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Abstract : We consider u(z,t) a blow-up solution of uy = Au + |u[P~tu
where u : RN x[0,7) - R, p > 1, (N —2)p < N + 2 and either u(0) > 0 or
(3N —4)p < 3N + 8. The blow-up set S C RV of u is the set of all blow-up points.
Under a non degeneracy condition, we show that if S is continuous, then it is a C*
manifold. The blow-up behavior of u near non isolated blow-up points is derived as
well. If the codimension of the blow-up set is one, then S is C1® for any a € (0, %)
If in addition p > 3, then u is very close to a superposition of one dimensional
solutions as functions of the distance to S.
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We are concerned in this note with blow-up phenomena arising in the
following semilinear problem :

uy = Au+ |uflu
u(,[)) = UOELOO(]RN)a (1)

where u(t) : z € RN — u(z,t) € R and A stands for the Laplacian in R .
We assume in addition the exponent p > 1 subcritical : if N > 3 then
1<p<(N+2)/(N —2). Moreover, we assume that

ug > 0or (3N —4)p < 3N + 8. (2)

This problem has attracted a lot of attention because it captures features
common to a whole range of blow-up problems arising in various physi-
cal situations, particularly the role of scaling and self-similarity. Without
pretending to be exhaustive, we would like nonetheless to mention some re-
lated equations : the motion by mean curvature (Soner and Souganidis [20]),
vortex dynamics in superconductors (Chapman, Hunton and Ockendon [6],
Merle and Zaag [15]), surface diffusion (Bernoff, Bertozzi and Witelski [2])



and chemotaxis (Brenner et al. [4], Betterton and Brenner [3]). However,
equation (1) is simple enough to be tractable in rigorous mathematical terms,
unlike other physical equations.

A solution u(t) to (1) blows-up in finite time if its maximal existence
time T is finite. In this case,

iz Ol vy = B (8o vy = oo

Let us consider such a solution. T is called the blow-up time of u. A point
a € RV is called a blow-up point if

|u(z,t)| = +o0 as (z,t) = (a,T)

(this definition is equivalent to the usual local unboundedness definition,
thanks to Corollary 2 in [18]). S denotes the blow-up set, that is the set of
all blow-up points. From [18], we know that there exists a blow-up profile
u* € CE (RV\S) such that

u(z,t) — u*(z) in O3, (RV\S) as t — T. (3)

The blow-up problem has been addressed in different ways in the litera-
ture. An important direction was developed by authors looking for sufficient
blow-up conditions on initial data or on the nonlinear term (see Fujita [10],
Ball [1], Levine [13] and the review paper by Deng and Levine [7]). The
behavior near singular time is a major direction too. More precisely, given
a € RV a blow-up point of u, two issues arise :

- the blow-up behavior of u(z,t) near the singularity (a,T).
- the regularity of the blow-up set near a.

The blow-up behavior issue has been extensively addressed in the liter-
ature, when a is an isolated blow-up point (note that the second question is
irrelevant then). See for example Weissler [25], Bricmont and Kupiainen [5],
Herrero and Veldzquez [12] and [22]. No relevant results were known when a
is not isolated. As a matter of fact, we address in this note these two issues

in a case where a is not isolated. These two issues are very closely related.
See [26] and [27].

1 The regularity of the blow-up set

By definition, the blow-up set is closed, and if the initial data is sufficiently
decaying at infinity, then it is bounded as well (see Giga and Kohn [11]).
Two questions arise :



- A constructive question : Given a compact set S cRrN , can one
construct @ a solution of (1) blowing up at some time 7" exactly on $? The
answer is affirmative if S is a sphere (see Giga and Kohn [11] for example)
or a collection of k£ points (see Merle [14] and Merle and Zaag [16]). The
techniques of [16] give a solution when S is a union of k concentric spheres
(which reduces to the case of k points in the radial setting). The question

remains open otherwise.

- A descriptive question : Given u a solution of (1) that blows up
at time T on a set S, consider & a non isolated blow-up point. What is
the regularity of S near a? We know from Veldzquez [23] that the (N — 1)-
dimensional Hausdorff measure of S is bounded on compact sets (as a matter
of fact, this provides a necessary condition on S in the constructive question
above). No further information was available.

