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Résumé

On s’intéresse au phénomene d’explosion en temps fini dans les équations du
type:
0
(1) 8—1; = Au+ [ul’ "y
ottu: (z,t) €ERY x[0,T) - R, 1 <p, (N—2)p< N +2.

Dans une premiere direction, on construit pour (1) une solution u qui explose
en temps fini 7 > 0 en un seul point d’explosion 2o € RY, et on décrit com-
plétement le profil (ou comportement asymptotique) de u & ’explosion. Cette
construction s’appuie sur la technique d’estimations a priori des solutions ex-
plosives de (1) qui permet une réduction en dimension finie du probléme, et sur
un lemme de type Brouwer. La méthode utilisée permet de dégager un résultat
de stabilité du comportement de la solution construite par rapport & des pertur-
bations dans les données initiales ou dans le terme non linéaire de réaction. De
plus, la méthode se généralise & des équations vectorielles de type chaleur avec
non-linéarité sans structure de gradient, ainsi qu’au traitement d’un probleme
de reconnexion d’un vortex avec la paroi en supra-conductivité.

Dans une seconde direction, on s’intéresse a I’équation suivante associée a

(1): 5 .
w w

2 — =Aw— —y.Vw— —— +wP

(2) P 5Y pa
et on démontre un Théoréme de Liouville qui donne une classification des solu-
tions de (2) globales en temps et en espace et uniformément bornées. On obtient
également une propriété de localisation de 1’équation (1) (si uw > 0) qui permet
de la comparer de fagon précise a la solution de I’équation différentielle associée.

Enfin, on s’intéresse de nouveau & la notion de profil et on utilise les es-
timations qui découlent du Théoreéme de Liouville pour prouver un résultat
d’équivalence de différentes notions de profils d’explosion ou de développement
asymptotique de u au voisinage de xg point d’explosion, en variable z, y = £=22

VIT—t

ouz=——220____
(T—1)[log(T—1)]|

Mots clés: équation de la chaleur, singularité, explosion en temps fini, extinc-
tion en temps fini, profil, développement asymptotique, équations vectorielles,
supra-conductivité.






Abstract

We are interested in finite-time blow-up phenomena for heat equations of

the type:

ou -1
(1) i Au+ |ulP~ u

where u : (2,t) € RN x [0,T) - R, 1<p, (N —2)p< N +2.

We first construct for (1) a solution u which blows-up in finite time T at
only one blow-up point zo € RV, and describe completely its blow-up profile
(or asymptotic behavior). This construction is based on a priori estimates’ tech-
nique which reduces the problem to a finite-dimensional one, and on a Brouwer
type lemma. This method allows us to derive a stability result of the behavior
of u with respect to initial data or perturbation of the nonlinearity. In addi-
tion, we generalize the method to the case of vector-valued equations with a
non gradient nonlinearity, as well as a vortex reconnection with the boundary
in super-conductivity.

In a second step, we consider the following equation derived form (1):

ow 1 w
2 - = Aw-— — NYSvw— — I))
(2) 95 w = 5y Vw P +w
and prove a Liouville Theorem which classifies all uniformly bounded globally (in
space and time) defined solutions of (2). We then obtain a localization property
of equation (1) (if w > 0) which allows a precise comparison with solutions of
the associated ordinary differential equation.

In a third step, we use a consequence of the Liouville Theorem to prove the
equivalence of different notions of blow-up profile or asymptotic behavior near a

blow-up point zg of u, namely in variables z, y = \”}% or z = W
- —) loa(1—

Key words: heat equation, singularity, finite time blow-up, finite time quen-
ching, profile, asymptotic behavior, vector-valued equations, super-conductivity.
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16 Introduction

L’objet de cette these est ’étude de la formation en temps fini de singularités
dans des systémes de réaction-diffusion de type chaleur:

%_;L = Au+F(u) dans Qx][0,7)
(1) u = 0 sur 0N x[0,T)
u(.,0) = wug dans Q

oll

u:(z,t) €AX[0,T) = RM wup: Q- RM,

) est un ouvert convexe borné et régulier de RY ou Q = RN, T > 0,
(Au); = Au;,

F:RM 5 RM est de classe C1,

et N,M € N. (La condition de bord est & ignorer si Q = RY).

Ce systeme constitue un modele simplifié pour beaucoup de phénomenes
physiques de réaction-diffusion. Il apparait notamment en combustion (voir
Williams [58], Kapila [31], Kassoy et Poland [33], [34] (explosions thermiques),
Bebernes et Eberly [2] (en particulier, un modele de combustion solide), Be-
bernes et Kassoy [3], Lacey [36], Galaktionov, Kurdyumov et Samarskii [19],
Galaktionov et Vazquez [20]). On le retrouve aussi dans beaucoup de situations
physiques, de la mécanique des fluides & 'optique, sous la forme de I’équation
de Ginzburg-Landau complexe (voir Levermore et Oliver [37]). Le systeme (1)
a également un intérét en neuro-biologie (voir Nagasawa [49], McKean [41]), et
dans des modeles génétiques (voir Fisher [14]).

Le probléme de Cauchy (local en temps) pour (1) peut étre résolu dans une
grande classe d’espaces fonctionnels. Citons par exemple l’espace des fonctions
de C(€) nulles sur 9Q (si 2 est borné) ainsi que ’espace H N L>°(Q) que nous
considérons dans la suite (voir Friedman [15], Henry [27], Pazy [50], Weissler
[56]).
On peut alors définir T > 0 comme étant le temps maximum d’existence de la
solution de (1). D’apres la théorie locale, u € C ([0,T), H} N L>®(R2)).
Deux cas se présentent:

- T = +o0: existence globale.

- T < +o0: dans ce cas,

g M@=y = g, Bl = oo

On dit alors que u explose en temps fini 7T'.

Par la suite, on s’intéresse a 1’étude de telles solutions explosives.
Pour cela, on introduit la notion de point d’explosion (voir par exemple Fried-
man et McLeod [17]):

Définition 1 Un point a € Q est dit point d’explosion de u si u(x,t) n’est pas
localement bornée au voisinage de (a,T), autrement dit s’il existe (z,,t,) —
(a,T) tel que |u(zy,,t,)| = +00 quand n — +oo.

1l est classique que

Si u explose en temps fini T, alors elle admet (au moins) un point d’explo-
ston.

Plusieurs questions se posent autour de ’étude de ’explosion en temps fini
dans (1):
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Question 1: Existence. Existe-t-il des solutions de (1) qui explosent en
temps fini? Existe-t-il des conditions suffisantes sur ug et F' qui entrainent ’ex-
plosion?

Question 2: Normes de u. Peut-on avoir des estimations précises des
normes (spatiales) de u et de ses dérivées a ’explosion?

Question 3: Comportement asymptotique. Comment se comporte u
asymptotiquement au voisinage de (a,T') ol a € {2 est un point d’explosion? Est-
ce que ce comportement est universel (i.e. indépendant des données initiales)?
Est-il stable par rapport & des perturbations dans les données initiales ou le
terme non linéaire?

Question 4: Interaction de la diffusion et de la réaction. Peut-on
comparer ’équation (1) & une équation de dynamique locale en espace (une
équation différentielle), ce qui permettrait de comprendre les roles respectifs et
les interactions entre le terme de diffusion Awu et le terme de réaction F(u),
surtout au voisinage de 1’explosion.

1 Apercu historique et directions fondamentales
de I’étude

Dans la littérature sur l’explosion en temps fini pour le systeme (1), le cas
suivant a constitué un prototype intéressant retenu par plusieurs auteurs:

ou
— p—1
(2) i Au + |u| u

avecu: (z,t) € A x [0,T) > R, Qouvert de RV, 1 <petsi N >3, p< {£2.
Dans le cas N = M =1, d’autres auteurs se sont intéressés au cas de

ou u
(3) E—Au—{—e.

Nous nous intéressons essentiellement & I’équation prototype (2).

Les premieres conditions suffisantes d’existence d’une solution explosive pour
les équations de type (2) sont dues en particulier & Kaplan [32], Friedman [16],
Fujita [18], Levine [38], Ball [1] et Weissler [57]. Par exemple, dans le cas d’un
domaine borné 2, Ball a obtenu, grace a I’énergie associée a (2)

1 1
E(u) = 5/S;|Vu|2dm— im/g |u|PTda,

et & des méthodes d’équations différentielles ordinaires, une obstruction & 1’exis-
tence globale d’une solution de (2):

Siug € HE (), uo #0 et E(ug) <0, alors u(t) explose en temps fini.

Dans un contexte plus général (2 = RY ou Q borné), Giga et Kohn [23] se
sont appuyés sur I’énergie locale pondérée suivante:

(1) Earlp) = tP_L_%'H/ (%|Vgo|2—%|¢|l’+1) e~ lz—al?/4t g,
Q
1

2 N 2
+ tﬁ—i/ - 2e—|m—a| /4td$
e 1)|90|
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pour trouver une condition nécessaire de non explosion au voisinage d’un point
donné:

Il existe une constante o(N,p) > 0 telle que si u(t) explose en temps fini T
et si S est étoilé en un point a € Q vérifiant

EG,T(U()) <o,

alors a n’est pas point d’explosion pour u(t).

L’étude du comportement asymptotique de u(t) au voisinage de (a,T') ou a
est un point d’explosion s’est faite d’abord grace & I'introduction de variables
auto-similaires:

5) _T—a
SV
D’apres (2), w, (ou simplement w) vérifie: Vs > —logT, Vy € W, s,

(6) ow _ Aw — %y.Vw — 1% + Jw|P~w

, 8= —log(T — 1), wa(y,s) = (T — t)7 T u(z, ).

Os

ot Wy s = (2 —a)es.
Ainsi, ’étude de u(t) au voisinage de (a,T') est équivalente & 1’étude du compor-
tement asymptotique de w,(s) quand s — +o00. D’ailleurs, 1’énergie locale &, ¢
définie en (4) n’est autre que I’équivalent pour u de la fonctionnelle de Liapunov
associée a (6).

Giga et Kohn ont démontré dans [21] et [22] que si

('N) 2 0
on 3N +8
p< 3N_40uN=1,

alors il existe g > 0 et C' > 0 tels que

. 1
(7) 0<eo < lim_[w(s)lz=w,. < —
et
(8) [Vw(s)||ze + [[Aw(s)||lL~ + [[VAw(s)|z=~ < C.

Ceci revient a dire en terme de u que

\ 1
<l —t)»—1 o < —
€0 < Jim (T = )7 lu(®)|r <

et

(T — )72 || Vu(t)| pe + (T — ) 7T | Au(t)|| 1
HT - )73 VAu(t) = < C.

Une premiere approche dans la recherche d’un développement asymptotique
pour w, a consisté en une étude de (6) dans L2 ou

9) py) = (477)71\[/27
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ce qui a permis d’avoir des convergences de w(s) quand s — +oo valables
uniformément sur tout compact. Cette étude a été initiée par Giga et Kohn qui
ont démontré dans [22] et [23] qu’il existe [, € {—k, K} tel que

sup |we(y,s) —ly] = 0 quand s = +oo
lyl<R

ol .
k=(p—1)"71.

Notons que &, —k et 0 sont les seules solutions de (6) indépendantes du temps.
Ce résultat a été précisé dans le cas O = RV par Filippas et Kohn [11], Filippas
et Liu [13], et Herrero et Veldzquez [28], [53] (voir aussi les articles de revue [30]
et [52]), grace & une analyse dans des espaces de Sobolev avec poids Gaussien
(9). Ces auteurs ont montré que deux cas peuvent se produire:

- soit il existe k € {0, ..., N — 1} et une matrice orthonormée @) tels que

wa(y,8) — K — 5 (<N —k - %yTA’“y) ‘ - (1)

(10) VR >0, sup 505

ly|<R

ol /
A1 ~N—k O

et In_y est la matrice identité (N — k) x (N — k),
- soit il existe § > 0 tel que

VR >0, sup |we(y,s)— k| < C(R)e™®.
ly|<R

Herrero et Velazquez ont affiné ce cas de convergence exponentielle a 1'ordre 1
(voir [29] et [53]).

D’un point de vue physique, ces développements asymptotiques sont insuffi-
sants. En effet, une fois traduite dans les variables d’origine (x, t), la convergence
est uniforme uniquement & l’intérieur de paraboles du type |z — a| < RVT — ¢,
ce qui ne permet pas de déduire un profil asymptotique de u(t) dans la variable
x.

Néanmoins, le domaine de convergence a pu étre étendu par Herrero et
Veldzquez [28], [55] (voir aussi [54]) aux ensembles |z| < C o

Y

T
en dimension N. Ils se sont appuyés sur une estimation linéaire dans des espaces
de Sobolev avec poids Gaussien de l’effet du terme convectif —%y.Vw dans
I’équation (6). Ce résultat de Herrero et Veldzquez leur a permis de dégager dans
le cas (10) une notion de profil limite pour la fonction u au sens ou u(z,t) —
u*(z) quand t — T si x # a et x est voisin de a, avec

y 8p|log |z — a| =
11 ~ | )
(11) u*(x) [( 0)?] al? quand £ — a

Ce probléme a été également exploré d’un point de vue numérique. Citons en
particulier une étude numérique de Berger et Kohn [4] qui a permis de dégager
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Pexistence d’un profil asymptotique pour certaines solutions de (6)

(12) £z = @—u%w)

Il a été observé numériquement dans [4] que

w(y,s) ~ f (%) quand s — +oo.

Bricmont et Kupiainen ont démontré dans [6] (voir aussi [5] et Bricmont, Ku-
piainen et Lin [7]) Pexistence d’une donnée initiale pour w telle que

(13) sup
yeRN

w(y,s) — f (%) ‘ — 0 quand s — +o0.

Grace a la transformation (5), ceci donne pour tout a € RV une solution explo-
sive u(t) de (2) telle que

1 r—a
a9 sup (T -o7rul@i) -] <\/(T s T t)|) ‘ ”
quand t — T

Nous nous proposons de développer trois directions dans cette these:

- Dans une premiere direction, on propose une seconde méthode de démons-
tration du résultat (13) de Bricmont et Kupiainen, basée sur la technique d’es-
timations a priori des solutions de (6) qui permet une réduction en dimension
finie du probléme, et sur un lemme de type Brouwer. Cette méthode permet de
dégager un résultat de stabilité du comportement (13) par rapport & des per-
turbations dans les données initiales ou dans le terme non linéaire de réaction.
D’autre part, la méthode se généralise & des équations vectorielles de type cha-
leur avec non-linéarité sans structure de gradient, ainsi qu’au traitement d’un
probléme de reconnexion d’un vortex avec la paroi en supra-conductivité.

- Dans une seconde direction, on affine les estimations (7) et (8) de Giga
et Kohn, grace & un Théoreme de Liouville qui donne une classification des
solutions globales de (6). On obtient également une propriété de localisation
de I’équation (2) qui permet de la comparer de fagon précise & la solution de
I’équation différentielle associée.

- Enfin, on s’intéresse de nouveau a la notion de profil et on utilise les estima-
tions qui découlent du Théoreme de Liouville pour prouver un résultat d’équi-
valence des trois notions de profils d’explosion ou de développements asympto-

tiques en variable z, y, ou z = %

2 [Existence et stabilité d’une solution de (2)
avec les comportements (14) et (11)

a) Equation de la chaleur avec une non-linéarité en puissance
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On considere le probleme de construction d’une solution de I’équation

‘?9—1; = Au + [ulP~tu
(15) u(z,t) ER, 2 €RN, t>0
: N+2
1<p,etsiN2>3, p< 35
qui explose en temps fini donné 7" > 0 en un point unique donné a € RV, et
telle que u vérifie (14) et (11).
Dans [48] et [59] (voir aussi [47]), le résultat suivant a été obtenu (Théoréme
1 page 48, Théoreme 1 page 93 et Proposition 1 page 93):

Théoreme 1 (Existence) Il existe To > 0 tel que pour tous 0 < T < Ty et
a € RY, il existe ip € L® NWLPTLHRN) telle que Uéquation (15) avec donnée
initiale Gp admet une solution 4(t) explosant en temps fini T uniquement au
point a € RV, et qui vérifie:

i)
(16) sup |(T' — )7 Ta(z,t) — f i -0

seR™ V(@ — 1) 1og(T — 1)

quand t — T' ot f est définie en (12), .
i) Vo € RV \{a}, a(z,t) — 0*(z) quand t - T et

1
8p|log |z —aj| |7~*
17 W)~ | ————5 wand © — a.
o SR = =
Signalons d’abord que i7) est une conséquence directe de i) grace a I'invariance
de I’équation (15) sous la transformation

A= uy(z,t) = /\%u(/\x, M2t),

et & des estimations de régularité parabolique de (15) s’appuyant sur une condi-
tion suffisante de non explosion de solutions de (15) due & Giga et Kohn [23]
(voir section 4 dans [59]).

