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1 Introduction

We are interested in the following reaction-diffusion equation:

∂u

∂t
= ∆u + (1 + iδ)|u|p−1u, u(0, x) = u0(x), (1)

where, δ ∈ IR, p ∈ (1,+∞), p < (N + 2)/(N − 2) if N ≥ 3, and u0 ∈ H =
W 1,p+1(IRN , IC) ∩ L∞(IRN , IC).

(1) is a special case of the vector-valued equation:

∂u

∂t
= ∆u + F (u), u(x, 0) = u0(x), (2)

where u(t) : x ∈ IRN → IRM , F : IRM → IRM is regular and F is not
necessarily a gradient.

For simplicity, we focus on the study of (1) (results for equation (2) will
also be presented in section 5).

Equation (1) appears in the study of various physical problems (plasma
physics, nonlinear optics). See for example Levermore and Olivier [15] and
the references inside. Blow-up results for vector-valued equations have been
intensively studied in differential geometry. See for example a review paper
by Hamilton [12].

The Cauchy problem for equation (1) can be solved in H. u(t), solution
of (1) would exist either on [0,+∞) (global existence), or only on [0, T ),
with 0 < T < +∞. In this case, |u(t)|H → +∞ when t → T , we say: u(t)
blows-up in finite time T in H. In this paper, we are interested in the finite
time blow-up for equation (1).

If δ = 0 and u0(x) ∈ IR, then (1) can be considered as real-valued.
Blow-up in this real case has been studied by various authors. Relying on
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the use of monotony properties and maximum principle, Ball [1] and Levine
[16] find in this case obstructions to the global in time existence for (1).
Other authors investigated the asymptotic behavior at blow-up of blow-up
solutions of (1), δ = 0. See for example Weissler [20], see for a study in
the scale of similarity variables Giga and Kohn [11], [10], [9], Filippas and
Kohn [5], Filippas and Merle [6],... The notion of asymptotic profile (that
is a function from which, after a time dependent scaling, u(t) approaches
as t → T ) appears also in various papers: see for example Bricmont and
Kupiainen [4], [3], Berger and Kohn [2] for a numerical study. In the scalar
case and in one dimension, Herrero and Velazquez give a classification of
possible blow-up profiles. They use the maximum principle and the decay
in time of the number of oscillations of the solution. Some of their results
are generalized to N dimensions in [19].

Most of the techniques used for δ = 0 in the cited papers can not be
applied in the case δ 6= 0, since (1) is complex-valued (no maximum principle
applied), and the equation does not derive from a gradient.

Another method has been introduced in [18] in the case δ = 0 (see also
[4]): Once an asymptotic profile is derived formally for (1), the existence of
a solution u(t) which blows-up in finite time with the suggested profile is
proved rigorously, using a nonlinear analysis of equation (2) near the given
profile. This approach which does not use maximum principle allows us
to find blow-up solutions for vector-valued heat equations (even with no
gradient structure). In this paper, we aim at adapting this method to show
the existence of a blow-up solution for equation (1) with δ 6= 0.

Let us remark that the scalar case provides us with a blow-up solution
if δ = 0. Unfortunately, this result is a one dimensional result and it fails
when we perturb slightly the nonlinearity. Indeed, let us mention the case
of the following vectorial equation:

∂u

∂t
= ∆u + |u|p−1u + i|u|q−1u, u|∂Ω = 0 (3)

with 1 < q < (p + 1)/2, the method of Ball [1] yields a blow-up solution
u(t) : Ω → IC where Ω is a bounded domain of IRN , see appendix A for
details.

We show that there exists δ0 > 0 such that for each δ ∈ [−δ0, δ0], equa-
tion (1) has a blow-up solution. We give in addition a precise description of
its blow-up behavior. Indeed,

Theorem 1 (Existence of a blow-up solution for equation (1) for
small δ)
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There exists δ0 > 0 such that for each δ ∈ [−δ0, δ0], there exist initial data
u0 such that equation (1) has a blow-up solution.

This Theorem follows directly from the following proposition which spec-
ifies the behavior of u(t) near blow-up. Indeed, up to a time dependent
scaling, u(t) approaches a universal profile

(p − 1 +
(p − 1)2

4(p − δ2)
|z|2)−

1+iδ
p−1 (4)

when t → T . More precisely:

Proposition 1 (Existence of a blow-up solution for equation (1)
with the profile (4) )
There exist δ0 > 0, T0 > 0 such that for each δ ∈ [−δ0, δ0], for each T ∈
(0, T0], for each a ∈ IRN ,

i) there exist initial data u0 such that equation (1) has a blow-up solution
u(x, t) on IRN × [0, T ) which blows-up in finite time T at only one blow-up
point: a,

ii) moreover, we have

lim
t→T

‖(T −t)
1+iδ
p−1 u(a+((T −t)| log(T −t)|) 1

2 z, t)−fδ(z)1+iδ‖
L∞(IRN

)
= 0 (5)

with fδ(z) = (p − 1 +
(p − 1)2

4(p − δ2)
|z|2)−

1
p−1 . (6)

iii) There exists u∗ ∈ C(IRN\{a}, IC) such that u(x, t) → u∗(x) as t → T
uniformly on compact subsets of IRN\{a}, and

u∗(x) ∼
[

8(p − δ2)| log |x − a||
(p − 1)2|x − a|2

]
1+iδ
p−1

as x → a. (7)

Remark: Estimate (5) is really uniform in z ∈ IRN . In previous papers
dealing with the case δ = 0, only Bricmont and Kupiainen [4] and Merle
and Zaag [18] give such a uniform convergence. In most papers, the same
kind convergence is proved, but only uniformly on smaller subsets ( for
|z| ≤ C/

√

| log(T − t)| in [5],...).
Remark: In fact, we show that property iii) is a consequence of ii). We
want to point out that for the heat equation (δ=0), iii) was known just in
dimension one using the decay in time of the number of oscillations of the
solution (Cf Herrero and Velazquez [13]).
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Remark: To prove Proposition 1, we linearize in a way equation (1) around
f1+iδ

δ , and give a nonlinear finite dimensional reduction of the problem.
Then, we solve the finite dimensional problem using index theory. The
proof is more difficult than in [18], because of the vectorial structure, the
presence of a coupling between coordinates, and the presence of one more
neutral direction. These techniques give then as in [18] a stability result
with respect to the initial data of the behavior described in Proposition 1
(see section 5).
Remark: Center manifold theory do not apply here. It fails to give a
uniform estimate such as ii). One can point out that even if it works,
a center manifold theory gives a convergence only uniform in the region
{|z|

√

| log(T − t)| ≤ C}. For discussion in the case δ = 0, see Filippas and
Kohn [5], page 834-835.

Remark: We see from (6) that 0 < δ0 <
√

p. Since equation (1) is rota-
tion invariant, for each ω ∈ S1, we can find initial data u0 such that the
corresponding solution has the profile f 1+iδ

δ ω.

From this result, one can ask: what happens for δ > δ0? Does equation
(1) still have blow-up solutions? We conjecture the existence of δ̂0 > 0 such
that for |δ| < δ̂0, equation (1) has blow-up solutions, while for |δ| > δ0,
no blow-up is possible for solutions of equation (1). That is, all solutions
are globally defined. Indeed, from the formal asymptotic analysis, one can
remark that for |δ| >

√
p, f1+iδ

δ is no longer bounded, and the analysis

fails. Another question arises: what happens with the critical value δ = δ̂0?
Unfortunately, we are not able here to give a precise value of δ̂0 and a
rigorous proof of what is conjectured.

As an extension of Theorem 1, one can mention that using the same
techniques, we have the same result for the following vector-valued equation:

du

dt
= ∆u + |u|p−1u + G(u), u(x, 0) = u0(x) (8)

where
1) u(t) : x ∈ IRN → IRM , p ∈ (1,+∞), p < (N + 2)/(N − 2) if N ≥ 3,

u0 ∈ H = W 1,p+1(IRN , IRM ) ∩ L∞(IRN , IRM ),

2) G : IRM → IRM is a perturbation of |u|p−1u satisfying: G(u) =
G1(|u|2)u, |G(u)| ≤ C|u|r, |G(λu1)−G(λu2)| ≤ Cλr|u1 −u2| for |u1|, |u2| ≤
1, λ ≥ 1, r ∈ [1, p), G1 : IR+ → IR+,

Indeed,
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Theorem 2 (Existence of a blow-up solution for equation (8)) .
There exist initial data u0 such that equation (8) has a blow-up solution.

Let us mention briefly the organization of the paper. The proof of Propo-
sition 1 relies strongly on a double-scale description of u(t), solution of (1).
We first give in section 2 an equivalent formulation of the problem in the
scale of the well known similarity variables (see Giga and Kohn [11],..).
Then, working in the original scale, we prove in section 3 the existence of a
single-point blow-up solution for equation (1) such that (5) holds. In section
4, we return to the original scale u(x, t) and use the invariance of equation

(1) under the transformation (t0, λ) → uλ(x, t) = λ
1+iδ
p−1 u(

√
λx, t0 + λt) to

show that estimate (5) yields the equivalent (7) for the profile u∗ in the
original scale. We conclude in section 5 by giving some comments about the
stability of the result of Proposition 1 and detailing the case of equation (8)
(M ≥ 3).

Without loss of generality, we can now assume that a = 0 and N = 1.
The same proof holds in higher dimensions (see [18] for the analysis of the
case N ≥ 2). We write each complex quantity (number or function) z as
z = z1 + iz2 with z1, z2 ∈ IR.

The author wants to thank Professor F. Merle for his helpful suggestions
and remarks.

2 Formulation of the problem

As we mentioned just before, the proof of Proposition 1 will be completed
in two steps. In the first step (section 3), it is enough to construct u(t) a
solution of equation (1) satisfying (5), since this implies directly that u(t)
blows-up in finite time T at only one blow-up point: 0 (parts i) and ii) of
Proposition 1). Indeed, it easily follows from (5) that limt→T |u(0, t)| = +∞,
which means that u(t) blows-up in time T at the point 0, and

limt→T (T − t)
1

p−1 |u(b, t)| = 0 for b 6= 0, which implies in turn that u(t) does
not blow-up at b 6= 0, and therefore blows-up only at the point 0. This last
result follows directly from a Theorem by Giga and Kohn (Theorem 2.1 in
[11]).

In a second step (section 4), we show how the behavior of the limiting
profile u∗(x) near the blow-up point (part iii) of Proposition 1) can be
derived from the behavior of u(t) as t → T given by (5).

Hence, our first goal is to construct u(t) a solution of (1) satisfying (5).
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To have an idea about the blow-up growth of u, solution of equation
(1), we compare this solution with a blow-up solution of the corresponding
differential equation

du

dt
= (1 + iδ)|u|p−1u.

This solution is u(t) = eiθ((p − 1)(T − t))
− 1+iδ

p−1 , with T > 0, θ ∈ IR.
Now, we consider u, a solution of equation (1) which blows-up in finite

time T > 0 at one blow-up point 0 ∈ IR. We expect u to grow with a similar
rate near blow-up. If we introduce convenient “similarity variables”

y = x√
T−t

s = − log(T − t)

w(y, s) = (T − t)
1+iδ
p−1 u(x, t),

(9)

then, we can look for bounded non zero solutions of the following equa-
tion (which follows from (1) through (9)):

∂w

∂s
= ∆w − 1

2
y∇w − (1 + iδ)

w

p − 1
+ (1 + iδ)|w|p−1w. (10)

2.1 Formal asymptotic analysis

Since equation (10) is of heat type, one can ask whether it has self-similar
solutions, or at least, approximate ones. We have the following lemma:

Lemma 2.1 (Formal asymptotic behavior of w) .
i) The only self-similar solutions w(y, s) = v0(

y√
s
) of (10) are the con-

stant ones: v0 ≡ 0, or v0 ≡ κeiθ, with κ = (p − 1)
− 1

p−1 and θ ∈ IR.
ii) If equation (10) has a solution of the form

w(y, s) =
+∞
∑

j=0

1

sj
vj(

y√
s
), (11)

with vj regular and bounded, then, there exists θ ∈ IR such that

v0(z) = eiθ(p − 1 +
(p − 1)2

4(p − δ2)
z2)−

1+iδ
p−1 = eiθfδ(z)1+iδ , (12)

where fδ(z)1+iδ is the suggested profile in (4).

6



Proof:
i) The equations satisfied by such a v0 are

0 = −1

2
zv′0(z) − (1 + iδ)

v0

p − 1
+ (1 + iδ)|v0|p−1v0, (13)

and −1
2zv′0(z) = v′′0(z). It is easy to see that the only solutions are the

constant ones, and that − v0
p−1 + |v0|p−1v0 = 0. This yields the conclusion.

ii) If we substitute the form (11) in equation (10) and set z = y√
s
, we

find (if s → +∞) that v0 satisfies (13). Searching a non constant solution

v0(z) = ρ(z)eiθ(z), with ρ > 0, one finds that v0(z) = eiθ(p − 1 + bz2)
− 1+iδ

p−1 ,
with b > 0, θ ∈ IR.