The description question is our first concern in this note. Given a € S, we
know from Veldzquez [22] that up to some scalings, u approaches a particular
explicit function near the singularity (a, 7). We consider the case where for
all Ky > 0,

(T = )77 (& + Qaz/(T — )] Tog(T — D], 1) ~ fi,(2)

sup
|z|<Ko

=0 (4

as t —» T, where @3 is an orthonormal N x N matrix, [; =1,..., N, and

1

l Tp—1
filz) = (p—1+%2z3> : (5)

=1

Other behaviors with the scaling (T — t)_i(x — a) where k = 2,3,.. may
occur (see [22]). We suspect them to be unstable.

If I; = N, then a is an isolated blow-up point. An extensive literature is
devoted to this case (Weissler [25], Bricmont and Kupiainen [5], Herrero and
Veldzquez [12] and [22],...). We have proved the stability of such a behavior
with Fermanian and Merle in [8]. The key argument in our proof was the
following Liouville Theorem proved by Merle and Zaag in [17] and [18]:

Consider U a solution of (1) defined for all (z,t) € RN x (—o0,T) such
that for all (z,t) € RY x (—o0,T), |U$$,t)| <C(T- t)frll. Then, either

U=0orU(z,t)=[(p—1)(T*—t)] »-t for some T* >T.

The case l; < N is known to occur, namely when « is invariant with
respect to some coordinates. However, when [; < N, we cannot even tell



whether a is isolated or not, or whether S is continuous near a. Therefore,
we assume that a is non isolated and that S contains a continuum that goes
through a. To make our presentation clearer, we restrict to the case N = 2
and assume that @ = a(0) € Ima C S where a € C((—1,1),R?) and for
some ay,

Ve > 0, a(—e¢, €) intersects the complimentary of any
connected closed cone with vertex at @ and angle a € (0, ap]

(6)

(this is in a way to insure that a is not an endpoint). Assuming that u
behaves according to (4) near the singularity (a,T'), we have the following
result :

Theorem 1 (Regularity of the blow-up set at a point with the
behavior (4) assuming S contains a continuum) Assume N = 2 and
consider u a solution of (1) that blows-up at time T on a set S. Consider
a = a(0) € Ima C S where a € C((—1,1),R?) and a is not an endpoint
(in the sense (6)). If u behaves near (G,T) as stated in (4), then there are
§>0, 0 >0 and ¢ € C([—61,61],R) such that

S N B(a,2§) = graph p N B(a,2§) = Ima N B(a, 26). (7)

In particular, S is a C* manifold near the point . More precisely, there
erists Cy > 0 and hg such that for all |¢| < 61 and |h| < ho such that
|€ + h| < 41, we have :

log | log |h
o6+ 1) = 9(6) = B/ (©)] < Colnly [ E

Remark : The function ¢ is actually C1® for any a € (0, %) (see Proposition
5 below). In higher dimensions, we proved C!® regularity only when the
codimension of the blow-up set is one.

Remark : From [22], we know that the limit function at (G, T) stated in (4)
has a degenerate direction, and that we can not have two curves of blow-up
points intersecting transversally at a. With our contribution, we eliminate
the possibility of two curves meeting tangentially at a. In particular, there is
no cusp at a, and there is no sequence of isolated blow-up points converging
toa€S.

Theorem 1 also holds in higher dimensions. We claim the following :

Theorem 1’ (Regularity of the blow-up set near a point with the
behavior (4) assuming S contains a N — [ dimensional continuum)



Take N > 2 andl € {1,..., N—1}. Consider u a solution of (1) that blows-up
at time T on a set S and take & € S where u behaves locally as stated in (4)
with 1y = 1. Consider a € C((—1,1)N "' RY) such that @ = a(0) € Ima C S
and Ima is at least (N —1) dimensional. If a is not an endpoint, then there
are § >0, §; > 0 and ¢ € CY([—61,01]V 1, RY) such that (7) holds and S is
a C' manifold near a.

Remark : The rigorous definition of “endpoint” and “(N — ) dimensional”
in this theorem requires some technical notations. See section 6 in [26] for
details.

