A remark on the energy blow-up behavior for
nonlinear heat equations

_ Hatem Zaag
CNRS FEcole Normale Supérieure

1 Introduction

We are concerned with finite time blow-up for the following nonlinear heat
equation:
u = Au+uflu in  Qx][0,T) 1
u = 0 on 0Q x[0,T) (1)

with u(z,0) = ug(z),
where u : Q x [0,T) — R, Q is a C** convex bounded domain of R,
ug € L*®(2). We assume that the following condition holds :

N
1<p, (N—2)p<N+2and (uOZOOrp<3 +8).

3N — 4 @

Therefore, p+ 1 > N(p —1)/2 and the (local in time) Cauchy problem for
(1) can be solved in LP*1(2) (see for instance Weissler [19], Theorem 3). If
the maximum existence time 7' > 0 is finite, then u(t¢) is said to blow-up in
finite time and in this case

Tim [0(t) 430y = Jim (D) o) = +o0 3
(see Corollary 3.2 in [19]). We consider such a blow-up solution u(t) in the
following.

From the regularizing effect of the Laplacian, u(t) € L™ N H{ () for all

t € (0,T). We take ||u||%11(m = [ |Vul’dz. Using the Sobolev embedding
0

and the fact that p is subcritical (p < {22 if N > 3), we see that H}(Q) C

LPF1(). Therefore, (3) implies that

Jim [[u(@)l| 3 = +oo-



a € ) is called a blow-up point of u if there exists (an,tn) — (a,T) such that
|u(an,tn)| = +00. The set of all blow-up points of u(t) is called the blow-up
set and denoted by S. From Giga and Kohn [6] (Theorem 5.3), there are no
blow-up points in 0€2. Therefore, we see from (3) and the boundedness of
Q that S is not empty.

Many papers are concerned with the Cauchy problem for equation (1) (see
for instance [19]) or the problem of finding sufficient blow-up conditions on
the initial data (see Ball [2], Levine [10],...). Other papers focus on the
description of the blow-up set or the asymptotic behavior of u near blow-up
points (Giga and Kohn [8], [7], [6], Herrero and Veldzquez [9], [16], [18],
[17], Merle and Zaag [13], [14], [15], [12],...). Let us mention for instance
the following Liouville Theorem for equation (1) recently proved in [12]
and which has many interesting consequences for the study of the blow-up
behavior of solutions to (1) (see Fermanian, Merle, Zaag [3], [4], [12]).

Proposition 1 (Merle-Zaag, A Liouville Theorem for equation (1))
Assume that 1 < p and (N —2)p < N + 2 and consider U a solution of (1)
defined for all (z,t) € RN x (—00,T). Assume in addition that |U(z,t)| <
c(T —t)_P+1. Then U = 0 or there exist Ty > T and € € {—1,1} such that
V(z,t) € RN x (—o0,T), U(z,t) = ex(Ty —t)_rll, where Kk = (p — 1)_ﬁ.

Remark : Note that this result is valid for all subcritical p with no restric-

tions for N > 2. For the reader’s convenience, a sketch of the proof is given
in Appendix A. For more details, see [12], Corollary 1.

In this paper, we crucially use the Liouville Theorem to study how the
Lyapunov functional

1 1
B(u) = §/Q|Vu|2dx—m/g|u|p+ldm (4)

associated with (1) behaves under the nonlinear heat flow.
It has been shown by Giga in [5] that under the positivity condition

UOZO,

we have
E(u(t)) » —oc as t — T. (5)

Let us remark that Giga’s proof relies on another Liouville Theorem related
to equation (1) :



Assume p > 1 and p(N —2) < N + 2. Then, there is no nonnegative
solution for the problem

Au+uP =0 in RV,
u(0) > 0.

In this paper, we use the new Liouville Theorem stated in Proposition 1
and ideas from [5] to extend the validity of the limit (5) to the more general
case (2).

Theorem 2 (Limit of the energy at blow-up) Assume (2). Then,
E(u(t)) goes to —oo as t goes to T.