In fact, there is only one possible value of b. Indeed, if we substitute
the expanded form (11) in equation (10) and compare elements of order
1
s , we obtain F (z) = 0, where F (z) = 1

2zv′0 + v′′0 − 1
2zv′1 − (1 + iδ) v1

p−1 +

(1+ iδ){(p−1)|v0|p−3v0(v0,1v1,1 +v0,2v1,2)+ |v0|p−1v1}, and vj = vj,1 + ivj,2,
j = 1, 2. According to regularization properties of equation (10), it is natural
to require that v1 is C2, which implies that F is C2. F ′′(0) = 0 implies

b = (p−1)2

4(p−δ2) .

Remark: Looking for approximate solutions of (10) or for solutions of (10)
in the expanded form (11) is a well known approach used in various problems
such as nonlinear optics, and also nonlinear heat equations (see for instance
Galaktionov, Kurdyumov and Samarskii [7] for approximate self-similar so-
lutions in the case of global existence (in time), see also Galaktionov and
Vazquez [8] where an approximate solution is shown to be an admissible
blow-up profile in the case of a heat equation with (1 + u) log2(1 + u) as
a nonlinearity). Unfortunately, computation can not be carried out easily
for the form (11) in the present case, and we are unable to show the exis-
tence of a solution for equation (10) with such a form. In fact, instead of
using this linear approach, we use a nonlinear one in section 3 to show that
(10) actually has a solution w(y, s) which approaches (in L∞

y ) fδ(
y√
s
)1+iδ as

s → +∞. This approach (instead of the linear one) yields the stability of
such a solution (see section 5).

2.2 Transformation of the problem

Using similarity variables (see (9)), we see that proving (5) is equivalent to
proving that (10) has a solution satisfying
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lim
s→∞

‖w(y, s) − fδ(
y√
s
)1+iδ‖L∞ = 0, (14)

where f 1+iδ
δ is given by (4).

In order to prove this, we will not linearize equation (10) around f 1+iδ
δ as

it suggested by (14), because the linear operator of the linearized equation
has two neutral modes which are difficult to control. We will instead use
modulation theory and take advantage of the invariance of (10) under the
action of S1 (Tθ0 : w → eiθ0w, for each θ0 ∈ IR): in fact, we introduce
q(y, s) : [− log T,+∞) → IC and θ(s) : [− log T,+∞) → IR such that

{

w(y, s) = (ϕ(y, s) + q(y, s))eiθ(s)

0 =
∫

χ(y, s)(q2(y, s) − δq1(y, s))dµ
(15)

where

ϕ(y, s) = κ−iδ(fδ(
y√
s
) +

κ

2(p − δ2)s
)1+iδ, κ = (p − 1)

− 1
p−1 (16)

χ(y, s) = χ0(
| y |

K0s
1
2

), (17)

χ0 ∈ C∞
0 ([0,+∞), [0, 1]), with χ0 ≡ 1 on [0, 1] and χ0 ≡ 0 on [2,+∞],

K0 is a constant large enough, and

dµ(y) =
e−y2/4

√
4π

. (18)

The introduced liberty degree θ(s) is fixed by the second equation of
(15). It will appear in the course of the proof that this second equation
makes one of the neutral modes of the perturbation q to be zero, which
simplifies greatly the control of q.

One can remark that we don’t linearize (10) around eiθ(s)f1+iδ
δ , but

around eiθ(s)ϕ. Up to the natural action of S1 (multiplication by κ−iδ)
which simplifies the study of the linear operator of the equation on q, these
two expressions differ from each other by a term of order 1

s , so that (at least)
some components of q are smaller that 1

s , which helps to have q(s) → 0 in
L∞

y as s → +∞.
Now, we claim that proving parts i) and ii) of Proposition 1 reduces to

proving the following proposition:
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Proposition 2.1 (Equivalent formulation of Proposition 1, i) and
ii)) There exist δ0 > 0, S0 > 0, such that ∀δ ∈ [−δ0, δ0], ∀s0 ≥ S0, ∃qs0 ∈
−ϕ(., s0) + H such that the system

{

∂q
∂s(y, s) = {Lϕ − idθ

ds}(q)(y, s) + B(q)(y, s) + R(θ, y, s)
0 =

∫

χ(y, s)(q2(y, s) − δq1(y, s))dµ(y)
(19)

where






































Lϕ(q) = ∆q − 1
2y.∇q − (1 + iδ) q

p−1

+(1 + iδ){(p − 1)|ϕ|p−3ϕ(ϕ1q1 + ϕ2q2) + |ϕ|p−1q},
B(q) = (1 + iδ){|ϕ + q|p−1(ϕ + q) − |ϕ|p−1ϕ

−(p − 1)|ϕ|p−3ϕ(ϕ1q1 + ϕ2q2) − |ϕ|p−1q},
R(θ, y, s) = R∗(y, s) − idθ

dsϕ,

R∗(y, s) = −∂ϕ
∂s + ∆ϕ − 1

2y.∇ϕ − (1 + iδ) ϕ
p−1 + (1 + iδ)|ϕ|p−1ϕ,

(20)
with initial data (q(y, s0), θ(s0)) = (qs0(y), 0) at s = s0, has a unique solution
(q, θ) for s ≥ s0, satisfying lim

s→+∞
‖q(s)‖L∞ = 0, and ∃θ∞ ∈ IR such that

θ(s) → θ∞ as s → +∞.

Indeed, due to (15), the first equation in system (19) is equivalent to
(10), hence, it is equivalent to (1) (use (9)). In addition, once proposition
2.1 is proved, we have: ‖w(y, s) − ei(θ∞−δ log κ)fδ(

y√
s
)1+iδ‖L∞

≤ ‖eiθ(s)(q(y, s) + ϕ(y, s)) − ei(θ∞−δ log κ)fδ(
y√
s
)1+iδ‖L∞ (use (15))

≤ ‖q(s)‖L∞ +‖(eiθ(s)−eiθ∞)ϕ(y, s)‖L∞ +‖eiθ∞(ϕ(y, s)−κ−iδfδ(
y√
s
)1+iδ)‖L∞

≤ ‖q(s)‖L∞ + C|θ(s) − θ∞| + Cs−1 → 0 as s → +∞ (see (16)).
Therefore, w(y, s) approaches ei(θ∞−δ log κ)fδ(

y√
s
)1+iδ in L∞(IR) as s →

+∞. Since (10) is rotation invariant, we can replace w by e−i(θ∞−δ log κ)w
to obtain (14), which is equivalent to (5) through similarity variables (see
(9)).

Hence, we must study system (19) for (q, θ) ∈ L∞(IR) × IR to solve
the problem. Its evolution is mostly influenced by its linear part Lϕ,θ(q) =
(Lϕ − idθ

ds )(q). Let us study more carefully this operator. Lϕ,θ is a IR-linear
operator defined on D(Lϕ,θ) ⊂ L2(IR, IC, dµ). Since we are interested in the
behavior of (q(s), θ(s)) in L∞(IR)× IR as s → +∞, let us consider the limit
as s → +∞ of Lϕ,θ(r) for a fixed r ∈ L∞(IR, IC) (note that L∞(IR, IC) ⊂
L2(IR, IC, dµ)).

Since θ(s) will be shown to have a limit when s → +∞, we can think
that the effect of dθ

ds appearing in the expression of Lϕ,θ (see (20)) will

9



be negligible. Therefore, Lϕ,θ(r) → L̃(r) = ∆r − 1
2y.∇r + (1 + iδ)r1 as

s → +∞ (see (20) and (16)). The following lemma provides us with the
spectral decomposition of L̃:

Lemma 2.2 (Eigenvalues of L̃) .
i) L̃ is a IR−linear operator defined on L2(IR, IC, dµ) and its eigenvalues

are given by {1 − m
2 |m ∈ IN}. Its eigenfunctions are given by

{(1 + iδ)hm, ihm|m ∈ IN} where

hm(y) =

[m
2

]
∑

n=0

m!

n!(m − 2n)!
(−1)nym−2n. (21)

We have: L̃((1 + iδ)hm) = (1 − m
2 )(1 + iδ)hm and L̃(ihm) = −m

2 ihm.
ii) Each r ∈ L2(IR, IC, dµ) can be uniquely written as

r(y) = (1 + iδ)(
∑+∞

m=0 r̂1,mhm(y)) + i(
∑+∞

m=0 r̂2,mhm(y)), where r̂j,m ∈ IR.

Proof:
i) From [18], we know that {hm|m ∈ IN} is a total family in L2(IR, IR, dµ),

and that (∆ − 1
2y.∇)hm = −m

2 hm. Hence, we decompose each
r ∈ L2(IR, IC, dµ) as r(y) =

∑+∞
m=0(r1,m + ir2,m)hm(y).

λ ∈ IR is an eigenvalue for L̃ ⇐⇒ ∃r ∈ L2(IR, IC, dµ), r 6= 0, L̃r = λr

⇐⇒ ∃r 6= 0 ∀m ∈ IN

{

(1 − m
2 − λ) r1,m = 0

λ r1,m +(−m
2 − λ)r2,m = 0

⇐⇒ ∃m ∈ IN λ = 1 − m
2

The computation of eigenfunctions is easy and we shall skip it.
ii) We write r = (1 + iδ)r̃1 + ir̃2, with r̃j ∈ L2(IR, IR, dµ), and use the

fact that {hm|m ∈ IN} is a total family in L2(IR, IR, dµ).

Let us consider (q(s), θ(s)) a solution of system (19). We will use an
integral formulation of its first equation in terms of the fundamental solution
of Lϕ. We want ‖q(s)‖L∞ → 0 as s → +∞. This L∞ control will result
from the L∞ control of (1−χ(y, s))q(y, s) and χ(y, s)q(y, s) (see (17) for χ):

1) in the “regular” region |y| ≥ K0
√

s, Lϕ behaves in L2(IR, IC, dµ)
like an operator with a fully negative spectrum. We will show from (20)
that the fundamental solution of Lϕ between s0 and s1 > s0 is a strict
contraction from L∞(|y| ≥ K0

√
s) to L∞(IR). Therefore, the control of

(1 − χ(y, s))q(y, s) in L∞(IR) will be done without difficulties.
2) in the “singular” region |y| ≤ K0

√
s, Lϕ behaves in L2(IR, IC, dµ) like

L̃. In order to control χq(y, s), we expand it with respect to the spectrum
of L̃ in L2(IR, IC, dµ), but we will control χq in L∞(IR) and not only in
L2(IR, IC, dµ) (see section 3 for the rigorous analysis).
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By lemma 2.2, L̃ has two expanding directions ((1 + iδ)h0, (1 + iδ)h1),
two null ones ((1 + iδ)h2, ih0) and countably many negative ones.

Here, the situation is a bit more complicated than in [18], because we
have two null directions (instead of only one).

Our strategy to control all the components of χq so that ‖χq(s)‖L∞ → 0
as s → +∞ is to control the part of χq corresponding to the negative
spectrum of L̃ and the one parallel to (1 + iδ)h2 (which corresponds to the
null eigenvalue) as in [18]. The component parallel to ih0 (which corresponds
also to the the null eigenvalue) has been fixed by the second equation of
(19) to be zero (using modulation theory and the phase invariance of the
equation).

However, the analysis of system (19) is longer than the equivalent anal-
ysis in [18], because of terms with dθ

ds , and the presence of strong coupling
between the two scalar parts: q̃1 and q̃2 of q, satisfying: q = (1 + iδ)q̃1 + iq̃2.
Fortunately, dθ

ds will be controlled near the profile ϕ (see 16), and, although
the coupling will be of critical size, its effect will be controlled by δ, which
can be chosen small.

3 Existence of a blow-up solution for equation (2)

In this section, we prove proposition 2.1, which implies parts i) and ii) of
Proposition 1 and then Theorem 1.

3.1 Geometrical property for q

As in [18], the convergence of ‖q(s)‖L∞ to zero as s → +∞ will follow from
a geometrical property: q(s) ∈ VA(s), where VA(s) ⊂ L∞(IR, IC) shrinks to
q ≡ 0 as s → +∞. The structure of VA(s) respects the free-boundary
moving in q at the rate

√
s, and also the eigenfunctions of the operator L̃

(Cf lemma 2.2).
In order to define VA(s), we introduce the following useful notations:
For each g ∈ L∞(IR, IR) and s > 0, we define gb(y, s) = χ(y, s)g(y) and

ge(y, s) = (1 − χ(y, s))g(y). Since L∞(IR, IR) ⊂ L2(IR, IR, dµ), we introduce
for each m ∈ IN, gm(s) as the L2(IR, IR, dµ) projection of gb(y, s) on hm, (Cf
(21)). We also let g−(y, s) = P−(gb) and g⊥(y, s) = P⊥(gb), where P− and
P⊥ are the L2(IR, IR, dµ) projectors respectively on Vect {hm|m ≥ 3} and
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Vect {hm|m ≥ 1}. Thus, we write either

g(y) =
2

∑

m=0

gm(s)hm(y) + g−(y, s) + ge(y, s) (22)

or
g(y) = g0(s)h0(y) + g⊥(y, s) + ge(y, s). (23)

For each z ∈ IC, we write in a unique way z = (1 + iδ)z̃1 + iz̃2, where z̃1

and z̃2 are real.
Hence, if r ∈ L∞(IR, IC), we write: r(y) = (1 + iδ)r̃1(y) + ir̃2(y) and

expand r̃1 and r̃2 respectively as in (22) and (23). Thus, we write: r(y) =
(1 + iδ)r̃1(y) + ir̃2(y)

= (1 + iδ){∑2
m=0 r̃1,m(s)hm(y) + r̃1,−(y, s) + r̃1,e(y, s)}

+ i{r̃2,0(s)h0(y) + r̃2,⊥(y, s) + r̃2,e(y, s)}. (24)

Definition 3.1 For each A > 0, for each s > 0, let VA(s) be the set of all
functions r in L∞(IR, IC) such that

|r̃1,m(s)| ≤ As−2, for m = 0, 1,
|r̃1,2(s)| ≤ A2(log s)s−2, |r̃2,0(s)| ≤ As−2,
|r̃1,−(y, s)| ≤ A(1 + |y|3)s−2, |r̃2,⊥(y, s)| ≤ A(1 + |y|3)s−2,

‖r̃1,e(s)‖L∞ ≤ A2s−
1
2 , ‖r̃2,e(s)‖L∞ ≤ A2s−

1
2 ,

where r is given by (24).

