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Abstract

We consider u(z, t) a solution of u; = Au+ |u[P~!u that blows up at
time T, where u : RV x[0,T) = R, p > 1, (N —2)p < N +2 and either
u(0) > 0or (3N —4)p < 3N +8. We are concerned with the behavior of
the solution near a non isolated blow-up point, as T'— ¢ — 0. Under a
non degeneracy condition and assuming that the blow-up set is locally
continuous and N — 1 dimensional, we escape logarithmic scales of the
variable T — t and give a sharper expansion of the solution with the
much smaller error term (7' — ¢)'/2=" for any 5 > 0. In particular, if
in addition p > 3, then the solution is very close to a superposition of
one dimensional solutions as functions of the distance to the blow-up
set. Finally, we prove that the mere hypothesis that the blow-up set
is continuous implies that it is C*1/2=7 for any 1 > 0.

1 Introduction

In this paper, we are mainly concerned with the blow-up behavior at non-
isolated blow-up points of the following semilinear heat equation:

uy = Au+ |uff"lu
u(,0) = wug € LOO(RN)a (1)
where u(t) : z € RV — u(z,t) € R and A stands for the Laplacian in RY .

We assume in addition that the exponent p > 1 is subcritical: if N > 3 then
1<p<(N+2)/(N —2). Moreover, we assume that

either ug > 0 or (3N —4)p < 3N + 8. (2)



This problem has attracted a lot of attention because it captures features
common to a whole range of blow-up problems arising in various physical
situations; particularly it highlights the role of scaling and self-similarity.
Among related equations, we mention: the motion by mean curvature, sur-
face diffusion (Bernoff, Bertozzi and Witelski [1]) and chemotaxis (Brenner
et al. [3], Betterton and Brenner [2]). However, equation (1) is simple
enough to be tractable in rigorous mathematical terms, unlike other phys-
ical equations. In this work, we build up tools that may be useful in more
physical situations. As a matter of fact, in section 5 we will mention con-
nections with a chemotaxis problem.

The behavior near singular points is a major concern in all singularity
problems. One general idea of this work is to find out how to refine the
singular behavior beyond first order terms and reach significantly small error
terms. Through a change of variables, singular behavior reduces to the
asymptotic behavior of some PDE when a small positive parameter € goes
to zero. For the heat equation (1), e = T'— ¢ — 0, where T is the blow-
up time. In previous work, an explicit profile is found to be a good first
order approximation, up to v“ where v = —1/loge and a > 0. Further
refinements in this direction should give an expansion of the solution in
terms of powers of v, i.e., in logarithmic scales of € (see Stewartson and
Stuart [18]). Logarithmic scales also arise in some singular perturbation
problems such as low Reynolds number fluids and some vibrating membranes
studies (see Ward [20] and the references therein, see also Segur and Kruskal
[17] for a Klein-Gordon equation). Since v goes to zero slowly, infinite
logarithmic series may be of only limited practical use in approximating the
exact solution. Relevant approximations, i.e., approximations up to lower
order terms such as € for § > 0, lie beyond all logarithmic scales. In this
work, our idea to capture such relevant terms is to abandon the explicit
profile function obtained as a first order approximation, and take a less
explicit function as a first order description of the singular behavior. Both
formulations agree to the first order. Through scaling and matching, we
can reach the order € by iterating the expansion around the less explicit
function.

A second general idea in this work is to see how more constraints on the
singular set yield more regularity for that set. This idea is found in studies of
free boundary problems, where over determined boundary conditions yield
regularity of the free boundary. In this work, we focus on the case where the
blow-up set of (1) is a continuum. The mere hypothesis that the blow-up set
is continuous, which is an unstable situation (see section 5), adds constraints



in the problem, yielding C*® regularity for the blow-up set.

1.1 Blow-up behavior in logarithmic scales of 7' — ¢

A solution u(t) to (1) blows up in finite time if its maximal existence time
T is finite. In this case,
Yo ()1 ) = B (8) | o )y = .

Let us consider such a solution. T is called the blow-up time of u. A point
a € RV is called a blow-up point if

|u(z,t)| = +o0 as (z,t) = (a,T)

(this definition is equivalent to the usual local unboundedness definition,
because of Corollary 2 in Merle and Zaag [15]). S denotes the blow-up set,
i.e., the set of all blow-up points. From [15], we know that there exists a
blow-up profile u* € CE_ (RN\S) such that

u(z,t) = u*(z) in C2.(RV\S) as t — T. (3)

Given a € S, we know from Veldzquez [19] that up to some scalings, u
approaches a particular explicit function near the singularity (a,7'). We
consider the case where for all Ky > 0,

sup
|2|<Ko

(T - )77 (a+ Qaz/T— ) logT — D)1 t) — fis(2)| >0 (4)

as t — T, where Q3 is an orthonormal N X N matrix, l[; = 1,..., N, and

_1\2 1 p—1
filz) = (p— 1+ %Zﬁ) : (5)

=1

Other behaviors with the scaling (T — t)_ﬁ(x — a) where k = 2,3,.. may
occur (see [19]). We suspect them to be unstable.

If l; = N, then a is an isolated blow-up point. An extensive literature is
devoted to this case (Weissler [21], Bricmont and Kupiainen [5], Herrero and
Veldzquez [12] and [19],...). We have proved the stability of such a behavior
with Fermanian and Merle in [8]. The key argument in our proof was the
following Liouville Theorem proved by Merle and Zaag in [13] and [15]:



Consider U a solution of (1) defined for all (z,t) € RN x (—o0,T) such
1
that for all (z,t) € RN x (—o0,T), |U(z,t)| < C(T —t) »-1. Then, either

U=0orU(z,t)=[(p—1)(T" - 15)]_1ﬁ for some T* > T.

When l; = N, the blow-up behavior of u(z,t) near the isolated blow-up
point @ is already contained in (4) which shows that the profile of u(z,t) is
a function of a one dimensional variable:

L d(z, S)
we )~ T (\/<T—t>|log<T—t>|) | o

since S = {a} and d(z,S) = |z — a| when z is close to a@. This description
remains valid even when a is not isolated, as we will show later.

The case l; < N is known to occur, namely when « is invariant with
respect to some coordinates. However, when [; < N, we cannot even tell
whether @ is isolated or not. The first singularity description was obtained
in [23]. For simplicity, we assume that locally near a, S is a (N — [3)-
dimensional C' manifold. We have shown in Theorems 3 and 4 in [23] that
for some tp < T and 6 > 0, for all Ky > 0, t € [to,T) and z € B(a,d) such
that d(z,S) < Ko+/(T — t)|log(T — t)], we have

(s, 5) . log | log(T 1)
T =0 Tog(T t)\) ‘ < oK) hogir —7)
(7

where f; is defined in (5). Note that formally, this is the same description
as in the case l; = N, where a was isolated (see (6)). The variable d(z, S),
normal to S, appears as the blow-up variable that determines the size of w.
The major step in [23] is the proof of the stability of the behavior (4) in a
neighborhood of @ in S. The key argument in getting this stability is the
Liouville Theorem of [15], stated on page 3.

(T — )7 Tu(z,t) — fi (

The error term in (7) shows that we fall in logarithmic scales of the small
parameter € =T — ¢. In this paper, we do better, and get to error terms of
order (T — t)® with a > 0. Following the ideas of page 2, we will replace
the explicit profile f; by a less explicit function, and then go beyond all
logarithmic scales, through scaling and matching.

1.2 Blow-up behavior beyond all logarithmic scales of 7" — ¢

A natural candidate for this non explicit function is simply a one dimensional
solution of (1) that has the same profile fi. It is classical that there exists



a one dimensional even function @(z1,t), solution of (1), which decays on
(0,00) and blows up at time T only at the origin, with the profile fi, in the
sense that for all Ko > 0 and t € [t, T), if |z1| < Ko+/(T — t)|log(T — t)],
then

VT =) log(T — 1) 0 | log(T —t)]
(8)
(see Appendix A for a proof of this fact). Hence, it follows from (7) that for

all Ky >0, t € [tg,T) and = € B(a,d) such that
d(z,S) < Koy/(T — t)|log(T — t)|, we have

(T—t)ﬁﬂ(-’ﬂl,t) - fi ( i ) ‘ < C'(Ko)—logllog(T — 0

log | log(T — )|

(T =) fu(e. 1) — (d(z $). )] < O(Ko) 8

(9)
This estimate remains valid even if we replace 4(d(z, S),t) by any
lUg(g,t)(d(, S),t) where 4, is defined by

fip(z1,t) = e p1d(e 53, T —e (T —t)), (10)

provided that |o(z,t)| < C(Kj). Indeed, for any o € R, @, is still a blow-
up solution of (1) with the same properties and the same profile (8) as a.
Moreover, i, # 4, unless 0 = 0, because 4 is not self-similar (see Appendix
A).