2 The blow-up behavior near a non isolated blow-
up point

The behavior of u(z,t) near the singularity (a,T) is our second concern in
this paper. We claim the following :

Theorem 2 (Blow-up behavior and profile near a blow-up point
where u behaves as in (4) assuming S contains a continuum) Under
the hypotheses of Theorems 1 and 1’°, there exists to < T such that for all
Ky >0,t€ [ty,T) and z € B(a,0) s.t. d(z,5) < Ko\/(T — t)|log(T — t)],
we have

(o) — d(z,S) , log | log(T" — t)|
(T =t)7=Tule,8) =/ (\/(T—t)|log(T—t)\>‘ < Co(Ko) |log(T — t)]
(8)

where f1 is defined in (5). Moreover, Vo € RN\S, u(z,t) — u*(z) ast — T
with

u*(z) ~U(d(z,S)) as d(z,S) — 0 and z € B(a, ) (9)

1
where U(z) = ((pf—ﬁ)z |1(;%z|)p_1 for z> 0.

Remark : This is the first time where the blow-up profile u* is derived
near a non-isolated point. Indeed, in the earlier work of Veldzquez, the
behavior along the “tangential” direction of S was not derived. Estimate
(8) shows that in a tubular neighborhood of S, the main term in the blow-up
asymptotics is the one dimensional blow-up profile f;, function of only the
normal coordinate +d(z, S).



The major step towards Theorems 1, 1’ and 2 is the proof of the stability
of the behavior (4) in a neighborhood of @ in S. Without such a stability,
no further result could be obtained after Veldzquez’s result in [23] about the
Hausdorff measure of S. The key argument in getting this stability is the
Liouville Theorem of [18], stated on page 3.

The error term in (8) shows that we fall in logarithmic scales v =
—1/log(T" — t) of the blow-up small parameter ¢ = T — ¢. Further re-
finements in this direction should give an expansion of the solution in terms
of powers of v, i.e., in logarithmic scales of € (see Stewartson and Stuart
[21]). Logarithmic scales also arise in some singular perturbation problems
such as low Reynolds number fluids and some vibrating membranes studies
(see Ward [24] and the references therein, see also Segur and Kruskal [19]
for a Klein-Gordon equation). Since v goes to zero slowly, infinite logarith-
mic series may be of only limited practical use in approximating the exact
solution. Relevant approximations, i.e., approximations up to lower order
terms such as € for 8 > 0, lie beyond all logarithmic scales. When the
codimension of the blow-up set is one, namely when

we do better, and get to error terms of order (T —¢)? with 8 > 0. Our idea
to capture such relevant terms is to abandon the explicit profile function
obtained as a first order approximation, and take a less explicit function as
a first order description of the singular behavior. Both formulations agree
to the first order. Through scaling and matching, we can reach the order ¢?
by iterating the expansion around the less explicit function.

3 Further refinements when the codimension of
the blow-up set is one

A natural candidate for this non explicit function is simply a one dimensional
solution of (1) that has the same profile f1. It is classical that there exists
a one dimensional even function @(z1,t), solution of (1), which decays on
(0,00) and blows up at time T only at the origin, with the profile fi, in the
sense that for all Ko > 0 and t € [t, T), if |z1]| < Ko+/(T — t)|log(T —t)],
then

rai gy 21 ! (e 108 [10g(T — 1))
(T —t)rale, 1) fl(\/(T—t)|log(T—t)|)‘SCO(KO) | log(T — t)|

(10)




(see Appendix A in [27] for a proof of this fact). Hence, it follows from (8)
that for all Ky > 0, ¢t € [ty,T') and z € B(a,d) such that
d(z,8) < Ko\/(T — t)|log(T — t)|, we have

1 . log |log(T —t)]
T —t)r-1 t) — u(d )| <C(Ky)—F/—7—— 11
( )p |U(.T, ) U( (I,S), )| —C( 0) |10g(T—t)| ( )
This estimate remains valid even if we replace @(d(z, S),t) by any
Ug(z,) (d(z, S),t) where 1, is defined by
Ug(1,1) :efﬁ'&(e_%zl,T—e_g(T—t)), (12)

provided that |o(z,t)| < C(Kj). Indeed, for any o € R, @, is still a blow-
up solution of (1) with the same properties and the same profile (10) as .
Moreover, i, # 4, unless 0 = 0, because 4 is not self-similar (see Appendix
A in [27]).