Remark: We note that L∞(IR, IC) ⊂ L2(IR, IC, dµ), which justifies the ex-
pansion with respect to the eigenvalues of L̃ in definition 3.1.
Remark: It is easy to see that if q(s) ∈ VA(s), then ∀y ∈ IR, |q(y, s)| ≤
C(A)s−1/2 (see [18] for details). Therefore, ‖q(s)‖L∞(IR,IC) → 0 as s → +∞,

and we obtain a convergence in L∞(IR, IC) and not only in L2(IR, IC, dµ), as in
other papers (see [5],..). We emphasize that a convergence in L2(IR, IC, dµ)
or more generally in Hm(IR, IC, dµ) yields a convergence in L∞([−R,R], IC)
for each R > 0, and never a uniform convergence on IR.

With this remark, we claim that proposition 2.1 follows from the follow-
ing proposition:
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Proposition 3.1 Equivalent formulation of Proposition 1, i) and
ii) There exists A > 0, δ0 > 0, S0 > 0, such that ∀δ ∈ [−δ0, δ0], ∀s0 ≥ S0,
∃(d0, d1) ∈ IR2 such that system (19) with initial data at s = s0











qd0,d1(y, s0) = (1 + iδ)f0(
y√
s0

)p(d0 + d1y/
√

s0) − ( α
s0

)1+iδ

+ i α
s0

(sin[δ log( α
s0

)] − δ cos[δ log( α
s0

)])f0(
y√
s0

)pβ(s0)

θ(s0) = 0
(25)

(where f0 is given by (6),

α =
κ

2(p − δ2)
, β(s0) =

∫

f0(
y√
s0

)pχ(y, s0)dµ(y)
∫

χ(y, s0)dµ(y)
) (26)

has a unique solution (q, θ)d0,d1 for s ≥ s0, satisfying q(s) ∈ VA(s), ∀s ≥ s0.

Indeed, once proposition 3.1 is proved, we take for qs0 the expression in
(25). From q(s) ∈ VA(s), ∀s ≥ s0, we have ‖q(s)‖L∞ → 0 as s → +∞,
and ∃θ∞ such that θ(s) → θ∞ as s → +∞. Indeed, we have the following
lemma:

Lemma 3.1 ∀A > 0, ∃s3(A) > 0 such that ∀δ ∈ [−1, 1], ∀s ≥ s3(A), if
q(s) ∈ VA(s), then | dθ

ds (s)| ≤ C
s2 .

This lemma implies
∫ +∞
s0

|dθ
ds (s)|ds < +∞, which gives θ∞ such that θ(s) →

θ∞ as s → +∞. We give the proof of this lemma in the next subsection.

In order to understand the dynamics of q and θ, we derive the equations
satisfied by q̃1 and q̃2 (q(y, s) = (1 + iδ)q̃1(y, s)+ iq̃2(y, s), Cf decomposition
(24)) and θ:

Lemma 3.2 (Equations satisfied by q̃1, q̃2 and θ) If q satisfies (19) for
s ≥ s0, then:

∂q̃1

∂s
(y, s) = (L + V1,1(y, s) + δ

dθ

ds
(s))(q̃1) + (V1,2(y, s) +

dθ

ds
(s))q̃2

+ B̃1(q(y, s)) + R̃1(θ, y, s), (27)

∂q̃2

∂s
(y, s) = (V2,1 − (1 + δ2)

dθ

ds
(s))q̃1 + (L − 1 + V2,2(y, s) − δ

dθ

ds
(s))q̃2

+ B̃2(q(y, s)) + R̃2(θ, y, s), (28)

dθ

ds

∫

χ(y, s)((1 + δ2)ϕ̃1 + δϕ̃2 + (1 + δ2)q̃1 + δq̃2)dµ
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=

∫

χ(L− 1)q̃2dµ +

∫

∂χ

∂s
q̃2dµ +

∫

χ(V2,1q̃1 + V2,2q̃2)dµ

+

∫

χB̃2(q)dµ +

∫

χ(y, s)R̃∗
2(y, s), (29)

where

L = ∆ − 1

2
y.∇ + 1, (30)























V1,1(y, s) = (1 − δ2)(|ϕ|p−1 − 1
p−1) + (p − 1)|ϕ|p−3(ϕ2

1 − δ2ϕ2
2) − 1

V1,2(y, s) = −δ(|ϕ|p−1 − 1
p−1) + (p − 1)|ϕ|p−3(ϕ1 − δϕ2)ϕ2

V2,1(y, s) = (1 + δ2){δ(|ϕ|p−1 − 1
p−1) + (p − 1)|ϕ|p−3(ϕ1 + δϕ2)ϕ2}

V2,2(y, s) = (1 + δ2){(|ϕ|p−1 − 1
p−1) + (p − 1)|ϕ|p−3ϕ2

2},

ϕ is given by (16), (1 + iδ)B̃1 + iB̃2 = B, (1 + iδ)R̃1 + iR̃2 = R, and B, R
are given by (20).

Proof: (27) and (28) follow directly from (19). For (29), we note that we
derive form (19) d

ds

∫

χ(y, s)q̃2(y, s)dµ(y) = 0 (q̃2 = q2 − δq1). Therefore
∫

χ(y, s)∂q̃2

∂s (y, s)dµ(y) = −
∫ ∂χ

∂s (y, s)q̃2(y, s)dµ(y). Multiplying (28) by χ
and integrating with respect to dµ yields (29).

The proof of Proposition 3.1 follows the general ideas developed in [18].
Indeed, it is divided in two parts:

-In a first part, we reduce the problem of the control in VA(s) of all the
components of q(s) to the problem of controlling (q̃1,0(s), q̃1,1(s)), which are
the components of q corresponding to expanding directions of L̃ (see (24)
and lemma 2.2). That is, we reduce an infinite dimensional problem to a
finite dimensional one.

-The second part of the proof is devoted to the solving of the finite dimen-
sional problem, using 2-dimensional dynamics of (q̃1,0, q̃1,1)(s) and a topolog-
ical argument (index theory) based on the variation of the 2-dimensional pa-
rameter (d0, d1) appearing in the expression (25) of initial data qd0,d1(y, s0).

3.2 Proof of the geometrical property on q(s)

First, we prove lemma 3.1 which insures that proposition 3.1 implies propo-
sition 2.1 and then Proposition 1 i) and ii).

Proof of lemma 3.1:
We control dθ

ds thanks to equation (29). Let us estimate each term ap-
pearing in:

If s0 ≥ s3(A), we have the following estimates.
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- Since q ∈ VA, the left-hand side of (29) is ≥ C > 0.
- Since L is self-adjoint in L2(IR, dµ),

∫

χ(L−1)q̃2dµ =
∫

(L−1)χq̃2dµ =
∫

(∂2χ
∂y2 − 1

2y ∂χ
∂y )q̃2e

−y2/8 e−y2/8√
4π

dy. From (17), | ∂2χ
∂y2 − 1

2y ∂χ
∂y | ≤ C, and ∂2χ

∂y2 −
1
2y ∂χ

∂y ≡ 0 for |y| ≤ K0
√

s. Hence, we can bound e−y2/8 by e−K2
0s/8, and use

q(s) ∈ VA(s) to obtain |
∫

χ(L− 1)q̃2dµ| ≤ Ce−s (if K0 is large enough).
- The same argument yields |

∫ ∂χ
∂s q̃2dµ| ≤ Ce−s.

- We have |Vi,j(y, s)| ≤ Cs−1(1 + |y|2) (see lemma B.1 in appendix
B). Combining this with Definition 3.1, we get |

∫

χ(V2,1q̃1 + V2,2q̃2)dµ| ≤
Cs−3 log s.

- We have |χ(y, s)B(q(y, s))| ≤ C|q|2 for q(s) ∈ VA(s) (see lemma B.4).
Therefore, |

∫

χB̃2(q)dµ| ≤
∫

χ|q|2dµ ≤ Cs−3.
- From (20), |

∫

χ(y, s)R̃∗
2(y, s)| ≤ C

s2 (see lemma B.5).

Combining all the previous estimates gives: | dθ
ds | ≤ C

s2 .

Now, we give the proof of proposition 3.1 following the plan announced
in the previous subsection.

Part I: Reduction to a finite dimensional problem
Here, (q, θ) stands for a solution of system (19) with initial data (25). We
show through a priori estimates that finding (d0, d1) ∈ IR2 such that ∀s ≥
s0 q(s) ∈ VA(s) is equivalent to finding (d0, d1) ∈ IR2 such that ∀s ≥ s0

(q̃1,0(s), q̃1,1(s)) ∈ V̂A(s), where

Definition 3.2 For each A > 0, for each s > 0, we define V̂A(s) as being
the set [− A

s2 , A
s2 ]2 ⊂ IR2.

Proposition 3.2 (Control of q(s) by (q̃1,0(s), q̃1,1(s)) in ṼA(s)) There
exists A1 > 0 such that for each A ≥ A1, there exists δ1(A) > 0, s1(A) > 0
such that for each δ ∈ [−δ1, δ1], s0 ≥ s1(A), we have the following properties:
-if (d0, d1) is chosen so that (q̃1,0(s0), q̃1,1(s0)) ∈ V̂A(s0), and,
-if for s1 ≥ s0, we have ∀s ∈ [s0, s1], q(s) ∈ VA(s) and q(s1) ∈ ∂VA(s1),
then

i) (q̃1,0(s1), q̃1,1(s1)) ∈ ∂V̂A(s1),
ii) (transversality) there exists η0 > 0 such that ∀η ∈ (0, η0),

(q̃1,0(s1 + η), q̃1,1(s1 + η)) 6∈ V̂A(s1 + η) (hence, q(s1 + η) 6∈ VA(s1 + η)).

Proof: see Proof of Proposition 3.2 below.

Now, we fix A ≥ A1, and δ0 = δ1. We note q(d0, d1) = qd0,d1 (see
proposition 3.1).
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Part II: Topological argument for the finite dimensional prob-
lem
In the following proposition, we initialize the finite dimensional problem and
study the Cauchy problem for system (19).

Proposition 3.3 (Initialization and Cauchy problem for system
(19)) There exists s2(A) > 0 such that for each δ ∈ [−δ0, δ0], for each
s0 ≥ s2(A),

i) there exists a set Ds0 ⊂ IR2 topologically equivalent to a square with
the following property:

q(d0, d1, s0) ∈ VA(s0) if and only if (d0, d1) ∈ Ds0.

ii) For each (d0, d1) ∈ Ds0, ∃S = S(d0, d1) > s0 (maximal) such that sys-
tem (19) with initial data (25) at s = s0 has a unique solution (q, θ)(d0, d1)
on [s0, S), with q and θ C2 and q(s) ∈ VA+1(s), ∀s ∈ [s0, S).

iii) (q, θ) is continuous with respect to (d0, d1, s).

Proof:
i) From (25), we have

q̃1(d0, d1, y, s0) = f0(
y√
s0

)p(d0 + d1
y√
s0

) − α
s0

cos[δ log( α
s0

)] and

q̃2(d0, d1, y, s0) = − α
s0

(δ − sin[δ log( α
s0

)])(1−β(s0)f0(
y√
s0

)p). The expression

of q̃1 is similar to the expression of initial data (31) for the similar equation
(15) in [18]. q̃2 is a sum of two terms appearing in the mentioned formula
(31) in [18]. Hence, one can adapt without difficulties lemmas 3.5 and 3.9
of [18] to conclude (note that q̃2,0(d0, d1, s0) = 0).

ii) As if to use (15) in a reverse way, we introduce

w(y, s) = eiθ(s)(q(y, s) + ϕ(y, s)). (31)

Therefore, our problem is equivalent to the following system in (w, θ):

∂w

∂s
= ∆w − 1

2
y.∇w − (1 + iδ)

w

p − 1
+ (1 + iδ)|w|p−1w (32)

F ((θ(s), s) = 0

where

F (θ, s) = cos(θ)(w2,0(s)−δw1,0(s))+sin(θ)(−w1,0(s)−δw2,0(s))−ϕ̃2,0(s) = 0,
(33)

with initial data

w(d0, d1, s0) = q(d0, d1, s0) + ϕ(s0), (34)

θ(s0) = 0. (35)
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By a simple calculation, we have w(d0, d1, s0) ∈ H. Hence from classical
theory, we have local existence and uniqueness of a C2 solution for (32) with
initial data (34).
In order to prove existence and uniqueness for θ(s), we apply the implicit
function theorem to F near (θ, s) = (0, s0). First we compute ∂F

∂θ (θ, s) =

− sin(θ)(w2,0(s) − δw1,0(s)) + cos(θ)(−w1,0(s) − δw2,0(s)) and ∂F
∂θ (0, s0) =

−ϕ1,0(s0) − δϕ2,0(s0) − (1 + δ2)q̃1,0(s0) − δq̃2,0(s0) (use (31)). By (16),
−ϕ1,0(s0)−δϕ2,0(s0) → −κ as s0 → +∞. Hence, if s0 ≥ s2(A) and (d0, d1) ∈
Ds0 , then q(s0) ∈ VA(s0) ⊂ VA+1(s0) and ∂F

∂θ (0, s0) 6= 0. Since F (0, s0) = 0
(because q̃2,0(d0, d1, s0) = 0), and F is C2, we have existence and uniqueness
of C2 θ(s).
We add that the solution (q, θ)(s) is well defined if we require q(s) ∈ VA+1(s).
iii) Using again the equivalent formulation (31), we see that
(q, θ)(d0, d1, s) is a continuous function of (q(d0, d1, s0), s). Since q(d0, d1, s0)
is continuous in (d0, d1) (it is affine, see (25)), we obtain iii).