For each blow-up point a near a, we will suitably choose this free scaling
parameter o = o(a) so that the difference (T—t)lﬂ%1 (u(z,t) — Uy (q) (d(z, 5), 1))
along the normal direction to S at @ is minimum. Following the ideas of
page 2, if we refine the expansion about this well chosen, though less explicit,
function i,(q)(d(z, S),t), then we escape logarithmic scales. In particular,
if p > 3, then the difference u(z,t) — 1, () (d(z, S),1) is bounded and goes
to zero as t — T', although both functions blow up. This can be done only
when

li=1

which corresponds to a (N — 1)-dimensional blow-up set, according to [23].
We claim the following:

Theorem 1 (The N dimensional solution seen as a superposition
of one dimensional solutions of the normal variable to the blow-up
set, with a suitable dilation) Assume N > 2 and consider u a solution



of (1) that blows up at time T on a set S which is a (N —1)-dimensional C!
manifold, locally near a. If u behaves as stated in (4) near (a,T) with l; =1
and if p > 3, then for allt € [t1,T) and = € B(a,d) such that d(z,S) < €
for some t; < T, § >0 and ¢y > 0, we have

‘U(.’L‘,t) - ﬂa(Ps(z)) (d(.’L’, S)at)| < h(fl),t) <M < +o0, (11)

where Pg(z) is the projection of x over S and h(z,t) — 0 as d(z,S) — 0
andt — T.

Thus, when p > 3, all the singular terms of u in a neighborhood of (a,T)
are contained in the rescaled one dimensional solution i, (pg(s)) (d(z, S), 1),
which shows that in a tubular neighborhood of the blow-up set S, the space
variable splits into 2 independent variables:

- A primary variable, d(z,S), normal to S. It accounts for the main
singular term of u and gives the size of u(z,t), as already shown in the old
formulation (9), which follows directly from [23].

- A secondary variable, Pg(z), whose effect is sharper. Through the
optimal choice of the dilation o(Ps(x)), it absorbs all next singular terms
in the normal direction to S at Pg(z).

Similar ideas are used by Betterton and Brenner [2] in a chemotaxis model;
see section 5 for a short discussion of connections with that work. We would
like to mention that we have successfully used this idea of modulation of
the dilation with Fermanian in [9] to prove that for N =1 and p > 3, there
is only one blow-up solution of (1) with the profile (4), up to a bounded
function and to the invariances of the equation (the dilation and translations
in space and in time).

Theorem 1 is a direct consequence of the following result which is valid
also for 1 <p < 3.

Theorem 2 (Blow-up behavior and profile near a blow-up point
where u behaves as in (4) assuming S is locally a (N—1)-dimensional
manifold) Under the hypotheses of Theorem 1 and without the restriction
p > 3, there exists t1 < T and ey > 0 such that for all x € B(a,d) such that
d(z,S) < ey, we have the following:

i) For all t € [t1,T),

‘U(:L‘, t) - I&U(Ps(a:)) (d(.’E, S)a t)‘ <
5=3 3.0 p=3 L_1Cy
CmM ((T — )75 | log(T — 1) |3+, d(z, $)51 |log d(z, S)[7*T*%) |
(12)



where Ps(z) is the projection of x over S, mM = min if 1 < p < 3 and
mM = max if p > 3.
i) If x ¢ S, then u(z,t) = u*(z) ast = T and

_o(Ps(=)) _o(Ps(2))
u*(z) —e P 1 4* (e 2

d(,5)) ‘
< Cd(z, S5 |log d(z, S)| 71+,

where 0*(z1) = tli Tﬂ(ﬂcl,t).
%

Remark: In [23], we have obtained the following explicit equivalent for u*:

()~ [ B logd,9)| =

(p—12 d(z,5)? ~ @*(d(z, 5)) as d(z,$) = 0.

Our new estimate shows that up to a suitable dilation, all the next terms

)
|7=17%° are the

-3
in the expansion of u* up to the order d(z, S)f’f1 |log d(z, S)
same as the particular one dimensional solution.

1.3 ('@ regularity of the blow-up set

The splitting of the space variable z into d(z,S) and Ps(z), as shown in
(12), induces a geometric constraint on the blow-up set S, leading to more
regularity on S.

Proposition 3 (Cl’%fn regularity for S and C'~" regularity for the
dilation o) Under the hypotheses of Theorem 2, S is the graph of a function
p C Cl’%_"(BN_l(O,Jl),R), locally near G, and o is a C'™" function, for
any n > 0. More precisely, there is a hy > 0 such that for all || < §; and
|h| < ho such that |§ + h| < 61, we have

(€ +R) — (&) — hy! (€)] < C|h[*?|log |h|[z+C,
|0(61(P(§)) - U(f + h, (p(é' + h))| < C|hH log |h||3+00_

The regularity of the blow-up set S is our second concern in this paper. We
know from Veldzquez [19] that the (N —1)-dimensional Hausdorff measure of
S is bounded on compact sets. Under a local non-degeneracy condition, we
have proved in [23] that if S locally contains a continuum, then S is locally
a C! manifold of dimension k = 1,...,N — 1. Since Proposition 3 derives
Ccha regularity assuming C' regularity, we can weaken the hypotheses of
Proposition 3 and get a stronger version that derives C L3 regularity just



assuming continuity. Stating this new version requires additional technical
notation.

We consider a non isolated blow-up point ¢ where u has the behavior
(4) with I; = 1. We may take Qs = Id. According to Theorem 2 in [19], for
all € > 0, there is d(e) > 0 such that

SﬂB(&,5) CQ&,W,EE{:I"HPW('T_&)' 2(1_€)|$_&'|}a

where P; is the orthogonal projection over 7, the subspace spanned by ez,
..., eny. Note that Q; r . is a cone with vertex a that shrinks to a + 7 as
€ = 0. In fact, a + 7 is the candidate for the tangent plane to S at a. We
assume there is a € C((—1,1)V =1, RY) such that a(0) = @ and Ima C S
where Ima is at least (N — 1)-dimensional in the sense that

Vb € Ima, there are (N — 1) independent vectors vy, ...,vx_1 in RY and
a1,..,an—1 functions in C1([0,1],S) such that a;(0) = b and a(0) = v;.
(13)

This hypothesis means that b is actually non isolated in (N —1) independent
directions. We also assume that ¢ = 0 is not an endpoint in Im a in the sense
that

Ve > 0, the projection of a((—e, )N 1)

contains an open ball with center a.

on the plane a + 7 (14)

We claim the following:

Theorem 4 (Regularity of the blow-up set near a point with the
behavior (4) assuming S contains a (N —1)-dimensional continuum)
Take N > 2 and consider u a solution of (1) that blows up at time T on a
set S and take a € S where u behaves locally as stated in (4) with l; = 1.
Consider a € C((—1,1)N =1 RN) such that & = a(0) € Ima C S and Ima is
at least (N —1)-dimensional in the sense (13). If é is not an endpoint (in the
sense (14)), then there are § > 0, 61 > 0 and ¢ € Cl’%_”(BN_l(O,dl),R)
(for any n > 0) such that

S N B(a,2) = graph p N B(a,2§) = Ima N B(a, 26). (15)

Moreover, the conclusions of Theorem 2 and Proposition 3 hold. In partic-
ular, if p > 3, then the conclusion of Theorem 1 also holds.



Remark: When N = 2, we can replace conditions (13) and (14) just by the
existence of ag such that for all € > 0, a(—e, €) intersects the complimentary
of any connected closed cone with vertex at a and angle « € (0, ap].

Remark: In the case l; > 2 in (4), that is when the blow-up set is 2
dimensional, we are unable to suitably choose the dilation in (10) and we
cannot escape the logarithmic scale in T — ¢t. Hence, we cannot obtain C'1¢®
regularity. We can nonetheless improve estimate (9) and prove that:

For allt € [t1,T) and z € B(a,d) such that d(z,S) < €y , we have

—u(d(z min (T_t)_ﬁ d(w,S)_P%l
hute, ) = (= 5), 9] = © (Ilog(T—t)I’\1ogd(:c,5)|§1?>'

Theorem 1 is a direct consequence of Theorem 2. Throughout the paper,
we assume the hypotheses of Theorem 2. In section 2, we start from the
conclusion given in [23] under the hypotheses of Theorem 2 and show that
for any blow-up point a near a, there is o(a) € R such that i, is the best
profile for u along the normal direction to S at a. In section 3, we use this
to get the blow-up behavior of w in a tubular neighborhood of S (Theorem
2). In section 4, we prove regularity results (Proposition 3). Theorem 4 is a
direct consequence of Theorem 2 and Proposition 3 because of the results of
[23]. Indeed, Theorem 4 in [23] asserts that under the hypotheses of Theorem
4, S is the graph of a C! function; hence Theorem 2 and Proposition 3 apply.
Some connections with a chemotaxis model are presented in section 5. The
results of this paper and those of [23] have been presented in the note [22].