L’objet du théoreme se réduit donc a la construction d’une donnée initiale
up pour (15) telle que 7) soit satisfaite. La preuve de ceci s’appuie sur:

1) La transformation du probleme grace & (5) et & des estimations a priori
sur les solutions de (6) au voisinage du profil f défini en (12), ce qui permet de
réduire le probléme de construction & un probléme de dimension finie,

2) Une résolution de ce probléeme de dimension finie & ’aide d’un argument
topologique.

La méthode de réduction en dimension finie initiée pour la preuve du Théo-
réme 1 dans [48] permet d’obtenir un résultat de stabilité du comportement
(16) (et donc de (17)) par rapport & des perturbations L N WLHPTLH(RY) de
la donnée initiale. Plus précisément (Théoréme 2 page 50 et Théoréme 3 page
114):

Théoréme 2 (Stabilité du comportement (16) et (17)) Soit 4g la
donnée initiale construite au Théoréme 1. Soit 4(t) la solution de (15) avec
donnée initiale iy qui explose en temps fini T en un point a. Alors,

pour tout € > 0, il existe V. voisinage de g dans L® NWEPHL(RN) tel que pour
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tout ug € V., la solution u(t) de (15) avec donnée initiale uo explose en temps
fini T en un point unique a € RY tels que

la—a|+ T —T| <e.
De plus, u(t) se comporte comme (16) et (17) avec (a,T) remplacant (a, T)

Remarque: Par les techniques de localisation présentées 4 la fin de la these, on
peut avoir le méme résultat dans I’espace d’énergie H'.

La preuve du Théoréme 2 s’appuie fondamentalement sur la technique de
réduction en dimension finie du Théoréme 1 ainsi que sur l'invariance de (6)
sous ’action de la transformation géométrique

1
(aa T) - wa,T(y7 S) = (T - t) P—lu(x’t)
oly =I5k, s =— log(T —t), associée & une condition de non dégénérescence
lorsque u(z,t) est au voisinage du profil

r—a

V(T — 1) log(T — 1)

A

(T—t) 7 f

b) E‘quation de la chaleur complexe

La technique de réduction & un probleéme de dimension finie s’applique en fait
dans un cadre beaucoup plus général que (15), celui des équations vectorielles
avec une non-linéarité ne dérivant pas nécessairement d’un gradient (voir section
5 dans [59]). Un prototype d’une telle équation est le suivant:

9u = Au+ (1+i0)[ulP~u
(18) u(z,t) €C, e RN, t>0
1<p,etsiN>3, p< %

Dans [59], une solution explosive stable de (18) est construite dans le cas ou §
est petit (voir Théoreme 1 page 93 et Proposition 1 page 93):

Théoréme 3 (Existence) Il existe o > 0 et Ty > 0 tels que pour tous § €
[<d0,00], 0 < T < T et a € RY, il existe ug € L™ N WLPTLRY C) telle
que ’égquation (18) avec donnée initiale ug admet une solution u(t) explosant en
temps fini T uniquement au point a € RY et qui vérifie:

i)

14148
1+i8 r—a
ZsEuRpN (T —t)7=Tu(z,t) — fs <\/(T — e —t)|> —0

quand t — T, ou

1

fa2) = (p‘“ Lffp_i_?j)pl?)_ﬁ,

i) Vo € RN \{a}, u(z,t) = u}(z) quandt — T et

14i8
8- ®)logle — al[]5T
%@N[@—WMwP

quand x — a.
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Bien que ce Théoreme soit d’apparence tres similaire au Théoreme 1, il en differe
sur deux points:

1) Le Théoréme 3 présente un comportement complétement complexe, au sens
ot le profil limite obtenu n’a pas de direction fixe dans C.

2) La preuve du Théoréme 3 qui s’appuie fondamentalement sur la technique de
réduction en dimension finie introduite dans le cas réel, présente néanmoins une
difficulté de plus sous la forme d’une direction dégénérée supplémentaire dans le
probleme. Cette difficulté est maitrisée grace & la théorie de la modulation (voir
Filippas et Merle [12] pour un usage similaire de la théorie de la modulation).
Le Théoreme 2 de [59] généralise ce résultat au cas vectoriel (voir page 115).

¢) Un probléme d’extinction en temps fini

Comme autre application, le cas de I’équation (2) avec un terme d’amor-
[Vul®

tissement de la non-linéarité v-—-- ot v € (1,p) est traité de facon analogue
dans [45] (voir Tayachi [51] ol un terme d’amortissement de la forme |Vu|? est
considéré). En effet, il est montré dans [45] que I’équation
2
gu — Ay — PAMAL N(u)

u

u(z,t) ER, 2 € RN, t>0

(19) N(u) ~ u? quand u = +oo
[N ()] < Cexp(~L) si lu] < 1
1<v<p,

admet une solution explosive en temps fini stable avec des comportements ana-

logues & (16) et (17) (voir Proposition 1 page 133).

Remarque: Signalons que si ¥ < 1 < p dans (19), alors des changements de

fonctions évidents rameénent (19) au cas de (2) ou (3), deux cas ou 'on dispose

déja de solutions explosives (voir la remarque apres Proposition 1 page 133).
Grace a une transformation du type

h(.’l}‘,t) = U(ZE t);

le résultat pour 1’équation (19) donne un résultat d’extinction en temps fini pour
le probléeme suivant:

(20) h(z,t) 1 sur 0N x[0,T)

{ gh = Ah—G(h) dans Qx[0,T)

ol 2 est un ouvert borné,

1
G(h) ~ W quand h — 0
et 5> 0.
Si h est définie sur Q2 x [0,T) et
lim inf h(z,t) =0,
t—=T zeQ
alors on dit que A s’éteint en temps fini.

L’équation (20) constitue un modele de reconnexion d’un vortex avec la
paroi dans un semi-conducteur de type II si 8 = 1 (voir Chapman, Hunton et
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Ockendon [8]). Elle est également reliée & ’équation de diffusion générée par
des phénomeénes de polarisation dans des conducteurs ioniques (voir Kawarada
[35]).

Quelques criteres d’extinction en temps fini pour (20) étaient déja connus en
dimension 1 (voir Kawarada [35], Levine [39] (article de revue), [40]). Cependant,
peu de choses étaient connues sur le comportement de la solution & ’extinction,
sauf en ce qui concerne la localisation des points d’extinction (voir Guo [24],
Deng et Levine [10]), ou le taux d’extinction (voir Guo [24], [25], [26]).

Dans [45], une solution stable de (20) s’éteignant en temps fini en un seul
point est construite. Son comportement au voisinage du point d’extinction (ana-
logue du temps d’explosion) est décrit avec précision (voir le Théoreme de la
page 130).

Théoréme 4 (Existence d’une solution de (20) s’éteignant en
temps fini) Pour tout a € 2, I"équation (20) admet une solution h s’éteignant
en temps fini T > 0. De plus, Vx € Q\{a}, h(z,t) - h*(z) quand t - T et

o B+ —af?
h(@) ~ [ 8BTog |z —al]

AT
quand x — a.

3 Estimations générales sur les solutions explo-
sives positives de (2)

On se propose maintenant d’affiner les estimations (7) et (8) de Giga et
Kohn. Dans ce but, on s’intéresse d’abord au probléeme de classification des
solutions de (6) globales en espace et en temps et uniformément bornées.

Dans [44], le résultat suivant est établi (Théoreme 2 page 191):

Théoréme 5 (Théoréme de Liouville pour (6)) Soit w une solution
de (6) définie pour (y,s) € RN x R telle que ¥(y,s) € RV x R,
0 <w(y,s) < C. Alors, on est nécessairement dans l'un des cas suivants:
i) w=0,
i) W=k ot k= (p—l)_p_ll,
i44) Jso € R tel que w(y,s) = p(s — so) ou

o(s) = k(1 +€®) 77T,

Remarque: Remarquons que ¢ est une connexion dans L*° des deux points
critiques de (6): 0 et k. En effet,

; P
p= Tp-1 + ¢, p(=00) =K, p(+00) = 0.

Remarque: 11 suffit d’avoir une solution de (6) définie sur (—oo, s*) pour avoir
un théoréme de classification (voir Corollaire 2 page 191).

A travers la transformation (5), ce Théoréme a comme corollaire le résultat
suivant (voir Corollaire 3 page 191):

Corollaire 1 Soit u une solution de (2) définie pour (z,t) € RN x (—o00,T)
telle que V(z,t) € RN x (—o0,T), 0 < u(z,t) < C(T — t)_ﬁ. Alors,

soit u =0,

soit AT* > T tel que u(z,t) = k(T* — t)_PlTl.
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La preuve du Théoreme 5 s’appuie fondamentalement sur les points suivants:

1) une classification des comportements linéaires de w(s) quand s — —oo
ly1®

dans L3(RY) (L{S,(RV)) ot p(y) = Eyars,

loc
2) l'usage des transformations géométriques

’I.U(y, S) — wa,b(ya S) = ’LU(y + ae%as + b)

pour a € RN et b e R,
3) un critere d’explosion en temps fini au voisinage du point critique x de la
fonctionnelle d’énergie associée a (6):

Siw est solution de (6) définie pour tout temps s > —logT et que pour un
certain so > —logT, [w(y,s0)p(y)dy > [ kp(y)dy, alors w(s) exzplose en temps
fini.

(Proposition 3.5 page 205).

A Paide d’un argument de compacité, on obtient dans [44] les estimations
uniformes suivantes sur les solutions positives de (2) (Théoréme 1 page 189)

Théoréme 6 (Estimations optimales & ’ordre 0 sur u(t) a I’explosion)
On suppose que ) est un domaine conveze borné de classe C*° dans RN ou que
Q = RN. On considére u(t) une solution de ’équation (2) explosant en temps
fini T. Si de plus, u(0) > 0 et u(0) € H (), alors,

(T = )7 flu(®)||Le@) = &

et (T — )71 | Au(t) || poe + (T — £)7T+% | Vu(t)||p — 0 quand t — T.

De fagon équivalente, pour tout a € (1,
lwa(s)|lzee = K et [|Awqa(8)||zo + ||Vwa(s)||zee — 0 quand s — +oo.

Le Théoreme 6 combiné avec des estimations a priori des solutions de (6) dans
W3 (RY) a permis dans [46] d’affiner les résultats & l’ordre un dans le cas
2 = RY (Théoreéme 1 page 231):

Théoréme 7 (Estimations uniformes optimales & ’ordre un sur les
solutions positives de (2)) Il eziste des constantes positives Cy, Ca et Cs
telles que pour toute solution positive de (2) explosant en temps fini vérifiant
u(0) € HY(RYN) et pour tout € > 0, il existe to(e) < T tel que

i) Vt € [to(e),T),

1

lu@®)llp= < (n+(§—;+e)m)(ip_t)_ﬁ7
i P )
IViu®le < G0 T
pour i =1,2,3,

ii) Vs > —log(T — to(€)), Va € RV,

Nk 1 ; Cz
lwa($)llze < &+ (5 + )25 [IViwals)llze < 5
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Remarque: Dans le cas N = 1, Herrero et Veldzquez [28] (Filippas et Kohn [11]
aussi) ont prouvé des estimations reliées au Théoréme 7, grace & une propriété
de Sturm utilisée en premier par Chen et Matano [9] (le nombre d’oscillations
en espace est une fonction décroissante du temps).

Remarque: Il existe dans [44] et [46] des versions des Théorémes 6 et 7 valables
pour une suite de solutions de (2) et qui donnent de la compacité (Théoréme 1’
page 190 et Théoreme 1’ page 232).

Le Théoréme 6 nous permet de comparer les tailles relatives des termes de
diffusion (Au) et de réaction (u?) dans (2) ponctuellement en espace-temps. En
effet, on démontre dans [44] le Théoréme de localisation suivant (Théoréme 3
page 192):

Théoréme 8 (Comparaison avec ’équation différentielle ordinaire) On
suppose que Q) est un domaine convexe et borné de classe C*>% ou Q = RN, et
que ug € H(Q). Alors, Ve >0, 3C. > 0 tel que Vt € [Z,T), Vz € Q,

|lug — uP| < eu? + C..

Ainsi, la solution de ’équation aux dérivées partielles (2) est comparable
uniformément et globalement en espace-temps & une solution de 1’équation dif-
férentielle ordinaire (localisée par définition)

(21) u =P

Ce Théoréme constitue ainsi une justification a posteriori du changement de
variables (5) qui a permis toute ’étude de (2). En effet, le choix de (5) était
en quelque sorte motivé par la recherche d’une comparaison de u(z,t) & (T —
t)_ﬁ qui est justement la solution de (21) qui explose au temps 7.
Remarque: De multiples conséquences découlent de ce théoréme.

Par exemple (Corollaire 1 de [44], page 188):

Corollaire 2 On suppose que Q est un domaine conveze et borné de classe C**
ou . = RY. Alors, pour toute solution positive u de (2) qui explose en temps
fini T et qui vérifie u(0) € H (), pour tout eg > 0, il existe to(eg,up) < T tel
que pour tous a € Q et t € [to,T), si u(a,t) < (1 —eo)s(T — t)_PlTl, alors a
n’est pas point d’explosion de u.

4 Existence de profil a I’explosion pour les solu-
tions de (2)

Grace aux estimations de Théoréme 7, on démontre dans [46] un Théoréme
de classification des profils dans la variable %, qui sépare ’espace en partie
singuliere (13 ou il y a explosion) et partie réguliere dans le cas non dégénéré
(Théoreme 2 page 234).

Théoréme 9 (Classification des profils & 1’explosion) Il existe
ke {0,1,...,N} et une matrice N x N orthogonale Q tels que
w(Q(2)V/s,8) = fr(z) uniformément sur tout compact |z| < C, ou

N—k
fi(2) = (=14 T 3" 52) 71 sik < N—1et fy(z) = k= (p—1)7771.
=1
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Remarque: Ce résultat a été prouvé aussi par Veldzquez dans [55]. Cepen-
dant, grace aux techniques uniformes de [46], on peut montrer que la vitesse de
convergence est indépendante du point d’explosion considéré, alors qu’elle en
dépend dans le résultat de [55].

Un des problemes intéressants qui en découle est de relier toutes les notions
de profils connues: profil pour |y| borné, |z| = % borné ou z ~ 0. On dé-
montre dans [46] que ces notions sont équivalentes dans le cas d’une solution
qui explose en un point de fagon non dégénérée (cas générique), ce qui clarifie
de nombreux points évoqués dans des travaux précédents. On a finalement le
Théoréme suivant (Théoreme 3 page 234).

Théoréme 10 (Equivalence des comportements explosifs en un
point) Soit u(t) une solution de (2) définie sur RV x [0,T), eta € RVN. On a
Déquivalence des trois comportements suivants de u(t) et de w,(s) (définie en

(5)):

K 1 1
i) VR > 0, sup |wu(y,s)— |[k+ — (N — = 2” :o(—) uand s —
) sy, )~ [543V = )| = 0(3)
+o0,
i) VR > 0, sup |wa(z s,8) — fo(z)| = 0 quand s — +oo avec fo(z) =
|z|<R

—1)2 __1
(- 1+ C5 o) e,
i4i) Jeg > 0 tel que pour tout |z — a| < €, u(z,t) = u*(z) quandt - T et
o
u*(z) ~ [%] "' quand z - a.
Dans ce cas, a un point d’explosion isolé de u(t).