For each blow-up point a near a, we will suitably choose this free scaling
parameter o = o(a) so that the difference (T—t)lf*%1 (u(z,t) — tg(a)(d(z, S), t))
along the normal direction to S at @ is minimum. Following the ideas of
page 6, if we refine the expansion about this well chosen, though less explicit,
function 4y(q)(d(z,S),t), then we escape logarithmic scales. In particular,
if p > 3, then the difference u(z,t) — dy(q) (d(z, S),t) is bounded and goes
to zero as t — T, although both functions blow up. This can be done only
when

lg=1
which corresponds to a codimension 1 blow-up set. We claim the following:

Theorem 3 (The N dimensional solution seen as a superposition
of one dimensional solutions of the normal variable to the blow-up
set, with a suitable dilation) Under the hypotheses of Theorems 1 and
1’ and if l; =1 and p > 3, then for allt € [t1,T) and x € B(a,0) such that
d(z,S) < eg for some ty <T, § >0 and ¢y > 0, we have

"U,(.’Ii,t) - ﬂ’o’(Ps(E)) (d(Ia S)at)| < h(.’t,t) <M < +o0, (13)

where Pg(z) is the projection of x over S and h(z,t) — 0 as d(z,S) — 0
andt —T.

Thus, when p > 3, all the singular terms of u in a neighborhood of (a,T)
are contained in the rescaled one dimensional solution %, pg(s)) (d(z, S), 1),

7



which shows that in a tubular neighborhood of the blow-up set S, the space
variable splits into 2 independent variables:

- A primary variable, d(z,S), normal to S. It accounts for the main
singular term of u and gives the size of u(z,t), as already shown in the
formulation (11), which follows directly from Theorem 2.

- A secondary variable, Pg(z), whose effect is sharper. Through the
optimal choice of the dilation o(Ps(x)), it absorbs all next singular terms
in the normal direction to S at Pgs(z).

Similar ideas are used by Betterton and Brenner [3] in a chemotaxis model;
see section 5 in [27] for a short discussion of connections with that work. We
would like to mention that we have successfully used this idea of modulation
of the dilation with Fermanian in [9] to prove that for N = 1 and p > 3,
there is only one blow-up solution of (1) with the profile (4), up to a bounded
function and to the invariances of the equation (the dilation and translations
in space and in time).

Theorem 3 is a direct consequence of the following result which is valid
also for 1 <p < 3.

Theorem 4 (Blow-up behavior and profile near a blow-up point
where u behaves as in (4) assuming S is locally a (N—1)-dimensional
manifold) Under the hypotheses of Theorems 1 and 1’ and without the re-
striction p > 3, if l; = 1, then there exists t1 < T and ey > 0 such that for
all z € B(a, ) such that d(z,S) < ey, we have the following:

i) For allt € [t1,T),

‘u(mat) - ’aa(PS(a:)) (d(.’L‘,S),t)‘ <
_p=3 3.0 p=3 P4
€M ((T — )55 | og(T — )3+, d(a, $)5°% [log d(z, )| %)
(14)
where Ps(x) is the projection of x over S, mM = min if 1 < p < 3 and

mM = max if p > 3.
it) If x & S, then u(z,t) = u*(z) ast - T and

_oPs@) [ o(Ps@)
u*(z) —e 1 @* (e 2

d(z, S))‘
< Cd(z, $)51 | log d(z, §)| 71+,

lim a(z1,1).

where @*(x1) =
t—T



Remark: In view of Theorem 2, we see from our new estimate that up to
a suitable dilation, all the next terms in the expansion of u* up to the order
d(z, S) = |log d(z, S)| 7-17C0 are the same as the particular one dimensional
solution.

The splitting of the space variable z into d(z, S) and Ps(z), as shown in
(14), induces a geometric constraint on the blow-up set S, leading to more
regularity on S.

Proposition 5 (Cl’%*" regularity for S and C' " regularity for the
dilation o) Under the hypotheses of Theorems 1 and 1’ and if l; = 1, then
S is the graph of a function ¢ € Cl’%*"(BN,l(O,Jl),R), locally near a, and
o is a C'=" function, for any n > 0. More precisely, there is a hg > 0 such
that for all |€| < 61 and |h| < ho such that |£ + h| < 01, we have

p(€ + h) — () — h (€)] < C|hJ3/?|1og |h|[2+C,
|0(&,0()) — (& + h,p(€ +h))| < C|h||log |h||>*+Co.

The reader is referred to the papers [26] and [27] for proofs and details.
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