The author wants to thank Fang-Hua Lin and Frank Merle for interesting
conversations about the work, and Robert V. Kohn who made valuable
suggestions and pointed out many references. Many thanks to Naoufel Ben
Abdallah for his kind invitation to the Université Paul Sabatier in Toulouse,
where part of this work was done. The remarks of the referee are valuable
and highly appreciated. The author wants to acknowledge partial support
received from the NSF grant DMS-9631832.

2 Modulation of the dilation, uniformly with re-
spect to the blow-up point
This is a major step in our paper. Under the hypotheses of Theorem 2,

there is a C'! function ¢ such that

S5 = SN B(a,26) = graph ¢ N B(a, 20) (16)



for some 6 > 0 and ¢ € C'(Byx_1(0,61),R), where §; > 0 and Bx_1(0,61)
is a ball in RV~!. If @ € S5 and w, is defined by

way,8) = (T =7 Tu(e,t), y=J—=, s=—logT 1),  (17)

then we see from (1) that for all (y,s) € RY x [~1ogT, 00),
1
— =Aw— —y.Vw — p% + [wfP~ w. (18)

We have proved in Propositions 3.1, 4.4 and 4.4’ of [23] that for all a € S5
and s > —logT,

Jun(@a) ~ {rt 1= )

2ps 2
where @), is a N x N orthogonal matrix continuous in terms of a, such that
{Qq€i | i =2, ..., N} span the tangent plane T} to S at a,

< Clogs

<c2E, (19)

L;

Qqe1 is the normal direction to S at a,

1 y|2 20
k= (p— 1) and p(y) = e /(4m) V2. 20

To show this, we first start from (4) and use the paper by Filippas and Kohn
[10] to establish (19) at a = @. Then, we use dynamical system methods to
show the stability of the behavior (19) for solutions of (18). The Liouville
Theorem stated on page 3 is a central argument.

The particular one dimensional solution % (z1, t) of page 4 can also be thought
as a N dimensional solution blowing up on the hyperplane {z; = 0} in RV .
Therefore, the results of [23] apply to @ and (19) holds for % too. Since 4 is
invariant in the direction of the blow-up set, we have for all a € {z; = 0},
Q. = 1d and w, = w defined by

Z1
Tt

W is a solution of (18) and (19) yields for all s > —logT,

ot~ s -}

2ps

1
w(yi,s) = (T —t)r-1a(z,t), 11 =

, s=—log(T —1). (21)

< C’logs

2
2 S
L

. (22)

Using (19) and (22), we get for all o9 > 0, a € Sy, |o] < 0p and s >
—logT + oy,

log s

[wa(Qay, s) — B(y1,s + 0)llrz < C(oo) (23)

s2

10



We aim in this section at choosing a particular 0 = o(a) so that this dif-
ference becomes less than Ce~25% for some Cy > 0. This is equivalent
to choosing an appropriate dilation A(a) = ¢=?(®) in (10) for the original
function 4(z1,t). The following proposition is the goal of this section.

Proposition 2.1 (Modulation of the dilation in the one dimensional
solution) There exist s > 0 and Cy > 0 and a continuous function o :
S5 — R such that for all a € S5 and s > sg,

lwa(Qays s) — wlyr, s+ o(@)) |12 < Coe 5.

Let us first recall from [15] some consequences of the Liouville Theorem of
page 3, namely some L*° estimates and a localization property for blow-
up solutions of (1). We also need some elementary estimates of the one
dimensional solution .

2.1 Uniform L*° estimates

The following propositions are consequences of the Liouville Theorem of
page 3.

Proposition 2.2 (L estimates for solutions to (1) at blow-up)
There exists C > 0 such that if u is a solution to (1) which blows up at
time T > 0, then, there exists 8 such that for all s > § and a € RV,

C ~ C
|| wa(s) [[Le< k4 — and || Vwa(s) [[Le< —75 (24)
S 32/2
for all i € {1,2,3}, where w, is defined in (17).

Proposition 2.3 (A uniform localization of the PDE (1) by means
of the associated ODE) Let u be a solution to (1) which blows up at time
T. Then, Ye > 0, 3C, > 0,

T 0
vte[5,T), Vo €RY, | a_? ~JulPu < eful? + Ce
The reader will find a proof of these propositions in [15] and [14] respectively.

In the following lemma, we give some elementary estimates for the par-
ticular one dimensional solution u:

11



Lemma 2.4 (Elementary estimates for @)
i) There exists C > 0 and § > 0 such that for all s > § and |y1| < /s, we
have

y2
(y1,5) < 9(0,5) - CLL.

2
Y1
.. ow (y% — 2) e 4 K
gw E dy ~ —— — 0.
”) /R s (yla S) 8 \/E Y1 4p82 as s oY)
i %—f(O,s) ~ —219% as s — 0.
Proof- See Appendix A. |

2.2 A dynamical system formulation for the modulation
problem

Our approach is identical to what we did with Fermanian in [9] for the
difference of two solutions with the radial profile (I; = N) in (4), instead of
the non symmetric profile (1 = [; < N) we handle here. Therefore, we follow
in extent the strategy of [9] and emphasize the novelties. However, some
technical details -most of them are straightforward and long- are omitted.
The reader can find them in [9]. Consider an arbitrary g > 0 and fix a € S5
and |o| < 0¢. If we define

Ga,o (ya 8) = wa(Qaya 5) - 'J)(yl, s+ 0)’ (25)
then we see from (18) that for all (y,s) € RN x [—logT + oy, ),
asga,a (ya 3) = (‘C + aa,a) Ya,05 (26)

where L=A—%.V +1and V(y,s) € RN xR,

| wa(Quy, ) P wa— [ dys s +0) PR a p

aa,a(ya 3) = (27)
Wg — W p—1
if we(Qay, s) # w(y1,s + o), and in general,
_ - p
O{(y, 5) =p | wa,o’(yas) |p B — (28)

p—1

for some Wa(y,s) € (wa(Qay,s),®(y1,s + 0)). In the following, we drop
down the index (a, o) unless there is ambiguity. One should keep in mind
that all quantities defined from g also depend on (a, o).

12



According to (23) and (25), ¢ — 0 in LZ as s — 0o. More precisely, for all
s > —logT + oy,
log s
lg()llzz < Clo0)—5—- (29)
s

Operator £ is self-adjoint on D(L) C L2(R") where p is defined in (20).
The spectrum of £ consists of eigenvalues

spec L = {1 — %, m € N}.

Note that except two positive eigenvalues (1 and 1) and a null eigenvalue,
all the spectrum is negative. The eigenfunctions of L are

hs(y) = hp, (y1)---hgy (Yn), (30)

where 3 = (81, ..., Bn) € NV and for each m € N, h,, is the rescaled Hermite
polynomial

[m/2] |
m! . . h
B (€) = ———(-1)7¢™ 2% We note ky=-—o>— (31
©= 2 -2 Tl gy

where L/2)1 (R) is the L? space with the measure

_é N
e 1 . B .
p1(©) = o that satsies p(y) = [ [ 1) (32)

The polynomials h,, and hg satisfy

thy = (1= Dhns and [ hn(@i©Om(©d =ty (33)

Let us introduce the component of g(.,s) on hg

g(s) = | ka(w)al, p(w)dy where ks(w) =I1 s 177 ho(s). (34)
If P, is the orthogonal projector of Lg over the eigenspace of £ corresponding

to 1 — 3, then Pg(y,s) = Z 93(s)hg(y). Since the eigenfunctions of £
|8]=n
span the whole space L?,, we can write

9(y,8) =D Pag=Y_ gs(s)hs(y)

neN BENN ( )
lg(s)liZ; = I(s)” = D ln(s)? where ln(s) = || Pagl12-
neN

As for a, we claim the following:

13



Lemma 2.5 (Estimates on «) For all 09 > 0, a € S5, |o| < 09, y € RN
and s > —logT + oy,

of.9) < S agy, 9 < A% 4y
and oy, ) + haun)] < O (1 41y, (36)

Proof: See Lemma 2.5 in [9] where a similar lemma was derived from Proposi-
tion 2.2, (22) and (19) (note that both (22) and (19) hold in C¥ by parabolic
regularity). [ |

2.3 Modulation for the dilation in the one dimensional solu-
tion

We prove Proposition 2.1 here. Practically, since g, , satisfies equation (26),
we consider that equation as a dynamical system and classify all possible
asymptotic behaviors the equation can exhibit as s — oo, under the growth
condition (29). It turns out that the effect of o in (26) can be neglected,
except on the neutral mode of L. Since the eigenvalues of £ are 1, %, 0 and
—g for any integer kK > 1, we expect the positive modes to be neglected.
More precisely, unless g, , decreases faster than e ks for any k € N, either
the null mode or a negative mode of £ will dominate as s — co. Moreover,
we expect g, to decrease polynomially in the former case (because of the
effect of the % term in ) and exponentially in the latter. We proceed in 3
steps:

- In Step 1, we project equation (26) on the different modes. We then
show that the positive modes are relatively small and that either the null or
a negative mode dominates (unless g, , decreases faster than e~*s for any
k eN).