In Bahri [1], the study of critical points of E is related to the study of
those of a functional J associated with £ and defined for all v € 3, the unit
sphere of H}(Q) by

J(v) = sup E(\v).
A>0
In other words, J(v) is the supremum of E in the direction of v. Note that
J is positive by (4). The following is shown in [1] (Proposition 1) :

(i) J € C*(%,R);

(i3) For all v € ¥, we have E'(A(v)v) = A(v) " J'(v), where A(v) is the
unique positive solution of J(v) = E(Av);

(i7i) There is a one-to-one correspondence between the critical points of
J and E by means of the transformation

weEY = MNww=w, J(w)=E(w)-

With this correspondence, Bahri reduces to the study of some topological
properties of level sets of J. He shows in particular that the level sets of J
have contractibility properties one into another. More precisely (see Lemma
1 in [1]), if we define

Jo={vex|Jw)>a},

then

for all a > 0, there ezists p(a) > a such that J(u(a)) is contractible in
J(a).
Remark : If B C A, then B is said to be contractible in A if there is
a continuous mapping 6(¢,.) : [0,1] x B — A such that for all z € B,
0(0,z) = z and 0(0,z) = zo € A.

Our second concern in this paper is to understand the effect on J of the
nonlinear heat flow of equation (1) (composed with the projection over X).



In other words, we want to understand the behavior of J ) ) g
[EIOI[P3AeS

t — T. We claim the following :

Theorem 3 (Blow-up limit of the directional supremum of the
energy) The Rayleigh quotient for the solution ||u(t)||Hé/||u(t)||Lp+1 goes to
+o0o0 ast = T and so does

2(p+1)

U — u(t 1 p—1
J(#) — sup BQw()) = L1 (” ()”HO) . (6)

Ol ) x>0 2(p+1) \ flu(®)llzorr

Roughly speaking, one consequence of this Theorem is that the nonlinear
heat flow of equation (1) (composed with the projection over ¥) maps any
element of a given level set J, into Jp, for any b > a (Note that this mapping
raises the level set of J, in the contrary of the contractibility result of [1]
which lowers the value of J).

Another consequence of Theorem 3 is that E(u(t)) can not tend to —oo
“radially”. More precisely,

Corollary 4 We can not have u(.,t) ~ A(t)p in H () ast — T.

Indeed, if is was the case, then J —u® ) g
[l @)

since J is continuous. This contradicts Theorem 3.

—t— | ast > T
”‘p”Hé(Q)
In [1] (Proposition 2), it is shown that J satisfies the following property :
Y(un); un € B; uy goes weakly to zero in HYH(Y) & J(u,) — +oo.

Therefore, Theorem 3 is equivalent to the following :

Proposition 5 SO - goes to 0 as t — T, weakly in HE(9).
@1 @)

The paper is organized as follows. In Section 2, we use the Liouville
Theorem of [12] and prove Theorem 2. In Section 3, we use results from [7]
and some consequences of the Liouville Theorem to prove Proposition 5 and
Theorem 3.

2 Energy blow-up behavior

We prove Theorem 2 in this section. We proceed in two Parts. We recall
some results from [7] and [12] for blow-up solutions of (1) in the first Part.
Then, the proof of Theorem 2 is presented in the second Part.



Part 1 : L*® estimates for Blow-up solutions of (1)
The following uniform L* bound for blow-up solutions of (1) is proved
in [12] (Theorem 2).

Proposition 2.1 (Giga-Kohn, A uniform L* bound on u(t¢) at blow-
up) There ezists Cy > 0 such that

Wt € [0,T), [lu(t)]lpe < Co(T —#) 751, (7)

In the following Proposition, we derive the existence of a blow-up profile for
u(t).

Proposition 2.2 (Existence of the blow-up profile) There ezists u*(z)
defined on Q\S such that
u* € Lig. (NS),

u(t) = u* uniformly on each compact set of Q\S ast — T.

Proof : See Merle [11] for example. |

In [12] (Proposition 4), Merle and Zaag generalize a result by Veldzquez
(see [18], [17] and [16]), and prove the following result on the size of the
blow-up set S.

Proposition 2.3 (Size of the blow-up set) S is compact and the (N —
1)— Hausdorff measure of S is finite.

Remark : Since ug € L®(Q), u(t) € L® N H(Q) for all ¢t > 0, from the
regularizing effect of the Laplacian. Therefore, Proposition 4 of [12] applies.

Part 2 : Proof of Theorem 2

Our proof relies strongly on the Liouville Theorem presented in Propo-
sition 1. We proceed by contradiction. Since E(u(t)) is decreasing in time,
it goes to some finite A € R as t — T'. Therefore, multiplying (1) by % and
integrating over Q x [0,7), we get

T
/ dt/da:
0 Q

In a first Step, we will use a compactness procedure to derive a solution
of (1) which satisfies the hypotheses of the Liouville Theorem (Proposition
1). In a second Step, we apply Proposition 1 on one hand and use (8) with
scaling arguments on the other hand to get a contradiction.