Now, we fix S0 > max(s1(A), s2(A)), and take δ ∈ [−δ0, δ0], s0 ≥ S0.
Then we start the proof of Proposition 3.1 for A, δ and s0.
We argue by contradiction: According to proposition 3.3, for each (d0, d1) ∈
Ds0 , system (19) with initial data (25) has a unique solution on [s0, S(d0, d1))
and q(d0, d1, s0) ∈ VA(s0). We suppose then that for each (d0, d1) ∈ Ds0 ,
there exists s > s0 such that q(d0, d1, s) 6∈ VA(s). Let s∗(d0, d1) be the
infimum of all these s. By proposition 3.2 (s1 = s∗), we can define the
following function:

Φ : Ds0 −→ ∂C

(d0, d1) −→ s∗(d0, d1)
2

A
(q̃1,0, q̃1,1)(d0, d1, s∗(d0, d1))

where C is the unit square of IR2.
Now we claim

Proposition 3.4 i) Φ is a continuous mapping from Ds0 to ∂C.
ii) There exists a non-trivial affine function T : Ds0 → C such that Φ◦T−1

|∂C =
Id|∂C .

From that , a contradiction follows (Index Theory). Hence, there exists
(d0, d1) such that ∀s ≥ s0, q(d0, d1, s) ∈ VA(s).
This concludes the proof of proposition 3.1, and also of parts i) and ii) of
Proposition 1 also.

Proof of proposition 3.4:
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i) Part iii) of proposition 3.3 implies that (q̃1,0(s), q̃1,1(s)) is a continuous
function of (d0, d1). Using the transversality property of (q̃1,0(s∗), q̃1,1(s∗))
on ∂V̂A(s∗) ( ii) of proposition 3.2), we claim that s∗(d0, d1) is continuous.
Therefore, Φ is continuous.

ii) If (d0, d1) ∈ ∂Ds0 , then from i) of proposition 3.3 , q(d0, d1, s0) ∈
VA(s0). According to the proof of lemma 3.9 in [18], (q̃1,0(s0), q̃1,1(s0)) ∈
∂V̂A(s0). Applying ii) of proposition 3.2 with s0 and s1 = s0, we have

s∗(d0, d1) = s0, and Φ(d0, d1) =
s2
0

A (q̃1,0(s0), q̃1,1(s0)). Let T : (d0, d1) ∈
Ds0 → s2

0
A (q̃1,0(s0), q̃1,1)(s0)) ∈ C. From (25), T is affine. Hence Φ ◦ T−1

|∂Ds0
=

Id|∂Ds0
. This concludes the proof of proposition 3.4.

Now, we give the proof of proposition 3.2.

3.3 Proof of proposition 3.2

As we suggested in the formulation of the problem, the proof follows the
general ideas of [18]. However, it is more complicated because of terms
with dθ

ds or because of strong interference between q̃1 and q̃2 (see (27), (28)).
Therefore, we summarize arguments which are similar to those exposed in
[18] by showing how to adapt them to the present context, and emphasize
the arguments relative to theses new terms.

We divide the proof in three steps:
- In Step 1, we give a priori estimates on q(s) in VA(s): assume that

for given A > 0 large, ρ > 0 and an initial time s0 ≥ s4(A, ρ), we have
q(s) ∈ VA(s) for each s ∈ [σ, σ + ρ], where σ ≥ s0. Using system (19) which
is satisfied by q, we then derive new bounds on q̃1,2, q̃1,−, q̃1,e, q̃2,⊥ and q̃2,e

in [σ, σ + ρ] (involving A and ρ).
-In Step 2, we show that these new bounds are better than those defining

VA(s) (see definition 3.1) provided that ρ ≤ ρ∗(A). Since q̃1,2(s) = 0 by hy-
pothesis in (19), only q̃1,0(s) and q̃1,1(s) remain to be controlled: the problem
is then reduced to the control of a two dimensional variable (q̃1,0(s), q̃1,1(s)).
Afterwards, we conclude the proof of part i) of proposition 3.2.

-In Step 3, we use dynamics of (q̃1,0(s), q̃1,1(s)) to prove its transversality
on ∂VA(s) (part ii) of proposition 3.2).

Step 1: A priori estimates of q.
From equations (27) and (28) (which are equivalent to the first equation of
system (19)), we write the integral equations satisfied by q̃1 and q̃2:

q̃1(s) = K1(s, σ)q̃1(σ) +

∫ s

σ
dτK1(s, τ)V1,2(τ)q̃2(τ)
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+

∫ s

σ
dτK1(s, τ)B̃1(q)dτ +

∫ s

σ
dτK1(s, τ)R̃∗

1(τ)

+

∫ s

σ
dτK1(s, τ)

dθ

ds
(τ){δϕ̃1(τ) + ϕ̃2(τ) + δq̃1(τ) + q̃2(τ)} (36)

q̃2(s) = K2(s, σ)q̃2(σ) +

∫ s

σ
dτK2(s, τ)V2,1(τ)q̃1(τ)

+

∫ s

σ
dτK2(s, τ)B̃2(q)dτ +

∫ s

σ
dτK2(s, τ)R̃∗

2(τ)

−
∫ s

σ
dτK2(s, τ)

dθ

ds
(τ){(1 + δ2)ϕ̃1(τ) + δϕ̃2(τ)) + (1 + δ2)q̃1(τ)

+ δq̃2(τ)} (37)

where K1 is the fundamental solution of L + V1,1, K2 is the fundamental
solution of L− 1 + V2,2, L is given by (30),
B(q) = (1 + iδ)B̃1 + iB̃2,
R∗(y, s) = (1 + iδ)R̃∗

1 + iR̃∗
2, B and R∗ are given by (20).

We now assume that for each s ∈ [σ, σ + ρ], q(s) ∈ VA(s). Using (36,
37), we derive new bounds on all terms in the right hand sides of (36, 37),
and then on q.
In the case σ = s0, from initial data properties, it turns out that we obtain
better estimates for s ∈ [s0, s0 + ρ].
More precisely, we have the following lemma:

Lemma 3.3 There exists A4 > 0 such that for each A ≥ A4, ρ∗ > 0, there
exists s4(A, ρ∗) > 0 with the following property:
∀δ ∈ [−1/2, 1/2], ∀s0 ≥ s4(A, ρ∗), ∀ρ ≤ ρ∗, assume ∀s ∈ [σ, σ + ρ], q(s) ∈
VA(s) with σ ≥ s0.

I)q̃1 estimates:
We have ∀s ∈ [σ, σ + ρ],
i) (main linear term)

|α1,2(s)| ≤ A2 log σ

s2
+ (s − σ)CAs−3,

|α1,−(y, s)| ≤ C(e−
1
2
(s−σ)A + e−(s−σ)2A2)(1 + |y|3)s−2,

‖α1,e(s)‖L∞ ≤ C(A2e
− (s−σ)

2p + Ae(s−σ))s−
1
2 ,

where, as in decomposition (22),

K1(s, σ)q̃1(σ) = α1(y, s) =
2

∑

m=0

α1,m(s)hm(y) + α1,−(y, s) + α1,e(y, s).
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If σ = s0, and q(s0) satisfies (25), then

|α1,2(s)| ≤ log s0

s2
+ CA(s − s0)s

−3,

|α1,−(y, s)| ≤ C(1 + |y|3)s−2, ‖α1,e(s)‖L∞ ≤ C(1 + e(s−s0))s−
1
2 .

ii)(interference term)

|ι1,2(s)| ≤ C|δ|A(s − σ)es−σs−3,

|ι1,−(y, s)| ≤ C|δ|A2(s − σ)(1 + |y|3)s−2,

‖ι1,e(s)‖L∞ ≤ C|δ|(A2 + e(s−σ)A)(s − σ)s−1/2,

where, as in decomposition (22),
∫ s
σ dτK1(s, τ)V1,2(τ)q̃2(τ) =

ι1(y, s) =
2

∑

m=0

ι1,m(s)hm(y) + ι1,−(y, s) + ι1,e(y, s).

iii) (nonlinear term)

|β1,2(s)| ≤ (s − σ)

s3+1/2
,

|β1,−(y, s)| ≤ (s − σ)(1 + |y|3)s−2−ε, ‖β1,e(s)‖L∞ ≤ (s − σ)s−
1
2
−ε,

where ε = ε(p) > 0, and as in (22),
∫ s
σ dτK1(s, τ)B̃1(q(τ)) =

β1(y, s) =
2

∑

m=0

β1,m(s)hm(y) + β1,−(y, s) + β1,e(y, s).

iv) (main corrective term)

|γ1,2(s)| ≤ (s − σ)Cs−3,

|γ1,−(y, s)| ≤ (s − σ)C(1 + |y|3)s−2, ‖γ1,e(s)‖L∞ ≤ (s − σ)s−3/4,

where as in (22),

∫ s

σ
dτK1(s, τ)R̃∗

1(τ) = γ1(y, s) =
2

∑

m=0

γ1,m(s)hm(y) + γ1,−(y, s) + γ1,e(y, s).

v) (small terms)

|λ1,2(s)| ≤ C(s − σ)s−3,

|λ1,−(y, s)| ≤ C(s − σ)(1 + |y|3)s−3, ‖λ1,e(s)‖L∞ ≤ C(s − σ)s−3/2,
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where as in (22),
∫ s
σ dτK1(s, τ)dθ

ds (τ){δq̃1(τ) + q̃2(τ) + δϕ̃1(τ) + ϕ̃2(τ)} =

λ1(y, s) =
2

∑

m=0

λ1,m(s)hm(y) + λ1,−(y, s) + λ1,e(y, s).

II)q̃2 estimates:
We have ∀s ∈ [σ, σ + ρ],
i) (main linear term)

|α2,⊥(y, s)| ≤ C(e−
1
2
(s−σ)A + e−(s−σ)2A2)(1 + |y|3)s−2,

‖α2,e(s)‖L∞ ≤ C(A2e−
(s−σ)

p + A)s−
1
2 ,

where, as in decomposition (23),

K2(s, σ)q̃2(σ) = α2(y, s) = α2,0(s)h0(y) + α2,⊥(y, s) + α2,e(y, s).

If σ = s0, and q(s0) satisfies (25), then

|α2,⊥(y, s)| ≤ C(1 + |y|3)s−2, ‖α2,e(s)‖L∞ ≤ Cs−
1
2 . (38)

ii) (interference term)

|ι2,⊥(y, s)| ≤ C|δ|A(s − σ)(1 + |y|3)s−2, ‖ι2,e(s)‖L∞ ≤ C|δ|A2(s − σ)s−1/2,

where as in (23),
∫ s
σ dτK2(s, τ)V2,1(τ)q̃1(τ) =

ι2(y, s) = ι2,0(s)h0(y) + ι2,⊥(y, s) + ι2,e(y, s).

iii) (nonlinear term)

|β2,⊥(y, s)| ≤ (s − σ)(1 + |y|3)s−2−ε, ‖β2,e(s)‖L∞ ≤ (s − σ)s−
1
2
−ε,

where ε = ε(p) > 0, and as in (23),

∫ s

σ
dτK2(s, τ)B̃2(q(τ)) = β2(y, s) = β2,0(s)h0(y) + β2,⊥(y, s) + β2,e(y, s).

iv) (main corrective term)

|γ2,⊥(y, s)| ≤ Cs−2(s − σ)(1 + |y|3), ‖γ2,e(s)‖L∞ ≤ (s − σ)s−3/4,
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where as in (23),

∫ s

σ
dτK2(s, τ)R̃∗

2(τ) = γ2(y, s) = γ2,0(s)hm(y) + γ2,⊥(y, s) + γ2,e(y, s).

v) (small terms)

|λ2,⊥(y, s)| ≤ C(s − σ)(1 + |y|3)s−2, ‖λ2,e(s)‖L∞ ≤ C(s − σ)s−2,

where
∫ s
σ dτK2(s, τ)dθ

ds (τ){−δq̃2(τ)−(1+δ2)q̃1(τ)−δϕ̃2(τ)−(1+δ2)ϕ̃1(τ)} =
λ2(y, s) = λ2,0(s)h0(y) + λ2,⊥(y, s) + λ2,e(y, s), as in (23).