- In Step 2, we solve the ODE satisfied by the null mode and show that
it decays like S%, except for a critical explicit value o(a) of o, where it decays
faster.

- In Step 3, we take o equal to this critical value o(a) and show that the
null mode can not dominate, unless g, , = 0. Thus, we drop down in the

spectrum from 0 to —% or less, which gives exponentially fast decay for g, ;.

Step 1: Dominance of a particular mode
Let us first project (26) on the different modes. For the null mode of £
(I8] = 2), the main term of the equation comes from the main term of «
(see (36)).

14



Lemma 2.6 (Projection of (26) on the different modes) For all
00>0,a€S8s, |o| <og and s > —logT + oy, we have the following:
i) For alln €N, |Il) + (% — 1)l,,| < C(n, 00) "2,

ii) For allm €N, I'(s) < (1 —nl M) I(s)+ Y %(n-i— 1— k)lg(s).
k:

i) If 18] = 2, then |g5(s) + Zga(s)| < Cloo) 23k + Clov) o2t

Proof. The calculation is straightforward. Parts i) and ii) follow from (26)
and Lemma 2.5 exactly as in Lemma 2.7 in [9].

iii) The calculation is straightforward and similar to the proof of Proposition
2.9 in [9]. See Appendix B.1 for details. [ |

Our main goal in this step is to show that one mode has to dominate
all the others (unless I(s) decays faster that e™*S for any k¥ € N). The
argument would be clear if & was identically zero, because the modes would
not interact in that case. In the actual proof, we rely on this simple fact
and treat the term ag as a perturbation to get the result. We claim the
following lemma (which was proved in [9] with no special care to uniform
estimates with respect to a € Sy):

Lemma 2.7 (Dominance of a mode) For all a € S5 and 0 € R, either

for all m € N, I,(s) = O (ﬁ) or there is n > 2 such that I ~ [, as

S

s = 00. In that case, Ym # n, lsz(é) as s — 0o.

Proof. See Proposition 2.6 in [9]. [ |

Lemma 2.7 asserts that the positive modes [y and [; are O (é) as § — 00.
We need to know that this holds uniformly with respect to a and 0. We
claim the following:

Lemma 2.8 (Uniform smallness of the positive modes)
For all oy > 0, there exists s1 > 0 such that for all a € Sy, |o| < 09 and

s > 51, lo(s) + 11(s) < 2C (o) 2.

s

Proof: 1t is the same as in [9], with more care about the dependence of the
constants. See Appendix B.2 for the proof. |

Step 2: Asymptotic behavior of the null mode
We first use the decay information on I(s) and ly(s) contained in (29) and
Lemma 2.8 to solve the ODE satisfied by the null mode and stated in iii) of
Lemma 2.6. We claim the following;:
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Lemma 2.9 (Decay of the null mode of (26)) For all o9 > 0, there is
sg(o0) such that for all a € Sy, |o] < 09, s > s3(0g) and |G| = 2, we have:

90.0,5(2)| < Oloo) 3z if B #2
|9a,0,5(s) — 27| < Cloo) 5 if B = 2.
Proof: This is straightforward. See Appendix B.3. |

Now it becomes clear that by making k, , = 0, the decay of the null mode is
faster, which suggests that the null mode may not dominate, therefore, we
drop down in the spectrum to —% or less, which yields exponential decay.
But, can we make k, , = 07 The answer is yes and this comes from a simple
fact: the difference k, ; — kq,0 does not depend on the function w or on the
blow-up point a € Ss, or even on the one dimensional solution w; it is a
linear function of o. More precisely, we have the following lemma, which is

the core of our argument:

Lemma 2.10 (Modulation of the value of o) For all a € S5 and o €

K
R, koo = kap — 550

Proof. By definition of k, , (see Lemma, 2.9 and (34)),

Ka,p = lim s / Ga,o (Y, 8)k2(y1)p(y)dy. (37)
S oo RN
Therefore,
bao — oo =l 5 [ (G0 (0:5) — a0l 9) ka(wn)p(w)ey
§—00 N (38)
= lim Szf(ﬁ’(ylas) —w(y1,5 + 0)) ka(y1)p1(y1)dys
S§— 00 R

according to (25) and (32). In particular, k, o — kg does not depend on w
or on a € Ss. Since we know from ii) in Lemma 2.4, (31) and (32) that

ow K
/R%(ylas)kZ(yl)Pl(yl)dyl ~ s 25T

the conclusion follows by the mean value theorem. |

In the following, we take 0 = o(a) = %ka’o, which makes k,, = 0.

Step 3: Exponential decay of g, ,(,) in L}
We conclude the proof of Proposition 2.1 here. With this choice of o, kg , =
0, hence, iii) of Lemma 2.6 and Lemma 2.9 yield

2 C log s
ll2(3) Z —;l2 - —I(S) and ZQ(S) =0 (35T

72 > as s = 0o (39)
s
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(recall that 12 = Z g?,”hg”%%). This implies that we cannot have I ~ [a,
=2

unless I = 0. Tl|1ﬂe‘refore, Lemma 2.7 implies that either a negative mode
dominates, or all the modes are less than CI(s)/s. In both cases, the differ-
ential inequality ii) in Lemma 2.6 yields exponential decay for I(s), which
is the desired conclusion. However, we need to make this decay uniform
with respect to the blow-up point a € Ss. We need first to fix og. The
uniform estimate of Lemma 2.9 along with the continuity of g, ,(y, s) with
respect to a, o and s (see (25)) yields the continuity of &k, , with respect to
(a,0) € S5 x R (see (37)). Hence, we can fix

4
o0 = max [k, | < +00 (40)
a€Ss K
and define a continuous function o : S5 — [—0y, 00] by o(a) = 4%’ka,o. Just

note that if we take n = 2 in i) and ii) of Lemma 2.6 and use Lemma 2.8,
then we see that z = [y and y = I satisfy the inequality (41) in the following
ODE lemma:

Lemma 2.11 (ODE Lemma) For all M > 0 and 8, there is 5(M,3) > §
such that if 0 < z(s) < y(s) = 0 as s = oo and

:I:'>—My
Vs > 8, - f 41
{y’s—%y+¥y+%x, )

M

then either Vs >3, z(s) < 5—y(s) (42)
s

or y>x>0andy~z ass— oo. (43)

Remark: If (43) holds, then we have no uniform control with respect to M
and §.

Proof: See Appendix B.2. |
We have just proved that (43) doesn’t hold. Therefore, for all a € Sy and
s > sg for some sy > 0, la(s) < CI(s)/s. Using Lemma 2.8 and ii) in
Proposition 2.6 (take n = 3) yields for all a € Ss, if o = %’ka,o, then

L(s) <Ciifkp=0,10r2

JI(s)+ 3 (n+1—k)lk(s).

k=0

Vs > sp,

~
—~
SN—r
IA

|
N[
_+_
S

Therefore, Vs > sg, I'(s) < (—3 + €)I(s), hence I(s) < Coe™ 257 for some
Cy > 0. This concludes the proof of Proposition 2.1. |
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3 Blow-up behavior of u in a tubular neighbor-
hood of S

We prove Theorem 2 here. We have proved in [23] that (7) holds. This
estimate identifies for each ¢ € [0,T") three regions in B(d,0):

- The blow-up region: It is {z | d(z,S) < /(T —t)|log(T — t)|}.
According to (7), it corresponds to the set {z | |u(z,t)| > n||u(t)|| L=}
for some 0 < n < 1.