2

ou
57 (1) = Blu) — A= B < toc. (8)




Step 1 : A compactness procedure
Let us consider a €  a blow-up point of u(¢) and any sequence t — T
as k — +oo.
From the uniform blow-up bound of Proposition 2.1 and Giga and Kohn [6],
we know that )
u(a,tg) ~ ex(T —tg) »-T as k — 400 (9)

where € € {—1,1}. We can assume € = 1 from the sign invariance of (1).
For each k € N, we define for all £ € (2 —a)(T — tk)_% and 7 € (—Y%ktk, 1)

~—

vp(6,7) = (T — tp) 7T u(a + E/T — g, ty + (T — t5)). (10

From (1), (7) and (9), we see that vy satisfies for all ¢ € (Q —a)(T — tk)_%
and 7 € (—-%—, 1)

T Tt
a’U]C -1 __1
5y = A+ [og [P ok, |og(€, )] < Co(1 —7) #-1 and v,(0,0) =
as k — +oo.

Since a ¢ 02 and ¢ty — T as k — 400, vy is defined (at least) for all
(¢,7) € Dy, for all n € N* and k > ko(n), where D,, = B(0,n) x [-n,1— %]
1

Moreover, it satisfies ||vg||ze(p,) < Con?»=T. Using parabolic regularity for
equation (1) in Dy 41 DD D, we obtain ||Uk||02’1(Dn) < C(n), for all n € N*
and k > ko(n + 1), where

1Bl py = [1Pllca () + 1VAllca(n) + IV2hllca(py + 10-hllca(py, (1)
|h(&,7) — (&, T')]|
(&) (emeD ([€ — &2 + |7 — 7/])*?

1Pl (py = lIAllLoe () +

and a € (0,1). Using the compactness of the embedding of Cy(D,,) into
C(D,,), we find v(£,7) a solution of (1) defined for all (¢,7) € RN x (—o0,1)
and satisfying vy, — v in Cfo’cl(]RN x (—00,1)) (up to a subsequence), V(£,7) €
RV x (=00, 1),

ov

= Av + P, |v(E,7)] < Co(1 — T)iﬁ and v(0,0) = k. (12)
.

Step 2 : Conclusion of the proof of Theorem 2
From the Liouville Theorem of Proposition 1, (12) yields

V(E,7) € RY x (—00,1), v(£,7) = #(1 — 1) 5T, (13)



From the convergence of vk, we have for all R > 0,
ka 2

e deB(O,R (f, = hm/ dT/OR 57’ ,T)

om (10), (8) and Scahng argument, we easﬂy compute
2
2 deBOR df (%k(& )‘
ou 2
<(T- tk)ﬂ fo dt fQ d:c Bu (g, t)| < B(T — t,)? where

p+1 N

P=p—1 27"

since p is subcritical.
Therefore, [°, dr [ B(O,R) d¢ | %

VR >0, / dT/
B(OR

A contradiction follows from (13) and (14), and Theorem 2 is proved.

FE(E, )‘ — 0 as k — +o00 and so

2

5,)

(14)

3 Blow-up behavior of the directional maximum
of the energy

We prove Proposition 5 and Theorem 3 in this section. As stated in the
introduction, Theorem 3 is a direct consequence of Proposition 5, thanks to
a result of [1] (Proposition 2). Since this fact can be proved in a simple and
short way, we present a proof of it in the following.

Proposition 5 implies Theorem 3 :

Since p is subcritical, we have p+1 < 2* = whenever N > 3. Hence,

e
H{ () is compactly embedded in LP*1(£2). Therefore, assuming Proposition
5, we get
[[w() |l o1
IVu(®)| L2

The expression of the Rayleigh quotient given in (6) can be easily checked
from (4). Thus, (15) yields Theorem 3.

—0ast—T. (15)

Now, we use information on the blow-up set S from section 2 to prove
Proposition 5.



Proof of Proposition 5 :
It is enough to show that for all ¢ € C*°(Q) with supp ¢ CC Q and for
all € > 0, there exists ¢g(e) < T such that for all ¢ € [to(€),T’), we have:

Jo Vu(z,t).Vo(z)ds
(Jo | Vu(z,t)2dz)'/?

<e(1+1Velem)

From Proposition 2.3, we know that S is compact in 2 and that its
Lebesgue measure |S| = 0. Therefore, we may consider the following open
set

Ve={z € Q] d(z,5) <d}
where d. is small enough so that
Vel < €.