Remarque: Grice aux estimations uniformes utilisées dans la preuve de ce
théoréme, on peut prouver que les vitesses de convergence dans chaque expres-
sion 4), 4¢) ou %ii) dépend de la vitesse de convergence dans les deux autres
et d’une borne sur ||ugl|c2(r~y (et non sur ug). Les estimations de Veldzquez
[55] permettent aussi d’avoir de résultat d’équivalence, mais les convergences
dépendent du point d’explosion considéré.

La these est organisée en deux parties:

Premiere partie: Existence et stabilité de solutions explosives pour des
équations de type chaleur et description précise de leur profil & 'explosion.
Organisée en quatre articles [47], [48], [59] et [45] (dont trois en commun avec
Frank Merle), elle reprend les résultats de la section 2 de cette introduction.

Deuxiéeme partie: Estimations générales des solutions positives explosives
de I’équation de la chaleur non linéaire et notions de profils & ’explosion.
Elle englobe les résultats des sections 3 et 4 de l'introduction, sous la forme de
trois articles écrits en collaboration avec Frank Merle ([43], [44] et [46]).
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Equations aux dérivées partielles / Partial Differential Equations

Stabilité du profil a ’explosion pour
les équations du type u; = Au + |u[P~uT

Frank Merle et Hatem Zaag

Résumé - On considére dans cette note I'équation non linéaire suivante:
-1
we = Au~+ |u’” u,u(., 0) = uo,

(et d’autres extensions de cette équation, ol le principe du maximum ne s’applique
pas). On décrit d’abord le comportement au voisinage de I'explosion d’une solution
explosant en temps fini. Ensuite, on montre que ce comportement est stable.

Stability of blow-up profile for equation
of the type u; = Au+ |u[P~'u

Abstract - In this note, we consider the following nonlinear heat equation
wte = Au+ |[ulP " u, u(.,0) = uo,

(and various extensions of this equation, where the mazimum principle do not apply).
We first describe precisely the behavior of a blow-up solution near blow-up time and
blow-up point. We then show a stability result on this behavior.

Abridged English Version - In this note, we consider the following non-
linear equation:

(1) ug = Au + |[ulP" u,u(.,0) = uo € H,

where u(t) : = € RV — u(z,t) € R. We note H = WHPHL(RY) n L2 (RY).
We assume in addition the exponent p subcritical: if N > 3 then 1 < p <
(N +2)/(N —2), otherwise, 1 < p < +00. Other types of equations will be also
considered.

We study the case where the solution u(t) of (1) blows-up in finite time in the
sense that w exists on [0,7) with T' < +o00, and ||u(t)||g — +o0o when t — T.
(see Ball [1], Levine [13]). In this case, there is at least one blow-up point a
(that is a € RY such that: |u(a,t)| = 400 when ¢t — T'). We are interested in
the structure of the solution near this point. We want to study the behavior of
u(t) near blow-up time and point, and the stability of such behavior.

This problem has been extensively studied in the last recent years (see [6],
(8], [9], [10)).

In [3], Bricmont and Kupiainen construct a blow-up solution u(¢) for (1),
which approaches a universal profile with a boundary layer separating regions
where u(z,t) is “large” and regions where u(z,t) is “small”, and moving at the
rate

2) V(T = t)[1og(T - 1)].

For that, they used ideas close to the renormalization theory, and some hard
analysis.

1 Note parue dans C. R. Acad. Sci. Paris Sér. I Math. 322, 1996, pp. 345-350.
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In this note, we shall give an idea of a more elementary proof of their result,
based on a more geometrical approach and on techniques of a priori estimates,
which apply to other contexts. (In particular, we do not use maximum principle).

Theorem 1 Existence of a blow-up solution with a boundary layer
with the rate (2)

There exists Ty > 0 such that for each T € (0,Tp], Vg € H with ||g]jre <
(logT)~2, one can find dy € R and di € RY such that for each a € RN, the
solution u(t) of equation (1) with initial data

1 do + dy 2
uo(@) = T~ 71 { f(2)(1+ — 225
p— 1+ 5522

) +9(2)},

where: z = (z — a)(|log T|T)~2, blows-up at T at only one blow-up point: a.
Moreover,

(3)  Jim (T = )7 u(a+ (T = )[108(T = )))¥2,8) = F(2)llpwm) =0,

with f(2) = (p— 1 + T |o2) =71,

Remark: Such behavior is suspected to be generic.
Remark: Related results using strongly dimension one and maximum principle
were obtained in [11] for N = 1.

In [19], second author shows analogous results for the following equations
(where the maximum principle do not apply):
ug = Au+uPlu+ilu|""tu, Uy = AU+ |UPIU+ F(U) with U : RN —» RM |
|[Fi(U)| < C|U|", where p < 22 if N >3, and 1 <7 < p.

Moreover, we suspect that the same analysis can be carried for other types of
equations not satisfying maximum principle, for example: u; = —A2%u + |u|P~ u.

As in the paper of Bricmont and Kupiainen [2], we won’t use maximum
principle in the proof. The technique used here will allow us using geometrical
interpretation of quantities of the type of dy and d; to derive stability results
concerning this type of behavior, with respect to perturbations of the initial
data.

Theorem 2 Stability of the blow-up behavior with respect to initial
data
Let g be an initial data constructed in Theorem 1. Let 4(t) be the solution of
equation (1) with initial data o, T its blow-up time and a its blow-up point.
Then there exists a neighborhood Vo of g in H which has the following property:
For each ug in Vo, u(t) blows-up in finite time T = T (ug) at only one blow-up
point a = a(ug), where u(t) is the solution of equation (1) with initial data ug.
Moreover, u(t) behaves near T'(ug) and a(ug) in an analogous way as 4(t):
1
tim, [[(7 ~ )77 u(a+ (T~ H[108(T ~ 1))32,0)  f()ll ey = 0.
Remark: Theorem 2 yields the fact that the blow-up profile f(z) is stable with
respect to perturbations in initial data.
Remark: From [14], we have T (uo) — T', a(uo) — @, as ug — o in H.
According to a result in [14], we have the following corollary:
Corollary 1 (N > 2) For arbitrary given set of k points z1,..., z in RY , there

exists initial data ug such that the solution u of (1) with initial data ug blows-up
exactly at z1,..., Ty
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I - Introduction - Dans cette note, on considere ’équation de la chaleur
non linéaire suivante:

(1) ug = Au + |ulP" u,u(.,0) = uo € H,

avecu(t) : x € RV — u(xz,t) € R. Onnote H = WHPHH RN )NL>®(RY). De plus,
on suppose ’exposant p sous-critique: si N > 3 alors 1 < p < (N +2)/(N — 2),
sinon, 1 < p < +o00. D’autres types d’équations seront également considérés.
On étudie le cas ot la solution u(t) de (1) explose en temps fini, au sens ou u
existe sur [0,7") avec T' < +o0 et ||u(t)||g — +oo quand £ — T'. (voir Ball [1],
Levine [13]). Dans ce cas, il existe au moins un point d’explosion a (qui est un
point a € RY satisfaisant: |u(a,t)| - 400 quand ¢ — 7). On s’intéresse a la
structure de la solution au voisinage de ce point. On étudie le comportement de
u(t) au voisinage du temps et du point d’explosion, ainsi que la stabilité d’un
tel comportement.

Ce probléme a été beaucoup étudié ces derniéres années (voir [6], [8], [9],
10)).

Dans [3], Bricmont et Kupiainen ont construit une solution u(t) de (1),
explosant en temps fini, et qui approche un profil universel séparant les régions
ot u(z,t) est “grande” des régions ou u(z,t) est “petite”, avec une interface se
déplacant selon

(2) V(T —t)[1og(T - 1)].

Pour démontrer ce résultat, ils ont utilisé des idées proches de la théorie de la
renormalisation, et des estimations assez difficiles.

Dans cette note, on donne une idée d’une preuve plus élémentaire de leur ré-
sultat, s’appuyant sur une approche plus géométrique et sur des techniques
d’estimations & priori, qui s’appliquent dans d’autres contextes. (En particulier,
on n’utilise pas de principe du maximum).

Théoréme 1 Existence d’une solution explosant en temps fini avec
une interface se déplagant selon (2)

11 existe Ty > 0 tel que pour tout T € (0,To], Vg € H avec ||g||p- < (logT)72,
on peut trouver dy € R et dy € RN tels que pour tout a € RN, la solution u(t)
de Déquation (1) avec donnée initiale

do +diz
12
p—1+ 002

uo(a) = T-71{ f(z)(1 + ) +9() },

avec: z = (z — a)(|log T|T)~2, explose en temps fini T en un seul point d’ez-
plosion: a. De plus,

(3) Jim (T — )7 u(a + (T = )| 10g(T — ) 12,6) = £(2)|en) = 0,

avec f(z) = (p = 14+ 577

Remarque: On soupgonne ce comportement d’étre générique.
Remarque: Des résultats similaires ont été obtenus dans [11] pour N = 1 grace
au principe du maximum et & la dimension un.

Dans [19], le deuxiéme auteur montre des résultats analogues pour les équa-
tions suivantes (ot le principe du maximum ne s’applique pas):
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ur = Au+ [ulP ru+ilu e, Uy = AU+ |UPTIU+ F(U), avec U : RY — RM |
IFLU)| < CIUI", p< RE2siN >3, et 1<r <p.

De plus, on pense qu’on peut obtenir par les mémes méthodes des résultats
d’explosion pour d’autres équations ne vérifiant pas le principe du maximum,
par exemple: u; = —A%u + |ulP~ u.

Comme dans [2], on n’utilise pas de principe du maximum dans la preuve.
Les techniques utilisées ici permettront grace & une interpretation géométrique
de quantités du type de dy et d; d’obtenir des résultats de stabilité concernant
ce type de comportement par rapport aux données initiales.

Théoréme 2 Stabilité du comportement a 1’explosion par rapport aux
données initiales

Soit 4o une donnée initiale construite au Théoréme 1. Soit 4(t) la solution de
Véquation (1) avec donnée initiale o, T son temps d’explosion, et G son point
d’explosion.

Alors il existe un voisinage Vo de g dans H avec les propriétés suivantes:
Pour tout ug dans Vo, u(t) explose en temps fini T = T(ug) en un seul point
d’explosion a = a(ug), ot u(t) est la solution de léquation (1) avec donnée
initiale ug. De plus, le comportement de u(t) au voisinage de T'(ug) et a(ug) est
analogue au comportement de u(t) au voisinage de T et a:

lim (T — )7 u(a + (T~ )] log(T — ) 2,6) = F(2)ll =@ = 0.

Remarque: Le Théoréme 2 implique que le profil & lexplosion f(z) est stable

par rapport a des perturbations dans les données initiales.

Remarque: Aprés [14], on a T'(ug) = T', a(uo) — &, quand ug — 4o dans H.
D’aprés un résultat dans [14], on a le corollaire suivant:

Corollaire 1 (N > 2) Pour tout ensemble de k points x1,..., xp, dans RY , il
existe une donnée initiale ug telle que la solution u de (1) avec donnée initiale
ug explose exactement en x1,..., xy.

IT - Idées de la démonstration du Théoréme 1 - Pour les preuves des
autres résultats et pour plus de détails, voir [15].

Partie I: Transformation du probléme - Nous traitons le cas N = 1.
On introduit les variables auto-similaires:
T—a

(4) y=

ol a est le point d’explosion et T le temps d’explosion de la solution u(t) a
construire.
On introduit

= —log(T — 1), w(y,s) = (T — )7 Tu(a, ),

(5)a(y,8) = w(y, s) — @y, ) = w(y,s) - {ﬁ ol )

q satisfait ’équation suivante:

©) 00— (C+VNat Blap,9),
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2
avec L(q) = ‘g—y‘é - %yg—j +4,V(y,s) =plpP™' — ;17) et

2
E(q,y,5) = {lo+alP ™ (0+0) — ¢ —po" g} +{5;5 — 3y e — SApe+eP — 52
On écrit alors q(y,s) = q(y,8)x0(z575) + 4(y: ) (1 — xo(75)) = w(y,s) +
qe(y,s), ou Ko > 0, xo € C(R), xo =1 sur [—1,1] et xo = 0 sur R\[-2,2].
On décompose ensuite g, suivant le spectre de £ dans L?(R, du) avec du(y) =

e\y/g (spec(L) = {1 — F|m € N}). On obtient:

() 4,5) = 0¥, 9) +4e(:5) = {D_ am(8)hm(y) + ¢-(y,5)} + ¢ (v, 5),

olt hy, est la fonction propre qui correspond a 1 — 7, g_(y, s) est la projection
de gy(y, s) sur 'espace des valeurs propres négatives de L.

On va construire ug telle que u(t) vérifie une estimation plus forte que (3).
Définissons d’abord pour A >0, s > 0:

-Va(s) ={r € L*(R,dp) | |rm| < As™2,m =0,1; |rs| < A*(log s)s~>; [r—(y)| <
AL+ [yP)s™25 Irellpe < A%5735 avec r(y) = Lo Tmbm(y) +7-(y) +7e(y)},
- Va(s) = [-4, 4] c R

On cherche A > 0 et Sp > 0 tels que pour tout sq > Sp, g € H avec
llglle < 2, on peut trouver (do,d;) € R? tels que Vs > so, lim |lwg,,q, (y,5) —
0 §—00

f(i)HLch = lim ||g40,d, (Y, $)||L = 0, olt ¢qq,q4, est la solution de 1’équation
S s—00

(6) avec donnée initiale & s = So, ¢do,d, (Y, S0) =

B2y 5% o + duy /o) ~ 5 + 901V

On va en fait trouver (do,d;) tels que gaq,q4,(s) € Va(s) pour s > sg, ce qui
entraine lir_'{l lgdo,a, (8)||Le= = 0. I est facile de vérifier alors que u(t) explose
8§—100

(8) (p—1+

en temps fini T avec un seul point d’explosion: z = a, et vérifie (3).

Partie II: Réduction a un probléeme de dimension finie - C’est la
partie cruciale de la preuve du Théoreme 1. Ici, on montre & travers des estima-
tions a priori que pour controler g(s) dans Va(s) (s > so), il suffit de controler
(go,q1)(s) dans V4(s) (ainsi, on réduit un probléme de dimension infinie & un
probléme de dimension finie).

Proposition 1 (Contréle de q par (qo,q1)) Il existe Ay > 0 tel que pour
tout A > A, il existe s1(A) > 0 tel que pour tout so > s1(A), pour tout
g € H avec ||g]|p= < ;15, on a la propriété suivante:
0

-si (do,dy) est choisi tel que (go(S0),q1(50)) € Va(s0), et,
-8% pour S, > So, on a Vs € [sq, 4], q(s) € Va(s), et q(s«) € OVa(s), alors
i) Vs € [s0, 8], |a2(s)| < A%s72logs — 572, |q_(y,s)| < £(1 + [y[*)s72,

2
lae(s)llze < Az
i) (qo(sx),q1(8+)) € OVa(s«) et il existe 5 > 0 tel que V5 € (0,00), (g0, q1) (s« +
8) & Va(sy +9).

Partie ITI: Argument topologique en dimension finie - On choisit
A > A;. On résout maintenant le probléeme de dimension finie. On remarque
par un calcul explicite:
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Lemme 1 (Propriété topologique pour s = so) Il existe s3(A4) > 0 tel
que pour tout sg > s2(A), pour tout g € H avec ||g||pe < ;17, il existe un en-
0

semble Dy s, C R? topologiquement équivalent & un carré, vérifiant la propriété
sugvante:

Qdo,d1 (50) € Va(s0) si et seulement si (dy,d1) € Dy, s, .