- The regular region: It is the region far away from blow-up, where u
stays bounded, say by 1. It corresponds to {z | d(z,S) > €} for some
€g > 0.

- The intermediate region, between the two others, that is {z | 1 <
u(z, 1) < nllut)llze} or {z | /(T —1)[log(T — 1) < d(=, S) < €o}-

We handle separately the blow-up and the intermediate regions whose union
makes the tubular neighborhood. Our technique is the same as in [9]. Al-
though we had only one blow-up point in [9], it turns out that the tech-
niques of [9] hold uniformly with respect to the blow-up point, when they
are adapted to the present case. Therefore, we follow in extent the method
of [9]. However, we omit technical details; the reader can find them in [9]
and in the appendix. We proceed in 3 steps:

- In Step 1, we use the transport effect of the term —%y.Vg in equation
(26) to extend the convergence of Proposition 2.1 from compact sets to larger
sets |y| < /s, i.e., the blow-up region d(z,S) < /(T —t)|log(T — t)|, after
the change (17).

- In Step 2, we use the information on the edge of the blow-up region,
i.e., when d(z,S) = /(T —t)|log(T — t)| as initial data to solve the ODE
u' = uP, which turns out to be a very good approximation for the PDE in
the intermediate region /(T — t)|log(T — t)| < d(z, S) < €9, as mentioned
in Proposition 2.3.

- In Step 3, we just gather the previous information to prove Theorem

Step 1: The blow-up region
The Lf, estimate of Proposition 2.1 also holds uniformly on compact sets.
The convection term —3y.Vg in equation (26) allows us to carry estimates
from compact sets to sets |y| < /s along characteristics of the type y =
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Re™% . The following lemma, is a corollary of Proposition 2.1 in Veldzquez
[19]. It is proved in the course of the proof of Proposition 2.13 in [9].

Lemma 3.1 (VelZzaquez - Extension of the convergence from com-
pact sets to sets |y| < +/s) Assume g is a solution of
1 .
059 = Ag — 5y-Vg + g + aly, s)g for (y,5) € RY x [3,00),

where a(y,s) < % and |g(y,s)| < M. Then, for all s' > § and s > s' + 1
such that e 2 = /3, we have

sup [g(y, )| < C(M)e* g(s)]| 2.
lyI<vs

This lemma along with Proposition 2.1 yields for all a € S5 and s > sg + 1,

sup |ga,g(a) (y, 3)| < Ces—s’ooe,%s/Co’
ly|<v/s

where e 2 = /5. Since s’ = s — log s, we have just proved part i) of the
following proposition:

Proposition 3.2 (Uniform estimates for w, in larger sets |y| < /s)
For alla € S5, s > so+ 1 and |y| < /s,

; _s 3
) |9a,a(a) (y,9)] < Ce 232+CO’
s 3
i) |wa(y,s) — 0(y.Que1, s + o(a))| < Ce 2527%,
where sg and Cy are defined in Proposition 2.1.

Proof of ii): Just change Qoy into y in part i) and use the definition of g
given in (25). [ |

Now, we just rewrite part ii) of the previous proposition in the original vari-
ables u(z,t) through the transformation (17) to get the following corollary:

Corollary 3.3 (Uniform estimates for u(z,t) in the larger sets |z —
al < /(T —t)]1og(T — t)]) For alla € S5, t >T —e~*~! and
|z —a| < /(T —t)|log(T —t)],
——— ~ (d(z,T,
- -1y 10 (4550 1) -
|u(z,t) — g (q) (d(z,To),t)| < C(T — ) = l\log( —{)3/2+Co,

where T, is the tangent plane to S at a and i, is defined in (10).
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End of the proof: The only delicate point in this transformation is the com-
putation of y.Qge; in terms of z, a and ¢. Using (17), we have |y.Qqe1| =
|(z — a).Quer|(T —t)~Y/2 = d(z, T,) (T — t)~'/2, because Qe is the normal
direction to the blow-up set S at the blow-up point a (see (20)). The rela-
tion between W and 4, follows directly from the definition of w (21) and the
definition of 4, (10). ]

Now, if we choose a to be the closest blow-up point to z, that is a = Ps(z),
the projection of z on the blow-up set S, then we get d(z,T,) = d(z, S),
which yields the following corollary:

Corollary 3.4 (Uniform estimates for u(z,t) in the blow-up region
d(z,S) < /(T —t)|log(T —t)|) For allt > T—e*~! and z € B(a,d) such
that d(:c S) < /(T —t)|1og(T —t)],

~ 1_ 1
"U,(.’L‘, t) — Ug(Ps(x)) (d(Ia S)at)‘ < C(T - t) 2ot | log(T - t)|3/2+00’
where Pg(x) is the projection of x over S.

Remark : We need the restriction |z — a| < § to guarantee the fact that
Ps(z) is in S5 = SN B(a,20), defined in (16), so that Corollary 3.3 applies.
Indeed, if |z —a| < 4, then |Ps(z) —a| < |Ps(z) —z|+|z—a| < 2|z —a| < 24,
because a € S. Hence Ps(z) € S;.

Step 2: Estimates in the intermediate region
We consider a point (z,¢) in the intermediate region, i.e. such that d(z, S) >
V(T —t)|log(T — t)|. We remark that the point (z,#(d(z,S))) where £(d)
is defined by

d= /(T — ) log(T - D) (44)

is on the frontier of the two regions (note that ¢ < ¢). Therefore, we have an
estimate on u and on u—1i,(py(2)) at (z,t(d(z, S))), respectively from (7) and
from Corollary 3.4. Moreover, the PDE (1) can be uniformly localized by the
ODE v/ = uP, according to Proposition 2.3. The one dimensional solution
4 too. Our idea is simple: we use the ODE to propagate the information on
U — Uy (pg(z)) from time t to t. Thus, the error term on u — Uy (Pg(z)) In the
intermediate region will be the same as the one on the edge. More precisely:

Proposition 3.5 (Estimates in the intermediate region
V(T —t)|log(T — t)| < d(z,S) < €) There ezists €g > 0 such that for all
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T € B(@,6) and t € [0,T), if /(T —t)|log(T —t)| < d(z,S) < €9, then

1_ 1 ~
lu(z,t) — ﬂa(ps(z))(d(z, S),t)| <C(T-1) p2 71| log(T )|3/2+CO
< Cd(z,S) _Iﬁ“()gd(gj S)lp 1+C'0’

where Ps(zx) is the orthogonal projection of x on S and t = t(d(z, S)) is
defined by (44).

Proof : The main argument of the proof has just been given. The reader
can find the ”technical” proof in Appendix C. |

Step 3: Estimates in a tubular neighborhood of §
We prove Theorem 2 here. Let t; = max(T — e~*~!,#(¢g)) where ¢y and
t(eo) are given in Proposition 3.5, and consider some = € B(a, ) such that
d(z,S) < e.
i) Let ¢ € [t1,T).
If t < #(d(z,S)) defined in (44), then d(z,S) < /(T —t)|log(T — t)|. Use
Corollary 3.4.
If t > #(d(z, S)), then d(z,S) > /(T — t)|log(T — t)|. Use Proposition 3.5.
ii) Just make ¢ — T in i) and use (10). [ |

4 Regularity of the blow-up set

We prove Theorems 4 and Proposition 3 here. To keep up with the notation
of [23], we assume that ¢ = 0 and Q; = Id, and consider that Ss, the
intersection of S with B(a,2d) (see (16)), is the graph of a function ¢ €
C! (Bn-1(0,61),R) of the variable 7 = (3, ...,zy). If we introduce

then Im AN B(a,26) = graph¢ N B(a,26) = Ss. Given z near S5, Corollary
3.3 gives many different asymptotic behaviors for u(z,t), depending on the
choice of the point a € Im ANB(z, /(T — t)|log(T — t)|). All these possible
behaviors have to agree, up to the error term in Corollary 3.3. This implies
a geometric constraint on Ss, which gives some more regularity on A (and
©).

