0,A(s). Therefore,
the proof of lemma 3.8 in [22] holds.
ii): Arguing similarly as for i), we obtain from i) of the definition of S∗(t)
and (26):

|χ(y, s)∇q(y, s)| ≤ CA2 log s

s2
(1 + |y|3) and |χ(y, s)∇q(y, s)| ≤ C

A2K3
0√
s
.

Since |∇ϕ(y, s)| ≤ Cs−1/2 and s−1/2 ≤ s−2|y|3 for |y| ≥ K0
√
s and K0 ≥ 1,

we have to prove that |(1−χ(y, s))∇(q+ϕ)(y, s)| ≤ C(K0)C
′
0s

−1/2 in order
to conclude the proof.
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From (23), this reduces to show that ∀t ≥ t0, for |x| ≥ r(t),

|∇u|(x, t) = C(α)
|∇h|
hα+1

(x, t) ≤ C(K0, C
′
0)

(T − t)
−( 1

p−1
+ 1

2
)

√

| log(T − t)|
(116)

where r(t) = K0

√

(T − t)| log(T − t)|. (117)

Let us consider two cases:

Case 1: |x| ∈ [r(t), ε0]. We use the information contained in ii) of the
definition of S∗(t). From (28), we have

h(x, t) = θ(x)
1

β+1k(x, 0, τ(x, t)) (118)

and ∇xh(x, t) = θ(x)
1

β+1
− 1

2∇ξk(x, 0, τ(x, t)) (119)

with τ(x, t) = t−t(x)
θ(x) . Therefore, since p = α+β+1

α ,

|∇h|
hα+1

(x, t) = θ(x)−( 1
p−1

+ 1
2
) |∇ξk|
kα+1

(x, 0, τ(x, t)). (120)

Using the definition of S∗(t), we have for |x| ∈ [r(t), ε0]

|k(x, 0, τ(x, t)) − k̂(τ)| ≤ δ0 and |∇ξk(x, 0, τ(x, t))| ≤
C ′

0
√

| log θ(x)|
. (121)

Since δ0 ≤ 1
2 k̂(1), (120) and (29) yield for |x| ∈ [r(t), ε0]:

|∇h|
hα+1

(x, t) ≤ C(K0)C
′
0

θ(x)
−( 1

p−1
+ 1

2
)

√

| log θ(x)|
≤ C(K0)C

′
0

θ (r(t))
−( 1

p−1
+ 1

2
)

√

| log θ (r(t)) |
(122)

with C(K0) = C
k̂(0)α+1

. Since r(t) → 0 as t → T (see (117)), we have from

(31)

θ(r(t)) ∼ 2

K2
0

r(t)2

| log r(t)| and log θ(r(t)) ∼ log r(t) as t→ T. (123)

Using (117), we get

(θ(r(t)))−( 1
p−1

+ 1
2
)

√

| log(θ(r(t)))| ∼ C4
(T − t)−( 1

p−1
+ 1

2
)

√

| log(T − t)| as t→ T
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for some constant C4. Therefore, if t0 ∈ [t2(K0), T ) for some t2(K0) < T ,
then we have for t ≥ t0

(θ(r(t)))
−( 1

p−1
+ 1

2
)

√

| log(θ(r(t)))|
≤ 2C4

(T − t)
−( 1

p−1
+ 1

2
)

√

| log(T − t)|
. (124)

Using (122) and (124), we find (116) for |x| ∈ [r(t), ε0], provided that t0 ∈
[t2(K0), T ).

Case 2: |x| ≥ ε0. We use here the information contained in iii) of the
definition of S∗(t), which asserts that

|h(x, t) − h(x, t0)| ≤ η0 and |∇h(x, t) −∇h(x, t0)| ≤ η0

for |x| ≥ ε0. Let η1(ε0) = 1
2 min{ min

|x|≥ε0
|h(x, t0)|, min

|x|≥ε0
|∇h(x, t0)|}. Accord-

ing to (45) and (5), we have η1(ε0) > 0. If η0 ≤ η1(ε0), we get for |x| ≥ ε0:

|∇h|
hα+1

(x, t) ≤ C
|∇h|
hα+1

(x, t0) = C
|∇H∗|
H∗(α+1)

(x)

from (45). Therefore, proving (116) for all t ≥ t0 reduces to prove it for

t = t0. From (5), one easily remarks that |∇H∗|
H∗(α+1) (x) ≤ C(ε0) for |x| ≥ ε0.

