A remark on the energy blow-up behavior for nonlinear heat equations

Hatem Zaag
CNRS École Normale Supérieure

1 Introduction

We are concerned with finite time blow-up for the following nonlinear heat equation:

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u & \text{in } \Omega \times [0, T) \\ u = 0 & \text{on } \partial\Omega \times [0, T) \end{cases}$$
 (1)

with $u(x, 0) = u_0(x)$,

where $u: \Omega \times [0,T) \to \mathbb{R}$, Ω is a $C^{2,\alpha}$ convex bounded domain of \mathbb{R}^N , $u_0 \in L^{\infty}(\Omega)$. We assume that the following condition holds:

$$1 < p, (N-2)p < N+2 \text{ and } \left(u_0 \ge 0 \text{ or } p < \frac{3N+8}{3N-4}\right).$$
 (2)

Therefore, p+1 > N(p-1)/2 and the (local in time) Cauchy problem for (1) can be solved in $L^{p+1}(\Omega)$ (see for instance Weissler [19], Theorem 3). If the maximum existence time T > 0 is finite, then u(t) is said to blow-up in finite time and in this case

$$\lim_{t \to T} \|u(t)\|_{L^{p+1}(\Omega)} = \lim_{t \to T} \|u(t)\|_{L^{\infty}(\Omega)} = +\infty$$
 (3)

(see Corollary 3.2 in [19]). We consider such a blow-up solution u(t) in the following.

From the regularizing effect of the Laplacian, $u(t) \in L^{\infty} \cap H_0^1(\Omega)$ for all $t \in (0,T)$. We take $||u||_{H_0^1(\Omega)}^2 = \int_{\Omega} |\nabla u|^2 dx$. Using the Sobolev embedding and the fact that p is subcritical $(p < \frac{N+2}{N-2})$ if $N \ge 3$, we see that $H_0^1(\Omega) \subset L^{p+1}(\Omega)$. Therefore, (3) implies that

$$\lim_{t\to T}\|u(t)\|_{H^1_0(\Omega)}=+\infty.$$

 $a \in \Omega$ is called a blow-up point of u if there exists $(a_n, t_n) \to (a, T)$ such that $|u(a_n, t_n)| \to +\infty$. The set of all blow-up points of u(t) is called the blow-up set and denoted by S. From Giga and Kohn [6] (Theorem 5.3), there are no blow-up points in $\partial\Omega$. Therefore, we see from (3) and the boundedness of Ω that S is not empty.

Many papers are concerned with the Cauchy problem for equation (1) (see for instance [19]) or the problem of finding sufficient blow-up conditions on the initial data (see Ball [2], Levine [10],...). Other papers focus on the description of the blow-up set or the asymptotic behavior of u near blow-up points (Giga and Kohn [8], [7], [6], Herrero and Velázquez [9], [16], [18], [17], Merle and Zaag [13], [14], [15], [12],...). Let us mention for instance the following Liouville Theorem for equation (1) recently proved in [12] and which has many interesting consequences for the study of the blow-up behavior of solutions to (1) (see Fermanian, Merle, Zaag [3], [4], [12]).

Proposition 1 (Merle-Zaag, A Liouville Theorem for equation (1)) Assume that 1 < p and (N-2)p < N+2 and consider U a solution of (1) defined for all $(x,t) \in \mathbb{R}^N \times (-\infty,T)$. Assume in addition that $|U(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}$. Then $U \equiv 0$ or there exist $T_0 \geq T$ and $\epsilon \in \{-1,1\}$ such that $\forall (x,t) \in \mathbb{R}^N \times (-\infty,T)$, $U(x,t) = \epsilon \kappa (T_0-t)^{-\frac{1}{p-1}}$, where $\kappa = (p-1)^{-\frac{1}{p-1}}$.

Remark: Note that this result is valid for all subcritical p with no restrictions for $N \geq 2$. For the reader's convenience, a sketch of the proof is given in Appendix A. For more details, see [12], Corollary 1.

In this paper, we crucially use the Liouville Theorem to study how the Lyapunov functional

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx$$
 (4)

associated with (1) behaves under the nonlinear heat flow. It has been shown by Giga in [5] that under the positivity condition

$$u_0 \geq 0$$
,

we have

$$E(u(t)) \to -\infty \text{ as } t \to T.$$
 (5)

Let us remark that Giga's proof relies on another Liouville Theorem related to equation (1):

Assume p > 1 and p(N-2) < N+2. Then, there is no nonnegative solution for the problem

$$\begin{cases} \Delta u + u^p = 0 \text{ in } \mathbb{R}^N, \\ u(0) > 0. \end{cases}$$

In this paper, we use the new Liouville Theorem stated in Proposition 1 and ideas from [5] to extend the validity of the limit (5) to the more general case (2).