On fixe Sy > sup(s1(A),s2(A)) et consideére so > Sp. On démontre le Théoréme
1 pour A, so et g € H avec ||g||p~ < % par un argument topologique.
0

On proceéde par I’absurde, et on suppose que pour tout (do,d1) € Dy, il existe
s> so tel que gqy,4, (8) & Va(s). Soit s.(do,d;) Vinfinimum de tous ces s. Grace
a la Partie I, on peut définir

®,: Dy, —» OC
S do d1 2
(do,d1) — %(%#ﬂ)do,dl(s*(do,dﬂ)
ot C est le carré unité de R?. On démontre alors que ®, est continue et que
sa restriction & 0D, ;, est homéomorphe a l'identité. Ceci est une contradiction
d’aprés la théorie du degré topologique, donc il existe (do(g),d1(g)) tel que
Vs > 50, Gdg,d, () € Va(s). Ceci termine la preuve.
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Stability of the blow-up profile for equations
of the type u; = Au + |u[P~1uT

Frank Merle
Université de Cergy-Pontoise
Hatem Zaag
Université de Cergy-Pontoise, ENS, Paris VI

Abstract In this paper, we consider the following nonlinear equation

u = Au+|ufflu
u(.,0) = wup,

(and various extensions of this equation, where the maximum principle do not
apply). We first describe precisely the behavior of a blow-up solution near blow-
up time and point. We then show a stability result on this behavior.
Mathematics Subject Classification: 35K, 35B35, 35B40
Key words: Blow-up, Profile, Stability

1 Introduction
In this paper, we are concerned with the following nonlinear equation:

w = Au+|uftu
(1) u(.,0) = wup€ H,

where u(t) : z € RY — u(z,t) € R, A stands for the Laplacian in RY. We note
H = WL RN )N L°(RY ). We assume in addition the exponent p subcritical:
if N>3then1<p< (N+2)/(N —2), otherwise, 1 < p < +00. Other types
of equations will be also considered.
Local Cauchy problem for equation (1) can be solved in H . Moreover, one
can show that either the solution wu(t) exists on [0,+00), or on [0,T") with
T < +4oo. In this former case, u blows-up in finite time in the sense that
||w(t)||gr = +oo when t — T.

( Actually, we have both [|u(t)||peery)y — +00 and [u(t)|lwrr+1(myy = +00
when t — T).
Here, we are interested in blow-up phenomena (for such case, see for example
Ball [1], Levine [14]). We now consider a blow-up solution u(t) and note T its
blow-up time. One can show that there is at least one blow-up point a (that
is a € RN such that: |u(a,t)] = +o0o when ¢t — T'). We will consider in this
paper the case of a finite number of blow-up points (see [15]). More precisely,
we will focus for simplicity on the case where there is only one blow-up point.
We want to study the profile of the solution near blow-up, and the stability of
such behavior with respect to initial data.

Standard tools such as center manifold theory have been proven non effi-
cient in this situation (Cf [6] [3]). In order to treat this problem, we introduce

t Article paru dans Duke Math. J. 86, 1997, pp. 143-195.
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similarity variables (as in [8]):

(2) y =
s = —log(T -1%),
(3) wraly,s) = (T —8)7 u(z,t),

where a is the blow-up point and T the blow-up time of u(t).

The study of the profile of w as ¢ — T is then equivalent to the study of the
asymptotic behavior of wr,, (or w for simplicity), as s — oo, and each result
for 4 has an equivalent formulation in terms of w. The equation satisfied by w
is the following:

1
(4) we = Aw - 2y.Vw - 1% + JwlPtw.

Giga and Kohn showed first in [8] that for each C' > 0,

lim sup |w(y,s) —k|=0,
s—’+°°|y\gcl( ) — &l

with K = (p — 1)_P_11, which gives if stated for u:

lim sup | (T —t)"/® YDu(a+yVT —t,t) — k |= 0.
=T y<c
This result was specified by Filippas and Kohn [6] who established that in
N dimension, if w doesn’t approach  exponentially fast, then for each C' > 0
K
sup |w(y,s) — [k + 5—

e a1
ly|l<C 2p5(N 2|y| )]l (1/s),

which gives if stated for u:

1 K
5) su T—-t)yrTu(a+yvT —t,t) — [k + ———+—
) mp | (=07 Tula+yWT =80 = 5+ 5t

= o((=log(T —1))™").
Velazquez obtained in [16] a related result, using maximum principle.

Relaying on a numerical study, Berger and Kohn [2] conjectured that in the
case of a non exponential decay, the solution u of (1) would approach an explicit
universal profile f(z) depending only on p and independent from initial data as
follows:

(6) (T~ )7 Tu(a -+ /(T — OII08(T 1], 1) = §(2) + O((~log(T 1))~
in L2, with
™ 5 = o= 1+ L ey s,

This behavior shows that in the case of one isolated blow-up point, there would
be a free-boundary moving in (x,t) coordinates at the rate

V(T —1)[log(T —1)].

(N — Sl |
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This free-boundary roughly separates the space into two regions:

1) the singular one, at the interior of the free-boundary, where Au can be
neglected with respect to |u[P~'u, so equation (1) behaves like an ordinary
differential equation, and blows-up.

2) the regular one, after the free-boundary, where Au and |u|P~!u are of the

same order.
Herrero and Velazquez in [12] and [13] showed in the case of dimension one
(N = 1) using maximum principle that u behaves in three manners, one of
them is the one suggested by Berger and Kohn, and they proved that estimate
(6) is true uniformly on z belonging to compact subsets of R (without estimating
the error).

Going further in this direction, Bricmont and Kupiainen construct a solution
for (1) satisfying (6) in a global sense. For that, they used on one hand ideas
close to the renormalization theory, and on the other hand hard analysis on
equation (4).

In this paper, we shall give a more elementary proof of their result, based on a
more geometrical approach and on techniques of a priori estimates:

Theorem 1 Existence of a blow-up solution with a free-boundary be-
havior of the type (6)

There exists To > 0 such that for each T € (0,To], Vg € H with ||g|lre <
(logT)~2, one can find dy € R and d; € RN such that for each a € RV, the
equation (1) with initial data

do+diz
— 2
p— 1+l

uo(a) = T-71{ f(2)(1 + ) +9()},

2= (z — a)(|log T|T)"%,

has a unique classical solution u(z,t) on RN x [0,T) and
i) u has one and only one blow-up point: a
i) a free-boundary analogous to (6) moves through u such that

(8) lim (T — )7 ua+ (T~ )] log(T ~ 1)) 2, 1) = £(2)

uniformly in z € RY , with

f)=m-1+ %Mz)—p_il.

Remark: We took dy and d; respectively in the direction of ho(y) = 1 and
hi1(y) =y, the two first eigenfunctions of £ (Cf section 2), but we could have
chosen other directions Do(y) and D;(y) (see Theorem 2). We can notice that
we have a result in H = WHPHL(RV) 0 L>°(RY). We can also obtain blow-up
results in H*(RV) N L®°(RY). If p < 1+ &, then f(z) € H', and we use the
same arguments to solve the problem in H*(R¥) N L>(RV). If p > 1 + +, the
result in H! follows directly from the stability result (see Theorem 2 below).
Remark: Such behavior is suspected to be generic.

Remark 1.1
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One can ask the following questions:

a) Why does the free-boundary move at such a speed?

b) Why is the profile precisely the function f7
As in various physical situations, we suspect that the asymptotic behavior of
w — k is described by self-similar solutions of equation (4).
Since we are dealing with equation of the heat type (Cf (4)), the natural scaling
is % Let us hence try to find a solution of the form v(%), with

9) v(0) =k, lim |v(z)|=0.

|z]| =00
A direct computation shows that v must satisfy the following equation, for each
s> 0 and each z € RV:
1
2s

(10) v(2) + [u(2)[P " o(2)

1 1 1
z.Vu(z) = EAU(Z) - §Z.V’U(Z) B

According to Giga and Kohn [10], the only solutions of (10) are the constant
ones: 0, k, —k, which are ruled out by (9). We can then try to search formally
regular solutions of (4) of the form

V) =3 s

=0

1

and compare elements of order —; ( in one dimension, in the positive case for

simplicity). We obtain for j = 0:

0= —=20)(2) — ——vo(2) + w0 ()7,

2
and for j =1 (2 # 0)

with a(z) = %(p% — pug(2)P~1) and b(z) = v§(2) + 2v¢(2). The solution for vg
is given by
vo(z) =(p—1+ co,zz)_fﬁ

for an integration constant cg > 0. Using this to solve the equation on v; yields

v1(2) = vo(2)P2%[er + /12 ¢ w0 (¢) Ph(¢)dc],

for another integration constant c¢;. Since we want V' to be regular, it is natural
to require that vy is analytic at z = 0. v; is regular if and only if the coefficient
of ¢ in the Taylor expansion of vy({)Pb(¢) near ¢ = 0 is zero which turns

_ (1?
4p

2
(p—1+ %zz)_ﬁ. Hence, the first term in the expansion of V is precisely
the profile function f. Carrying on calculus yields:

to be equivalent to cg after simple calculation. Therefore, vg(z) =

— —_1)2
W) (o) =T + P e g (2) + e
We note that v1(0) = 3.

Unfortunately, we are not able to calculate every v;. In conclusion, we take an
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other approach to obtain approximate self-similar solutions (see the proof of
Theorem 1).

As in the paper of Bricmont and Kupiainen [3], we won’t use maximum
principle in the proof. The technique used here will allow us using geometrical
interpretation of quantities of the type of dy and d; to derive stability results
concerning this type of behavior for the free-boundary, with respect to pertur-
bations of initial data and the equation.

Theorem 2 Stability with respect to initial data of the free boundary
behavior

Let 1o be initial data constructed in Theorem 1. Let i(t) be the solution of
equation (1) with initial data Gy, T its blow-up time and a its blow-up point.
Then there exists a neighborhood Vy of g in H which has the following property:
For each ug in Vo, u(t) blows-up in finite time T = T (uo) at only one blow-up
point a = a(ug), where u(t) is the solution of equation (1) with initial data ug.
Moreover, u(t) behaves near T (ug) and a{ug) in an analogous way as G(t):

Jin (T — t)7Tu(a + (T — )| log(T — )])22,2) = £(2)

uniformly in z € RV .

Remark: Theorem 2 yields the fact that the blow-up profile f(z) is stable with
respect to perturbations in initial data.

Remark: From [15], we have T'(uo) = 7', a(up) — @, as ug — o in H.
Remark: For this theorem, we strongly use a finite dimension reduction of the
problem in R'*V | which is the space of liberty degrees of the stability Theorem:
(T,a).

Remark 1.2

Theorem 2 is true for a more general ig: It is enough that i(t) satisfies the key
estimate of the proof of Theorem 1.

Remark: Since we do not use the maximum principle, we suspect that such
analysis can be carried on for other type of equations, for example:

ue = =A% + |ul?u,

and
(12) ug = Au + |[u|P" u + ifu|" ",

where 1 <r <p (p< &2 if N > 3).
See also for other applications [18].

According to a result of Merle [15], we obtain the following corollary for
Theorem 2:

Corollary 1.1 Let D be a convez set in RN, or D = RN . For arbitrary given
set of k points x1,..., xx in D, there exist initial data ug such that the solution
u of (1) with initial data ug (with Dirichlet boundary conditions in the case
D # RN ) blows-up exactly at x1,..., Tp.

Remark: The local behavior at each blow-up point z; (Jz — z;| < p;) is also
given by (8).
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2 Formulation of the problem

We omit the (T,a) or (do,d;) dependence in what follows to simplify the
notation.
2.1 Choice of variables

As indicated before, we use similarity variables:

r—a
T —

y:

?

o~

s = —log(T —t),
w(y, s) = (T — )7 Tu(a,1).
We want to prove for suitable initial data that:
lim |(7 — )7 Tu(a + (T — 1)  log(T = 1)) *z,t) = f(2)]l1= = 0,
-
or stated in terms of w:
. Y
1 ) - = o = 07
Jim llwy, 5) = A7) e

where (p—1)?
- 1
——2")

p—1
4p

We will not study as usually done, this limit difference as s — +oc

flz)=(p-1+

but we introduce instead:

(ng):-) y2)_1’1T1],

(13) alv:s) = wly, )~ [ + (o= 1+

The added term in (13) can be understood from Remark 1.1. There, we tried
to obtain for w an expansion of the form ;r:og s%vj(%) We got vg = f and
for v; the expression (11). Hence, it is natural to study the difference w(y, s) —
(vo(%) + %vl(%)) Since the expression of vy is a bit complicated (see (11)),
we study instead w(y, s) — (vo(\/i;) + 1v1(0)), which is (13) for N = 1.
Now, if we introduce

(p—1)°

Nk Y Nk oy —
]_4 = — _ ) = — —1 r—1
(19)  ply,s) = g + () = 5o+ o= 1+ L)

we have
q(y,s) = w(y,s) — ¢(y,s).

Thus, the problem in Theorem 1 is to construct a function ¢ satisfying

lim {lg(.,8)[|z> = 0.

s——4o0
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From (4) and (13), the equation satisfied by ¢ is the following:
for s > 0,

(15) 2 ,9) = Ly (@) (5, 9) + Blaw, ) + R(y.),

where

— the linear term is

(16) Lv(q) = L(q) +V(y,s)q
with

L(q) = Aq — 3y.Vg+q and V(y,s) = p(p?~" — ;1)
— the nonlinear term (quadratic in g for p large) is
(17) B(g) =lp+al" " (o +a) —¢" —pe"q,
— and the rest term involving ¢ is

1 9

It will be useful to write equation (15) in its integral form: for each sq > 0, for
each sy > sg, ¢(s1) =

(19)  K(s1,50)q(s0) + / " A K (s1,7)Bla(r)) + / " 4K (s1, 1) R(7),

where K is the fundamental solution of the linear operator Ly defined for each
so > 0 and for each s; > sqg by,

(20) 681K(81,SO) = ,CvK(Sl,So)
K (so, s0) = Identity.

2.2 Decomposition of g

Since Ly will play an important role in our analysis, let us point some facts
on it.
i) The operator £ is self-adjoint on D(L) C L2(RN,du) with

(21) du(y) =

Note here that there is a weight decaying at infinity. The spectrum of £ is
explicit. More precisely,

spec(L) = {1 — %|m € N},
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and it consists of eigenvalues. The eigenfunctions of £ are derived from Hermite
polynomials:

- N=1:
All the eigenvalues of £ are simple. For 1—73 corresponds the eigenfunction
(%] m!

(22) h(y) = m(—l)nym_zn-

n=0
h.,, satisfies

/ hnhmdp = 2"116pm.
(We will note also k,, = hm/||hm||%3-)

- N>2:
We write the spectrum of £ as

_m1+...+mN

spec(L) = {1 3

|mi,....,mn € N}.
For (my,...,my) € N, the eigenfunction corresponding to 1 — Zit=tmy
is

y— hml (yl)"'th (yN)7
where h,, is defined in (22). In particular,

*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunction
is

*% is of multiplicity IV, and its eigenspace is generated by the orthogonal
basis {H1 i(y)|i =1,..., N}, with H; ;(y) = h1(y:); we note

(24) Hi(y) = (H1,1(y), -, Hi,n (),

*0 is of multiplicity w, and its eigenspace is generated by the ortho-

gonal basis {Hs;;(y)|i,j =1, ..., N,i < j}, with Hs ;;(y) = ha(y;), and for
i < J, Ha,5(y) = h1(yi)h1(y;); we note

(25) H(y) = (Ha2,i5(y),i < 7).

ii) The potential V(y,s) has two fundamental properties that will influence
strongly our analysis.

a) We have V (., s) — 0in the L*(R, du) when s — +oc0. In particular,
the effect of V' on the bounded sets or in the “blow-up” region (|z| < C+/s) inside
the free boundary will be a “perturbation” of the effect of L.

b) Outside the free boundary, we have the following property:

Ve > 0, AC, > 0, 3s, such that

P
sup  [V(y,s) — (—Tl)| <e
s>s., U >0 p
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with — B3 < 1.
Since 1 is the biggest eigenvalue of £, we can consider that outside the free
boundary, the operator Ly will behave as one with fully negative spectrum,
which simplifies greatly the analysis in this region.