Therefore, if t0 ∈ [t4(ε0), T ) for some t4(ε0) < T , then we get (116) for t = t0.
This concludes the proof of (116) for t = t0 and |x| ≥ ε0, hence for t ≥ t0

and |x| ≥ ε0. Thus, with t1(K0, ε0) = max(t2(K0), t4(ε0)), this concludes
the proof of (116) and the proof of lemma B.1.

ii) Estimates on K and K1:
As we remarked before, K1(s, σ) = e−(s−σ)/2K(s, σ). Hence, any esti-

mate on K holds for K1 with the adequate changes.
Since K1 is the fundamental solution of L − 1/2 + V and L − 1/2 is

conjugated to the harmonic oscillator e−x2/8(L− 1/2)ex2/8 = ∂2 − x2/16 +
1/4 + 1/2, we give a Feynman-Kac representation for K1:

K1(s, σ, y, x) = e(s−σ)(L−1/2)(y, x)E(s, σ, y, x) (125)

where

E(s, σ, y, x) =

∫

dµs−σ
yx (ω)e

∫ s−σ

0
V (ω(τ),σ+τ)dτ (126)

and dµs−σ
yx is the oscillator measure on the continuous paths ω : [0, s−σ] → R

with ω(0) = x, ω(s − σ) = y, i.e. the Gaussian probability measure with
covariance kernel Γ(τ, τ ′)

= ω0(τ)ω0(τ
′)+2(e−

1
2
|τ−τ ′|− e− 1

2
|τ+τ ′| + e−

1
2
|2(s−σ)−τ ′+τ |− e− 1

2
|2(s−σ)−τ ′−τ |,

(127)
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which yields
∫

dµs−σ
yx ω(τ) = ω0(τ) with

ω0(τ) = (sinh s−σ
2 )−1(y sinh τ

2 + x sinh s−σ−τ
2 ).

We have in addition

eθ(L−1/2)(y, x) =
eθ/2

√

4π(1 − e−θ)
exp[−(ye−θ/2 − x)2

4(1 − e−θ)
]. (128)

Using this formulation for K1, we give estimates on the dynamics of K
and K1 in the following lemma:

Lemma B.2 i) ∀s ≥ τ ≥ 1 with s ≤ 2τ ,
∫

|K(s, τ, y, x)|(1 + |x|m)dx ≤
es−τ (1 + |y|m).

ii) There exists K2 > 0 such that for each K0 ≥ K2, A
′ > 0, A′′ > 0,

A′′′ > 0, ρ∗ > 0, there exists
s2(K0, A

′, A′′, A′′′, ρ∗) with the following property: ∀s0 ≥ s2, assume that for
σ ≥ s0, q(σ) is expanded as in (35) and satisfies

|qm(σ)| ≤ A′σ−2,m = 0, 1, |q2(σ)| ≤ A′′(log σ)σ−2,

|q−(y, σ)| ≤ A′′′(1 + |y|3)σ−2, |qe(y, σ)| ≤ A′′σ−
1
2 ,

then, ∀s ∈ [σ, σ + ρ∗]

|α−(y, s)| ≤ C(e−
1
2
(s−σ)A′′′ +A′′e−(s−σ)2)(1 + |y|3)s−2,

|αe(y, s)| ≤ C(A′′e−
(s−σ)

p +A′′′K3
0e

(s−σ))s−
1
2 ,

where α(y, s) = K(s, σ)q(σ) is expanded as in (35).
iii) There exists K3 > 0 such that for each K0 ≥ K3, A

′ > 0, A′′ > 0,
A′′′ > 0, A′′′′ > 0, ρ∗ > 0, there exists
s3(K0, A

′, A′′, A′′′, A′′′′, ρ∗) with the following property: ∀s0 ≥ s3, assume
that for σ ≥ s0, r(σ) is expanded as in (36) and satisfies

|r0(σ)| ≤ A′σ−2, |r1(σ)| ≤ A′′(log σ)σ−2,

|r−(y, σ)| ≤ A′′′(1 + |y|3)σ−2, |re(y, σ)| ≤ A′′′′σ−
1
2 ,

then, ∀s ∈ [σ, σ + ρ∗]

|P⊥(χ(s)K1(s, σ)r(σ))| ≤ C(e−
1
2
(s−σ)A′′′ +A′′′′e−(s−σ)2)(1 + |y|3)s−2.

Proof: See corollary 3.1 in [22] for i). See Lemma 3.5 in [22] for ii).
SinceK1(s, σ) = e−(s−σ)/2K(s, σ), and ii) and iii) have similar structure,

one can adapt without difficulty the proof of ii) (given in [22]) to get iii).

iii) Estimates on B(q):
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Lemma B.3 ∀K0 ≥ 1, ∀A ≥ 1, ∃s5(K0, A) such that ∀s ≥ s5(A,K0),
q(s) ∈ VK0,A(s) implies |χ(y, s)B(q(y, s))| ≤ C(K0)|q|2 and |B(q)| ≤ C|q|p̄
with p̄ = min(p, 2).