Theorem 2 (Limit of the energy at blow-up) Assume (2). Then, E(u(t)) goes to $-\infty$ as t goes to T.

In Bahri [1], the study of critical points of E is related to the study of those of a functional J associated with E and defined for all $v \in \Sigma$, the unit sphere of $H_0^1(\Omega)$ by

$$J(v) = \sup_{\lambda > 0} E(\lambda v).$$

In other words, J(v) is the supremum of E in the direction of v. Note that J is positive by (4). The following is shown in [1] (Proposition 1):

- (i) $J \in C^2(\Sigma, \mathbb{R})$;
- (ii) For all $v \in \Sigma$, we have $E'(\lambda(v)v) = \lambda(v)^{-1}J'(v)$, where $\lambda(v)$ is the unique positive solution of $J(v) = E(\lambda v)$;
- (iii) There is a one-to-one correspondence between the critical points of J and E by means of the transformation

$$\omega \in \Sigma \to \lambda(\omega)\omega = \omega_1, J(\omega) = E(\omega_1).$$

With this correspondence, Bahri reduces to the study of some topological properties of level sets of J. He shows in particular that the level sets of J have contractibility properties one into another. More precisely (see Lemma 1 in [1]), if we define

$$J_a = \{ v \in \Sigma \mid J(v) \ge a \},\$$

then

for all a > 0, there exists $\mu(a) \ge a$ such that $J(\mu(a))$ is contractible in J(a).

Remark: If $B \subset A$, then B is said to be contractible in A if there is a continuous mapping $\theta(t,.): [0,1] \times B \to A$ such that for all $x \in B$, $\theta(0,x) = x$ and $\theta(0,x) = x_0 \in A$.

Our second concern in this paper is to understand the effect on J of the nonlinear heat flow of equation (1) (composed with the projection over Σ).

In other words, we want to understand the behavior of $J\left(\frac{u(t)}{\|u(t)\|_{H_0^1(\Omega)}}\right)$ as $t \to T$. We claim the following:

Theorem 3 (Blow-up limit of the directional supremum of the energy) The Rayleigh quotient for the solution $||u(t)||_{H_0^1}/||u(t)||_{L^{p+1}}$ goes to $+\infty$ as $t \to T$ and so does

$$J\left(\frac{u(t)}{\|u(t)\|_{H_0^1(\Omega)}}\right) = \sup_{\lambda > 0} E(\lambda u(t)) = \frac{p-1}{2(p+1)} \left(\frac{\|u(t)\|_{H_0^1}}{\|u(t)\|_{L^{p+1}}}\right)^{\frac{2(p+1)}{p-1}}.$$
 (6)

Roughly speaking, one consequence of this Theorem is that the nonlinear heat flow of equation (1) (composed with the projection over Σ) maps any element of a given level set J_a into J_b , for any b > a (Note that this mapping raises the level set of J, in the contrary of the contractibility result of [1] which lowers the value of J).

Another consequence of Theorem 3 is that E(u(t)) can not tend to $-\infty$ "radially". More precisely,

Corollary 4 We can not have $u(.,t) \sim \lambda(t)\varphi$ in $H_0^1(\Omega)$ as $t \to T$.

Indeed, if is was the case, then $J\left(\frac{u(t)}{\|u(t)\|_{H_0^1(\Omega)}}\right) \sim J\left(\frac{\varphi}{\|\varphi\|_{H_0^1(\Omega)}}\right)$ as $t \to T$ since J is continuous. This contradicts Theorem 3.

In [1] (Proposition 2), it is shown that J satisfies the following property :

 $\forall (u_n); u_n \in \Sigma; u_n \text{ goes weakly to zero in } H_0^1(\Omega) \Leftrightarrow J(u_n) \to +\infty.$

Therefore, Theorem 3 is equivalent to the following:

Proposition 5 $\frac{u(t)}{\|u(t)\|_{H^1_0(\Omega)}}$ goes to 0 as $t \to T$, weakly in $H^1_0(\Omega)$.

The paper is organized as follows. In Section 2, we use the Liouville Theorem of [12] and prove Theorem 2. In Section 3, we use results from [7] and some consequences of the Liouville Theorem to prove Proposition 5 and Theorem 3.

2 Energy blow-up behavior

We prove Theorem 2 in this section. We proceed in two Parts. We recall some results from [7] and [12] for blow-up solutions of (1) in the first Part. Then, the proof of Theorem 2 is presented in the second Part.

Part 1: L^{∞} estimates for Blow-up solutions of (1)

The following uniform L^{∞} bound for blow-up solutions of (1) is proved in [12] (Theorem 2).