Since the behavior of V' inside and outside the free boundary is different, let
us decompose ¢ as the following:
Let xo € C§°([0, +00)), with supp(xo) C [0,2] and xo = 1 on [0,1]. We define
then

(20 X0:5) = (1),

where Ky > 0 is chosen large enough so that various technical estimates hold.
We write ¢ = gy + q. where
g = qx and g. = ¢(1 — x).
Let us remark that
supp gv(s) C B(0,2Ko+v/s) and supp ge(s) C R\B(0, Kov/s).

Then we study g using the structure of L. Since £ has 1 + N expanding
directions (corresponding to eigenvalues 1 and ) and w neutral ones, we
write g, with respect to the eigenspaces of £ as follows:

(27) @(Y:5) =Y am(8)-Hu(y) + 4-(y,9)

where
go(s) is the projection of g, on Hy,
¢1,:(s) is the projection of g, on Hy ;, q1(s) = (g1,:(8), ..., q1,n(s)), H1(y) is given
by (24),
g2,i;(s) is the projection of g, on Ha ;j, i < j, g2(s) = (g2,45(5),1 < j), Ha(y) is
given by (25),
q-(y,s) = P_(qs) and P_ the projector on the negative subspace of L.
In conclusion, we write ¢ into 5 “components” as follows:

(28) 0W,9) =Y am(s)-Hn(y) + a- (4, 5) + ¢c (1, 5).-

m=0

(Note here that ¢, are coordinates of ¢, and not of g).
In particular, if N =1 and m = 0,1,2, ¢,,(s) and H,,(y) are scalar functions,
and H,,(y) = hpy(y). We write in this case:

(29) 0Y,9) =D m()hm(y) + q— (¥, 5) + ¢y, 5)-

m=0

Let us now prove Theorem 1.

3 Existence of a blow-up solution with the given
free-boundary profile

This section is devoted to the proof of Theorem 1.
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3.1 Transformation of the problem

As in [3], we give the proof in one dimension (same proof holds in higher
dimension). We also assume a to be zero, without loss of generality.
Let us consider initial data:

do +diz
p—1+ (pZ;P 22

1

o0, (2) = T~ 77 { F(2)(1 + ) +9()},

where
z=x(|logT|T) 2.

We want to prove first that there exists Tp > 0 such that for each T' € (0, Tp],
for every g € H with ||g||z~ < (logT)~2, we can find (dy,d;) € R? such that

(30) lim (T — £)7 g 4, (T — )| log(T — D)) 2,1) = £(2)

t—T

uniformly in z € R, where ug,,q, is the solution of (1) with initial data uo,4q,4,

and
(31) ) =p-1+2 ;pl) 2) 7

This property will imply that wug,,q, blows-up at time 7' at one single point:
z = 0. Indeed,

Proposition 3.1 Single blow-up point properties of solutions
Let u(t) be a solution of equation (1). If u satisfies the following property

(82)  lim (T - )7 u(/(T = )[1og(T — t)]z,1) ~ £(2)][1= =0

then u(t) blows-up at time T at one single point: x = 0.

Proof: For each b € R, we have from (32)

1 b
lim —t)p=Tu(b,t) —
t=T -1 (b,1) = £( V(T = t)|1og(T — t)]

)} =0

Using (31), we obtain lim (T — #)77u(0,t) = & and for b # 0, lm (T —
L t—T t—T
t)P-Tu(b,t) = 0. A result by Giga and Kohn in [8] shows that b is a blow-
up point if and only if thnjlﬂ (T - t)za%lu(b, t) = k. This concludes the proof of
—

proposition 3.1.

Therefore, it remains to find (do,d;1) € R? so that (30) holds to conclude the
proof of Theorem 1.
If we use the formulation of the problem in section 2, the problem reduces to
find Sy > 0 such that for each s > Sy, g € H with ||g|lr~ < ;105, we can find

(do,d1) € R? so that the equation (15)

2 ,9) = L (@)(3:5) + Blaw ) + R(y,5),
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with initial data at s = so, ¢d,,4, (¥, S0) =

)P (o + V)

K

(33) -1+

+9y/Vs0),

2psg

has a solution ¢(dp, d;) satisfying

(34) lim suplqas,a, (y, )| = 0.

§—00 yeR
q will always depend on g, dy and d;, but we will omit theses dependences in
the notations (except when it is necessary).
The convergence of ¢ to zero in L (R) follows directly if we construct g(s)
solution of equation (15) satisfying a geometrical property, that is g belongs to
a set V4 C C([so,+00), L>(R,dp)), such that V4 shrinks to ¢ = 0 when s — oo.
More precisely we have the following definitions:

Definition 3.1 For each A > 0, for each s > 0, we define Va(s) as being the
set of all functions r in L?(R,du) such that

lrm(s)] < As™2,m =0,1,
[ra(s)] < A%(logs)s 2,
Ir-(y,8)] < AQ+y[*)s™2,
Ire(lee < A%s73,

where r(y) = Efn:O Tm(8)hm (y) + 71— (y,8) + re(y,s) (Cf decomposition (29)).

Definition 3.2 For each A > 0, we define V4 as being the set of all functions
q in C([sg,+00), L?(R,du)) satisfying q(s) € Va(s) for each s > sq.

Indeed, assume that Vs > sg q(s) € Va(s). Let us show that Vs > s,

c4)

sup|q(y, s)| < —==, which implies (34).
yER \/g
We have from the definitions of ¢ and g,
q(y,S) = qb(yas) +qe(yas)
= qb(yas)'1{|y|§2Ko\/§} + qe(y, 8)

2

(D am(hm () + 4-(0:5)) -1y <arover (1:5) + @e (9 9):
m=0

Using the definitions of h,, (Cf (22)) and V4, the conclusion follows.

3.2 Proof of Theorem 1

Using these geometrical aspects, what we have to do is finally to find A > 0
and Sy > 0 such that for each sq > Sy, g € H with [|g]lcc < &, we can find

= %7
(do,d1) € R? so that Vs > sq,

(35) Gdo,d (5) € Va(s)-

Let us explain briefly the general ideas of the proof.
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-In a first part, we will reduce the problem of controlling all the components
of ¢ in V4 to a problem of controlling (go, ¢1)(s). That is, we reduce an infinite
dimensional problem to a finite dimensional one.

-In a second part, we solve the finite dimensional problem, that is to find
(do,d1) € R? such that (go,q1)(s) satisfies certain conditions. We will proceed
by contradiction and use dynamics in dimension 2 of (go,q1)(s) to reach a to-
pological obstruction (using Index Theory).

The constant C' now denotes a universal one independent of variables, only
depending upon constants of the problem such as p.

Part I: Reduction to a finite dimensional problem
In this section, we show that finding (dy,d;) € R? such that Vs > sq g(s) €
Va(s) is equivalent to finding (do,d;) € R? such that |gn(s)] < & Vs > so,
Vm € {0,1}. For this purpose, we give the following definition:

bS

Definition 3.3 For each A > 0, for each s > 0 we define V(s) as being the
A A2 2

set [—43, =|° C R°. )

For each A > 0, we define Vs as being the set of all (qo,q1)

in C([s0, +00), R2) satisfying (qo,q1)(s) € Va(s) Vs > sq.

Step 1: Reduction for initial data
Let us show that for a given A (to be chosen later), for so > s1(A), the control
of q(so) in Va(so) is equivalent to the control of (go,q1)(s0) in Va(so)-

Lemma 3.1 i) For each A > 0, there exists s1(A) > 0 such that for each
so > s1(A), g € H with ||g||lr~ < ;15, if (do,d1) is chosen so that
0

(90,91)(s0) € VA(SO), then

lg2(s0)] < (logso)so™2,
|q—(y730)| S C(]_ —+ |y|3)30_2,
lge(s50)llzee < 8072

it) There exists Ay > 0 such that for each A > A;, there exists s1(4) > 0
such that for each so > s1(A), g € H with ||g]|lre < ;15, we have the following
0

equivalence:

q(s0) € Va(so) if and only if (g0,q1)(s0) € Va(so).

Proof:
We first note that part ¢) of the lemma follows immediately from part i) and
definition 3.1. We prove then only part ).
Let A >0, so >0 and g € H such that ||g||r~ < %. Let (do,d;) € R?.
0

We write initial data (Cf (33)) as

q(ya SO) = qO(y, 50) + ql (ya SO) + q2(ya SO) + q3(ya SO)

where qo(yasO) = dOF(\/?{g_O)7 ql(yaso) = dl\éis—oF(\/Ls_o)a qZ(yaso) = _%Lso’
¢*(y,50) = 9(fk5) and F(J) = (p— 1+ Ugly?) 77
We decompose all the ¢* as suggested by (29).




o8 Stability of the blow-up profile for u; = Au + |u|P~u

-From [|gle < J5 we derive that [g{(s0)|+ g} (s0) | +]43 (s0)| +lgZ (so) | < &,
and then7 |q3— (y’SO)| < ;Cg(l + |y|3)
-Using simple calculations we obtain |g2(so)| < £

| <&
ai(s0) = 0, [a5(s0)| < Ce™, |2 (y,50)| < Csg*(1 + [y[*) and [lgZ(so)[|L= <
Csyt.
-For ¢°, we have ¢)(so) = do [ du(z XSOF(r) doC(p) (5o — 0),
¢ (50) = 0, g3 (s0) = do [ dp(2)xe0 F(Fz) 52 ~ do G2 (50 — o),
g% (y,50)| < doS(1+ |y|*) and [|g2(s0) | < Cdo.
All theses last bounds are simple to obtain, perhaps except that for ¢° . Indeed,
we write ¢° (y, s0) =

doxsoF(J5) = do [ du(2)xso F () — do [ dp(2)xso F( ) 552 (y? — 2). The
last term can be bounded by C;‘éo (1+ |y|®). We write the first term as
do {0 1) F () = Xsu OF(0) — [ du(2) (X0 F(F) — Xso (OF(0)) }. Using

Lipschitz property, we have |x, (y) F( \/ysT)) —Xs0(0)F(0)] < Cs—i’f, and the conclu-
sion follows.

-Similarly, we obtain for ¢', g3(s0) = 0, i (s0) = \% F(\/%)éz ~
d f(p) (s0 — 00), g3(s0) = 0, |gL (y, 50)| < dlsg%(l +[y*) and [|gz (so) ||z <
d
C\/l0
Hence, by linearity, we write
(36) q0(s0) = doao(s0) + bo(g, 50)
q1(s0) = diai(so) + b1(g,50)

with ag(sg) ~ C(p), a1(sg) ~ C
refore, we see that if (dp,d;) is chosen such that (go,q1)(s0) € VA(So) and if
s0 > s1(A), we obtain |d,,| < % for m € {0,1}. Using linearity and the above
estimates, we obtain |g2(so)| < ;Cg, lg—(y, 50)| < ;Cg(l + |y)?) and [|ge(s0)|| < £

— 50"

(9;30)| <= a‘nd |b1(g,60)| < . The-

= 50

Taking s;(A) larger we conclude the proof of lemma 3.1.

Step 2: A priori estimates
This step is the crucial one in the proof of Theorem 1. Here, we will show
through a priori estimates that for s > sq, the control of ¢ in V4 (s) reduces to
the control of (go, q1) in Va(s). Indeed, this result will imply that if for s. > so,
q(s«) € OV4(s4), then (go(s«),q1(s«)) € OVa(s«). (Compare with definition 3.1).

Remark 3.1

We shall note here that for each initial data g(so), equation (15) has a unique
solution on [sg, S] with either S = +o00 or S < 400 and ||¢(s)||pe — +00, when
s — S . Therefore, in the case where S < 400, there exists s, > s¢ such that
q(s«) € Va(s.) and the solution is in particular defined up to s..

Proposition 3.2 (Control of g by (go,q1) in V4) There exists Az > 0
such that for each A > As, there exists so(A) > 0 such that for each so > s2(A),
for each g € H with ||g||p~ < ;15, we have the following property:

0

-if (do, dy) is chosen so that (go(s0),q1(s0)) € Va(so), and,
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-if for s1 > so, we have Vs € [so, 1], q(s) € Va(s),
then Vs € [so, s1] ,

lg2(s)] < A ~2logs —s3
A _
la-(.9)] < SA+[yf)s™
A2
o < —.
la@lm < 57

Proof: see Proof of Proposition 3.2 below.

Step 3: Transversality
Using now the fact that (go,q1) controls the evolution of g in Vy4, we show a
transversality condition of (go,q1) on OVa(s4).

Lemma 3.2 There exists As > 0 such that for each A > Az, there exists s3(A)
such that for each so > s3(A), we have the following properties:

i) Assume there exists s« > so such that q(s«) € Va(s«) and (go,q1)(s«) €
QVA(S*), then there exists &g > 0 such that ¥6 € (0,d0), (go,q1)(s« + 0) &
Va(s« +9).

i) If g(so) € Va(so), q(s) € Va(s) Vs € [so, s«| and q(s«) € OVa(sx) then there
exists 8o > 0 such that ¥ € (0,00), q(s« +9) & Va(s« + 9).

Proof:
Part i) follows from Step 2 and part 7).
To prove part i), we will show that for each m € {0,1}, for each € € {—1,1}, if

gm(s+) = €4, then d;’—m(s*) has the opposite sign of & (£4)(s,) so that (o, q1)

actually leaves VA at s, for s, > sg where so will be large. NowA, let us compute
ddqo( «) and dql O (s.) for q(s«) € Va(s«) and (go(s+),q1(s+)) € OVa(s4). First, we
note that in thls case, ||q(s«)||pe < C\};‘* and |gp(y, s«)| < CA? logs* 1+ |y

(Provided A > 1). Below, the classical notation O(I) stands for a quantlty whose
absolute value is bounded precisely by ! and not CI.
For m € {0,1}, we derive from equation (15) and (22): fdpx(s*)%km =

/dux(s*)ﬁqkm +/dux(8*)qum +/dux(8*)B(q)km +/dux(s*)R(S*)km-

We now estimate each term of this identity

a) | [ dux(s.) §ikm — | = | [ duqkm| < | [ dpEqhm| < [ dpl 5| A fon]
< Ce™ s+ if S > Sg(A)

b) Since £ is self-adjoint on L2(R, du), we write

/ dpix(8.) Cakm = / AP (x(52)km)a.

Using L(x(s:)km) = (1 = 2)x(5:)km + 2 by + (2% — Lk,n),
we obtain [ dux(s«)Lqkm = (1 — 3)gm (s*) + O(CAe_s*)
c) We then have from (16): Yy, |V (y,s)| < (1 + |y|?). Therefore,

C CA? log s, CA? log s.
| [ duxtsVaknl < [ du 04 ) S5 S | < S5 28
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d) A standard Taylor expansion combined with the definition of V4 shows
2 2 2 CA*(log s4)2 312
that [x(y,s.)B(q(y, s«))| < Clgl* < Clgs]” + lge]”) < === (1 + [y/")
2 4 2

g2 ka3 (¥) Fo- Thus, | [ dux(s.) B@ka| < “40E8L 4 Cemr-.
e) A direct calculus yields | [ dux(s«)R(sx)km| < Cs(f) (Actually it is equal to
0 if m = 1). Indeed, in the case m = 0, we start from (18) and (14) and expand
each term up to the second order when s — oo. Since p(y, s) = f(f) + 555> W
derive

1) [dpx(s)(=35) = —ﬁ(n — 355 T35 T+ 0(Cs™2)) = —357 +0(Cs™?),

2) [die)e? = [dnf?'s 55 [ dinfr=F 4007 = 25 Loyt st o
0(0s™%) = 355 +0(Cs™)
3) 0uy,5) = 2f” — 5p5z and then [ dpux(s)(—¢s) = O(Cs™?),
4) oy (y,5) = =52y f? and then [ dux(s)(—ypy) = 55 + O(Cs™?),
5) @yy(y,s) = — 5= 1f” + (p 1) y? f*P71, then [ dux(s)pyy = —g55 +O0(Cs™?).
Adding all these expans10ns we obtain [ duxs, R(ss) = O(C(p)s;?). Conclu-
ding steps a) to e), we obtain

NP N | Clp) 4log s,

* * Sk

whenever g, (sy) = fs—‘;‘. Let us now fix A > 2C(p), and then we take s3(A)
larger so that for sq > s3(A), Vs > s, C(p) + 0O(CA* 1033) < %. Hence, if
e=—1, ‘Z’—;"(s*) <0,ife=1, ‘{;1—;"(5*) > 0. This concludes the proof of lemma,
3.2.