Proof: See Lemma 3.6 in [22].

iv) Estimates on T (q):

Lemma B.4 For all K0 ≥ 1, A ≥ 1 and ε0 > 0, there exists t6(K0, ε0, A) <
T and η6(ε0) such that for each t0 ∈ [t6(K0, ε0, A), T ), α0 > 0, C ′

0 > 0,
δ0 ≤ 1

2 k̂(1), C0 > 0 and η0 ≤ η6(ε0):
if h(x, t0) is given by (45) and h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, η0, t) for

some t ∈ [t0, T ), then

|χ(y, s)(T (q) + 2a
∇ϕ
ϕ
.∇q)| ≤ C(K0, A)χ(y, s)(

|y|2
s2

|q| + x−1|q|2 + |∇q|2),
(129)

|χ(y, s)T (q)| ≤ C(K0, A)χ(y, s)
(

s−1|q| + s−1/2|∇q|
)

(130)

|(1 − χ(y, s))T (q)| ≤ C(K0, C
′
0)min(s−1, s−5/2|y|3) (131)

where s = − log(T − t) and q is defined in (23).

Proof:
Proof of (129) and (130): They both follow from the Taylor expansion

of F (θ) = − |∇ϕ+θ∇q|2
ϕ+θq + |∇ϕ|2

ϕ for θ ∈ [0, 1]. Let us compute

F ′(θ) = q |∇ϕ+θ∇q|2
(ϕ+θq)2 − 2∇q.(∇ϕ+θ∇q)

ϕ+θq ,

F ′′(θ) = −2q2 |∇ϕ+θ∇q|2
(ϕ+θq)3 + 4q∇q.(∇ϕ+θ∇q)

(ϕ+θq)2 − 2 |∇q|2
ϕ+θq .

From F (1) = F (0) + F ′(0) +
∫ 1
0 (1 − θ)F ′(θ)dθ, we write

χ(y, s)T (q) = aχ(y, s)(q
|∇ϕ|2
ϕ2

− 2∇q.∇ϕ
ϕ

) + a

∫ 1

0
(1 − θ)χ(y, s)F ′′(θ)dθ.

Using (23), lemma B.1 and (26), we claim that for s0 ≥ s7(A,K0), ∀s ≥ s0,

∀θ ∈ [0, 1], |∇ϕ| ≤ Cs−
1
2 , |∇ϕ|2

ϕ2 ≤ C |y|2
s2 and

|χ(y, s)F ′′(θ)| ≤ C(K0, A)χ(y, s)(s−1|q|2 + |∇q|2)
≤ C(K0, A)(s−1|q| + s−

1
2 |∇q|). Therefore, (129) and (130) follow.

Proof of (131): From (23), we have |∇ϕ|2
ϕ (y, s) ≤ Cs−1. Therefore, if

K0 ≥ 1, (26) implies that (1 − χ(y, s)) |∇ϕ|2
ϕ (y, s) ≤ min(Cs−1, Cs−5/2|y|3).
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In order to prove (131), it then remains to prove that

(1 − χ(y, s)) |∇ϕ+∇q|2
ϕ+q (y, s) ≤ min(Cs−1, Cs−5/2|y|3), or simply, for |y| ≥

K0
√
s, |∇ϕ+∇q|2

ϕ+q (y, s) ≤ Cs−1, since Cs−1 ≤ Cs−5/2|y|3 for |y| ≥ K0
√
s, if

K0 ≥ 1.
From (23), this reduces to show that ∀t ≥ t0, for |x| ≥ r(t),

|∇u|2
u

(x, t) = C(α)
|∇h|2
hα+2

(x, t) ≤ C(K0, C
′
0)

(T − t)
− p

p−1

| log(T − t)| (132)

where r(t) is introduced in (117). The proof of (132) is in all its steps
completely analogous to the proof of (116) given during the course of the
proof of lemma B.1, that is the reason why we escape it here.

v) Estimates on R(y, τ):

Lemma B.5 ∀y ∈ R, ∀s ≥ 1,|R(y, s)| ≤ Cs−1,
|R(y, s) − C1(p, a)s

−2| ≤ Cs−3(1 + |y|4) for some C1(p, a) ∈ R, and
|∂R
∂y (y, s)| ≤ Cs−1−p̄(|y| + |y|3) where p̄ = min(p, 2).

Proof: From (54), we have

R(y, s) = −∂ϕ
∂s

+ ∆ϕ− 1

2
y.∇ϕ− ϕ

p− 1
+ ϕp − a

|∇ϕ|2
ϕ

where

ϕ(y, s) = Φp +
α

s
, Φ = (p− 1 + bz2)

− 1
p−1 , b =

(p− 1)2

4(p− a)
, z =

y√
s
, (133)

α = κ
2(p−a) and κ = (p− 1)

− 1
p−1 . Therefore,

R(y, s) = − bz2

(p−1)sΦ
p + α

s2 − 2b
(p−1)sΦp + 4pb2z2

(p−1)2s
Φ2p−1

− Φp − α
(p−1)s + ϕp − 4ab2z2

(p−1)2s
Φ2p

ϕ .
(134)

Proof of |R(y, s)| ≤ Cs−1: It follows form (134), and the fact that
|z|2Φp−1 + Φ ≤ C, ϕ−1 ≤ Φ−1 and |Φp − ϕp| ≤ Cαs−1.

Proof of |R(y, s) − C1(p, a)s
−2| ≤ Cs−3(1 + |y|4): If |z| ≥ 1, then 1 ≤

s−1|y|2 and |R(y, s) − C1(p, a)s
−2| ≤ Cs−1 ×

(

s−1|y|2
)2 ≤ Cs−3(1 + |y|4).