Proposition 2.1 (Giga-Kohn, A uniform L^{∞} bound on u(t) at blow-up) There exists $C_0 > 0$ such that

$$\forall t \in [0, T), \ \|u(t)\|_{L^{\infty}} \le C_0 (T - t)^{-\frac{1}{p-1}}. \tag{7}$$

In the following Proposition, we derive the existence of a blow-up profile for u(t).

Proposition 2.2 (Existence of the blow-up profile) There exists $u^*(x)$ defined on $\Omega \setminus S$ such that

$$u^*\in L^\infty_{loc}(\Omega\backslash S),$$

 $u(t) \rightarrow u^*$ uniformly on each compact set of $\Omega \backslash S$ as $t \rightarrow T$.

Proof: See Merle [11] for example.

In [12] (Proposition 4), Merle and Zaag generalize a result by Velázquez (see [18], [17] and [16]), and prove the following result on the size of the blow-up set S.

Proposition 2.3 (Size of the blow-up set) S is compact and the (N-1)-Hausdorff measure of S is finite.

Remark: Since $u_0 \in L^{\infty}(\Omega)$, $u(t) \in L^{\infty} \cap H_0^1(\Omega)$ for all t > 0, from the regularizing effect of the Laplacian. Therefore, Proposition 4 of [12] applies.

Part 2: Proof of Theorem 2

Our proof relies strongly on the Liouville Theorem presented in Proposition 1. We proceed by contradiction. Since E(u(t)) is decreasing in time, it goes to some finite $A \in \mathbb{R}$ as $t \to T$. Therefore, multiplying (1) by $\frac{\partial u}{\partial t}$ and integrating over $\Omega \times [0, T)$, we get

$$\int_{0}^{T} dt \int_{\Omega} dx \left| \frac{\partial u}{\partial t}(x, t) \right|^{2} = E(u_{0}) - A \equiv B < +\infty.$$
 (8)

In a first Step, we will use a compactness procedure to derive a solution of (1) which satisfies the hypotheses of the Liouville Theorem (Proposition 1). In a second Step, we apply Proposition 1 on one hand and use (8) with scaling arguments on the other hand to get a contradiction.

Step 1: A compactness procedure

Let us consider $a \in \Omega$ a blow-up point of u(t) and any sequence $t_k \to T$ as $k \to +\infty$.

From the uniform blow-up bound of Proposition 2.1 and Giga and Kohn [6], we know that

$$u(a, t_k) \sim \epsilon \kappa (T - t_k)^{-\frac{1}{p-1}} \text{ as } k \to +\infty$$
 (9)

where $\epsilon \in \{-1,1\}$. We can assume $\epsilon = 1$ from the sign invariance of (1). For each $k \in \mathbb{N}$, we define for all $\xi \in (\Omega - a)(T - t_k)^{-\frac{1}{2}}$ and $\tau \in (-\frac{t_k}{T - t_k}, 1)$

$$v_k(\xi,\tau) = (T - t_k)^{\frac{1}{p-1}} u(a + \xi \sqrt{T - t_k}, t_k + \tau (T - t_k)).$$
 (10)

From (1), (7) and (9), we see that v_k satisfies for all $\xi \in (\Omega - a)(T - t_k)^{-\frac{1}{2}}$ and $\tau \in (-\frac{t_k}{T - t_k}, 1)$

$$\frac{\partial v_k}{\partial \tau} = \Delta v_k + |v_k|^{p-1} v_k, \ |v_k(\xi, \tau)| \le C_0 (1 - \tau)^{-\frac{1}{p-1}} \text{ and } v_k(0, 0) \to \kappa$$

as $k \to +\infty$

Since $a \notin \partial \Omega$ and $t_k \to T$ as $k \to +\infty$, v_k is defined (at least) for all $(\xi, \tau) \in D_n$, for all $n \in \mathbb{N}^*$ and $k \ge k_0(n)$, where $D_n = \bar{B}(0, n) \times [-n, 1 - \frac{1}{n}]$. Moreover, it satisfies $||v_k||_{L^{\infty}(D_n)} \le C_0 n^{\frac{1}{p-1}}$. Using parabolic regularity for equation (1) in $D_{n+1} \supset D_n$, we obtain $||v_k||_{C^{2,1}_{\alpha}(D_n)} \le C(n)$, for all $n \in \mathbb{N}^*$ and $k \ge k_0(n+1)$, where

$$||h||_{C_{\alpha}^{2,1}(D)} = ||h||_{C_{\alpha}(D)} + ||\nabla h||_{C_{\alpha}(D)} + ||\nabla^{2}h||_{C_{\alpha}(D)} + ||\partial_{\tau}h||_{C_{\alpha}(D)},$$