We consider some |Z| < 6§, and some h € R¥~! such that |Z + h| < 6, and
A(Z) as well as A(& + h) are in S;. Since A is C! and o is continuous (see
Proposition 2.1), there is C* such that

¢(@)] < O, |A@G + k) — A@)| < C[R| and |o(A@)| < C".  (45)
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For any time ¢ > T — e~ %1 such that R
|A(Z) — A(Z + h)| < /(T —t)|log(T —t)|, we can estimate u(A(Z + h),)
from Corollary 3.3 in two ways:

- First by taking z = a = A(& + h) and s = — log(T — t), which gives
(T = )7 (A + b)) = 5(0, s + 0(A@F + )| < Ce~ 35T+, (46)

- Second, by taking a = A(Z), ¢ = A(Z + h) and s = —log(T — t), which
gives

(T — )7 Tu(A(F + h),t) — @ (d (A(gz + h),TA(j)) €3, s+ a(A(gz))) ‘

(47)

Now, if we fix ¢ = #(&, k) such that

‘A(:Z ) = A@)| = /(T — 1@, ) 10g(T — 1(3, h))] (48)

and take \h| < hi(sg) for some hi(sg) > 0, then we see from (45) that
t(#,h) > T—e~ %~ hence (46) and (47) hold. Therefore, if § = — log(T—1),
then

(0,5 + (A + 1)) - (4 (A +8), Ta ) .5+ 0(A@))|

4
< Ce 353+Co, (49)

By changing the roles of Z and Z + h, we don’t change #(Z, h) and obtain
similarly

‘w(o, 5+ 0(A@) = (4 (A@), Ty ) eF,5 + (A + 1)) ‘
< Ce 552100,

Since @, hence w are radially decreasing (see page 4), this yields

(0,5 + 0(A(2))) — B(0,3 + 0(A(F + F)| < Ce 2530, (51)

Indeed, if @(0, 5 + 0(A(Z))) — @(0,5 + o(A(Z + h))) > 0, then



because @ is radially decreasing. Hence, (51) follows from (50). Do the same
and use (49) in the other case.
Therefore, with a triangular identity, we get from (51) and (49)

0 < (0,5 +0(A())) — (d (A +h), Taw) ) €3, 5 + 0(A(3)) 62)
< Qe 253+C0,

d(A(#+h),Ta(s)) .
TAGIR) AR < 1. Therefore, i) of

Lemma 2.4 implies that there is C' > 0 and hy > 0 such that if |h| < hy then
54+ 0(A(z)) > 5 by (48) and (45) and

Note that since A(Z) € Ty(z), we have

- ; (53)
< 5(0,5+ 0(AF))) — b (d A+ h), TA(E)) 5,5+ J(A(:E))) .
Since Im A is the graph of ¢, we have
o (@ + k) — (@) ~ L.Vp(@)|
4 (AG +h), Taw) = (54)

1+[Vo(2)P?

Using iii) in Lemma, 2.4, we get hs > 0 such that if |h| < hs, then § is large
enough by (48) and (45) and

|l0(A(2)) — o (A(Z + h))|

%
< |w(0,5 +0(A(2)))

w(0,§+O'(A(i‘-I-iL)))‘. (55)

If 7(d) is given by d = /7|log 7|, then

2

maﬁd—)().

logT ~ 2logd and 7 ~

gllogrl < Loglo8dl if |d| < dy for some do > 0. Combining this

with (48) and (45), we have for all || < hy for some hy > 0,

Therefore,

e $1/(5+ o(A(#)) e~ 553760 < CdE|log |3+ F < CJR| |log || 3+
210 < Cd|log d**% < C|h| log |h|[3+C,

326

(56)
where d = |A(Z) — A(Z + h)|. Take hg = min(hy, ha, hs, hs). Combining
(53), (54), (52), (56) and (45) gives the regularity estimate for ¢. Combining

(55), (51) and (56) gives the regularity estimate for o and closes the proof
of Proposition 3. |
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5 Connection with a chemotaxis problem

We would like to mention connections between the ideas of this paper and
the chemotaxis problem of Betterton and Brenner [2]. Chemotaxis refers
to the movement of bacteria under a gradient of some chemical substance.
Under special conditions, bacteria excrete a substance to attract neighboring
individuals. This way, bacteria aggregate and their density blows up in finite
time 7" > 0. For simplicity, we assume that the cellular division is much
slower than the dynamics of chemotaxis, and that the diffusion of bacteria
is much slower than the diffusion of the attractant. Therefore, we have from
[2] the equations satisfied by p, the bacterial density and ¢, the chemical
attractant concentration:

g—g =Ap—V.(pVc) = Ap+p* — Vp.Ve

0 =Ac+p. (57)

Many blow-up regimes are possible, depending on the relative importance of
the three terms in the right hand side of (57). A global picture is presented
by Brenner et. alin [3], in the case of radial solutions. One of those regimes
has the same scaling /(T — t)|log(T — t)| as equation (1) with p = 2 (see
section 4.3 in [3]).

In an experiment conducted by Budrene and Berg [6, 7], (see also Bren-
ner, Levitov and Budrene [4]), it appears clearly that the dynamics are 3
dimensional and not radial. The authors observe two regimes in this finite
time blow-up:

- The transient regime, for ¢t < ¢; for some ¢; < T. The bacteria ag-
gregate along cylindrical structures that shrink towards their common
axis, as time grows. This suggests that the axis of the cylinder would
be the singular set.

- The asymptotic regime: The cylinder is destabilized at time ¢ = ¢,
and breaks up into spherical aggregates. Then, the three dimensions of
the sphere shrink simultaneously, leading to isolated blow-up points.

Although the chemotaxis equation is non local, it has the same one dimen-
sional scaling as the heat equation (1). Both equations deal with blow-up
on a continuum (say on a line) and share the idea of the instability of such
a behavior (only single point blow-up is thought to be generic for equation
(1)). However, the goals of the two papers are different. Indeed, while [2]
proves the instability of the blow-up on a line, we prove here that if this
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occurs, which is exceptional, then we have more constraints, hence more
regularity on that line. Although the goals are different, the same idea is
used in both works: how to connect all local singular behavior near singular
points (or candidates for singular points in the case of [2]) to get a global
picture of the situation?

In [2], the destabilization of the cylinder at time ¢; breaks the symmetry
and induces a variation of a “local blow-up time”, or phase. The variation of
the phase along the line is governed by a phase equation. The minimum of
the phase determines the actual blow-up point. In our case, the connection
between local behaviors is done through the dilation o(a), a € S, analogous
to the phase of [2]. The Liouville theorem of [15] cited on page 3 is the key
tool to connect local descriptions. We are unable to find a non trivial phase
equation for o, analogous to that of chemotaxis. However, since o is linked
to the one dimensional scaling of (1), which is also present for chemotaxis,
we believe that if one adopts our point of view in chemotaxis, o would satisfy
a non trivial equation, related to the phase equation of [2]

A Properties of the particular single point blow-
up solution in one dimension

A.1 Existence of the one dimensional solution

We prove here the existence of the particular one dimensional solution an-
nounced on page 4. Take g a symmetric positive continuous function, de-
creasing on (0, 00) and going to zero at infinity. The solution %(z1,t) of (1)
with initial data kg is symmetric and decreasing on (0,00) as well. If & is
large enough, then @(z1,t) blows up in finite-time T, only at the origin (see
Theorems 1 and 2 in Mueller and Weissler [16]). We can assume T = T by
changing @ into some

ix(z1,1) = ATa(Az1, A2t).

Theorem 1 in Herrero and Veldzquez [12] then asserts that @ has the profile
f1 defined in (5). @ is not self-similar, because the only self-similar solutions
of (1) are independent of space, hence trivial (see Theorem 1’ in Giga and
Kohn [11]). |

A.2 Elementary estimates for the one dimensional solution

We prove Lemma, 2.4 here.
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i) Using a Taylor expansion, we write

_ _ 0w 1 ,0%0 1
W(y1,s) = D(0, ) + le—yl(O’s) + §y%a—y2(0a )+ =
1

for some z; € (0,y;). Since ¥ is even, we have g—gﬁ((),s) = 0. Since (22) also

vk O 4C 5 . .
holds in C}} ., we have W(O’ s) < —— for some C > 0. Since Proposition
Y1 s
o O Cs . . .
2.2 implies that |F(Z1’ s)| < 30 e combine all the previous estimates
Y1 S

with the Taylor expansion to get

6C . _ _ C
If (5 > 1, then the proof is complete.
If 6 < 1, then recall that
sup |w(y1,8) — f1 (y_1>‘ — 0 as s — oo, (59)
wil<v5 Vs

since 4 has the profile f; defined in (5). Therefore, there is § > 0 such that
if s> §and 0y/s < |y1| < +/s, then

N 3 1 <1 o |y

00,5) — by, )| 2 3 [710) = 71D = 3 |10 - 15)| 2E

The conclusion then follows from (58) and (60).