Let us focus on the case |z| ≤ 1. The method we use consists in expanding
each term of (134) in terms of powers of s−1 and z2. From (133), one can
easily obtain the following bounds: for |z| ≤ 1, ∀s ≥ 1,
|Φp − κp + pbκ

(p−1)3 z
2| ≤ Cz4, |Φ2p−1 − κ2p−1| ≤ Cz2,
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|ϕp −Φp − pα
s Φp−1 − p(p−1)α2

2s2 Φp−2| ≤ Cs−2, |Φp−1 − 1
p−1 + b

(p−1)2
z2| ≤ Cz4,

|Φp−2 − κp−2| ≤ Cz2 and |Φ2p

ϕ − Φ2p−1| ≤ Cs−1.
Combining all these bounds with (134) and (133), and using |z| ≤ 1, we get
the result.

Proof of |∂R
∂y (y, s)| ≤ Cs−1−p̄(|y|+ |y|3): The proof is completely similar

to the above estimates. We just give its main steps. First, use (134) to

compute ∂R
∂y . Then, show that ∀y ∈ R, ∀s ≥ 1, | ∂R

∂y (y, s)| ≤ Cs
1
2
−p̄, in

the same way as for |R(y, s)| ≤ Cs−1. Therefore, if |z| ≥ 1, this gives the
expected bound. If |z| ≤ 1, expand all the terms with respect to s and z2

to conclude.

vi) Estimates on f1:

Lemma B.6 ∀u ≥ 0, |f1(u)| + |f ′1(u)| ≤ C.

Proof: According to (24), (H2) and (19), we have:

f1(u) = α
β

β+1u1+ 1
αF (α

1
β+1u−

1
α ) − up, f ′1(u) = −F ′(α

1
β+1u−

1
α ) − pup−1,

∀v ∈ (0, 1], F (v) = v−β ∀v ≥ 1, |F (v)| ≤ Ce−v ≤ C. Therefore,

- if α
1

β+1u−
1
α ≤ 1, then f1(u) = f ′1(u) = 0,

- if α
1

β+1u−
1
α ≥ 1, then u ≤ α

α
β+1 and |f1(u)| + |f ′1(u)| ≤ C(α).

Step 2: Conclusion of the proof
Here, we use the lemmas of Step 1 in order to conclude the proof. There-

fore, we assume that K0 ≥ max(1,K2,K3), ε0 > 0, A ≥ 1,
t0 ≥ max

(

t1(K0, ε0), T − exp(−s2(K0, A,A
2, A, ρ∗)) ,

T − exp(−s2(K0, C, C,C, ρ
∗)), T − exp(−s2(K0, A, 1, C, ρ

∗)),
T − exp(−s3(K0, CA,CA

2, CA,C(K0)C
′
0, ρ

∗)),
T − exp(−s3(K0, CA,C, 1, 1, ρ

∗)), T − exp(−s5(K0, A)), t6(K0, ε0, A)),
δ0 ≤ 1

2 k̂(1), α0 > 0, C0 > 0, C ′
0 ≥ 0, η0 ≤ min (η1(ε0), η6(ε0)).

We consider σ ≥ − log(T − t0) and ρ ≤ ρ∗, and suppose that ∀t ∈
[T − e−σ , T − e−(σ+ρ)], h(t) ∈ S∗(t0,K0, ε0, α0, A, δ0, C

′
0, C0, t). Using the

definition of S∗(t), and the lemmas of Step 1, we start the proof of the
estimates of lemma 3.2.

Below, O(f) stands for a function bounded by f and not by Cf . We use
the notations introduced in (34).

I) Equation (54)
Since q′m(s) = d

ds

∫

χ(y, s)km(y)q(y, s)dµ =
∫ ∂

∂s(χq)kmdµ, we obtain:

|
∫

χ(y, s)km(y)∂q
∂s(y, s)dµ− q′m(s)| = |

∫ ∂χ
∂s (y, s)km(y)q(y, s)dµ|
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≤ C
A2K3

0

s1/2 e
−2s by lemma B.1, (25) and (26). If s0 ≥ s12(K0, A), then (57)

follows.

Since L is self adjoint and Lkm = (1 − m
2 )km, there exist two polyno-

mials Pm and Qm such that |
∫

χ(y, s)km(y)Lq(y, s)dµ − (1 − m
2 )qm(s)| =

|
∫

[L(χ(s)km) − χ(s)km]q(s)dµ| = |
∫

(∂χ
∂yPm(y) + ∂2χ

∂y2Qm(y))q(s)dµ|
≤ CA2K3

0s
−1/2e−2s by lemma B.1, (25) and (26). Therefore,

|
∫

χ(y, s)km(y)Lq(y, s)dµ| ≤ e−s if s0 ≥ s13(K0, A), which yields (58).