$$||h||_{C_{\alpha}(D)} = ||h||_{L^{\infty}(D)} + \sup_{(\xi,\tau),(\xi',\tau')\in D} \frac{|h(\xi,\tau) - h(\xi',\tau')|}{(|\xi - \xi'|^{2} + |\tau - \tau'|)^{\alpha/2}}$$

$$(11)$$

and $\alpha \in (0,1)$. Using the compactness of the embedding of $C_{\alpha}(D_n)$ into $C(D_n)$, we find $v(\xi,\tau)$ a solution of (1) defined for all $(\xi,\tau) \in \mathbb{R}^N \times (-\infty,1)$ and satisfying $v_k \to v$ in $C_{loc}^{2,1}(\mathbb{R}^N \times (-\infty,1))$ (up to a subsequence), $\forall (\xi,\tau) \in \mathbb{R}^N \times (-\infty,1)$,

$$\frac{\partial v}{\partial \tau} = \Delta v + |v|^{p-1}v, \ |v(\xi, \tau)| \le C_0 (1 - \tau)^{-\frac{1}{p-1}} \text{ and } v(0, 0) = \kappa.$$
 (12)

Step 2: Conclusion of the proof of Theorem 2

From the Liouville Theorem of Proposition 1, (12) yields

$$\forall (\xi, \tau) \in \mathbb{R}^N \times (-\infty, 1), \ v(\xi, \tau) = \kappa (1 - \tau)^{-\frac{1}{p-1}}. \tag{13}$$

From the convergence of v_k , we have for all R > 0,

From the convergence of
$$v_k$$
, we have for all $R > 0$,
$$\int_{-R}^{0} d\tau \int_{B(0,R)} d\xi \left| \frac{\partial v}{\partial \tau}(\xi,\tau) \right|^{2} = \lim_{k \to +\infty} \int_{-R}^{0} d\tau \int_{B(0,R)} d\xi \left| \frac{\partial v_k}{\partial \tau}(\xi,\tau) \right|^{2}.$$

From (10), (8) and scaling argument, we easily compute

$$\int_{-R}^{0} d\tau \int_{B(0,R)} d\xi \left| \frac{\partial v_k}{\partial \tau}(\xi,\tau) \right|^2$$

$$= (T - t_k)^{\beta} \int_{t_k - R(T - t_k)}^{t_k} dt \int_{B(a, R\sqrt{T - t_k})} dx \left| \frac{\partial u}{\partial t}(x, t) \right|^2$$

$$\leq (T-t_k)^{\beta} \int_0^T dt \int_{\Omega} dx \left| \frac{\partial u}{\partial t}(x,t) \right|^2 \leq B(T-t_k)^{\beta}$$
 where

$$\beta = \frac{p+1}{p-1} - \frac{N}{2} > 0$$

since p is subcritical.

Therefore, $\int_{-R}^{0} d\tau \int_{B(0,R)} d\xi \left| \frac{\partial v_k}{\partial \tau}(\xi,\tau) \right|^2 \to 0 \text{ as } k \to +\infty \text{ and so}$

$$\forall R > 0, \quad \int_{-R}^{0} d\tau \int_{B(0,R)} d\xi \left| \frac{\partial v}{\partial \tau}(\xi, \tau) \right|^{2} = 0. \tag{14}$$

A contradiction follows from (13) and (14), and Theorem 2 is proved.

3 Blow-up behavior of the directional maximum of the energy

We prove Proposition 5 and Theorem 3 in this section. As stated in the introduction, Theorem 3 is a direct consequence of Proposition 5, thanks to a result of [1] (Proposition 2). Since this fact can be proved in a simple and short way, we present a proof of it in the following.

Proposition 5 implies Theorem 3:

Since p is subcritical, we have $p+1 < 2^* = \frac{2N}{N-2}$ whenever $N \ge 3$. Hence, $H_0^1(\Omega)$ is compactly embedded in $L^{p+1}(\Omega)$. Therefore, assuming Proposition 5, we get

$$\frac{\|u(t)\|_{L^{p+1}}}{\|\nabla u(t)\|_{L^2}} \to 0 \text{ as } t \to T.$$
 (15)

The expression of the Rayleigh quotient given in (6) can be easily checked from (4). Thus, (15) yields Theorem 3.

Now, we use information on the blow-up set S from section 2 to prove Proposition 5.