We then write
Jo Vu(z,t).Vo(z)de

=1+11
(Jo [Vu(z, t)|2dz)"/?
where
I— Jv. Vu(z,t).Vo(z)ds wnd IT — fQ\VE Vu(z,t).Vy(z)dz
(fo |Vu(z, t)|2dz)'? (fo |Vu(z, 1) |2dz)'?

By Cauchy Schwartz inequality, we have for all ¢ € [0,T)

1/2
1 = YD Velds) (Jv. [Vufda) PR
(o [Vule, D2dz) 72 | = (o [Vuzaz) /21O
< €[Vl L) (16)

According to Giga and Kohn, no blow-up occurs near he boundary 92 (see

[6], Theorem 5.3). Therefore, using Proposition 2.2 and parabolic regularity,
we find M (e) > 0 such that

T
V€ Q\V,, Vt € [E’T)’ lu(z, t)| + |Vu(z, t)| < M(e).
We then write for all t > Z,

_ [Jo, Vel 0. Vo)dz | M@Vl 1)
(o [Vu(a, 0)2de)' " |~ (f [Vul2de)'?

11|



Since [, |Vu(z,t)?dz — +oc, we may take t > ¢;(e) large enough so that
|[71] <. (17)
Combining (16) and (17) yields: Vt > to(€) = max (tl(e), %),

Jo Vu(z,t).Vdz

[ Vu(z, ) 2dz <e([VellLe +1).
Q ;

This concludes the proof of Proposition 1 and the proof of Theorem 1 also.
|

A Sketch of the proof of the Liouville Theorem

We give in this appendix a sketch of the proof of Proposition 1. For more
details, one can find a complete proof in [12].

Let U be a solution of (1) defined for all (z,t) € RN x (—o0,T) and
satisfying |U(z,t)| < C(T — t)_rﬁ. If w(y,s) is defined by the following
self-similar change of variables

x
T—1

y= s = —log(T — 1), w(y,s) = (T — rTu(z,1), (18)

then w satisfies the following equation for all (y,s) € RN x R :
1
Osw = Aw — —y.Vw — 2 4 |w[P~ (19)
2 p—1

and [[w||peo@nxr) < C. Let us introduce the following Lyapunov functional
associated with equation (19)

_ 1 2 1 Z_L p+1>
ew) = [ (510l + g hol = ol o)y

where p(y) = e /%) (4m)N/2.
With the change of variables (18), Proposition 1 is equivalent to the
following :

Proposition A.1 Assume that 1 < p and (N —2)p < N+2. Consider w a
solution of (19) defined for all (y,s) € RY xR and satisfying lwl| oo ¥ xr) <
C. Then either w = 0 or w = ek or for all (y,s) € RV x R, w(y,s) =
ep(s — sg) where kK = (p — 1)7ﬁ, e€{-1,1} and p(s) = k(1 + es)_lﬁ is
a solution of

¢ = —% +¢P, p(—00) = K, p(+00) = 0. (20)
p



Therefore, we reduce to the proof of Proposition A.1.

We proceed in 3 Parts :

- In Part I, we use the monotonicity of s — E(w(s)) to show that w(., s)
has limits wiq as s — +oo (in L2(RY) and Cf (RY)) which are stationary
solutions of (19). From [8], we know that either wio = 0 or wis = €x
where € = £1. We focus then on the non trivial case (W_oo, W40o) = (k,0).

- In Part II, we linearize (19) around the constant solution k as s — —o0
and show that w behaves in 3 possible ways.

- In Part III, we show that one of these 3 ways corresponds to the case
w(y, s) = @(s—sg) where ¢ is defined in (20). In the two other cases, we show
that w satisfies a finite-time blow-up criterion for (19), which contradicts the
fact that w is defined for all (y,s) € RN x R and |[w]| ooy xr) < C < +00.
Thus, we rule out these two cases.

Part I : Existence of limits for w as s - +
We have the following :

Lemma A.2 As s — +00, w(.,s) = Wi in H, (RN) and CE . (RN) for all
k € N, where either wioo = 0 or Wi = €k with € = £1. An analogous
statement holds for the limit as s — —o0.

Sketch of the proof : For a complete proof, see Proposition 2.2 in [12] and
Step 1 in section 3 in [14].