From (54), |V (y, s)| ≤ Cs−1(1 + |y|2). Therefore,
|
∫

χ(y, s)km(y)V (y, s)dµ| ≤ CA2s−3 log s ≤ s−5/2 for s ≥ s34(A), by lemma
B.1 and (25). This yields (59).

From lemmas B.3 and B.1, and (25), we have
| ∫ χ(y, s)km(y)B(q)(y, s)dµ| ≤ C(K0)A

4s−4(log s)2.
Now, if s0 ≥ s15(K0, A), then (60) follows.

By lemmas B.4 and B.1, and (25), we write:
|
∫

χ(y, s)k2(y)T (q)(y, s)dµ| ≤ s−2−1/4 for s0 ≥ s36(K0, A), which is (61).
From (54), |V (y, s) + 2p/(s(p − a))k2| ≤ Cs−2(1 + |y|4). Since |q0(s)| +

|q4(s)| ≤ CAs−2 follows from q(s) ∈ VK0,A(s), and since
∫

χ(s)k2
2q(s)dµ =

q2(s) + c0q0(s) + c4q4(s), we get (64) for s0 ≥ s7(A).

From lemma B.5, we have |R(y, s)| ≤ C(s−2 + s−3|y|4). Using (25), we
get (62).

From lemma B.6, we have |e−
ps

p−1 f1(e
s

p−1 (ϕ+ q))| ≤ Ce−
ps

p−1 . Therefore,

as before, |
∫

χ(y, s)km(y)e
− ps

p−1 f1(e
s

p−1 (ϕ + q))dµ| ≤ Ce
− ps

p−1 ≤ e−s for s
large and (63) follows.

From (54), |V (y, s) + 2p/(s(p − a))k2| ≤ Cs−2(1 + |y|4). Since |q0(s)| +
|q4(s)| ≤ CAs−2 follows from q(s) ∈ VK0,A(s), and since

∫

χ(s)k2
2q(s)dµ =

q2(s) + c0q0(s) + c4q4(s), we get (64) for s0 ≥ s7(A).

By lemmas B.4 and B.1, and (25), we write:
|
∫

χ(y, s)k2(y)T (q)(y, s)dµ +E| ≤ s−3 for s0 ≥ s16(K0, A,C
′
0), where

E = a/4
∫

∇q(y, s)(χ(y, s)∇ϕ
ϕ (y2 − 2)e−|y|2/4/

√
4π)dy

−a/4
∫

q(y, s)∇.(χ(y, s)∇ϕ/ϕ(y2 − 2)e−|y|2/4/
√

4π)dy
= O(e−s) − a/4

∫

q(y, s)χ(y, s)∇.(∇ϕ/ϕ(y2 − 2)e−|y|2/4/
√

4π)dy.
By simple calculation,
|∇.(∇ϕ/ϕ(y2 −2)e−|y|2/4/

√
4π)− (h2(y)+h4(y)/4)/(s(p−a)).e−|y|2/4/

√
4π|

≤ P (|y|)e−|y|2/4/s2 where P is a polynomial. Hence E = O(CA2s−4 log s)−
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a/(4s(p − a))(8q2(s) + c4q4(s)) = O(CAs−3) − 2a/(s(p − a))q2(s) and (65)
holds.

(66) follows from lemma B.5, (26) and (25).

II) Equation (55)
(67) and (68) follow from lemma B.2 ii) applied with A′ = A′′′ = A and

A′′ = A2.

Lemmas B.3 and B.1 yield
|B(q(x, τ))| ≤ C|q(x, τ)|p̄ ≤ CA2p̄τ−2p̄(log τ)p̄(1 + |x|3)p̄.
Lemmas B.4 and B.1 yield
|T (q(x, τ))| ≤ |χ(x, τ)T (q(x, τ))| + |(1 − χ(x, τ))T (q(x, τ))|
≤ C(K0, A)τ−5/2 log τ(1 + |x|3) + C(K0, C

′
0)τ

−5/2|x|3.
Therefore,

|B(q(τ)) + T (q(τ))| ≤ C(K0, A,C
′
0)

{

(log τ)p̄

τ2p̄
(1 + |x|3p̄) +

log τ

τ5/2
(1 + |x|3)

}

.

(135)
This way, |β(y, s)| = |

∫ s
σ dτK(s, τ) (B(q(τ)) + T (q(τ))) |

≤
∫ s
σ dτ

∫

dx|K(s, τ, y, x)| |B(q(x, τ)) + T (q(τ))|
≤ C(K0, A,C

′
0)
∫ s
σ dτ

{

τ−2p̄(log τ)p̄
∫

dx|K(s, τ, y, x)|(1 + |x|3p̄)

+τ−5/2 log τ
∫

dx|K(s, τ, y, x)|(1 + |x|3)
}

≤ C(K0, A,C
′
0)(s− σ)es−σ

{

s−2p̄(log s)p̄(1 + |y|3p̄) + s−5/2 log s(1 + |y|3)
}

if s0 ≥ ρ∗ (Indeed, s ≤ σ + ρ ≤ σ + ρ∗ ≤ σ + s0 ≤ 2σ ≤ 2τ , and lemma B.2
applies). Hence,
|χ(y, s)β(y, s)| ≤ C(K0, A,C