Proof: see appendix B .

Step 2: Lemma 3.3 implies i) of proposition 3.2
Here, we derive i) of proposition 3.2 from lemma 3.3. We follow the

method used in [18] to prove proposition 3.11 starting from lemma 3.12.
Indeed, from integral equations (36, 37) and lemma 3.3, we derive new
bounds on q̃1,2(s), q̃1,−(y, s), q̃1,e(y, s), q̃2,⊥(s) and q̃2,e(y, s), assuming that
∀s ∈ [σ, σ + ρ], q(s) ∈ VA(s), for ρ ≤ ρ∗ and σ ≥ s0 ≥ s4(A, ρ∗). The key
estimate is to show that for s = σ + ρ (or s ∈ [σ, σ + ρ] if σ = s0), these new
bounds are better than those defining VA(s), provided that ρ ≤ ρ∗(A).

Comparing lemma 3.3 here and lemma 3.12 in [18], we see that we have
additional terms:

-Interference terms Iii) and IIii),
- Small terms Iv) and IIv).

If we try to adapt the proof of proposition 3.11 of [18] in order to prove
a similar result, we see that the introduction of small terms does not change
anything to the proof, since they are

either of lower order, if compared for example with linear terms (speaking
in terms of power of s): λ1.−, λ1,e and λ2,e,

or of the same order, but with a “small” coefficient (compared with A):
λ1,2 and λ2,⊥.

This is not the case of interference terms Ii) and IIi), which have a
critical growth in terms of power of s. But recalling that in the mentioned
proof in [18], we have (s − σ) ≤ ρ ≤ ρ∗ ≤ log A

C∗ , if we assume that:

C|δ|A log A
C∗ elog A

C∗ ≤ 1 (Cf ι1,2), C|δ|A2 log A
C∗ ≤ A

4 (Cf ι1,−), C|δ|(A2 +

elog A
C∗ A) log A

C∗ ≤ A2

4 (Cf ι1,e), C|δ|A log A
C∗ ≤ A

4 (Cf ι2,⊥) and

C|δ|A2 log A
C∗ ≤ A2

4 (Cf ι2,e),
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which is possible if |δ| ≤ δ5(A), with δ5(A) > 0, then all these terms, wile

remaining with critical growth, have a reasonable coefficient (1, A
4 or A2

4 ).

Therefore, adapting the proof of Proposition 3.11 in [18] for |δ| ≤ δ5(A),
we prove a similar proposition:

Proposition 3.5 There exists A5 > 0 such that for each A ≥ A5, there
exists δ5(A) > 0, s5(A) > 0 such that for each δ ∈ [−δ5, δ5], s0 ≥ s5(A), we
have the following property:
-if (d0, d1) is chosen so that (q̃1,0(s0), q̃1,1(s0)) ∈ V̂A(s0), and,
-if for s1 ≥ s0, we have ∀s ∈ [s0, s1], q(s) ∈ VA(s),
then ∀s ∈ [s0, s1] , |q̃1,2(s)| ≤ A2s−2 log s−s−3, |q̃1,−(y, s)| ≤ A

2 (1+ |y|3)s−2,

‖q̃1,e(s)‖L∞ ≤ A2

2
√

s
, |q̃2,⊥(y, s)| ≤ A

2 (1 + |y|3)s−2, ‖q̃2,e(s)‖L∞ ≤ A2

2
√

s
.

By definition of (q, θ) (Cf system (19)), we have q̃2,0(s) = 0. If in ad-
dition q(s1) ∈ ∂VA(s1), we see from definition 3.1 of VA(s) that the first
two components of q(s1), namely q̃1,0(s1) and q̃1,1(s1) are in ∂V̂A(s1). This
concludes the proof of part i) of proposition 3.2.

Step 3: Transversality property of (q̃1,0(s1), q̃1,1(s1)) on ∂V̂A(s1)
To prove part ii) of proposition 3.2, we show that for each m ∈ {0, 1},

for each ε ∈ {−1, 1}, if q̃1,m(s1) = ε A
s2
1
, then

dq̃1,m

ds (s1) has the opposite

sign of d
ds(

εA
s2 )(s1) so that (q̃1,0, q̃1,1) actually leaves V̂A at s1 for s1 ≥ s0

where s0 will be large. Now, let us compute
dq̃1,0

ds (s1) and
dq̃1,1

ds (s1) for

q(s1) ∈ VA(s1) and (q̃1,0(s1), q̃1,1(s1)) ∈ ∂V̂A(s1). First, we note that in

this case, ‖q(s1)‖L∞ ≤ CA2√
s1

and |qb(y, s1)| ≤ CA2 log s1

s2
1

(1 + |y|3) (Provided

A ≥ 1). Below, O(l) stands for a quantity whose absolute value is bounded
precisely by l and not Cl.
For m ∈ {0, 1}, we derive from equation (27) and (21):

∫

dµχ(s1)
∂q̃1

∂s km =
∫

dµχ(s1)Lq̃1km +

∫

dµχ(s1){V1,1q̃1 + V1,2q̃2}km +

∫

dµχ(s1)B̃1(q)km

+
∫

dµχ(s1)R̃
∗
1(s1)km +

∫

dµχ(s1)
dθ
ds (s1){δq̃1 + q̃2+δϕ̃1 +ϕ̃2}km, where km =

hm/‖hm‖2
L2(IR,IR,dµ)

(see (21)).

We now estimate each term of this identity:
a) |

∫

dµχ(s1)
∂q̃1

∂s km − dq̃1,m

ds | = |
∫

dµdχ
ds q̃1km| ≤

∫

dµ|dχ
ds |CA2√

s1
|km| ≤ Ce−s1 if

s0 ≥ s3(A).
b) Since L is self-adjoint on L2(IR, dµ), we write

∫

dµχ(s1)Lq̃1km =

∫

dµL(χ(s1)km)q̃1.
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Using L(χ(s1)km) = (1 − m
2 )χ(s1)km + ∂2χ

∂s2 km + ∂χ
∂y (2∂km

∂y − y
2km),

we obtain
∫

dµχ(s1)Lq̃1km = (1 − m
2 )q̃1,m(s1) + O(CAe−s1).

c) We have ∀y ∈ IR, |Vi,j(y, s)| ≤ C
s (1+ |y|2). Therefore, |

∫

dµχ(s1){V1,1q̃1+
V1,2q̃2}km| ≤

∫

dµCs−1
1 (1 + |y|2)CA2s−2

1 log s1|km| ≤ CA2s−3
1 log s1

d) A standard Taylor expansion combined with the definition of VA shows

that |χ(y, s1)B(q(y, s1))| ≤ C|q|2 ≤ C(|qb|2 + |qe|2) ≤ CA4(log s1)2

s4
1

(1+ |y|3)2 +

1{|y|≥K
√

s1}(y) A2√
s1

. Thus, |
∫

dµχ(s1)B̃1(q)km| ≤ CA4(log s1)2

s4
1

+ Ce−s1 .

e) From lemma B.5 in appendix B, we have |
∫

dµχ(s1)R̃
∗
1(s1)km| ≤ C(p)

s2
1

(Actually it is equal to 0 if m = 1).
f) From lemma 3.1, we have | dθ

ds (s1)| ≤ Cs−2
1 . Hence, |

∫

dµχ(s1)
dθ
ds (s1){δq̃1+

q̃2 + δϕ̃1 + ϕ̃2)km| ≤ Cs−2
1 .

Putting together the estimates a) to f), we obtain

dq̃1,m

ds
(s1) = (1 − m

2
)
εA

s2
1

+ O(
C(p)

s2
1

) + O(CA4 log s1

s3
1

)

whenever q̃1,m(s1) = εA
s2
1
. Let us now fix A ≥ 2C(p), and then we take

s1(A) larger so that for s0 ≥ s1(A), ∀s ≥ s0,
C(p)
s2 + O(CA4 log s

s3 ) ≤ 3C(p)
2s2 .

Hence, if ε = −1,
dq̃1,m

ds (s1) < 0, if ε = 1,
dq̃1,m

ds (s1) > 0. This concludes the
proof of part ii) of proposition 3.2. It also concludes the proof of part ii) of
Proposition 1, and then the proof of Theorem 1.

4 Blow-up profile of u(t) solution of (2) near blow-

up point

We prove in this section part iii) of Proposition 1.
We consider u(t) solution of (1) constructed in section 3, which blows-up

in finite time T > 0 at only one blow-up point: 0. We know from section 3
that:

sup
z∈IR

|(T − t)
1+iδ
p−1 u(z

√

(T − t)| log(T − t)|, t) − f(z)| ≤ C
√

| log(T − t)|
(39)

with

f(z) = (p − 1 +
(p − 1)2

4(p − δ2)
|z|2)−

1+iδ
p−1 . (40)

Adapting the techniques used by Merle in [17] to equation (1), we derive
the existence of a profile u∗ ∈ C(IR\{0}, IC) such that u(x, t) → u∗(x) as t →
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T uniformly on compact subsets of IR\{0}. We want to find an equivalent
function for u∗ near the blow-up point: 0.

For this purpose, we define for each t ∈ [0, T ), a rescaled version of u(t):

v(t, ξ, τ) = (T − t)
1+iδ
p−1 u(ξ

√
T − t, t + (T − t)τ) (41)

where ξ ∈ IR, τ ∈ [− t
T−t , 1) ⊂ [0, 1). From equation (1), we see that v(t, ξ, τ)

satisfies the same equation as u(t, x):

∀τ ∈ [− t

T − t
, 1),

∂v

∂τ
= ∆ξv + (1 + iδ)|v|p−1v. (42)

Stated in terms of v(t), (39) becomes:

sup
ξ∈IR

|(1 − τ)
1+iδ
p−1 v(t, ξ, τ) − f(

ξ
√

(1 − τ)| log{(1 − τ)(T − t)}|
)| ≤ (43)

C√
| log{(T−t)(1−τ)}|

.

We proceed in two steps:
- first, we consider r > 0 and estimate v(t, ξ, τ) and its derivatives locally

near ξ(r, t) ∈ IR satisfying |ξ(r, t)| = r
√

| log(T − t)|. We show that v(t, ξ, τ)
is bounded, and that it does not vary much for |ξ − ξ(r, t)| bounded and
τ ∈ [0, 1],

- then, we can identify v(t, ξ, 0) (approximated by (43)) and v(t, ξ, 1). For
each x ∈ IR\{0}, we write |x| as |ξ(r, t)|

√

(T − t) = r
√

(T − t)| log (T − t)|
for some r > 0 and t < T and combine this identification with (41) to get
the equivalent of u∗(x) for x → 0:

u∗(x) ∼
[

8(p − δ2)| log |x||
(p − 1)2|x|2

]
1+iδ
p−1

. (44)

For simplicity, we omit t in the notation and write v(ξ, τ) for v(t, ξ, τ),
ξ(r) for ξ(r, t).

Part I: Estimate for v near r
√

| log(T − t)|
From (41), v blows-up at time τ = 1 at only one blow-up point: 0. Using

(43) and a lower bound shown by Giga and Kohn in [11] on blow-up rate for
v, we derive a local bound on v for τ ∈ [0, 1), |ξ−ξ(r)| bounded, independent
from r and t. Using classical parabolic theory and the fact that v depends
in a certain sense only on τ for |τ | small, we show that v actually does not
depend much on τ ∈ [0, 1) for |ξ − ξ(r)| bounded.
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Proposition 4.1 (Estimate on ∂v
∂τ (ξ(r), τ)) There exists r1 > 0 such that

∀r ≥ r1, ∃t1(r) < T such that ∀t ∈ [t1(r), T ), ∀τ ∈ [0, 1), | ∂v
∂τ (ξ(r), τ)| ≤

C|f(r)|p.

Proof:

Step 1: Local bounds on v near ξ(r) for τ ∈ [−1/2, 1)
We crucially use a lower bound on blow-up rate for v established by

Giga and Kohn in [11] to show that |v| is bounded for ξ near ξ(r) and
τ ∈ [−1/2, 1).

Lemma 4.1 (Lower bound on blow rate for v) .
i) (Giga-Kohn) There exists ε = ε(p, δ,N) > 0 with the following prop-

erty: If for |ξ − ξ(r)| ≤ 3
√

| log(T − t)|, τ ∈ [−1/2, 1)

(1 − τ)
1

p−1 |v(ξ, τ)| ≤ ε,

then ∀ξ ∈ IR with |ξ − ξ(r)| ≤ 2
√

| log(T − t)|, ∀τ ∈ [−1/2, 1), |v(ξ, τ)| ≤ C.

ii) There exists r2 > 0 such that ∀r ≥ r2, ∃t2(r) < T such that ∀t ∈
[t2(r), T ), if |ξ − ξ(r)| ≤ 2

√

| log(T − t)|, τ ∈ [−1/2, 1) then

|v(ξ, τ)| ≤ C.

Proof:
i) follows immediately from Theorem 2.1 in [11]. ii) is a direct conse-

quence of i) and estimate (43). Indeed, if |ξ − ξ(r)| ≤ 3
√

| log(T − t)| and

τ ∈ [−1/2, 1), then we have by (43) (1−τ)
1

p−1 |v(ξ, τ)| ≤ C|f(r)|+C| log(T −
t)|−1/2.