Now, let us fix A > sup(Az, As).

Part II: Topological argument
Now, we reduce the problem to studying a two-dimensional one. Let us study
now this problem. We give its initialization in the following lemma:

Lemma 3.3 (Initialization of the finite dimensional problem) There
exists s4(A) > 0 such that for each so > s4(A), for each g € H with ||g||~ < %,
0
there ezists a set Dy 5, C R? topologically equivalent to a square with the follo-
wing property:
q(do, d1, s0) € Va(so) if and only if (do,d1) € Dy s,.

Proof:

As stated by lemma 3.1 (i4), if we take so > s1(A) and g € H with ||g[|~ < %,
4]

then it is enough to prove that there exists a set D, ,, topologically equivalent

to a square satisfying

(g0,q1)(80) € VA(SO) if and only if (dy,d1) € Dy, s, -

If we refer to the calculus of g, (s0) (Cf (36) and what follows), and take s4(A4) >
s0(A) and s4(A) large enough, then this concludes the proof of lemma 3.3.

Now, we fix Sp > sup(si(4),s2(A),s3(A),s4(A)) and take sg > Sp. Then
we start the proof of Theorem 1 for A and so(A) and a given g € H with
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llgllze < ;1%
We argue by contradiction: According to lemma 3.3, for each (do,d;) € Dy s,
q(do,d1,s0) € Va(so). We suppose then that for each (do,di) € Dy s,, there
exists s > so such that g(do,d1,s) & Va(s). Let s«(do,d1) be the infimum of all
these s. (Note here that s.(dp,d;) exists because of remark 3.1).

Applying proposition 3.2, we see that g(do, d1, s«(do,d1)) can leave
Va(s«(do,dy)) only by its first two components, hence,

(40, q1)(do, d1, 5+(do, d1)) € OVa(s.(do, dr)).
Therefore, we can define the following function:

®,:Dy,, — OC

8. (do, dq)?
() —> =D g0 o,y 5. oy )

where C is the unit square of R2.
Now, we claim

Proposition 3.3 i) ®, is a continuous mapping from Dy 4, to OC.
i) The restriction of ®4 to 0D,,s, is homeomorphic to identity.

From that, a contradiction follows (Index Theory). This means that there exists
(do(9),d1(g)) such that Vs > so, g(do,d1,s) € Va(s), that is ¢ € V4. In particu-
lar,

)
las)llze < ===

Using Proposition 3.1, this concludes the proof of Theorem 1.

Proof of Proposition 3.3:
Step 1: 1)
We have (go, ¢1)(s) is a continuous function of (w(sg),s) € H x [sg, +00) where
w(sp) is initial data for equation (4). Since w(so) ( = ¢(y,s0) + ¢(y, s0), Cf
(33) and (14) ) is continuous in (dp,d;) (it is linear), we have (qo,q1)(s) is
continuous with respect to (dop,ds, s). Now, using the transversality property of
(do,q1) on 8V (lemma 3.2 ), we claim that s, (do,d;) is continuous. Therefore,
®, is continuous.
Step 2: ii)
If (do,d1) € 0Dy, then, according to the proof of lemma 3.3, (go,q1)(s0) €
dVa(so). Therefore, using ¢(s0) € Va(so) (lemma 3.1), we have g(so) € 8Va(so).
Applying i) of lemma 3.2 with s and s, = sg yields o > 0 such that Vé €
(07 60)5 q(SO + 5) ¢ VA(SO + 5) Hence;

sx(do,d1) = so,

and ®,(do,dy1) = %(qo,ql)(so). Formulas (36) show then that ®,5p, , is ho-
meomorphic to identity. This concludes the proof of Proposition 3.3. Let us now
prove Proposition 3.2.
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3.3 Proof of Proposition 3.2

For further purpose, we are going to prove a more general proposition which
implies Proposition 3.2.

Proposition 3.4 For egchﬁ > 0 There exists Ay(A) >0

such that for each A > A>(A), there exists 32(A, A) > 0 such that for each so >
52(A, A), for each solution q of equation (15), we have the following property:
-if

(37) lam(s0)] < Asg?,m=0,1
lg2(s0)| < Asg?log so,
lg-(y,50)| < Asg®(1+y*),
lge(s) o < Asg™?,

-if for s1 > sg, we have Vs € [so, 1], q(s) € Va(s),
then Vs € [sg, $1] ,

A5 ?logs — 573

ga(s)]
lg—(y, )|

IN

IA

A
Sl
A2

”(Ie(S)HLoo S 2—\/5

A

Proposition 3.4 implies Proposition 3.2. Indeed, referring to Lemma 3.1, we
apply proposition 3.4 with A = max(1,C). This gives Ay > 0, and for each
A > Ay, 55(A, A). If we take s9(A) = max (32 (max(1, ), A),s1(A)) (Cf Lemma
3.1), then, applying proposition 3.4 and Lemma 3.1, one easily checks that
Proposition 3.2 is valid for these values.

Proof of Proposition 3.4
The proof is divided in two parts:

In a first part, we give a priori estimates on ¢(s) in Va(s): assume that for
given A > 0 large, A > 0, p > 0 and initial time sq > s5(4, 4, p), we have
q(s) € Va(s) for each s € [o,0 + p], where o > s¢. Using the equation satisfied
by ¢, we then derive new bounds on gs, g— and g, in [o,0 + p] (involving A, A
and p).

In a second part, we will use these new bounds to conclude the proof of
Proposition 3.4.

Step 1: A priori estimates of q.

Let us recall the integral equation satisfied by ¢ (Cf (19)):

s s

(38) a(s) = K(s,0)a(0) + / drK (s,7)B(a(r)) + / drK (s, 7)R(7),

where
B(g) = le+dP He+4q)— ¢’ —ppP g,
1 1 Oy
R = Ap—yVp— —— p_ ¥
(y,5) ¢ =5y-Ve P L v
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and K is the fundamental solution of Ly (Cf (16)).

We now assume that for each s € [0,0 + pl, ¢(s) € Va(s). Using (38), we derive
new bounds on the three terms in the right hand side of (38), and then on g.
In the case o0 = sg, from initial data properties, it turns out that we obtain
better estimates for s € [sg, s + p].

More precisely, we have the following lemma:

Lemma 3.4 There exists A5 > 0 such that for each A > As, A >0, p* > 0,

there exists s5(A, A, p*) > 0 with the following property:

Vso > s5(A, A, p*), Vp < p*, assume Vs € [0,0 + p|, q(s) € Va(s) with o > so.
I)Case o > s¢:

we have Vs € [o,0 + p),

i) (linear term)

logo

jax(s)] < A?TST 4 (s —0)CAs ™,
la_(y,5)] < Cle 36~ D A4 e=6=0" A2)(1 4 |y|?)s72,
lac@)le < C(A%F + 4eC~))s™ 4,

where

K(s,0)q(0) = a(y,s) = Y am(s)hm(y) + a—(y, ) + ac(y, 5).

m=0

i1) (nonlinear term)

(s —0)

1B2(s)] < PEESYOR

B-(y,8)| < (s—o)A+1yl)s™*7,
1Be()lze= < (s —0)s™ 57,
where
e=¢(p) >0,
and

[ dri s, mBlar) = 50,5) = 3 S )om(0) + 5-(0,9) + Buly ).

m=0

iii) (corrective term)

Iya(s)] < (s—0)Cs7?,
-, s)l < (s—o)C(1+[y*)s™2,
[Ye(s)llLee < (s —0)s™3/4,

where

/ CdrK (5, )R T) = 1@:8) = 3 Y @) + 1 (08) + %, ).
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II)Case o = so:
Assume in addition that q(so) satisfies (37). Then, Vs € [sq, so + pl,
i) (linear term)

i log s¢

|as(s)] e + Cmax(A4, A)(s — s¢)s 2,

<
la—(y,5)] < CAQL+yP)s?,
<

llae(s)|| L= CAQ + 6(8—80))5—%'

We will give the proof of this lemma later.

Step 2: Lemma 3.4 implies Proposition 3.4
Let A be an arbitrary positive number. Let A > Ay(A) where A,(A) will be
defined later. Let so > 0 to be chosen larger than §3(A) (where 32(A) will be
defined later). Let ¢ be a solution of equation (15) satisfying (37), and s1 > so.
Assume in addition that Vs € [so, s1], q(s) € Va(s).
We want to prove that Vs € [so, s1]

log s

1 A
A Sl < 5

252

AZ
< A? 1 3 o < .
(39) lg2(s)] < 1+ 1yl*) llge(s)llLee < NG
Let p; > po two positive numbers (to be fixed in terms of A later). It is then
enough to prove (39), on one hand for s — sg < p1, and on the other hand for

§ — S0 > p2. In both cases, we use lemma 3.4. Hence, we suppose A > As,
so > max(ss(4, 4, p1),55(4, 4, p2)).

Case 1: s — sg < p1.-
Since we have V7 € [sq, s], ¢(7) € Va(r), we apply lemma 3.4 (IIi), Iii), iii))
with A, p* = p; and p = s — s9. From (38), we obtain:

~log s
(40) |ga(s)] < A=3%7

<
a-9)] < (CrA+Cals = s0)(1+[u)s™ + (5 = s0) (1 + Jyf*)s™
< (CrA+CrAes™0)s7% + (s — 50)s73/% + (s — s0)s™ 2.

+ C1(max(4, A) + 1)(s — 50)s™> + (5 — s9)s7>1/2

llge(s)ll 2o

To have (39), it is enough to satisfy

~log sq A?logs

< —__95°

(41) A 82 — 2 32
Ci1As 2+ Ci(s —s0)s™2 < gs_z

Ao—1/2 A,8—50.—1/2 A2

C1As + C1Ae’ s < TS 2,

on one hand, and

- A%1
(42) Cy(max(A, A) +1)(s — s0)s™> + (s —s0)s 2712 < - (;g23 —s73
(s —80)s727¢ < %s_z
2
(s —30)5_3/4+(s—30)s_%_6 < A—s_%
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on the other hand.

If we restrict p; to satisfy Cip; < %, C1Aerr < A;, (which is possible if we

fix p1 = 3log A for A large), and A to satisfy A < A, A < ATQ, C1A < 4 and
C A< ATZ (that is A > Ag(A)), then, since s — sg < py, (41) is satisfied.

With this value of p1, (42) will be satisfied if the following is true:

3 3 A?log s
A+1)Slog As™ + Slog As™371/2 < — 573
C’l(+)20gs + 5 log As < T
3 o A _,
el D G
2logAs < 48
3 3 A?
3 log As—3/* 4 3 log As™z7¢ < Ts_%,

which is possible, if so > s6(A).
This concludes Case 1.

Case 2: s — sg > pa.
Since we have V7 € [0, s], ¢(T) € Va(7), we apply Part I) of lemma 3.4 with A,
p=p* = p2, 0 =5 — pa. From (38), we derive:

1 _
AZ Og(ss2 Pz) + CzAp2$_3 + 02[)23_3 +p2s—3—1/2

(43) lg2(s)l
la-(y,5)] < Cole 32 A+ e A%+ po)(1+ [y*)s ™2 + pa(1 + [y[*)s ™27

lge ()l < Co(A%e™F + Aef2)s™% 4 pas™3/4 4 pps™ 3,

IN

A

To obtain (39), it is enough to have:

(44) fap(s) > 0
Ot At 1 p) < 4
02(1426_%"1“46’)2) < %2,
with
a0~ s D sp  p
on one hand, and
(45) s < g
pos™ 4 pysTET < %25_%,

on the other hand.

Now, it is convenient to fix the value of ps such that CsAef? = %27 that is
p2 = log %. The conclusion follows from this choice, for A large. Indeed, for
arbitrary A, we write

_ A A C A2 A
|fA’10gﬁ(s)—s 3(A%log —— — 1 —Cy(A+ 1) log )2.

— ) < ——(1 -
862 802 )| - 83+1/2 ( 8 SCQ
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Then, we take A > A7 such that

A A
Alog = —1— Co(A+1)log = 1
(Alog 2 — 1= Ca(A+ Dlog o) >
A -1/2 —(logL)Z 9 A A
i 2 )y <« =
02((802) A+e 82/ A +log802) < 7
A A A?
A2y g4 i
CAGe) " 455 < 7

After, we introduce s7(A) > 0 such that for s > sg > s7(A), we have
5737120 A% (log g2-)? < $s7° and (45) satisfied.
This way, (44) and (45) are satisfied, for A > A7 and sg > s7(A), which

concludes Case 2.

We remark that for A > Ag, we have p; = %logA > p2 = log %.

If now we take Ay = sup(4s, AG(A), Az, Ag), and then
so = max(s5(A, A, p1(A)),s5(A, A, pa(A)),s6(A),s7(A)), then this concludes
the proof of Proposition 3.2.

Proof of Lemma 3.4
Let A > As with A5 > 0 to be fixed later. Let A > 0, p* > 0. We take p < p* and
s0 > s5(A, A, p*). We consider o > sq such that Vs € [o,0 + pl, ¢(s) € Va(s).
For each part I4),ii),iii) and I1i), we want to find s5(A, A, po) such that the
concerned part holds for sy > s5(4, 4, p*).
The proof is given in two steps:

-In a first step, we give various estimates on different terms appearing in the
equation (19).

-In a second step, we use these estimates to conclude the proof.

Step 1: Estimates for equation (38)
1) Estimates on K :

Lemma 3.5 (Bricmont-Kupiainen) .
a)Vs>12>1 with s <21, Vy,z € R,
|K (s, 7,y,2)] < Cel="E(y, z), with

ye—9/2_m)2

69['(111,1') = \/4#(?—8_6) eXp[_ ( 4(1—6_6) ]

b) For each A' >0, A" >0, A" >0, p* > 0, there exists
so(A', A" A" p*) with the following property:
Vso > sg, assume that for o > sq,

(46) lgm(0)] < Alo™2,m=0,1,
lg2(0)] < A"(logo)o?,
lg-(y,0)] < A"+ [y[*)o?,
lge(@)llL < A"07%,

then, Vs € [0,0 + p*]

las(s)] < A"MBT | (5 0)Cmax(A, A5,

52
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IA

|a_(y7s)| C( —l(s—a)A/// —(3—0)2 II)(l + |y|3)3—2
loe(s)lle < C(A"e™ 57 + A"ele=))53,

A

where

(47)  K(s,0)q(0) = a(y,s) = D am(s)hm(y) + a—(y,5) + ac(y, 5)-
m=0

ce)Np* > 0, Is10(p*) such that Yo > s19(p*), Vs € [o,0 + p*],

()] < (s —0)Cs7%,
-,8)l < (s =a)C(1+yl)s™

where
/ drK (s, 7)R(7) Z Ym (8 ) +7-(y, 8) + 7e(y, 5)-
Proof:

see Appendix A.
Using the above lemma and simple calculation, we derive the following:

Corollary 3.1 Vs > 7 > 1 with s < 27, | [ K(s,7,y,2)(1 + |z|™)dz| <

(49) C [ a) 1+ 2o < (L4 ™).

i) Estimates on B:

Lemma 3.6 VA > 0, 3s11(A) such that V7 > s11(4), q(1) € Va(r) implies

(49) Ix(y,7)B(q(y,7))| < Clq/?
and .
(50) |B(q)| < Clq|?

with p = min(p, 2).