′
0)(s− σ)es−σ

{

s−2p̄(log s)p̄(1 + |y|3|y|3p̄−3)

+s−5/2 log s(1 + |y|3)
}

≤ C(K0, A,C
′
0)(s− σ)es−σ

{

s−2p̄(log s)p̄(1 + |y|3(K0
√
s)3p̄−3)

+s−5/2 log s(1 + |y|3)
}

≤ (s−σ)s−2(1+ |y|3), if s0 ≥ s17(K0, A, ρ
∗, C ′

0) (use

p̄ > 1). This yields |βm(s)| ≤ C(s− σ)s−2 for m = 0, 1, 2 and then (69).

Lemmas B.3 and B.1 yield |B(q(x, τ))| ≤ C|q(x, τ)|p̄ ≤ CK3p̄
0 A2p̄τ−p̄/2.

Lemmas B.4 and B.1 yield
|T (q(x, τ))| ≤ C(K0, A)τ−1 + C(K0, C

′
0)τ

−1.
Therefore, |B(q(τ)) + T (q(τ))| ≤ C(K0, A,C

′
0)τ

−p̄/2.
This way, |

∫ s
σ dτK(s, τ)(B(q(τ)) + T (q(τ)))|

≤
∫ s
σ dτ

∫

dx|K(s, τ, y, x)||B(q(x, τ)) + T (q(x.τ))|
≤ C(K0, A,C

′
0)
∫ s
σ dττ

−p̄/2
∫

dx|K(s, τ, y, x)|
≤ C(K0, A,C

′
0)s

−p̄/2(s − σ)es−σ if s0 ≥ ρ∗ (Indeed, s ≤ 2τ and lemma B.2
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applies). Hence |βe(y, s)| ≤ C(K0, A,C
′
0)s

−p̄/2(s − σ)eρ∗ ≤ (s − σ)s−1/2 if
s0 ≥ s18(A, ρ

∗, C ′
0) (use p̄ > 1). This yields (70).

Lemma B.5 implies that ∀τ > 1, ∀x ∈ R, |Rm(τ)| ≤ Cτ−2, m = 0, 1,
|R2(τ)| ≤ Cτ−2 log τ , |R−(x, τ)| ≤ Cτ−2(1 + |x|3) and |Re(x, τ)| ≤ Cτ−1/2.
Applying lemma B.2 ii) with A′ = A′′ = A′′′ = C and then integrating with
respect to τ ∈ [σ, s] yields (71) and (72).

From lemma B.6, we have |e−
pτ

p−1 f1(e
τ

p−1 (ϕ+ q))| ≤ Ce−
pτ

p−1 . Therefore,

|δ(y, s)| = |K(s, τ)e
− pτ

p−1 f1(e
τ

p−1 (ϕ + q))| ≤ Ces−τe
− pτ

p−1 according to i) of
lemma B.2. Hence,

|
∫ s
σ K(s, τ)e

− pτ
p−1 f1(e

τ
p−1 (ϕ+ q))| ≤ C(s− σ)es−σe

− pσ
p−1

≤ C(s− σ)eρ∗e
− p

p−1
s
2 if s0 ≥ ρ∗,

≤ (s− σ)s−2 if s ≥ s19(A, ρ
∗). As before, this implies (74) and (75).

From lemma 3.1 we have |qm(s0)| ≤ As−2
0 , m = 0, 1,

|q2(s0)| ≤ s−2
0 log s0, |q−(y, s0)| ≤ Cs−2

0 (1 + |y|3) and |qe(y, s0)| ≤ s
−1/2
0 . If

we apply lemma B.2 ii) with A′ = A, A′′ = 1, A′′′ = C, then (76) and (77)
follow.

III) Equation (56)
From definition 34, we have for m = 0, 1,

rm(σ) =
∫ ∇q(y, σ)χ(y, σ)km(y)dµ

= −
∫

q(y, σ)∇(χ(y, σ)kme
−y2/4/

√
4π)dy

= O(e−σ) −
∫

q(y, σ)χ(y, σ)∇(kme
−y2/4/

√
4π)dy

= O(e−σ) + (m+ 1)
∫

q(y, σ)χ(y, s)km+1(y)dµ = O(e−σ) + (m+ 1)qm+1(σ).
Hence, if σ ≥ s0 ≥ s21, then |r0(σ)| ≤ CAσ−2 and |r1(σ)| ≤ CA2σ−2 log σ.
We have |r⊥(y, σ)| ≤ Aσ−2(1+|y|3) since q(σ) ∈ VK0,A(σ) (see the definition
of S∗(t)), and |re(y, σ)| ≤ C(K0)C

′
0σ

−1/2 by lemma B.1. Now, we apply
lemma B.2 iii) with A′ = A′′′ = CA, A′′ = CA2 and A′′′′ = C(K0)C

′
0 to

conclude the proof of (78)

Estimate (79) is harder than estimate (78) because it involves a parabolic
estimate on the kernel K1.