Step 2: Local bound on ∂v
∂τ (ξ, τ) near ξ(r) for τ ∈ [0, 1)

- τ = 0: From a parabolic estimate and (43) considered for τ ≤ 0, we
have for |ξ − ξ(r)| ≤

√

| log(T − t)|:

|∂
2v

∂ξ2
(ξ, 0) − 1

| log(T − t)|
∂2f

∂z2
(

ξ
√

| log(T − t)| )| ≤
C

√

| log(T − t)| .

Hence, from (42), we have for r ≥ r3, t ≥ t3(r), |ξ − ξ(r)| ≤
√

| log(T − t)|:
|∂v
∂τ (ξ, 0)| ≤ C|f(r)|p.

- τ ∈ [0, 1): We use the equation satisfied by ∂v
∂τ and standard tools

of localization and local estimates with the semi-group eτ∆ to conclude.
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Indeed, if z(ξ, τ) = | ∂v
∂τ |2, it follows from equation (42) and ii) of lemma 4.1

that ∀τ ∈ [0, 1), ∀ξ ∈ IR with |ξ − ξ(r)| ≤
√

| log(T − t)|, ∂z
∂τ ≤ ∆z + Mz,

where M = M(p, δ,N).
We can consider φ ∈ C∞

0 (IR) satisfying φ(ξ) = 0 if |ξ−ξ(r)| ≥
√

| log(T − t)|,
0 ≤ φ ≤ 1, φ(ξ) = 1 if |ξ − ξ(r)| ≤

√

| log(T − t)|/2, and |∇φ| + |∆φ| ≤ C.
If w(ξ, τ) = e−τMφ(ξ)z(ξ, τ), then w satisfies:

∂w
∂τ ≤ ∆w + e−τM (−z∆φ + 2∇z.∇φ) and ∀ξ ∈ IR, |w(ξ, 0)| ≤ C|f(r)|2p.

If τ ∈ [0, 1), then

w(ξ(r), τ) ≤ (eτ∆w(0))(ξ(r), τ)

+

∫ τ

0

dσ

(4π(τ − σ))1/2

∫

dxe
− |x−ξ(r)|2

4(τ−σ) (z|∆φ| + 2|∇z||∇φ|)(x, σ)

≤ C|f(r)|2p +

∫ τ

0

dσ

(4π(τ − σ))1/2

∫

dxe
− | log(T−t)|/4

8(τ−σ) e
− |x−ξ(r)|2

8(τ−σ) C

(lemma 4.1 ii) implies by parabolic regularity that for r ≥ r2, t ≥ t2(r),
(z|∆φ|+2|∇z||∇φ|)(x, σ) ≤ C, for σ ∈ [0, 1) and |x−ξ(r)| ≤

√

| log(T − t)|).
Therefore, w(ξ(r), τ) ≤ C|f(r)|2p + e−| log(T−t)|. If t ≥ t4(r), then

w(ξ, τ) ≤ C|f(r)|2p, which implies ∀τ ∈ [0, 1), | ∂v
∂τ (ξ(r), τ)| ≤ C|f(r)|p.

Taking r1 = max(r2, r3) and t1(r) = max(t2(r), t3(r), t4(r)) concludes
the proof.

Part II: Conclusion of the proof
For each r ≥ r1 and each x ∈ IR\{0} small enough, we define t(r, x) ∈

[0, T ) by

|x| = |ξ(r)|
√

T − t = r
√

(T − t(r, x))| log(T − t(r, x))|. (45)

Applying proposition 4.1 to v(t(r, x)), we estimate the difference between
u∗(x) and u(x, t(r, x)) and then between u∗(x) and f(r). Then, by simple
asymptotic calculation, we reach the equivalent (44).

Lemma 4.2 (A first estimate on the profile u∗(x)) ∀r ≥ r1,
∃R2(r) > 0 such that ∀x ∈ IR with 0 < |x| < R2

|(T − t(r, x))
1+iδ
p−1 u∗(x) − f(r)| ≤ C|f(r)|p,

where t(r, x) is uniquely determined by (45).
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Proof:
Using proposition 4.1 and (43), we write for r ≥ r1, t ≥ t1(r): ∀τ ∈ [0, 1)

|v(ξ(r), τ)−f(r)| ≤ |v(ξ(r), τ)−v(ξ(r), 0)|+ |v(ξ(r), 0)−f(r)| ≤ C|f(r)|p +
C| log(T − t)|−1/2.

Stated in terms of u, this gives: ∀τ ∈ [0, 1)

|(T −t)
1+iδ
p−1 u(ξ(r)

√
T − t, t+(T −t)τ)−f(r)| ≤ C|f(r)|p+C| log(T − t)|−1/2

(46)
From this estimate, we derive R2(r) > 0 such that ∀x ∈ IR with 0 <

|x| < R2, we have: ∀τ ∈ [0, 1)

|(T − t(r, x))
1+iδ
p−1 u(x, t(r, x) + (T − t(r, x))τ) − f(r)| ≤ C|f(r)|p,

where t(r, x) is given by (45). If we let τ go to 1, we have the conclusion of
lemma 4.2.

Now, we conclude the proof of estimate (44). For this purpose, we con-
sider an arbitrary ε > 0 and look for Rε > 0 such that for 0 < |x| < Rε,

|
[

|x|2
− log |x|

]
1+iδ
p−1

u∗(x) −
[

8(p − δ2)

(p − 1)2

]
1+iδ
p−1

| ≤ ε.

If we consider an arbitrary r ≥ r1, then by lemma 4.2, we have for 0 < |x| <
R2

|
[

|x|2
− log |x|

]
1+iδ
p−1

u∗(x) −
[

8(p − δ2)

(p − 1)2

]
1+iδ
p−1

|

≤ |
[

|x|2
− log |x|

]
1+iδ
p−1

− [2r2(T − t(r, x))]
1+iδ
p−1 |.|u∗(x)| (47)

+ [2r2]
1

p−1 |(T − t(r, x))
1+iδ
p−1 u∗(x) − f(r)|

+ |[2r2]
1+iδ
p−1 f(r) −

[

8(p − δ2)

(p − 1)2

]
1+iδ
p−1

|

We fix r(ε) ≥ r1 such that |[2r2]
1+iδ
p−1 f(r)−

[

8(p−δ2)
(p−1)2

]
1+iδ
p−1 | ≤ ε and |f(r)|p−1 ≤

ε.
From (45), we have

|x|2
− log |x| = 2r2(T − t(r, x))

log(T − t(r, x))

log(T − t(r, x)) + log | log(T − t(r, x))| + 2 log r
.
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Let Rε > 0 sufficiently small and smaller than R2(r(ε)) such that for 0 <
|x| < Rε

|
[

|x|2
− log |x|

]
1+iδ
p−1

− [2r2(T − t(r, x))]
1+iδ
p−1 | ≤ ε[2r2(T − t(r, x))]

1
p−1 .

Hence, for 0 < |x| < Rε, we have from (47): |[ |x|2
− log |x| ]

1+iδ
p−1 u∗(x)−[8(p−δ2)

(p−1)2 ]
1+iδ
p−1 |

≤ ε[2r2(T − t(r, x))]
1

p−1 |u∗(x)| + Cεr
2

p−1 |f(r)| + ε

≤ Cεr
2

p−1 |f(r)|(1 + Cε) + Cε (use lemma 4.2 and |f(r)|p−1 ≤ ε)
≤ Cε. This concludes the proof of part iii) of Proposition 1.

5 Generalization and comments

As a first application of the techniques in previous sections, we have the
following stability result concerning the behavior described in Proposition
1:

Theorem 3 (Stability with respect to initial data of the profile (4))
Let δ ∈ (−δ1, δ1) where δ1 > 0 and consider û0 initial data constructed in
Proposition 1. Let û(t) be the solution of equation (1) with initial data û0,
T̂ its blow-up time and â its blow-up point.

Then there exists a neighborhood V of û0 in H with the following proper-
ties: For each u0 ∈ V, u(t) blows-up in finite time T = T (u0) at one single
point a = a(u0), where u(t) is the solution of equation (1) with initial data
u0. Moreover, u(t) approaches the profiles (6) and (7) near (T, a) similarly
as û(t) does near (T̂ , â).

The proof of this theorem relies strongly on the techniques developed in
sections 2, 3 and 4. We give just the key ideas of the proof.

Consider initial data u0 in a neighborhood of û0 and u(t) the corre-
sponding solution of (1). Then, for each (T, a) near (T̂ , â), we introduce as
in section 2 a two-parameter group acting on u(t):

(T, a) → (q(T, a, y, s), θ(T, a, s))

where
{

q(T, a, y, s) = w(T, a, y, s) − ϕ(y, s)
q̃2,0(s) = 0,
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w(T, a) is defined similarly as in (9) by

y = x−a√
T−t

s = − log(T − t)

w(y, s) = (T − t)
1+iδ
p−1 u(x, t),

and ϕ is given by (16).
Therefore, our problem reduces to searching a parameter (T (u0), a(u0))

such that
q(T, a, s) ∈ VA(s)∀s ≥ s0, (48)

for some s0 > 0 and A > 0 (see definition 3.1). Indeed, T (u0) and a(u0)
will be shown then to be respectively the blow-up time and point of u(t).
Moreover, we derive directly form (48) an estimate analogous to (6) and
then, by the techniques of section 4, an other estimate analogous to (7).

By uniform a priori estimates analogous to proposition 3.2, we reduce
this problem to a finite dimensional one. We solve it using a non-degenera-
tion property of the two-parameter group acting on û(t) itself (see [18] for
similar argument). Hence, we reach the conclusion of Theorem 3.

The proof used for equation (1) applies in a more general case:
consider the following vector-valued heat equation:

du

dt
= ∆u + |u|p−1u + G(u), u(x, 0) = u0(x) (49)

where
1) u(t) : x ∈ IRN → IRM , p ∈ (1,+∞), p < (N + 2)/(N − 2) if N ≥ 3,

2) G : IRM → IRM is a perturbation of |u|p−1u satisfying: G(u) =
G1(|u|2)u, |G(u)| ≤ C|u|r, |G(λu1)−G(λu2)| ≤ Cλr|u1 −u2| for |u1|, |u2| ≤
1, λ ≥ 1, r ∈ [1, p), G1 : IR+ → IR+, G needs not be a gradient,

3) u0 ∈ H = W 1,p+1(IRN , IRM ) ∩ L∞(IRN , IRM ).

Using the same techniques as in the case M = 2 (equation (1) with
δ = 0), we show the following blow-up result for equation (49):

Theorem 2: (Existence of a blow-up solution for equation (49))
There exist initial data u0 such that equation (49) has a blow-up solution.
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This Theorem is a direct consequence of the following proposition which
describes more precisely the behavior of u(t) near blow-up. Indeed, after a
time dependent scaling, u(t) approaches a universal profile

(p − 1 +
(p − 1)2

4p
|z|2)−

1
p−1 ω, (50)

when t → T , where ω ∈ SM−1. In fact, we have the more precise result:

Proposition 2 (Existence of a blow-up solution for equation (49)
with the profile (50))
There exists T0 > 0 such that for each T ∈ (0, T0], for each a ∈ IRN , for
each ω ∈ SM−1, there exist initial data u0 such that equation (49) has a
blow-up solution u(x, t) on IRN × [0, T ) which blows-up in finite time T at
only one blow-up point: a. Moreover,

lim
t→T

(T − t)
1

p−1 u(a + ((T − t)| log(T − t)|) 1
2 z, t) = f(z)ω (51)

uniformly in z ∈ IRN , with

f(z) = (p − 1 +
(p − 1)2

4p
|z|2)−

1
p−1 . (52)

Remark: Structural stability: In [18], a particular version of this Propo-
sition was shown in the case M = 1 and G = 0 (without perturbation): Sin-
gle point blow-up and a blow-up profile (52). There, this result was shown
to be stable with respect to perturbations in initial data. With proposition
2, the blow-up solution constructed in [18] is shown to be structurally stable
in a certain class of functions, since this solution behaves in the same way
when we take a non zero G and consider a higher dimension (M ≥ 2): we
still have single point blow-up with the same scalar profile (52).

A Appendix: blow-up result for ∂u
∂t = ∆u+ |u|p−1u+

i|u|q−1u on bounded domain for q small

We consider the complex-valued heat equation (3):

∂u

∂t
= ∆u + |u|p−1u + i|u|q−1u (53)

u|∂Ω = 0,

where u(t) : Ω → IC, Ω is a bounded domain of IRN , p ∈ (1,+∞), p <
(N + 2)/(N − 2) if N ≥ 3, and q > 1.
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Proposition A.1 (Existence of blow-up solutions for equation
(53)) Assume 1 < q < (p + 1)/2. There exists A(Ω, p, q) > 0 such that for
each u0 ∈ H1

0 (Ω) with ‖u0‖L2(Ω) ≥ A and E(u0) ≤ 0 where

E(u0) =
1

2

∫

Ω
|∇u0|2dx − 1

p + 1

∫

Ω
|u0|p+1dx, (54)

equation (53) with initial data u0 has a unique solution u ∈ C([0, T ),H1
0 (Ω))

with 0 < T < +∞, which blows-up in H1
0 (Ω) as t → T .