Proof: Let A > 0. If g(7) € Va(7), then [|g(7)||z= < C(A)77/2 < Lf(2Ky), if
T > s11(A) (Cf Definition 3.2, (7) for f and (26) for Kp).
(49) and (50) are equivalent to 1), 2) and 3), with
1) p > 2 and [B(q)| < ClaP,
2) p <2 and [x(y,7)B(a(y, )| < Clal?,
3) p<2and |B(q)| < Clql".
We prove 1), 2) and 3).
For 1), we Taylor expand B(q), and use the boundedness of || and |q|.
2) holds if x(y,7) = 0. Otherwise, we have |y| < 2Ko+/7. Again, we Taylor
expand B(q): x(v,7)|B(q)| < Cx(v,7)|q|? fo (1—6)|p+6qP~ 2d6 and conclude

writing x(y, )¢ +60q/P~ < x(y,5) (el —la))*~? < (f(2Ko) — 5 f(2Ko))P~* = C.

For 3), we write % = ‘1+€‘p_1‘(§1;€)_1_p£ by setting & = %. We easily check

that this expression is bounded for £ — 0 and £ — co.
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ii1) Estimate on R:

Lemma 3.7 ds15 > 0 V7 > 519,

C
&1 Ry, )| < .
Proof:
From (18) and (14), we compute: (pyy = _2Trfp + (Jiml) 2 f2p—1,
SOS - 41’72y RA apr7> and ¢¥ — Pt T yS@y [f+ 2pr] - 2p(pn—‘1)r pfl +
4PT Y P = 2p(p—1)r +[f+ QTT]” - f P, using a Lipschitz property and simple

calculations, the conclusion follows.

iv) Estimates on q in Va:
From Definition 3.2, we simply derive the following;:

Lemma 3.8 Js13 > 0 VA >0, V7 > s13, if ¢(7) € Va(7), then

(52) la(y, 7)| < CA*r 2 logT(1 + |y|*)
and
(53) lg(y, )| < CA%r~1/2,

Step 2: Conclusion of the Proof of Lemma 3.4

We choose sop > p* in all cases so that if s <o <7 <0+ pandp<p* we
have 671 <2571 and 771 < 257!

Ii) linear term in I):
We apply b) of lemma 3.5 with A’ = A, A” = A% and A" = A. Take s5(A4, p*) =
39(A7 AZ’ 'AJ p*)

IIi) linear term in II): ) )
We apply b) of lemma 3.5 with A’ = A, A” = A and A" = A.

Iii) nonlinear term:

-Pa2(s):

By deﬁnltlon ﬂz (s) = [ du(y)k2(y)x(y, 5)B(y, 5)-
= [du(y)k:(y)x f:deKs 7,9,2)B(q(z,7))dx = I + II, where
I= [du(y)k (y y,s) [, dr [ K(s,7,y,2)x(z,7)B(q(x,7))dz, and

Hzfdu(y)kz(y)x(y,s)f; dr [ K(s,7,9,7)(1 — x(z,7))Bla(z, 7))de.

For I we write:
1| < [ du()lk2 )| [, dr [ |K (s, 7,,2)Ix(2,7)|B(g(x,7))|dz
< C [du(y)lk2(y)] f, dr [ |K(s,7,y,2)llg(z, 7)Pdz (Cf (49))

< C [du(y)lka(y)] [, dr [ 1K (s,7,y,2)|A*7~* (log 7)*(1 + |z|%)dz (Cf (52))

< CA* [du(y)|k2(y)| [ drr=*(log 7)%e*~7(1 + |y|®) (Cf corollary 3.1)

< CA* [ dp(y)|kz(y )(1+|y| )(s —0)o~ (IOgS)2 e

< CAY(s—o)e*=7(£) *(logs)? (we take sg > p* so that s <o+ p* <o +59 <
o+0=20)

For II, we use (50) and (53) to have:

[I1| < Cfe_%dyx(y, )| ka2 (y |f dr [dz(1 — x(z, 7))

[

y)|
|
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o ye (=72 _4)2

e _lye T —a)”
Ty Pl ey

11 2 @e=t/2-a)?

Now, we have e2' *  4(-c7H ] < e~oKo)s < e=Cs for |y| < 2Kopy/s and
|z| > Ko/T (if s9 > p*). Hence, we derive

’y2
(111 < C [e~ S dylka(y)| [, dr [ do(1 - x(z,T))
e*=° yef(“T)/Q—IE)Q]e—C’sA2z77-—17/2.

—_— _1lye T )"
\/me"p[ 2 4(l—e"G-1)

Using a variable change in z, and carrying all calculation, we bound |II| by
(s — 0)e=C%, for s > s14(A, p*). Adding the bounds for I and II, and taking
o > s15(4A, p*), we obtain the estimate for [a(s).

'/8— (y7 S) :
Using (50), (52), and (48), and computing as before yields |3(y, s)| < CA?P(s —
0)els=o) (1 + |y|3)17(1%52—s)5. If we multiply this term by x(s) and bound in it
|y|>P=2 by (1/5)%P~3, we obtain
1Bo(y, 8)| < CA*P(s — 0)el*=7) (1 + [y|*)(v/5)*P~*(1%2)P, hence
1B (v, 8)| < C’Azﬁ(s—a)e(s_”)(1+|y|3)s((l;’f_—;));;, which implies simply the estimate
for B_ (for o > s16(p*) and some € (p)).

Bu(y,9):
Using (50), (53), and (48), and computing as before yields |3(y, s)| < CA?P(s—
o)e*=7) =27, From this, we derive directly the estimate for 8, (for o > s17(p*)
and some €2(p)).

Finally, we take o > max(s15, S16, 517)) = S5(4, p*) and € = min(e,e2) to
have the conclusion.

]AQﬁT_ﬁ/Z.

iii) corrective term:
For v2 and v_, we use ¢) of lemma 3.5. For ~., we start from (51) and write
Ye(y,8) = (1—x(y, 8))v(y,s) = (1—x) f; dr [ dzK(s,T,y,z)R(z,7), and then as
in i), |ve(y,8)| < C [ dr [doet*=DE(y,2)S =C [ e~ < S(s—0)e* ™7 <
(s —0)s™%,if o > s10(p*).

4 Stability

In this section, we give the proof of Theorem 2. As in section 3, we consider
N = 1 for simplicity, but the same proof holds in higher dimension. We will
mention at the end of the section how to adapt the proof to the case N > 2.

4.1 Case N =1:

Let us consider 4 an initial data in H, constructed in Theorem 1. Let 4(t)
be the solution of equation (1):

ug = Au + |ulP" u, u(0) = do.

Let 7" be its blow-up time and & be its blow-up point.
We know from (35) that there exists A > 0, §9 > logT such that Vs > §o,
47 ,(s) € V4(s), where §; , is defined in (13) by:

s s —1)2
dr,5(0:8) = € P +ye 3T =) e+ (p— 1+ Ly

—p—1
Ips y*) ]
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Remark: Following Remark 1.2, we can consider a more general 4o, that is g
with the following property:

A(T,a), 3A, 30 such that Vs > 3¢, G4 ,(s) € V;(s). From Definition 3.2, the
definition of ¢;. 2(s), and Proposition 3.1, 4(t) blows up at time T at one single
point a, and behaves as the conclusion of Theorem 1.

We want to prove that there exists a neighborhood Vy of 4g in H with the
following property:

Yuo € Vo, u(t) blows-up in finite time 7 at only one blow-up point a, where
u(t) is the solution of equation (1) with initial data u(0) = ug. Moreover, u(t)
satisfies:

(59 lim (T -7 Tu(a+ (T - )] log(T — ) ¥z 1) = 1(2)

uniformly in z € R, with

f(z)z(p—l-}—%zz)_ﬁ‘

The proof relays strongly on the same ideas as the proof of Theorem 1: use
of finite dimensional parameters, reduction to a finite dimensional problem and
continuity. For Theorem 2, we introduce a one-parameter group, defined by:

(T; a) — qT,a,

where gr, is defined by (13), for a given solution u(t) of equation (1) with
initial data ug. This one-parameter group has an important property: V(7' a),
gT,o is a solution of equation (15). Therefore, our purpose is to fine-tune the
parameter (7', a) in order to get (T (uo), a(uo)) such that ¢r(ue),a(ue) () € Va, (),
for s > sg, Ag and sg are to be fixed later. Hence, through the reduction to a
finite dimensional problem, we give a geometrical interpretation of our problem,
since we deal with finite dimensional functions depending on finite dimensional
parameters through a one-parameter group.

As indicated in the formulation of the problem in section 2 and used in
section 3 (Definitions 3.1 and 3.2), it is enough to prove the following:

Proposition 4.1 (Reduction) There exist Ag > 0, sog > 0, Do neighborhood
of (T,d) in B2, and Vy neighborhood of Gy in H with the following property:
Yug € Vo, (T, a) € Dy such that Vs > sg, g1,0(5) € Va,(s), where grq is defined
by (13), and u(t) is the solution of equation (1) with initial data u(0) = ug. (We
keep here the (T, a) dependence for clearness).

Indeed, once this proposition is proved, (54) follows directly from (3), (13) and
definitions 3.1, 3.2. Proposition 3.1 applied to u(z — a,t) then shows directly
that u(t) blows-up at time T at one single point: z = a.

The proof relays strongly on the same ideas as those developed in section 3,
and geometrical interpretation of T and a. Let us explain briefly its main ideas:

-In a first part, as before, we reduce the control of all the components of ¢ to
a problem of control (qo, ¢1)(s), uniformly for ug € V; and (T,a) € D; (where
Vi and D; are respectively neighborhoods of 4o and (7', a)).
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-In a second part, we focus on the finite dimensional variable (qgo, q1)(s), and
try to control it. We study the behavior of §r, under perturbations in (7', a)
near (T',a) (and some topological structure related to these). We then extend
the properties of § to g, for ug near 4y. We conclude the proof proceeding by
contradiction to reach a topological obstruction (using Index Theory).

The constant C' again denotes a universal one independent of variables, only
depending upon constants of the problem such as p.

For each initial data uo, u(t) denotes the solution of (1) satisfying «(0) = uy,
and for each (T,a) € R2, wr,q and gr,, denote the auxiliary functions derived
from u by transformations (3) and (13).

Part I: Initialization and reduction to a finite dimensional problem
In this section, we first use continuity arguments to show that for A, sy large
enough (to be fixed later), for (ug,T,a) close to (ﬂo,T,d), gr,q is defined at
s = 89, and satisfies gr,4(so) € Va(sg) (Step 1). After, we aim at finding (T, a)
such that ¢74(s) in Va(s) for s > s¢. For this purpose, we reduce through a
priori estimates the control of g7, (s) in Va(s) to the control of (go,7,q,¢1,7,0)(5)
in Va(s) for s > s¢ (Step 2).

Step 1: Initialization
We use here the fact that §; ,(s) € V;(s) for any s > 3o, and the continuity of
gr,. With respect to initial data uo and (T, a), to insure that for fixed so > $o,
q1,0(80) € V, 5(s0), for (uo,T,a) close to (o, T, &). Hence, if A is large enough,
we have q7,4(s0) € Va(s0) and ¢r,4(s0) is “small” in a way.

Lemma 4.1 (Initialization) For each sg > S0 there exist Vi mneighborhood
of o in H and D;(so) neighborhood of (T,a) in R?, such that for each ug €
Vi, (Tya) € Di(so), q(T,a,s) is defined (at least) for s € (—logT, so], and
qr,0(50) € V, 4(s0)-

Proof of Lemma 4.1:
VT >0, Ya € R, gr,(s) is defined on:
(—=logT,+o0), if T < 1T, or (—logT,—log(T —T)),if T > 1T.
Therefore, gr,,(s) is defined on (—1logT, s¢] for T near T.
i) Reduction to the continuity of qr,.(s0) € L>(R)
Let sg > 5¢. It is enough to prove that Ve > 0, there exist ¥V and D such that
VYug € V, (T, a) € D,

(55) llar,a(so) — @7 4 (s0)llL=®) < €.

Indeed, if it is the case, then,

(56) Vm € {Oa 1, 2}5 |Qm,T,a(50) - (jmj",@(soﬂ < CE,
(57) lg-a(y:50) —d_ .5 (¥,50)] < Ce(l+[yf*),
(58) ge,1,0(s0) — G, 7 4(50)[[Lo®) < Ce.

(56) and (58) follow directly from (55). For (57), write

4-(4:5) = X(4,9)4(¥, 8) = 33— Gm(8)hm (y), and use (55) and (56).
Using G; ,(s0) € V4(s0) and taking e > 0 small enough yields the conclusion of
lemma 4.1.
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i) Continuity of qr,q(s0) € L (R)

We have:
QT,a(ya 50) — qu’,a(y; s0) = wT,a(yaSO) - uA’T,a(ya 50)
— e P {u(e oy +a, T — ™) — ey +a,T - )}
= e 7T {u(e™®?y +a,T —e ) — d(e™*/?y+a,T—e %)}
T {a(e™®/ 2y +a, T —e ) — da(e™*/?y+a,T —e %)}
e {i(e™* 2y +a,T —e™*) — (e /%y +a,T —e %)}

Since ug — u(t) € Cl([@,f — ¢2],CY(R)) is defined and continuous (for
ugp near o), we have the conclusion.

Step 2: Uniform finite dimensional reduction
This step is similar to Step 2 of Part 1 in the proof of Theorem 1. Here we show
that for A and so to be fixed later, if g7 o(so) is “small” in V4(so), then, the
control of gz, (s) in Va(s) for s > so reduces to the control of (go,7,a,1,7,04)(S)
in Va(s).

Lemma 4.2 (Control of ¢ by (go,q1) in V4) There ezists Ay > 2A
such that for each A > A,, there exists s3(A) > 0 such that for each so > s2(A),
we have the following properties:
i) For any q, solution of equation (15), satisfying
- q(s0) € V54(s0) and,
- for s1 > so, Vs € [sq, 51], q(s) € Va(s),
we have: Vs € [sg, 51],

lg2(s)] < A%57%logs —s~°
A -
la-(:8)] < S(A+7)s™
AZ

A

lge(s)llz < SN

Moreover,
i1) For any q, solution of equation (15), satisfying
- q(s0) € V54(s0)(C Va(so)),
- For s, > so, q(s) € Va(s) Vs € [so, $«], and
alse) € Vals),
we have (go,q1)(s«) € OVa(s«), and there exists 5o > 0 such that V5 € (0,d0),
(90, q1)(8x + 0) & Va(ss +0), (hence, q(s« + 6) & Va(s« +6)).

Proof:
i) We apply Proposition 3.4 with A = max(24, (24)?), and take
As = max(A3,2A4), and s2(A) = max(§p + 1,352(A, A)) to have the conclusion.
i1) We apply ) with s; = s,, and use Definition 3.1. Then, we apply lemma 3.2.

Part II: Topological argument
Below, we use the notations ¢r,(s) = ¢(T,a, s), ¢r,.(y,s) = ¢(T, a,y, s),
Qm,T,a(S) =dqm (T, a, S)
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In Part 1, we have reduced the problem to a finite dimensional one: for each ug
close to i, we have to find a parameter (T, a) = (T'(uo), a(uo)) near (T',a) such
that (go,q1)(T,a,s) € Va(s) for s > so. We first study the behavior of §(7, a)
for (T, a) close to (T,a). Then, we show a stability result on this behavior for
ug near 4g. Therefore, for a given ug, we proceed by contradiction to prove
Proposition 4.1, which implies Theorem 2.

Step 1: Study of §(T,a) R
We study the behavior of §(T,a) for (T,a) close to (T',a) in R?.

Proposition 4.2 (Behavior of §(T,a) near (T',a)) There exists Ay > 0 such
that for each A > Ay, there exists s4(A) > 0 with the following property:

For each so > s4(A), there exists Dy(so) neighborhood of (T,a) such that for
each (T7 a) € D4(50)\{(T7 &)};

i) 4(T,a,s) is defined for s € (—logT, so] and §(T,a, s0) € Va(so),

i) s« (T, a) > so such that Vs € [so, s«(T,a)], ¢(T,a,s) € V4(s) and
4(T,a,5.(T,a)) € OVa(s«(T, A)), and if we define

(59)  Wap: Da(so\{(T,0)} — R

§(T,0)° .
(T,a) — a4 (40,41)(T, a,3+(T, a))
then Im(¥;,) C OC, where C is the unit square of R?.