Since [|w||poo®nxry < C, parabolic regularity applied to equation (19) im-
plies that for all R > 0, ”w“C’,i’l(B(O,R)x[—R,RD < M(R) where ||a||03,1(D) is
defined in (11). Using the compactness of the embedding of Cy (D) in C(D)
and considering subsequences w;(y,s) = w(y,s + s;) where s; — +oo, the
following identity

Varse ek [ ] jow(.s)Pol)dyds = E(uwsn) — Ewis2)  (21)

allows us to find wy(y), a stationary solution of (19) such that w(.,s) —
Wico a8 8 = 400 in C2_(RY). The conclusion follows from the following
result by Giga and Kohn in [8] :

Claim A.3 (Giga-Kohn) Ifp > 1 and (N —2)p < N + 2, then the only
stationary solutions of (19) are 0, k and —k.

Letting sy — +00 and s — —oo in (21), we obtain
—+o0o
Ew-oe) = E(wice) = [ [ 1800(y,9)oly)dyds > 0.

10



Therefore, two cases arise :

-Case 1: E(w_oo) —E(Wioo) = 0. Therefore, dsw = 0 and w is a stationary
solution of (19). Claim A.3 implies then that w = 0, K or —k. This corre-
sponds to the first cases expected in Proposition A.1.

- Case 2 : E(w_oo) — E(wieo) > 0. Since E(k) = E(—k) > 0 = £(0), this
implies that wio = 0 and w_ = k or —k. From sign invariance of (19),
we reduce to the case

(W_00, Wioo) = (K, 0).

Part II : Linear behavior of w near
We introduce v = w — k. From (19), v satisfies the following equation

Osv = Lv + f(v) (22)

where |f(v)| < C|v|? and £ = A — 3y.V + 1 is a self-adjoint operator on
D(L) C L%(IRN ) whose spectrum consists of eigenvalues {1 — 5 | m € N}.
Therefore, we can expand v on the eigenspaces of £. Since |[v][ oo zvxz) < C,
we use hard analysis where the key point is the control of the quadratic term
in (22), and prove that one of the modes 1, % or 0 dominates the others as
s — —oo. More precisely, we have the following :

Lemma A.4 As s — —oo, one of the following cases occur :
i) (mode A =1) : ||w(y,s) — {k — C()CS}HHA(RN) = o(e®) where Cy > 0.
i) (mode A = 1) : |w(y,s) — {x —i—e%Cl.y}HH;(RN) = o(e?) where C) €
RV \{0}.
l
i) (mode A = 0) : [[w(@ys) — { + (l —%ny)}ng;mw) = o(})
i=1
where @ is an orthonormal N x N matriz and [ € {1,..., N}.

Proof : See Proposition 2.4 in [12] and Propositions 3.5, 3.6, 3.9 and 3.10 in
[14]. [ |

Part III : Conclusion of the proof

Case 1 : mode A =1 dominates, the relevant case

We remark that we already know a solution of (19) which behaves like w

as s — —oo : it is p(s — sp) where ¢ satisfies (20) and sy = —log (%)
Therefore, ||w(y,s) — @(s — 8())||H;(RN) = o(e’) as s = —oo. Let us prove

that in fact

w(y,s) = (s — sg), for all (y,5) € RN x R. (23)

11



For this, we introduce V (y, s) = w(y, s) — ¢(s — so) which satisfies

IV (y, S)HH;(RN) = o(e®) and show that V = 0. See Proposition 2.5 in [12]
for more details. Therefore, (23) holds and this gives the last case expected
in Proposition A.1.

Case 2 and 3 : mode \ = % or 0 dominates, irrelevant cases
Here we use the invariance of (19) under the following geometric trans-
formation

(a0, 50) € RY X R > (wao,so (Y, 8) = w(y + age?, s + So))
and the following blow-up criterion for equation (19) :

Lemma A.5 (A blow-up criterion for equation (19)) Consider W a
solution of (19) satisfying I(W (0)) > 0 where

1) = ~260)+ 2L ([ o)
v) = —2E(v) + —— v .
p+1 ey Yy)I p\y)ay
Then, W blows-up in finite time S > 0.
Proof : See Proposition 2.1 in [12]. [ |

Using the asymptotic expansions of Lemma, A.4, we find (ag, s9) € RY xR
such that I (wgg,s,) > 0. Therefore, wg, s, blows-up in finite time S > 0.
This contradicts the fact that wg, s, is defined for all (y,s) € RY x R and
satisfies [|wag,s0 [l oo @V xr) = ||| oo @V xr) < C < +00. Thus, cases 2 and
3 of Lemma A.4 actually do not hold. For more details, see [12], Section 2,
Part 11, Step 2.

This concludes the sketch of the proof of Propositions A.1 and 1.
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