 $Proof\ of\ Proposition\ 5:$

It is enough to show that for all $\varphi \in C^{\infty}(\Omega)$ with supp $\varphi \subset \subset \Omega$ and for all $\epsilon > 0$, there exists $t_0(\epsilon) < T$ such that for all $t \in [t_0(\epsilon), T)$, we have:

$$\left| \frac{\int_{\Omega} \nabla u(x,t) \cdot \nabla \varphi(x) dx}{\left(\int_{\Omega} |\nabla u(x,t)|^2 dx \right)^{1/2}} \right| \le \epsilon \left(1 + \|\nabla \varphi\|_{L^{\infty}(\Omega)} \right).$$

From Proposition 2.3, we know that S is compact in Ω and that its Lebesgue measure |S|=0. Therefore, we may consider the following open set

$$V_{\epsilon} = \{ x \in \Omega \mid d(x, S) < \delta_{\epsilon} \}$$

where δ_{ϵ} is small enough so that

$$|V_{\epsilon}| \leq \epsilon^2$$
.

We then write

$$\frac{\int_{\Omega} \nabla u(x,t) \cdot \nabla \varphi(x) dx}{\left(\int_{\Omega} |\nabla u(x,t)|^2 dx\right)^{1/2}} = I + II$$

where

$$I = \frac{\int_{V_{\epsilon}} \nabla u(x,t).\nabla \varphi(x) dx}{\left(\int_{\Omega} |\nabla u(x,t)|^2 dx\right)^{1/2}} \text{ and } II = \frac{\int_{\Omega \setminus V_{\epsilon}} \nabla u(x,t).\nabla \varphi(x) dx}{\left(\int_{\Omega} |\nabla u(x,t)|^2 dx\right)^{1/2}}.$$

By Cauchy Schwartz inequality, we have for all $t \in [0, T)$

$$|I| = \left| \frac{\int_{V_{\epsilon}} \nabla u(x,t) \cdot \nabla \varphi(x) dx}{\left(\int_{\Omega} |\nabla u(x,t)|^{2} dx \right)^{1/2}} \right| \leq \frac{\left(\int_{V_{\epsilon}} |\nabla u|^{2} dx \right)^{1/2}}{\left(\int_{\Omega} |\nabla u|^{2} dx \right)^{1/2}} \|\nabla \varphi\|_{L^{\infty}(\Omega)} |V_{\epsilon}|^{1/2}$$

$$\leq \epsilon \|\nabla \varphi\|_{L^{\infty}(\Omega)}. \tag{16}$$

According to Giga and Kohn, no blow-up occurs near he boundary $\partial\Omega$ (see [6], Theorem 5.3). Therefore, using Proposition 2.2 and parabolic regularity, we find $M(\epsilon)>0$ such that

$$\forall x \in \Omega \backslash V_{\epsilon}, \ \forall t \in \left[\frac{T}{2}, T\right), \ |u(x, t)| + |\nabla u(x, t)| \le M(\epsilon).$$

We then write for all $t \geq \frac{T}{2}$,

$$|II| = \left| \frac{\int_{\Omega \setminus V_{\epsilon}} \nabla u(x,t) \cdot \nabla \varphi(x) dx}{\left(\int_{\Omega} |\nabla u(x,t)|^2 dx \right)^{1/2}} \right| \le \frac{M(\epsilon) \|\nabla \varphi\|_{L^{\infty}} |\Omega|}{\left(\int_{\Omega} |\nabla u|^2 dx \right)^{1/2}}.$$

Since $\int_{\Omega} |\nabla u(x,t)|^2 dx \to +\infty$, we may take $t \geq t_1(\epsilon)$ large enough so that

$$|II| \le \epsilon. \tag{17}$$

Combining (16) and (17) yields: $\forall t \geq t_0(\epsilon) \equiv \max\left(t_1(\epsilon), \frac{T}{2}\right)$,

$$\left| \frac{\int_{\Omega} \nabla u(x,t) \cdot \nabla \varphi dx}{\int_{\Omega} |\nabla u(x,t)|^2 dx} \right| \le \epsilon \left(\|\nabla \varphi\|_{L^{\infty}} + 1 \right).$$

This concludes the proof of Proposition 1 and the proof of Theorem 1 also.

A Sketch of the proof of the Liouville Theorem

We give in this appendix a sketch of the proof of Proposition 1. For more details, one can find a complete proof in [12].