(60)

ii) See identity (5.34) on page 854 in Filippas and Kohn.
iii) We know from (59) that

w(y1,s) = f1(0) = (p — 1)71”%1 as 8§ — 00

uniformly on compact sets. Since ||Aw(s)||L~ and ||[V(s)||L~ go to 0 as
s — oo (see Proposition 2.2), we use equation (18) to get

g—i(yl,s) —0as s— o0

uniformly on compact sets. By the Lebesgue Theorem, we obtain
‘ ow
— 0 as s = o0.

L3, ®)

g(s)
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Let us introduce ¢(y1,s) = %(yl, s). From (18), we see that ¢ satisfies an
equation of the same type as (26):

0. ([,—I—oz(yl,s)) q, (61)

where Lg = —2 — §y1 8y1 + ¢ and a(y1, s) = pw(y1,s)P~L. In particular, we
have the same dynamlcal system techniques as for equation (26). Therefore,
we just sketch our argument and borrow techniques from section 2 and from
[9] where the same equation was considered. Since 0 satisfies Proposition 2.2
and (22), « satisfies the estimates of Lemma 2.5. If we borrow the notations
we used for g in section 2 and write

q(y1,8) = D quls)h I(s) = llg()llzz, 5 In(s) = lgn($)l[Pn(yr)llLz
neN
(62)
then we have I(s Z qn ()| ||? 12, and equations i) and ii) in Lemma
neN

2.6 hold. Let us remark that
C
I(s) > — for s large, where C' > 0. (63)
s
Indeed, I(s) > \q2(é>’)|||hz|\L;z)1 and by definition (see (31) and (32)),

K
2

w(s) = [ Ge s )kalun)or ) = wi(s) ~ -

(64)

as mentioned in ii) of the lemma we are proving.
Like for equation (26), Lemma 2.7 holds and either no mode dominates in
I(s) or I(s) ~l,(s) as s = oo for some n > 2. We claim that

I(s) ~ l3(s) as s — oo.

Indeed, if no mode dominates or if I(s) ~ I,(s) with n > 3, then Lemmas
2.6 and 2.7 imply that I(s) has to decay exponentially fast. Contradiction
with (63).

Using (64), we see that

I(s) ~ Ia(s) = 2V2|qa(s)| ~ gp% as s — oo. (65)
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Our conclusion follows if we prove that

la(0n,5) = x(Malin) iz, =0 (5. (66)

Indeed, parabolic regularity implies that (66) also holds in LY, in particular,
at Yy = 0:

ow K
55 (0:8) = 4(0,5) ~ g2(s)h2(0) ~ Tope? BT
which is the desired conclusion (note that hy(0) = —2, by (31)). Let us
prove (66).
Proof of (66): From (62), we see that
lg = a2()ha ()73, = coqo(s)* + crqn(s)* + Is(s)*, (67)

where [3 = ||7r3q||L%1 and m3q = Z dn(8)hn(y1)- Using i) of Lemma 2.6 with
n=3

n = 0 or 1, along with (65), we see that |l’n(s) +(2-1) ln(s)| < 5% which

yields

In(s) :O(i> as s > 0 forn=0or 1 (68)

$3
If we project (61) using 73, we see that
0sm3q = Lm3q + m3(aq).

Multiplying this equation by m3gp1(y1) and integrating over R, we see that
1d

1
5@@ = /£W3Q-7T3qmdy1 +/7T3(04(1)7T3(JP1dy1 < —§l§+/7f3(049)7f3qmdy1

because 73 is the projector over the negative part of the spectrum. Using
Cauchy-Schwartz’s inequality twice, we write

| m3(aq)msgprdys| < lIms(eq)llez Imsqlles,
< ||ozq||Ll2]1l3 (because 73 is a projector)

< llallza, lallzs, 1a-

Therefore,

1
1< — s+ llad g, lallzg, - (69)
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=C

Using Proposition 2.5, we see that ||04||L§1 < %H(l + y%)HLﬁl = <. Equation

(61) has a nice property of control of the Lﬁl norm by the L,%l norm up to
some delay in time (see Lemma 2.3 in [12]):

1/4 1/2
(/ q(y1,8)4pldy1> <C (/ q(y1,s — 8*)2p1dy1>

for some s, > 0. Using (65), we end-up with ||q||Lé1 < s% Therefore, (69)

becomes
1 C
!
Iy < _513 + 3
which yields
1
I3(s)=0 (3—3) as s — oo. (70)

Thus, (66) follows from (67), (68) and (70). This concludes the proof of
Lemma 2.4. [ |

B Projection of equation (26) on the different modes

We prove in this appendix various technical lemmas from Section 2. In
subsection B.1, we prove part iii) of Lemma 2.6. We prove Lemma 2.8 and
Lemma 2.11 in subsection B.2. Subsection B.3 is devoted to the proof of
Lemma 2.9.

B.1 Equation on the null mode

We prove iii) of Lemma 2.6 here. Take 8 € NV such that || = 2. If we
multiply (26) by ks(y)p(y) and integrate over RY, then we get from (34)
and (33)

gs(s) = / agkgpdy.

Using (36) and Cauchy-Schwartz’s inequality, we write for all a € Ss, |o] <
oo and s > —logT + oy,

95+ 45 [ ha(y)gkspdy] < <55 [(1+ |y*)lgllkslpdy
C
< SO +1yP)Eslngllglls = SR ().
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Using (35), (30), (32) and (33), we write

/ ha(y1)g(y, 5)ks (4)p(y)dy
= Y g(s /h2 y1)hy (y) ks (y)p(y)dy
yeNN
= Y g / ha(y1) by, (y1)ks, (y1) o1 (v dy1H / hoyi kg p1(yi) dys
~ENN
= 3 0.06) [ malon)hn, )k o) T[ e
yENN i=2

Because of the orthogonality relation (33) and symmetry, the above term is
zero except when for all i =2,..., N, v, = §; and |y1 — f1| =0 or 2.

If v = 3, then the term is gg(s f ha(y1)hg, (y1)ks, (y1)p1(y1)dyr = 4B19s(s)
after straightforward calculatlons based on (31) and (33), performed for
B1=0,1o0r2.

Ify = 8+(2,0...,0), then the term is |gv(s) thhﬁlinglpldyl‘ = Clgy(9)] <
C (lp + l4) by (35). This concludes the proof of iii) in Lemma 2.6.

B.2 Uniform smallness of the positive modes

We prove Lemmas 2.8 and Lemma 2.11 here.

Proof of Lemma 2.8: If we take n = 0 in i) and ii) in Lemma 2.6, then
we see that x = e %ly(s) and y = e 5I(s) satisfy inequality (41) in the
ODE lemma 2.11. Therefore, either (42) or (43) holds. Let us assume by
contradiction that (43) holds. Then, we see that I(s) ~lp > 0 as s — 0.
Using i) of Lemma 2.6 with n = 0, we see that [y and I go to infinity.
Contradiction. Thus (42) holds and we get the estimate for [;. We do the
same for I; and I, using Lemma 2.11 with £ = e"2l; and y = e~ 21. This
closes the proof of Lemma 2.8. Remains to prove Lemma 2.11. |

Proof of Lemma 2.11: This lemma was proved in [9] with no attention
to the dependence of the conclusion on the data. We have proved there that

eithersz(%) orz~y>0ass— oo, (71)

with no uniform estimates. Let us prove the uniform version.

Define s(M, §) > § such that

SM M 35
> - — > 0.
Vs > 3, 5a + ") (5 5 M) >0 (72)
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If (42) doesn’t hold, then there is § > s such that v(5) > 0 where ~y(s) =
z(s) — %y(s) ($§ may depend on z and y). Using (41) and (72), we get
M M 35 SM oM
>35 > 4+ 5= = > i
Vs_s,’y_y(28+82<5 2M>)

o BM
Therefore, y(s) >v(3) () 2 >0 and

s

Vs >3, z(s) > %y(s) (73)

In particular, y > = > 0 and we can write from (41) the following equation
for all s > 3,

/
T M T 1z T 2M 1z T
Vs> (2) > 1+ +:2a-H>- 24205, (4
(y) s( y) 2y( y) s 2y( y) (74)
The proof will be completed if we rule out the first possibility in (71). We
proceed by contradiction. If z = O (£), then we have from (73) and (74),

z\’ oM  5M 5M M 25M?
y Z_TJ“%“__):__

Yy s 2s 452

for s large. This implies that £ — oo as s — 0o. Contradiction with z < y.
Thus, only the second case in Z? 1) holds and Lemma 2.11 as well as Lemma
2.8 are proved. |

B.3 Decay of the null mode

We prove Lemma 2.9 here. We use equation iii) in Lemma 2.6. We need
to estimate the error terms there. Let s3(0g) = max (—logT + o, s1(0p))
where s1(0g) is defined in Lemma 2.8. Consider some a € S5 and |o| < 0.
According to Lemma 2.8 and (29), we have for all s > s3(0p),

log s and [y < C@ < C(o0)

log s
52 S s3

la(s) < I(s) < C(o0)

(75)

As for the size of l4, we integrate the equation in i) of Lemma 2.6 withn =4
to get Vs > s3,
s I(t
ls(s) < e (57530, (s3) + es/ et¥

s3

dt.