Proof:
From classical theory, we know that if 1 < q ≤ p and u0 ∈ H1

0 (Ω), then
equation (53) with initial data u0 has a unique solution defined on [0, T )
with T = Tu0 ∈ (0,+∞] and u ∈ C([0, T ),H1

0 (Ω)). Moreover, if T < +∞,
then u(t) blows-up in H1

0 (Ω) as t → T .
Hence, proposition A.1 will be proved if we show that for 1 < q <

(p + 1)/2, ‖u0‖2
L2(Ω) ≥ A (to be chosen later) and E(u0) ≤ 0, we have

Tu0 < +∞.
We proceed as follows: first we give estimates on u(t) for t ∈ [0, T ), then

we use a blow-up result for an integral inequality to conclude.

Lemma A.1 (Estimate for u(t), solution of (53)) If
z(t) = (

∫

Ω |u(x, t)|p+1dx)2/(p+1), then ∀t ∈ [0, T ),

z(t) ≥ c1A
2 + c2

∫ t

0
dσz(σ)(p+1)/2 − c3

∫ t

0
dσ

∫ σ

0
dsz(s)q (55)

where c1 = c1(Ω, p) > 0, c2 = c2(Ω, p) > 0 and c3 = c3(Ω, p, q) > 0.

Proof:
For simplicity, we omit x, Ω and dx in following expressions of the type

∫

Ω |u(x, t)|2dx.

From (54), d
dtE(u(t)) = <(−

∫

ūt(t)∆u(t) −
∫

|u(t)|p−1u(t)ūt(t)).

From (53), d
dtE(u(t)) = <(−

∫

ūt(t)ut(t) + i
∫

|u(t)|q−1u(t)ūt(t))
≤ −

∫

|ut(t)|2 +
∫

|u(t)|q |ut(t)|
≤ −

∫

|ut(t)|2 + 1
2(

∫

|ut(t)|2 +
∫

|u(t)|2q) (Cauchy Schwartz),

≤ −1
2

∫

|u(t)|2 + c4(Ω, p, q)(
∫

|u(t)|p+1)2q/(p+1) (Hölder). Integrating this in-
equality and using E(u0) ≤ 0 gives

E(u(t)) ≤ c4(Ω, p, q)

∫ t

0
ds(

∫

|u(s)|p+1)2q/(p+1). (56)
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Now, if we multiply equation (53) by ū(t) and take the real part, we obtain
using expression (54)

d

dt

∫

|u(t)|2 = −4E(u(t)) +
p − 1

p + 1

∫

|u(t)|p+1. (57)

Using (56),
∫

|u(0)|2 ≥ A2 and
(
∫

|u(t)|p+1)2/(p+1) ≥ c1(Ω, p)
∫

|u(t)|2 (Hölder), we have the conclusion by
integrating (57).

Now, the conclusion follows directly from lemma A.1 and the following
lemma:

Lemma A.2 (Blow-up result for an integral inequality) Let
z ∈ C([0, T ), IR+) such that

z(t) ≥ B + a

∫ t

0
dt′z(t′)(p+1)/2 − b

∫ t

0
dt′

∫ t′

0
dsz(t)q (58)

where 1 < p, 1 < q < (p + 1)/2, a > 0 and b > 0.
There exists B0 > 0 such that if B ≥ B0, then T < +∞.

Proof:
Let g(t) = a

2z(t)(p+1)/2 − b
∫ ∫ t

0 dsz(s)q. Let us show that ∀t ∈ [0, T ),
g(t) > 0. We proceed by a priori estimates. For B > 0, we can define
T ∗ = sup{T ′ ∈ [0, T )|∀t ∈ [0, T ′),

∫ t
0 dt′g(t′) ≥ 0} > 0. Then we have

∀t ∈ [0, T ∗), g(t) > 0.
Indeed, we have ∀t ∈ [0, T ∗)

∫ t
0 dt′g(t′) ≥ 0. Therefore, (58) yields z(t) ≥

B + a
2

∫ t
0 dsz(s)(p+1)/2 which gives z(t) ≥ B and z(t) ≥ a

2

∫ t
0 dsz(s)(p+1)/2.

Hence, g(t) = a
2z(t)(p+1)/2 − b

∫ ∫ t
0 dsz(s)q

≥ a
2B(p−1)/2z(t) − b

∫ ∫ t
0 dsz(s)q

> a
2B(p−1)/2 a

2

∫ t
0 dsz(s)(p+1)/2 − b

∫ ∫ t
0 dsz(s)q

≥ a2

4 B(p−1)/2
∫ t
0 dsB(p+1)/2−qz(s)q − b

∫ ∫ t
0 dsz(s)q

= (a2

4 Bp−q − b)
∫ t
0 dsz(s)q. Now, if B > (4ba−2)1/(p−q), then ∀t ∈ [0, T ∗),

g(t) > 0. This yields T ∗ = T and ∀t ∈ [0, T ),
∫ t
0 dt′g(t′) ≥ 0.

Therefore, (58) implies that

∀t ∈ [0, T ), z(t) ≥ B +
a

2

∫ t

0
dsz(s)(p+1)/2.

Hence, T ≤ 4B(1−p)/2

a(p−1) < +∞ by classical arguments.
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B Appendix: Proof of lemma 3.3

Lemma 3.3 consists in a priori estimates on terms appearing in the integral
equations satisfied by q̃1 and q̃2 (see (36), (37)). Let us recall them:

q̃1(s) = K1(s, σ)q̃1(σ) +

∫ s

σ
dτK1(s, τ)V1,2(τ)q̃2(τ)

+

∫ s

σ
dτK1(s, τ)B̃1(q)dτ +

∫ s

σ
dτK1(s, τ)R̃∗

1(τ)

+

∫ s

σ
dτK1(s, τ)

dθ

ds
(τ){δϕ̃1(τ) + ϕ̃2(τ) + δq̃1(τ) + q̃2(τ)}

q̃2(s) = K2(s, σ)q̃2(σ) +

∫ s

σ
dτK2(s, τ)V2,1(τ)q̃1(τ)

+

∫ s

σ
dτK2(s, τ)B̃2(q)dτ +

∫ s

σ
dτK2(s, τ)R̃∗

2(τ)

−
∫ s

σ
dτK2(s, τ)

dθ

ds
(τ){(1 + δ2)ϕ̃1(τ) + δϕ̃2(τ)) + (1 + δ2)q̃1(τ)

+ δq̃2(τ)}

where K1 is the fundamental solution of L + V1,1, K2 is the fundamental
solution of L− 1 + V2,2, L is given by (30),
B(q) = (1 + iδ)B̃1 + iB̃2,
R∗(y, s) = (1 + iδ)R̃∗

1 + iR̃∗
2, B and R∗ are given by (20).

From these expressions, we obviously see that the main step in doing a
priori estimates is the understanding of the behavior of the kernels K1 and
K2. By definition, K1 and K2 can be considered as perturbations of eθL and
eθ(L−1) respectively. Hence, we give the proof in two steps:

-in Step 1, we give estimates on the integral operators K1 and K2, non-
linear term B(q) and corrective term R∗ appearing in equations (36) and
(37).

-in Step 2, we use these estimates to prove lemma 3.3.

Step 1: Estimates on linear, nonlinear and corrective terms of
(36) and (37).

In order to estimate K1 and K2, we follow the perturbation method
used in [18] (and before in Bricmont and Kupiainen [4]). Since K1 and
K2 correspond respectively to the operators L + V1,1 and L − 1 + V2,2, we
estimate first the potentials Vi,j so we are able to adapt the cited method
which compares K1 and K2 to eθL and eθ(L−1) respectively. Then, we show
that B(q) can be considered in some sense as a quadratic term, and R∗ is
in fact small as s → +∞.
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Lemma B.1 (Estimates on potentials Vi,j, |δ| ≤ 1/2) ∀s ≥ 1,

a)V1,1(y, s) ≤ Cs−1, |d
nV1,1

dyn | ≤ Cs−n/2, n = 0, 1, 2,

|V1,1(y, s)| ≤ Cs−1(1 + |y|2), V1,1(y, s) = − 1
4sh2(y) + Ṽ1,1(y, s) with

|Ṽ1,1(y, s)| ≤ Cs−2(1 + |y|4), ∀ε > 0, ∃Cε > 0, ∃sε such that

sup
s≥sε,

|y|√
s
≥Cε

|V1,1(y, s) − (−p − δ2

p − 1
)| ≤ ε

with −p−δ2

p−1 ≤ −1 − 1/(2p).

b)V2,2(y, s) ≤ Cs−1, |d
nV2,2

dyn | ≤ Cs−n/2, n = 0, 1, 2,

|V2,2(y, s)| ≤ Cs−1(1 + |y|2), V2,2(y, s) = s−1Qδ(y) + Ṽ2,2(y, s) with Qδ a
polynomial of degree 2 with bounded coefficients and |Ṽ2,2(y, s)| ≤ Cs−2(1 +
|y|4),
∀ε > 0, ∃Cε > 0, ∃sε such that

sup
s≥sε,

|y|√
s
≥Cε

| − 1 + V2,2(y, s) − (−1 − 1 + δ2

p − 1
)| ≤ ε

with −1 − 1+δ2

p−1 < −1 − 1/p.
c) For V = V1,2 or V2,1, we have |V (y, s)| ≤ C|δ|, and |V (y, s)| ≤

C|δ|s−1(1 + |y|2).

Proof:
The expressions of Vi,j are given in lemma 3.2.
a) V1,1(y, s) ≤ (1−δ2)(|ϕ(0, s)|p−1− 1

p−1)+(p−1)|ϕ(0, s)|p−3(|ϕ(0, s)|2−
0) − 1 ∼ C(δ)s−1 ≤ Cs−1.

We introduce W1,1(z, s) = V1,1(y, s) with z = y/
√

s. In order to prove

the next estimate, it is enough to prove that | d
nW2,2

dyn | ≤ C, n = 0, 1, 2.

Since V1,1 is a sum of products of terms |ϕ|p−1 and ϕj/|ϕ|, j = 1, 2, our
problem reduces to proving that these terms have bounded first and second
derivatives with respect to z, which follows easily (see (16), the key estimates

are ∂fδ
∂z = −2bz

(p−1)(p−1+bz2)fδ and |fδ| ≤ |ϕ| with b = (p−1)2

4(p−δ2) ).

We introduce W̃1,1(Z, s) = V1,1(y, s) with Z = |y|2/s. We can Taylor

expand W̃1,1 near Z = 0 to have W̃1,1(Z, s) = W̃1,1(0, s) + Z
∂W̃1,1

∂Z (0, s) +

O(Z2) with W̃1,1(0, s) = 1/(2s) + O(s−2) and
∂W̃1,1

∂Z (0, s) = −1/4 + O(s−1).
Returning to V1,1, this yields the next two estimates.

The last estimate is obvious from the expressions of V1,1 and ϕ.
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b) For the first term, we make a change of variables by setting Y =
κ−1fδ(y/

√
s) + 1/(2(p − δ2)s) ∈ (1/(2(p − δ2)s), 1/(2(p − δ2)s) + 1] and

V̂2,2(Y, s) = V2,2(y, s). Then, it is easy to see that V̂2,2(., s) is increasing.
Therefore,V̂2,2(Y, s) ≤ V̂2,2(1/(2(p − δ2)s) + 1, s) ∼ C(δ)s−1 ≤ Cs−1. For
next estimates, do exactly as for V1,1.

c) Same proofs, one has to be careful with the parameter δ.

Lemma B.2 (Estimates on K1, |δ| < 1/2) .
a) ∀s ≥ τ > 1 with s ≤ 2τ , ∀y, x ∈ IR, |K1(s, τ, y, x)| ≤ Ce(s−τ)L(y, x),

with
eθL(y, x) = eθ√

4π(1−e−θ)
exp[− (ye−θ/2−x)2

4(1−e−θ)
],

‖K1(s, τ)(1 − χ(τ))‖L∞ ≤ Ce−(s−τ)/(2p).

b) For each A′ > 0, A′′ > 0, A′′′ > 0, ρ∗ > 0, there exists
s9(A

′, A′′, A′′′, ρ∗) with the following property:
∀s0 ≥ s9, assume that for σ ≥ s0,

|qm(σ)| ≤ A′σ−2,m = 0, 1, |q2(σ)| ≤ A′′(log σ)σ−2,

|q−(y, σ)| ≤ A′′′(1 + |y|3)σ−2, ‖qe(σ)‖L∞ ≤ A′′σ− 1
2 ,

then, ∀s ∈ [σ, σ + ρ∗]

|α2(s)| ≤ A′′ log σ

s2
+ (s − σ)CA′s−3,

|α−(y, s)| ≤ C(e−
1
2
(s−σ)A′′′ + e−(s−σ)2A′′)(1 + |y|3)s−2,

‖αe(s)‖L∞ ≤ C(A′′e−
(s−σ)

p + A′′′e(s−σ))s−
1
2 ,

where, as in decomposition (22),

K1(s, σ)q(σ) = α(y, s) =
2

∑

m=0

αm(s)hm(y) + α−(y, s) + αe(y, s). (59)

c) For each A′ > 0, A′′ > 0, A′′′ > 0, ρ∗ > 0, there exists
s10(A

′, A′′, A′′′, ρ∗) with the following property:
∀s0 ≥ s10, assume that for σ ≥ s0,

|qm(σ)| ≤ A′σ−2,m = 0, 1, |q2(σ)| ≤ A′′σ−3,

|q−(y, σ)| ≤ A′′′(1 + |y|3)σ−3, ‖qe(σ)‖L∞ ≤ A′σ−2,
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then, ∀s ∈ [σ, σ + ρ∗]

|α2(s)| ≤ A′′s−3 + (s − σ)CA′s−3,

|α−(y, s)| ≤ CA′′′(1 + |y|3)s−3,

where K1(s, σ)q(σ) is expanded in (59).