Let U be a solution of (1) defined for all $(x,t) \in \mathbb{R}^N \times (-\infty,T)$ and satisfying $|U(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}$. If w(y,s) is defined by the following self-similar change of variables

$$y = \frac{x}{\sqrt{T-t}}, \ s = -\log(T-t), \ w(y,s) = (T-t)^{\frac{1}{p-1}}u(x,t),$$
 (18)

then w satisfies the following equation for all $(y,s) \in \mathbb{R}^N \times \mathbb{R}$:

$$\partial_s w = \Delta w - \frac{1}{2} y \cdot \nabla w - \frac{w}{p-1} + |w|^{p-1} w$$
 (19)

and $||w||_{L^{\infty}(\mathbb{R}^N\times\mathbb{R})} \leq C$. Let us introduce the following Lyapunov functional associated with equation (19)

$$\mathcal{E}(w) = \int_{\mathbb{R}^N} \left(rac{1}{2} |
abla w|^2 + rac{1}{2(p-1)} |w|^2 - rac{1}{p+1} |w|^{p+1}
ight)
ho(y) dy$$

where $\rho(y) = e^{-|y|^2/4}/(4\pi)^{N/2}$.

With the change of variables (18), Proposition 1 is equivalent to the following:

Proposition A.1 Assume that 1 < p and (N-2)p < N+2. Consider w a solution of (19) defined for all $(y,s) \in \mathbb{R}^N \times \mathbb{R}$ and satisfying $\|w\|_{L^{\infty}(\mathbb{R}^N \times \mathbb{R})} \le C$. Then either $w \equiv 0$ or $w \equiv \epsilon \kappa$ or for all $(y,s) \in \mathbb{R}^N \times \mathbb{R}$, $w(y,s) = \epsilon \varphi(s-s_0)$ where $\kappa = (p-1)^{-\frac{1}{p-1}}$, $\epsilon \in \{-1,1\}$ and $\varphi(s) = \kappa(1+e^s)^{-\frac{1}{p-1}}$ is a solution of

$$\varphi' = -\frac{\varphi}{p-1} + \varphi^p, \ \varphi(-\infty) = \kappa, \ \varphi(+\infty) = 0.$$
 (20)

Therefore, we reduce to the proof of Proposition A.1.

We proceed in 3 Parts:

- In Part I, we use the monotonicity of $s \mapsto \mathcal{E}(w(s))$ to show that w(.,s) has limits $w_{\pm\infty}$ as $s \to \pm \infty$ (in $L^2_{\rho}(\mathbb{R}^N)$ and $C^k_{\text{loc}}(\mathbb{R}^N)$) which are stationary solutions of (19). From [8], we know that either $w_{\pm\infty} \equiv 0$ or $w_{\pm\infty} \equiv \epsilon \kappa$ where $\epsilon = \pm 1$. We focus then on the non trivial case $(w_{-\infty}, w_{+\infty}) = (\kappa, 0)$.
- In Part II, we linearize (19) around the constant solution κ as $s \to -\infty$ and show that w behaves in 3 possible ways.
- In Part III, we show that one of these 3 ways corresponds to the case $w(y,s)=\varphi(s-s_0)$ where φ is defined in (20). In the two other cases, we show that w satisfies a finite-time blow-up criterion for (19), which contradicts the fact that w is defined for all $(y,s) \in \mathbb{R}^N \times \mathbb{R}$ and $\|w\|_{L^{\infty}(\mathbb{R}^N \times \mathbb{R})} \leq C < +\infty$. Thus, we rule out these two cases.

Part I : Existence of limits for w as $s \to \pm \infty$

We have the following:

Lemma A.2 As $s \to +\infty$, $w(.,s) \to w_{+\infty}$ in $H^1_{\rho}(\mathbb{R}^N)$ and $C^k_{\text{loc}}(\mathbb{R}^N)$ for all $k \in \mathbb{N}$, where either $w_{+\infty} = 0$ or $w_{+\infty} = \epsilon \kappa$ with $\epsilon = \pm 1$. An analogous statement holds for the limit as $s \to -\infty$.

Sketch of the proof: For a complete proof, see Proposition 2.2 in [12] and Step 1 in section 3 in [14].

Since $||w||_{L^{\infty}(\mathbb{R}^N \times \mathbb{R})} \leq C$, parabolic regularity applied to equation (19) implies that for all R > 0, $||w||_{C^{2,1}_{\alpha}(B(0,R) \times [-R,R])} \leq M(R)$ where $||a||_{C^{2,1}_{\alpha}(D)}$ is defined in (11). Using the compactness of the embedding of $C_{\alpha}(D)$ in C(D) and considering subsequences $w_j(y,s) = w(y,s+s_j)$ where $s_j \to +\infty$, the following identity

$$\forall s_1, s_2 \in \mathbb{R}, \quad \int_{s_1}^{s_2} \int_{\mathbb{R}^N} |\partial_s w(y, s)|^2 \rho(y) dy ds = \mathcal{E}(w(s_1)) - \mathcal{E}(w(s_2)) \tag{21}$$

allows us to find $w_{+\infty}(y)$, a stationary solution of (19) such that $w(.,s) \to w_{+\infty}$ as $s \to +\infty$ in $C^2_{\text{loc}}(\mathbb{R}^N)$. The conclusion follows from the following result by Giga and Kohn in [8]:

Claim A.3 (Giga-Kohn) If p > 1 and (N-2)p < N+2, then the only stationary solutions of (19) are 0, κ and $-\kappa$.