31



Using (75), we see that
5 I(t ¥ ,logt sl
/ et¥dt§C(o—0)/ 8%t < Clog)e’ 22

s3 s3 s3
Therefore,
1
Vs 2 55, la(s) < Cloo) . (76)
Using iii) of Lemma 2.6 along with (75) and (76) yields
51 log s
Vs > 53,98l =2, |gs(s) + —Qﬂ(s) < C(Uo)ﬁ
Since 1 =0, 1 or 2 and |gg(s)| < Cla(s) < CI(s) < C(O’())l(;%s y (75), this
yields the conclusion. |

C Estimates in the intermediate region

We prove Proposition 3.5 here. From (7) and Corollary 3.4, we have in-
formation on u and u — U, (py(q)) at (z,%(d(z,S))), a point on the edge of
the blow-up region. We use this as initial data, and solve the 2 ODEs of
Proposition 2.3 between ¢ and ¢ to get an estimate on v and u — UO-(PS(I))
at (z,t), when ¢ € [,T). For clearness, we work with rescaled versions of u
and 4, defined for all (¢,7) € R? x [~755,1) by:

v(z,€&,7) = (T —t)p-1 m—l—fv t,t+7(T
(z,&,7) = (T—Z)T o(Ps () d(z,S)+ & VT t+T
($,§,T) —’U—’E,

(77)

where # = #(d(z, S)) is defined in (44) and goes to T as d(x,S) — 0.

We start with initial data at 7 = 0 for v, © and h (which corresponds to
information on w at time ¢, i.e. at the frontier between the blow-up and
the intermediate regions). We see from Corollary 3.4 and (7) that there is
€1 > 0 such that if |z — a| < 0 and d(z, S) < €, then

e 00 log og(T — 1)
{(,0,0) A0l <02 -

|h(z,0,0)] <C(T ) | log(T — £)|3/2+Co
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As rescaled versions, v and ¥ are still solutions of the PDE (1). However, it
is easier to work with the localizing ODE given in Proposition 2.3: for all
e>0and (z,t) e RN x [2,7),

0pu — |ulP~ | < elufP + Ce, |04 — |a|P~ | < el + Ce,

where C, denotes hereafter a constant depending only on e. Since o(a) is
continuous in terms of a (see Proposition 2.1), we see from the definition of
@i, (10) that for all @ € S5 and (z,t) € RN x [T —e 7L T)

|04t () — |iio(a)|P ™ ip(a)] < €lii(a)l? + Ce
Using (77), we get for all e > 0, z € B(a,d) and 7 € [0,1),

10:0(z,0,7) — [vP~1v| < €e|vfP + C(T — £)7-1
|8,5(x,0,7) — |5[P15| < €|BP + C(T — )71 (79)

~ _P

|0-h(,0,7) — plo[P~ | < € ([v]P + [9]P) + Ce(T — )77

s

for some v € [v,?]. Since the solution of

vo =5, vo(0) = f(1)

1

is vo(r) = (% +(p-1)(1- 7')) P! " a bounded function for all 7 €
[0, 1], we use the continuity of ODE solutions with respect to initial data to

get

sup |v(z,0,7) —vo(7)| + |0(z,0,7) —vo(7)] = 0 as d(z,S) — 0
T€[0,1)

and

sup |h(z,0,7)| < Clh(z,0,0)]
T€[0,1)

whenever d(z,S) < ¢ for some ¢y > 0. Therefore, we get from (77) and

(78):

sup |U($,t) — lg(pg(z)) (d(, ), t)| <C(T - f)%—pfll‘ log(T — f)|%+00_
i<t<T

Since d(z, S) > /(T —t)|log(T — t)| whenever ¢ >t (see (44)) and
(T — )27 51| log(T — )| 2700 ~ Cd(, )}~ 51| log d(=, §)| 7170

as d(z,S) — 0 (see (44)), this concludes the proof of Proposition 3.5. [ |

33



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

A. J. Bernoff, A. L. Bertozzi, and T. P. Witelski. Axisymmetric surface
diffusion: dynamics and stability of self-similar pinchoff. J. Statist.
Phys., 93(3-4):725-776, 1998.

M. D. Betterton and M. P. Brenner. Collapsing bacterial cylinders.
preprint.

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and
S. C. Venkataramani. Diffusion, attraction and collapse. Nonlinear-
ity, 12(4):1071-1098, 1999.

M.P. Brenner, L. Levitov, and E.O. Budrene. Physical mechanisms for
chemotactic pattern formation by bacteria. Biophys. J., 74:1677-1693,
1995.

J. Bricmont and A. Kupiainen. Universality in blow-up for nonlinear
heat equations. Nonlinearity, 7(2):539-575, 1994.

E.O. Budrene and H.C. Berg. Complex patterns formed by motiile cells
of escherichia coli. Nature, 349:630-633, 1991.

E.O. Budrene and H.C. Berg. Dynamics of formation of symmetrical
patterns by chemotactic bacteria. Nature, 376:49-53, 1995.

C. Fermanian Kammerer, F. Merle, and H. Zaag. Stability of the blow-
up profile of non-linear heat equations from the dynamical system point
of view. Math. Annalen, 317(2):195-237, 2000.

C. Fermanian Kammerer and H. Zaag. Boundedness up to blow-up
of the difference between two solutions to a semilinear heat equation.
Nonlinearity, 13(4):1189-1216, 2000.

S. Filippas and R. V. Kohn. Refined asymptotics for the blowup of
uy — Au = uP. Comm. Pure Appl. Math., 45(7):821-869, 1992.

Y. Giga and R. V. Kohn. Asymptotically self-similar blow-up of semi-
linear heat equations. Comm. Pure Appl. Math., 38(3):297-319, 1985.

M. A. Herrero and J. J. L. Veldzquez. Blow-up behaviour of one-
dimensional semilinear parabolic equations. Ann. Inst. H. Poincaré

Anal. Non Linéaire, 10(2):131-189, 1993.

34



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

F. Merle and H. Zaag. Optimal estimates for blowup rate and behavior
for nonlinear heat equations. Comm. Pure Appl. Math., 51(2):139-196,
1998.

F. Merle and H. Zaag. Refined uniform estimates at blow-up and appli-
cations for nonlinear heat equations. Geom. Funct. Anal., 8(6):1043—
1085, 1998.

F. Merle and H. Zaag. A Liouville theorem for vector-valued nonlinear
heat equations and applications. Math. Annalen, 316(1):103-137, 2000.

C. E. Mueller and F. B. Weissler. Single point blow-up for a general
semilinear heat equation. Indiana Univ. Math. J., 34(4):881-913, 1985.

H. Segur and M. D. Kruskal. Nonexistence of small-amplitude breather
solutions in ¢* theory. Phys. Rev. Lett., 58(8):747-750, 1987.

K. Stewartson and J. T. Stuart. A non-linear instability theory for a
wave system in plane Poiseuille flow. J. Fluid Mech., 48:529-545, 1971.

J. J. L. Velazquez. Higher-dimensional blow up for semilinear parabolic
equations. Comm. Partial Differential Equations, 17(9-10):1567-1596,
1992.

M. J. Ward. Topics in singular perturbations and hybrid asymptotic-
numerical methods. In ICIAM 95 (Hamburg, 1995), pages 435-462.
Akademie Verlag, Berlin, 1996.

F. B. Weissler. Single point blow-up for a semilinear initial value prob-
lem. J. Differential Equations, 55(2):204-224, 1984.

H. Zaag. Regularity of the blow-up set and singular behavior for semilin-
ear heat equations. In Proceedings of the third international Palestinian
conference on math and math education, Beitlehem, august 2000.

H. Zaag. On the regularity of the blow-up set for semilinear heat equa-
tions. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2001. to appear.

Address:
Courant Institute, NYU, 251 Mercer Street, NY 10012, New York.
e-mail: Hatem.Zaag@ens.fr

Current address:
Ecole Normale Supérieure, Département de mathématiques et applications,
CNRS UMR 8553, 45 rue d’Ulm, 75005 Paris, France.

35