Setting I(x, τ) = B(q(x, τ)) + T (q(x, τ)), we write
K1(s, τ)

∂
∂y (B(q) + T (q))(τ) =

∫

dxe(s−τ)(L−1/2)(y, x)E(s, τ, y, x) ∂I
∂x (x, τ)

= (I) + (II) with (I) = − ∫ dx∂xe
(s−τ )(L−1/2)(y, x)E(s, τ, y, x)I(x, τ) and

(II) = − ∫ dxe(s−τ)(L−1/2)(y, x)∂xE(s, τ, y, x)I(x, τ). Let us first bound (I).
From (128), (I) =
∫

dx e(s−τ)/2√
4π(1−e−(s−τ))

2(x−ye−(s−τ)/2)

4π(1−e−(s−τ))
exp

(

− (ye−(s−τ)/2−x)2

4π(1−e−(s−τ))

)

E(s, τ, y, x)I(x, τ).

If s0 ≥ ρ∗, then 0 ≤ E(s, τ, y, x) ≤ C (use for this V (x, τ) ≤ Cτ−1 which is a
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consequence of (54), (126), dµs−τ
yx is a probability and s ≤ σ+ ρ ≤ σ+ ρ∗ ≤

σ + s0 ≤ 2σ ≤ 2τ). Using (135), we get

|(I)| ≤ C(K0, A,C
′
0)

e(s−τ)/2√
4π(1−e−(s−τ))

∫ dx√
4π(1−e−(s−τ))

× 2|ye−(s−τ)/2−x|√
4π(1−e−(s−τ))

×

exp
(

− (ye−(s−τ)/2−x)2

4π(1−e−(s−τ))

) (

τ−2p̄(log τ)p̄(1 + |x|3p̄) + τ−5/2 log τ(1 + |x|3)
)

where p̄ = min(p, 2) > 1. With the change of variables ξ = x−ye−(s−τ)/2√
4π(1−e−(s−τ))

,

|(I)| ≤ C(K0, A,C
′
0)

e(s−τ)/2√
4π(1−e−(s−τ))

{

τ−2p̄(log τ)p̄×
∫

dξ|ξ|e−ξ2
(1 + |ξ

√

4π(1 − e−(s−τ)) − ye−(s−τ)/2|3p̄) + τ−5/2 log τ×
∫

dξ|ξ|e−ξ2
(1 + |ξ

√

4π(1 − e−(s−τ)) − ye−(s−τ)/2|3)
}

, hence |(I)|

≤ C(K0, A,C
′
0)

e(s−τ )/2

√

4π(1 − e−(s−τ ))

{

(log τ)p̄

τ2p̄
(1 + |y|3p̄) +

log τ

τ5/2
(1 + |y|3)

}

.

(136)
Let us bound (II) now. Using the integration by parts formula for

Gaussian measures (see [11]), we have ∂xE(s, σ, y, x):

=
1

2

∫ s−τ

0

∫ s−τ

0
dτ1dτ2∂xΓ(τ1, τ2)

∫

dµs−τ
yx (ω)V ′(ω(τ1), σ + τ1)×

V ′(ω(τ2), σ + τ2)e
∫ s−τ

0
dτ3V (ω(τ3),σ+τ3) (137)

+
1

2

∫ s−τ

0
dτ1∂xΓ(τ1, τ1)

∫

dµs−τ
yx (ω)V ′′(ω(τ1), σ + τ1)e

∫ s−τ

0
dτ3V (ω(τ3),σ+τ3).

By (54), we have | ∂nV
∂yn | ≤ Cs−n/2 for n = 0, 1, 2. Combining this with

(127) and (137), we get (for s0 ≥ ρ∗)
|∂xE(s, σ, y, x)| ≤ Cs−1(s− τ )(1 + s− τ)(|y| + |x|).
Using this, (128) and (135), we obtain

|(II)| ≤ e(s−τ)/2
∫ dx√

4π(1−e−(s−τ))
exp

(

− (y−(s−τ)/2−x)2

4π(1−e−(s−τ))

)

(|y| + |x|)×
Cs−1(s− τ)(1 + s− τ)C(K0, A,C

′
0)
{

τ−2p̄(log τ)p̄(1 + |x|3p̄)

+τ−5/2 log τ(1 + |x|3)
}

.