Letting $s_2 \to +\infty$ and $s_1 \to -\infty$ in (21), we obtain

$$\mathcal{E}(w_{-\infty}) - \mathcal{E}(w_{+\infty}) = \int_{-\infty}^{+\infty} \int_{\mathbb{R}^N} |\partial_s w(y,s)|^2
ho(y) dy ds \geq 0.$$

Therefore, two cases arise:

- Case 1: $\mathcal{E}(w_{-\infty}) \mathcal{E}(w_{+\infty}) = 0$. Therefore, $\partial_s w \equiv 0$ and w is a stationary solution of (19). Claim A.3 implies then that $w \equiv 0$, κ or $-\kappa$. This corresponds to the first cases expected in Proposition A.1.
- Case 2: $\mathcal{E}(w_{-\infty}) \mathcal{E}(w_{+\infty}) > 0$. Since $\mathcal{E}(\kappa) = \mathcal{E}(-\kappa) > 0 = \mathcal{E}(0)$, this implies that $w_{+\infty} \equiv 0$ and $w_{-\infty} \equiv \kappa$ or $-\kappa$. From sign invariance of (19), we reduce to the case

$$(w_{-\infty}, w_{+\infty}) = (\kappa, 0).$$

Part II: Linear behavior of w near κ

We introduce $v = w - \kappa$. From (19), v satisfies the following equation

$$\partial_s v = \mathcal{L}v + f(v) \tag{22}$$

where $|f(v)| \leq C|v|^2$ and $\mathcal{L} = \Delta - \frac{1}{2}y.\nabla + 1$ is a self-adjoint operator on $\mathcal{D}(\mathcal{L}) \subset L^2_{\rho}(\mathbb{R}^N)$ whose spectrum consists of eigenvalues $\{1 - \frac{m}{2} \mid m \in \mathbb{N}\}$. Therefore, we can expand v on the eigenspaces of \mathcal{L} . Since $||v||_{L^{\infty}(\mathbb{R}^N \times \mathbb{R})} \leq C$, we use hard analysis where the key point is the control of the quadratic term in (22), and prove that one of the modes $1, \frac{1}{2}$ or 0 dominates the others as $s \to -\infty$. More precisely, we have the following:

Lemma A.4 As $s \to -\infty$, one of the following cases occur:

- i) (mode $\lambda = 1$): $||w(y,s) {\kappa C_0 e^s}||_{H^1_a(\mathbb{R}^N)} = o(e^s)$ where $C_0 > 0$.
- ii) (mode $\lambda = \frac{1}{2}$): $\|w(y,s) \{\kappa + e^{\frac{s}{2}}C_1.y\}\|_{H^1_{\rho}(\mathbb{R}^N)} = o(e^{\frac{s}{2}})$ where $C_1 \in \mathbb{R}^N \setminus \{0\}$.
- iii) (mode $\lambda = 0$): $\|w(Qy,s) \{\kappa + \frac{\kappa}{2ps} \left(l \frac{1}{2} \sum_{i=1}^{l} y_i^2\right)\}\|_{H^1_{\rho}(\mathbb{R}^N)} = o(\frac{1}{s})$ where Q is an orthonormal $N \times N$ matrix and $l \in \{1, ..., N\}$.

Proof: See Proposition 2.4 in [12] and Propositions 3.5, 3.6, 3.9 and 3.10 in [14].

Part III: Conclusion of the proof

Case 1: mode $\lambda = 1$ dominates, the relevant case

We remark that we already know a solution of (19) which behaves like w as $s \to -\infty$: it is $\varphi(s-s_0)$ where φ satisfies (20) and $s_0 = -\log\left(\frac{C_0(p-1)}{\kappa}\right)$. Therefore, $\|w(y,s)-\varphi(s-s_0)\|_{H^1_\rho(\mathbb{R}^N)} = o(e^s)$ as $s \to -\infty$. Let us prove that in fact

$$w(y,s) = \varphi(s-s_0), \text{ for all } (y,s) \in \mathbb{R}^N \times \mathbb{R}.$$
 (23)

For this, we introduce $V(y,s) = w(y,s) - \varphi(s-s_0)$ which satisfies $\|V(y,s)\|_{H^1_\rho(\mathbb{R}^N)} = o(e^s)$ and show that $V \equiv 0$. See Proposition 2.5 in [12] for more details. Therefore, (23) holds and this gives the last case expected in Proposition A.1.