Proof:
In [4] (proof of lemma 1), the authors prove the estimate for an integral

operator K corresponding to L+V (see (30) for L), where V is a particular
function. However, their result is in fact true for a larger class of operators
satisfying estimates of the type a) in lemma B.1. Hence, lemma B.2 follows.

Lemma B.3 (Estimates on K2, |δ| < 1/2) .
a) ∀s ≥ τ > 1 with s ≤ 2τ , ∀y, x ∈ IR,

|K2(s, τ, y, x)| ≤ Ce−(s−τ)e(s−τ)L(y, x), with

eθL(y, x) = eθ√
4π(1−e−θ)

exp[− (ye−θ/2−x)2

4(1−e−θ)
],

‖K2(s, τ)(1 − χ(τ))‖L∞ ≤ Ce−(s−τ)/p.

b) For each A′ > 0, A′′ > 0, ρ∗ > 0, there exists
s11(A

′, A′′, ρ∗) with the following property:
∀s0 ≥ s11, assume that for σ ≥ s0,

|q0(σ)| ≤ A′σ−2,m = 0, 1, |q⊥(y, σ)| ≤ A′(1 + |y|3)σ−2,

‖qe(σ)‖L∞ ≤ A′′σ− 1
2 ,

then, ∀s ∈ [σ, σ + ρ∗]

|α⊥(y, s)| ≤ C(e−
1
2
(s−σ)A′ + e−(s−σ)2A′′)(1 + |y|3)s−2,

‖αe(s)‖L∞ ≤ C(A′′e−
(s−σ)

p + A′)s−
1
2 ,

where, as in decomposition (23),

K2(s, σ)q(σ) = α(y, s) = α0(s)h0(y) + α⊥(y, s) + αe(y, s).

Proof:
Again, we can adapt the proof of lemma 1 in [4] with L replaced by L−1

and V replaced by V2,2, without difficulties. Indeed, one checks easily that
V2,2 satisfies all useful estimates: b) of lemma B.1.
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Lemma B.4 (Estimates on B(q(τ)) for q(τ) in VA(τ), |δ| ≤ 1/2 ) .
∀A > 0, ∃s12(A) > 0 such that ∀τ ≥ s12(A), q(τ) ∈ VA(τ) implies
|χ(y, τ)B(q(y, τ))| = |(1 + iδ)χB̃1 + iχB̃2| ≤ C|q|2,
|B(q)| = |(1 + iδ)B̃1 + iB̃2| ≤ C|q|p̄ with p̄ = min(p, 2).

Proof:
Start with (20) and do the same as in the proof of lemma 3.15 in [18].

Lemma B.5 (Estimates on R∗(y, s), |δ| ≤ 1/2) ∀s ≥ 1, if R∗ is expan-
ded as in (24), then:
|R̃∗

1,0(s)| ≤ Cs−2, R̃∗
1,1(s) = 0, |R̃∗

1,2(s)| ≤ Cs−3,

|R̃∗
1,−(y, s)| ≤ Cs−2(1 + |y|3), ‖R̃∗

1,e(s)‖L∞ ≤ Cs−1, and

|R̃∗
2,0(s)| ≤ Cs−2, |R̃∗

2,⊥(y, s)| ≤ Cs−2(1 + |y|3), ‖R̃∗
2,e(s)‖L∞ ≤ Cs−1.

Proof: R̃∗
1,1(s) = 0 since R∗ is even. All the other estimates follow from

the three following estimates: |χ(y, s)R∗(y, s)| ≤ Cs−2(1+ |y|2), |R∗(y, s)| ≤
Cs−1 and |R̃∗

1,2(s)| ≤ Cs−3.

Proof of |χ(y, s)R∗(y, s)| ≤ Cs−2(1 + |y|2):
From (20), we have R∗(y, s)

=
∂ϕ

∂s
+ ∆ϕ − 1

2
y.∇ϕ − (1 + iδ)

ϕ

p − 1
+ (1 + iδ)|ϕ|p−1ϕ

= −(1 + iδ)κ−iδ(fδ +
κ

2(p − δ2)s
)iδ(− κ

2(p − δ2)s2
+

(p − 1)y2

4(p − δ2)s2
fp

δ )

+ (1 + iδ)κ−iδ(fδ +
κ

2(p − δ2)s
)iδ

(p − 1)y2

4(p − δ2)s
fp

δ

+ (1 + iδ)iδκ−iδ(fδ +
κ

2(p − δ2)s
)iδ−1(

(p − 1)y

2(p − δ2)s
fp

δ )2

+ (1 + iδ)κ−iδ(fδ +
κ

2(p − δ2)s
)iδ(− (p − 1)

2(p − δ2)s
fp

δ +
p(p − 1)2y2

4(p − δ2)2s2
f2p−1

δ )

+ (1 + iδ)κ−iδ((fδ +
κ

2(p − δ2)s
)p+iδ − 1

p − 1
(fδ +

κ

2(p − δ2)s
)1+iδ).(60)

Some of these terms are easily seen to be bounded by Cs−2(1 + |y|2),
whereas others need some calculation: we divide the others by (1 + iδ)(fδ +

κ
2(p−δ2)s)

iδκ−iδ and obtain Q(y, s) = (p−1)y2

4(p−δ2)sf
p
δ − (p−1)

2(p−δ2)sf
p
δ − 1

p−1(fδ +
κ

2(p−δ2)s) +(fδ + κ
2(p−δ2)s)

p. It remains to prove that |χ(y, s)Q(y, s)| ≤
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Cs−2(1 + |y|2). We write Q(y, s) = (fδ + κ
2(p−δ2)s)

p − fp
δ − (p−1)

2(p−δ2)sf
p
δ −

κ
2(p−δ2)(p−1)s . Setting z = |y|2

s ≥ 0 and Q̂(z, s) = Q(y, s), we have |Q̂(0, s)| ≤
Cs−2 and |∂Q̂

∂z (z, s)| = p|∂fδ
∂z {(fδ + κ

2(p−δ2)s
)p−1 − fp−1

δ − (p−1)
2(p−δ2)s

fp−1
δ }| ≤

Cs−1 if z ≤ 2K0, (Taylor expansion). Therefore, if z ≤ 2K0, |Q̂(z, s)| ≤
Cs−2 + O(|z|s−1). Returning to Q, this gives the result.

Proof of |R∗(y, s)| ≤ Cs−1:
Thinking of R∗ as a function of |y|2s−1 and s (see (60)), this estimate is

obvious for all terms except (1 + iδ)κ−iδ(fδ + κ
2(p−δ2)s)

iδ( (p−1)|y|2
4(p−δ2)s fp

δ + (fδ +
κ

2(p−δ2)s)
p − 1

p−1fδ) = (1 + iδ)κ−iδ(fδ + κ
2(p−δ2)s)

iδ((fδ + κ
2(p−δ2)s)

p −fp
δ ). We

conclude using a Taylor expansion.

Proof of |R̃∗
1,2(s)| ≤ Cs−3:

From (60), we have

R̃∗
1(y, s) = −∂ϕ1

∂s
+ ∆ϕ1 −

1

2
y.∇ϕ1 + (|ϕ|p−1 − 1

p − 1
)(ϕ1 − δϕ2).

Starting from R̃∗
1,2(s) =

∫

dµ(y)χ(y, s)R̃∗
1(y, s)h2(y)

8 , one carries out easy but
long asymptotic calculation to get the result.

Step 2: Conclusion of the proof of lemma 3.3
We now prove lemma 3.3.

Ii) Case σ ≥ s0: Apply b) of lemma B.2 with A′ = A, A′′ = A2 and
A′′′ = A.

Case σ = s0: From (25),
q̃1(y, s0) = f0(

y√
s0

)p(d0 + d1y/
√

s0) − <(( κ
2(p−δ2)s0

)1+iδ). Since (d0, d1) is

chosen so that (q̃1,0(s0), q̃1,1(s0)) ∈ V̂A(s0), we have from lemma 3.5 in [18],
|q̃1,m(s0)| ≤ As−2

0 , m = 0, 1, |q̃1,2(s0)| ≤ (log s0)s
−2
0 , |q̃1,−(y, s0)| ≤ Cs−2

0 (1+

|y|3) and ‖q̃1,e(s0)‖L∞ ≤ s
−1/2
0 . We apply b) of lemma B.2 with A′ = A,

A′′ = C, A′′′ = 1 to conclude

Iii): We have from lemma B.1 |V1,2(y, s)| ≤ C|δ|s−1(1 + |y|2).
Since q(τ) ∈ VA(τ), |V1,2(y, τ)q̃2(y, τ)| ≤ CA|δ|τ−3(1 + |y|2).
Hence, |ι1,2(s)| = |C

∫

dµh2(y)
∫ s
σ dτK1(s, τ)V1,2(τ)q̃2(τ)|

≤ C
∫

dµ(1 + |y|2)
∫ s
σ dτe(s−τ)LCA|δ|τ−3(1 + |x|2)

≤ CA|δ|σ−3
∫

dµ(1 + |y|4)(s − σ)es−σ

≤ CA|δ|s−3(s − σ)es−σ , if σ ≥ s0 ≥ ρ∗.
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If we set Q(y, τ) = V1,2(y, τ)q̃2(y, τ), we have by lemma B.1 |V1,2(y, τ)|
≤ C|δ| and then |Qm(τ)| ≤ C|δ|Aτ−2, m = 0, 1, 2, |Q−(y, τ)| ≤ C|δ|A(1 +
|y|3)τ−2, |Qe(y, τ)| ≤ C|δ|A2τ−1/2. Applying lemma B.2 and integrating
between σ and s yields good estimates for ι1,− and ι1,e.

Iiii): Using lemma B.4 and a) of lemma B.2, we do the same as for the
nonlinear term in Proof of lemma 3.12 in [18].

Iiv): From lemma B.5, we have |R̃∗
1,0(τ)| ≤ Cτ−2, R̃∗

1,1(τ) = 0, |R̃∗
1,2(τ)|

≤ Cτ−3, |R̃∗
1,−(y, τ)| ≤ Cτ−2(1 + |y|3), |R̃∗

1,e(y, τ)| ≤ Cτ−1.
Applying lemma B.2 b) and integrating between σ and s gives the results
for γ1,2 and γ1,−.
For γ1,e,we use the following estimate: |R∗(y, τ)| ≤ Cτ−1, and compute:
|γ1,e| = |

∫ s
σ dτK1(s, τ)R∗

1(τ)|
≤

∫ s
σ dτe(s−σ)LCτ−1 (use lemma B.2 a))

≤ Cσ−1(s − σ)es−σ ≤ Cs−3/4(s − σ) if s0 ≥ s5(ρ
∗).

Iv): We set Q(y, τ) = dθ
ds (τ){δq̃1 + q̃2+δϕ̃1+ϕ̃2}. By lemma 3.1, we have

|dθ
ds (τ)| ≤ Cτ−2. Using q(τ) ∈ VA(τ), ϕ bounded and a simple calculation,

we have:
|Qm(τ)| ≤ CAτ−2, m = 0, 1, |Q2(τ)| ≤ C|δ|τ−3, |Q−(y, τ)| ≤ CA(1 +
|y|3)τ−3, |Qe(y, τ)| ≤ Cτ−2.
Using lemma B.2 c), we obtain estimates for λ1,2 and λ1,−. For λ1,e, use
|Q(y, τ)| ≤ Cτ−2 and do as for γ1,e.

IIi): For σ ≥ s0, use lemma B.3.

For σ = s0, we have from (25)
q̃2(y, s0) = α

s0
(δ cos[δ log( α

s0
)]− sin[δ log( α

s0
)])(1−β(s0)f0(

y√
s0

)) where α and

β(s0) are given by (26). It follows easily that q̃2,0(s0) = 0, |q̃2,⊥(y, s0)| ≤
Cs−2

0 (1 + |y|3) and |q̃2,e(y, s0)| ≤ Cs−1
0 ≤ s

1/2
0 . Apply b) of lemma B.3 to

conclude.

IIii): we have by lemma B.1 |V2,1(y, τ)| ≤ C|δ| and |V2,1(y, τ)| ≤
C|δ|τ−1(1 + |y|2). If Q(y, τ) = V2,1(y, τ)q̃1(y, τ), then
|Q0(τ)| ≤ C|δ|A2s−3 log s, |Q⊥(y, τ)| ≤ C|δ|As−2 and
|Qe(y, τ)| ≤ C|δ|A2s−1/2.
Using lemma B.3 b) yields the conclusion.

IIiii): Using lemmas B.4 and lemma B.3 a), we do the same as for Iiii).
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IIiv): Same estimates as Iiv).

IIv): By lemma 3.1, we have | dθ
ds (τ)| ≤ Cτ−2. Using lemma B.3 a) and

integrating over [σ, s] yields the conclusion.
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