Arguing as for (I), we get:

|(II)| ≤ C(K0, A,C
′
0)e

(s−τ )/2(s− τ)(1 + s− τ)s−1(1 + |y|)×
{

(log τ)p̄

τ2p̄
(1 + |y|3p̄) +

log τ

τ5/2
(1 + |y|3)

}

. (138)
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Combining (136) and (138), we obtain
|
∫ s
σ dτK1(s, τ)

∂I
∂y (τ)| ≤ C(K0, A,C

′
0)
{

s−2p̄(log s)p̄(1 + |y|3p̄)

+s−5/2 log s(1 + |y|3)
}

×
∫ s
σ

{

e(s−τ)/2√
4π(1−e−(s−τ)/2)

+ e(s−τ)/2(s− τ)(1 + s− τ)s−1(1 + |y|)
}

dτ

≤ C(K0, A,C
′
0)
{

s−2p̄(log s)p̄(1 + |y|3p̄) + s−5/2 log s
}

×
(es−σ

√
s− σ+e(s−σ)/2((s−σ)2+(s−σ)3)s−1(1+|y|)) (s0 ≥ ρ∗, which implies

2τ ≥ s). Multiplying this by χ(y, s) and replacing some |y| by 2K0
√
s, we

get: ∀s ∈ [σ, σ + ρ],

|χ(y, s)
∫ s
σ dτK1(s, τ)

∂I
∂y (τ)| ≤ C(K0, A,C

′
0)
{

s−(p̄+3)/2 + s−5/2
}

(1 + |y|3)×
√
s− τ(eρ∗ + eρ

∗/2(ρ∗3/2 + ρ∗5/2)s−1/2). If s ≥ s0 ≥ s22(A, ρ
∗), then

|χ(y, s)
∫ s
σ dτK1(s, τ)

∂I
∂y (τ)| ≤ Cs−2

√
s− τ(1 + |y|3) (use p̄ > 1). Therefore,

|P⊥(χ(y, s)
∫ s
σ dτK1(s, τ)

∂I
∂y (τ))| ≤ Cs−2

√
s− τ(1 + |y|3).

This concludes the proof of (79).

By definition, R1(x, τ) = ∂R
∂y (x, τ) + ∂V

∂y q(x, τ). From (54), we have

|∂V
∂y (x, τ)| = 2pbϕ(x, τ)p−2(p− 1 + bx2/τ)−p/(p−1)xτ−1 with

b = (p− 1)2/(4(p − a)). Setting z = xτ−1/2, we easily see that
|∂V

∂y (x, τ)| ≤ Cτ−1/2. Using lemmas B.1 and B.5, we get

|R1(x, τ)| ≤ Cτ−(1+p̄)(|x| + |x|3) + CA2τ−5/2 log τ(1 + |x|3)
≤ Cτ−(2+ε2(p))(1 + |x|3) with ε2(p) > 0 if s0 ≥ s33(A). Therefore,
|K1(s, τ)R1(τ)| = |

∫

K1(s, τ, y, x)R1(x, τ)dx|
≤ Cτ−(2+ε2(p))

∫

|K1(s, τ, y, x)(1 + |x|3)dx
≤ Cτ−(2+ε2(p))e(s−τ )/2(1 + |y|3) by lemma B.2 i). Hence,
|
∫ σ
s dτK1(s, τ)R1(τ)| ≤ C(1 + |y|3)

∫ s
σ dττ

−(2+ε2(p))e(s−τ )/2

≤ C(s− σ)e(s−σ)/2s−(2+ε2(p))(1 + |y|3) if σ ≥ s0 ≥ ρ∗.
Now, if σ ≥ s0 ≥ s23(ρ

∗), then
|
∫ σ
s dτK1(s, τ)R1(τ)| ≤ C(s− σ)eρ∗/2s−(2+ε2(p))(1 + |y|3)

≤ (s− σ)s−2(1 + |y|3). By classical arguments, this yields (80).

From lemmas B.2 and B.6, and the fact that
∣

∣

∣

∂ϕ
∂y

∣

∣

∣ ≤ Cτ−1/2, we have:

|e−τ (∂ϕ
∂y +r)f ′1(e

τ
p−1 (ϕ+q)| ≤ C(K0, C

′
0)A

2τ−1/2e−τ . Therefore, i) of lemma
B.2 yields:

|K1(s, τ)e
−τ (∂ϕ

∂y + r)f ′1(e
τ

p−1 (ϕ+ q))| ≤ C(K0, C
′
0)A

2e
s−τ
2 τ−1/2e−τ . Hence,

|
∫ s
σ dτK1(s, τ)e

−τ (∂ϕ
∂y + r)f ′1(e

τ
p−1 (ϕ+ q))| ≤ C(K0, C

′
0)A

2(s− σ)e
s−σ

2
e−σ√

σ

≤ C(K0, C
′
0)A

2(s− σ)eρ∗s−1/2e−
s
2 if s0 ≥ ρ∗

≤ (s−σ)s−2 if s ≥ s24(K0, A, ρ
∗). Thus, by classical arguments, (81) follows.
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Since rm(s0) = O(e−s0) + (m + 1)qm+1(s0), we have from lemma 3.1
|r0(s0)| ≤ CAs−2

0 , |r1(s0)| ≤ Cs−2
0 log s0, |r⊥(y, s0)| ≤ s−2

0 (1 + |y|3) and

|re(y, s0)| ≤ s
−1/2
0 . Applying lemma iii) of B.2 with A′ = CA, A′′ = C,

A′′′ = A′′′′ = 1 yields (82).
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