Case 2 and 3: mode $\lambda = \frac{1}{2}$ or 0 dominates, irrelevant cases

Here we use the invariance of (19) under the following geometric transformation

$$(a_0, s_0) \in \mathbb{R}^N \times \mathbb{R} \mapsto \left(w_{a_0, s_0} : (y, s) \mapsto w(y + a_0 e^{\frac{s}{2}}, s + s_0) \right)$$

and the following blow-up criterion for equation (19):

Lemma A.5 (A blow-up criterion for equation (19)) Consider W a solution of (19) satisfying I(W(0)) > 0 where

$$I(v) = -2\mathcal{E}(v) + rac{p-1}{p+1} \left(\int_{\mathbb{R}^N} |v(y)|^2
ho(y) dy
ight)^{rac{p+1}{2}}.$$

Then, W blows-up in finite time S > 0.

Proof: See Proposition 2.1 in [12].

Using the asymptotic expansions of Lemma A.4, we find $(a_0, s_0) \in \mathbb{R}^N \times \mathbb{R}$ such that $I(w_{a_0,s_0}) > 0$. Therefore, w_{a_0,s_0} blows-up in finite time S > 0. This contradicts the fact that w_{a_0,s_0} is defined for all $(y,s) \in \mathbb{R}^N \times \mathbb{R}$ and satisfies $||w_{a_0,s_0}||_{L^{\infty}(\mathbb{R}^N \times \mathbb{R})} = ||w||_{L^{\infty}(\mathbb{R}^N \times \mathbb{R})} \leq C < +\infty$. Thus, cases 2 and 3 of Lemma A.4 actually do not hold. For more details, see [12], Section 2, Part II, Step 2.

This concludes the sketch of the proof of Propositions A.1 and 1.

Acknowledgment: The author wants to thank Professor Abbas Bahri for his invitation to Rutgers University where this work has been done, and also for fruitful discussions and suggestions about the paper.

References

- [1] Bahri, A., Topological results on a certain class of functionals and application, J. Funct. Anal. 41, 1981, pp. 397-427.
- [2] Ball, J., Remarks on blow-up and nonexistence theorems for non-linear evolution equations, Quart. J. Math. Oxford 28, 1977, pp. 473-486.

- [3] Fermanian Kammerer, C., Merle, F. and Zaag, H., Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, preprint.
- [4] Fermanian Kammerer, C. and Zaag, H., Boundedness till blow-up of the difference between two solutions to the semilinear heat equation, preprint.
- [5] Giga, Y., A bound for global solutions of semilinear heat equations, Comm. Math. Phys. 103, 1986, pp. 415-421.
- [6] Giga, Y., and Kohn, R., Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42, 1989, pp. 845-884.
- [7] Giga, Y., and Kohn, R., Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36, 1987, pp. 1-40.
- [8] Giga, Y., and Kohn, R., Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math. 38, 1985, pp. 297-319.
- [9] Herrero, M.A, and Velázquez, J.J.L., Blow-up behavior of onedimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 1993, pp. 131-189.
- [10] Levine, H., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au + F(u)$, Arch. Rat. Mech. Anal. 51, 1973, p. 371-386.
- [11] Merle, F., Solution of a nonlinear heat equation with arbitrary given blow-up points, Comm. Pure Appl. Math. 45, 1992, pp. 263-300.
- [12] Merle, F., Zaag, H., A Liouville Theorem for vector-valued nonlinear heat equations and applications, Math. Annalen, to appear.
- [13] Merle, F., Zaag, H., Estimations uniformes à l'explosion pour les équations de la chaleur non linéaires et applications, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. XIX, 10 pp., École Polytech., Palaiseau, 1997.
- [14] Merle, F., and Zaag, H., Optimal estimates for blow-up rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51, 1998, pp. 139-196.

- [15] Merle, F., and Zaag, H., Refined uniform estimates at blow-up and applications for nonlinear heat equations, Geom. Funct. Anal., to appear.
- [16] Velázquez, J.J.L., Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc. 338, 1993, pp. 441-464.
- [17] Velázquez, J.J.L., Estimates on the (n-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J. 42, 1993, pp. 445-476.
- [18] Velázquez, J.J.L., *Higher dimensional blow up for semilinear parabolic equations*, Comm. Partial Differential Equations 17, 1992, pp. 1567-1596.
- [19] Weissler, F.B., Local existence and nonexistence for semilinear parabolic equations in L^p , Indiana Univ. Math. J. 29, 1980, pp 79-102.

Address: École Normale Supérieure, Département de Mathématiques et d'Informatique, 45 rue d'Ulm, 75 230 Paris cedex 05, France.

e-mail: Hatem.Zaag@ens.fr