Moreover,

i11)U 4, s continuous,

i) Ye > 0, there exists a curve I'¢ € Dy(so) such that d(T¢, ¥4,,0) = —1, and
V(T,a) € T, |(T,a) — (T,a)| <e.

Proof:
In order to prove i),44), and #ii), we take A > As with A5 = max(2A,A2,A3),
s0 > s5(A) = max(8g + 1,52(A),s3(A)), Ds(so) = D1(sg) (with the notations
of lemma 4.1). For such A and sg, we can apply lemma 4.1, and lemma 4.2.

Proof of i):
By lemma 4.1, ¥(T, a) € D5(sq), 4(T,a,s) is defined (at least) for
s € (—logT,so] and ¢(T',a, so) € V, 4(s0) C Va(so), which proves ).

Proof of ii):
We claim that V(T,a) € Ds(so)\{(T,a)}, 3s(T,a) > sosuch that §(T,a,s) ¢
Va(s). Indeed:

Case 1: T >T:

Since §(T, a,y,s) = e 7 1a(a+ye 2, T —e %) —o(y, s), 4(T,a, s) is defined on
[s0, — log(T —T')) and not after. Suppose that (T, a, s) does not leave V4(s) for
5 € [s0, — log(T'—T)), then, Vy € R, Vs € [so, —log(T—T)), |4(T’ a,y, )| < <2
(Cf Definition 3.2).

Since iz, t) = (T 1) 77 (4(T, a, 222, ~ log(T' — 1)) +p( 252, ~ log(T —1)))

limsup, 7 [|@(t)||L=®) < Cp 4 4 < +oo. This contradicts the fact that a(t)
blows up at time T. R X

Case 2: T <T and (T,a) # (T,a):
4(T,a, s) is defined on [sg, +00). Suppose that §(T, a, s) does not leave V4 (s) for
S € [s0,+00). Then, Yy € R, Vs € [so, +0), |4(T,a,y,s)| < % (Cf Definition
3.2). Hence, by (13),
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limg_,7 |(T — t)P Tu(a + /(T —t)|log(T — t)|z,t) — f(2)||r= = 0, and from
Proposition 3.1, u(t) blows up at time T at one single point; x = a. Since
(T,a) # (T,&), we have a contradiction. Therefore, §(T, a, s) leaves V4 (s) for
s > Sg.

In conclusion, we derive: Y(T,a) € D\{(T,a)}, 3s.(T,a) > so such that
Vs € [s0,5:(T,a)], 4(T,a,s) € Va(s) and §(T',a,s.(T,a)) € OVa(s«(T,A)). (
5.(T,a) > sq since §(T, a, s) is in V, 4(so) which is strictly included in V4(so)).
If now we define ¥y, by (59), then we see from lemma 4.2 that Im(¥,) C C.

Proof of #i):

Let (T,a) € D5 (so)\(T, a). We have explicitly for m =0, 1:
@n(T,0,5) = [ Ak, (9)X(, 9)d(T0,y,9)

— [ Ak )Xy, $)e~ 7T+ ye*/2, T —e=*) — [ dpk(5)x(y, $)(y, 5). From
the continuity of u(z,t) with respect to (z,t), and i) of lemma 4.2, 5.(T, a) an

a 2

#(qo, @1)(T,a,5.(T,a)) are continuous with respect to (T, a)

Proof of iv):
Let € > 0. We now construct I'. satisfying d(T'c, ¥4,,0) = —1 and V(T,a) €
T, |(T,a) — (T,a)| < e. This will be implied by the following:

Lemma 4.3 There exists Ag > 0 such that VA > Ag, 3s6(A) > 0 satisfying the
following property:

Vso > s¢(A), 3Dg(so) neighborhood of (T',a) such that Ve > 0,

3s1(A, €, 80) > so, 3¢, a 1-manifold in D¢(so) satisfying:

V(T,a) €T, |(T,a) — (T,a)| <€

Vs € [so, 1], 4(T, a,s) € Va(s),

(‘jO: q\l)(Ta a, 31) € 8VA(31);

(60) d(rﬁa((jO;qu)('a'asl)ao) =-1

a) Proof of lemma 4.3: The proof is not difficult, but it is a bit technical.
See Appendix B for more details.

b) Lemma 4.8 implies iv):
Let Ay = max(A4s,Ag), and A > Ay. Let s4(A) = max(s5(A4),s6(A)), and
So > S4(A) Let D4(S0) = D5(80) n De(SO), and € > 0.
Then, according to the beginning of Proof of Proposition 4.2, i) i) and i)
hold. We take now s1 = s1(4, ¢, s0) and T.. By lemma 4.3, we see that V(T,a) €
Te, 5+(T,a) = s1, and ¥4 (T,a) = A(qo,ql)(T a,s1). From (60), we derive,
d(T¢, ¥4,,0) = —1, which concludes the proof of Proposition 4.2.

Step 2: Behavior of ¢(T',a) for ug near .

Now, we fix Ag = 1+ sup(24, As, As, A4), and then
so = so0(Ao) = sup(8o, s2(A4o), 83(Ao), s4(Ao)). Applying lemma 4.1 gives us Vy,
and D (sg). We then fix Dy = D;(sg) N Da(so). Applying proposition 4.2 with
so and €y > 0 small enough gives us the curve I'y = I, included in Dy. We
consider now I’y as fixed.

Our purpose is to show that for ug near g, the behavior of ¢(T,a) on the
curve g = I'(4g) is the same as §(T, a). More precisely, we have:
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Proposition 4.3 (Stability result on the behavior on I'g, for 4y near
Qo) Ye > 0, IV, C V1, neighborhood of 4o such that Yug € Ve, V(T',a) € Ty,

i) (T, a,s) is defined for s € (—logT,so] and ¢(T,a, so) € Va,(s0),

i) s« (T, a) > so such that Vs € [so, s«(T,a)], ¢(T,a,s) € Va,(s), and

(0, 01)(T,a,5.(T,a)) € V4, (s.(T,a)). Then we can define

(61) Uyo:y — OC

5.(T,a)’
(Tya) — To(qo,ql)(T,a,s*(T,a))
where C is the unit square of R?.
Moreover,
iii) Wy, 1s a continuous mapping from Lo to OC,
) [[Wug g = Yo, llLo(ro) S €

Proof:
We first show a local result, then by compactness arguments we conclude the
proof. We claim the following:

Lemma 4.4 (Punctual stability on I'g) Ve > 0, V(T,a) € Ty, 3D 1,
neighborhood of (T,a) in Do, IV, 1,4 neighborhood of Go in V such that:

\V/(T', a’) € D¢ T, Yug € Ve, Ta

i) ¢(T',d’, s) is defined (at least) for s € (—logT, so] and q(T"',a’, so) € Va,(s0),
i)3s.(T",a") > so such that Vs € [so,s.(T",a")], ¢(T",a’,s) € Va,(s), and
(g0, 1)(T",d',5.(T",a")) € V4, (s:(T",a")).

Moreover,

5.(T",a')? so(T",a"), . .
2L (g, (17 a) = 0, 0) (73T ) 5
(62)

We remark that Proposition 4.3 follows from lemma 4.4. Indeed, for € > 0, from
lemma we write:

T C U(T,a)eFQ De,T,aa

and using the compactness of I'g, we have the conclusion.

Proof of Lemma 4.4
We have explicitly for ug € H, s € (—logT,—1log(T — T)) if T > T, otherwise
s € (—logT,+0oc), and m = 0,1
Qm,T,a(S) = f d:ukm (y)>g(ya S)q(Ta a,y, S)
= [dukm(y)x(y, s)e" 7 Tu(a+ye™*/2, T —e™*) = [ dpkm(y)x(y, 5)¢(y, s). The-
refore, using the continuity of u(x,t) with respect to (uo,z,1),
(g0,q1)(T, a, s) is a continuous function of (ug, T, a, s). Using this fact and the
transversality of (qo, §1)(T, a, 8.(T,a)) on Va,(s«(T,a)) (lemma 4.2 ii)), i) and
11) follow then easily.
This concludes the proof of Proposition 4.3.

Step 3: The conclusion of the proof

From continuity properties of the topological degree, there exists €; > 0 such
that V¥ € C(To, R?) satisfying || ¥ — g, | Lo (ry) < €1, we have d(To, ¥,0) = —1.
Applying Proposition 4.3, with € = €;, we have Yug € V,,, d(To, ¥,,,0) = —1.
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We claim that the conclusion of Proposition 4.1 follows with Ag, so, Do and
Vo =V, . Indeed, by contradiction as in section 3: suppose that for ug € Vy, we
have V(T',a) € Dy, there exists s > so, ¢(T,a,s) & Va,(s). Let s.(T,a) be the
infimum of all these s. We now remark that ¥, is defined on Dy (lemma 4.1
and lemma 4.2). ¥, is continuous from Dy to OC (see proof of Proposition 4.2
ii1), and d(T'g, ¥y,,0) = 0, which is a contradiction. Hence Proposition 4.1 is
proved, which concludes the proof of Theorem 2.

4.2 Case N > 2:

Let us consider 4g an initial data in H, constructed in Theorem 1. Let (%)
be the solution of equation (1):

ug = Au + |u|P" u, u(0) = d.

Let 7" be its blow-up time and & be its blow-up point.

Although the proof of Theorem 1 was given in 1 dimension, we know that
there exists A > 0, 8 > logT" such that Vs > 3, G5 4(s) € V4(s), where:
- 44, is defined in (13) by:

8 A s _ Nfi? —12
Gaal00) = € i@+ yeE T o)~ [0+ (=14 L)

2\ =51
T,

and

-Definitions 3.1 and 3.2 are still good to define V};(s), if we understand g, (s)
to be a vector valued function, as defined in section 2 (see (27) and (28)), and
|gm (8)| to be the supremum of of all coordinates of g,,(s). (By the same way,
the definition of V4 (s) given in 3.3 is good here).

With these adaptations, our purpose is summarized in the following Propo-
sition, analogous to Proposition 4.1:

Proposition 4.4 (Reduction) There exist Ag > 0, sog > 0, Do neighborhood
of (T, a) in R"*N | and V,y neighborhood of i in H with the following property:
Vug € Vo, (T, a) € Do such that Vs > so, qr,0(5) € Va,(s), where qr,q, is defined
by (13), and u(t) is the solution of equation (1) with initial date u(0) = ug.

Indeed, once this proposition is proved, from (3), (13) and definitions 3.1, 3.2,
we have:

m (T — )7 Tu(a + (T — t)|1og(T — t)|)22 ,t) = f(2)

t—T

uniformly in z € RV, with

(p—1)* 1
= — ]_ _— -1,
£6) = o=1+ T )
Proposition 3.1 (which is true in N dimensions) applied to u(z —a,t) then shows
directly that u(t) blows-up at time 7" at one single point: z = a.

Formally, the proof in the case N > 2 and in the case N = 1 have exactly
the same steps with the same statements of Propositions and lemmas, under
the following obvious changes:
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-(T,a), (T,a) and (T",a') are in R"*Y | and every neighborhood of such a
point is a neighborhood in R'*% .

-In Part 2, C denotes the unit (1+N)-cube of R*¥ T (and T, Ty,...) is a
Lipschitz N-submanifold of R+, forming the boundary of a bounded connected
Lipschitz open set of R1*% | and all introduced topological degrees different from
zero are equal to (—1)V.

Moreover, the proofs can be adapted without difficulty to the case N > 2,
even:
-the proof of Proposition 4.2, which relays on results of section 3 (subsection 3.3
and lemma 3.2) that are true in N dimensions (In particular, the lemma 3.5 of
Bricmont and Kupiainen, with the adaptation R — RV).
-the construction of T, given in Appendix B can be simply adapted to the case
N > 2.

A Proof of lemma 3.5

In this appendix, we prove lemma 3.5. Equation (15) has been studied in [3],
hence, our analysis will be very close to [3] (the proof is essentially the same as
in [3]). Lemma 3.5 relays mainly on the understanding of the behavior of the
kernel K (s,0,y,z) (see (20)). This behavior follows from a perturbation method
around e(*= L (y, ).

Step 1: Perturbation formula for K (s,0,y, )
Since L is conjugated to the harmonic oscillator e~ /8 e’ /8 = 92 — % +

% + 1, we use the definition (20) of K and give a Feynman-Kac representation
for K:

(63) K(s,0,y,3) = e(s—a)ﬁ(y,x) / d/l;;”(w)efos_g V(w(r),0+7)dr

where dp; 7 is the oscillator measure on the continuous paths w : [0,s — o] —
R with w(0) = z, w(s — o) = y, i.e. the Gaussian probability measure with

covariance kernel I'(7, 7") = wo(7)wo (')
(64) +2(e~ 2Tl —emalTHT 4 gmal2s—0)=rHr| _ o= 3l2(s—o)=r =]

which yields [ dus;7w(T) = wo(r) with
wo(7) = (sinh £52)~!(ysinh Z 4 z sinh $=2=T).
We have in addition
0

eé[(y’ 33) — e eXp[— (ye — IL‘)

47(1 — e~ Y) 4(1—e"?) !

—0/2 2

Now, we derive from (63) a simplified expression for K(s,o,y,x) considered
as a perturbation of e(s_")ﬁ(y,m). In order to simplify the notation, we write

from now on (1) for [ du(y)u(y)e ().



78 Stability of the blow-up profile for u; = Au + |u|P~u

Lemma A.1 (Bricmont-Kupiainen) Vs > ¢ > 1 with s < 20, the kernel
K(s,0,y,x) satisfies

K(s,0,y,2) = e~ (y,2)(1 + ~Pi(s,0,4,7) + Pa(s, 0,5, ))
S

where Py is a polynomial

Pl(sao'ayam) = Z pmm(saa)ymmn

m,n>0,m+n<2
with |pm,n(s,0)| < C(s — o) and
IPa(5,0,,2)] < C(s — 0)(1 + 5 — 0)s~(1+ [g] +|a])".
Moreover, |(ks, (K (s,0) — (657 1)?)hy)| < C(s —0)(1 + s —a)s™ 2.

Proof: See lemma 5 in [3].
Step 2: Conclusion of the proof of lemma 3.5

Proof of a): From (16), it follows easily that V(y,s) < Cs~!. Using this
estimate and (63), we write:

K (5,7, y,2)| < eC=DE(y,z) [ dpss(w)edo  CHOTd

< e=ML(y, x) Japs™ (W) (st71)9 < Cels=mE(y, z) since s < 27 and dpy, " is
a probability.

Proof of ¢): See lemma 2 in [3].

Proof of b): We consider A’ > 0, A" >0, A" > 0 and p* > 0. Let sg > p*,
o > so and ¢(o) satisfying (46). We want to estimate some components of
a(y,s) = K(s,o0)q(o) (see (47)) for each s € [o,0 + p*].

Since o > so > p*, we have: V1 € [0,s], 7 < s < 27. Therefore, up to a
multiplying constant, any power of any 7 € [o, s] will be bounded systematically
by the same power of s during the proof.

i) Estimate of as(s):

a(s) = (ka2, x(-,8) K (s,0)q(0
= 0%s72qa(0) + (k2, (x(-, 8) — x(-, 0))0*s72q(0))
+ (K2, x (-5 ) KES 1)7) — 0’57 %)q (U))

)

b} 28

From (4(§)7 and (26), we have 0257 2¢gy(0)| < A”s72logo and
|(k2, (x(-, 5) = x(-,0))a%s72q(0))| < 06_000_3/2(8—0)028_2%:’,/4”1)
< CA'(s—0)s™3 for 0 > 59 > s1(A", A", A" p*).

We write (k2, X (., ) (K(s,0) — 02572)q(0)) as 3 -_ b + b_ + b where
by = (k2, x(-,8) (K (s,0) — 0572, )qr (0),
b_ = (k2,x(.,5)(K(s,0) —02572)q_(0)) and
be = (k2, (-, 8)(K (s,0) — 0°57%)qe(0)).

For r = 0 or 1, we use lemma A.1, corollary 3.1, (21), (46), the fact that
es=Lp, = 1=r/2(s=)p and (ky, h,) = 0, and derive |b,| =

|(2, X (> 8) (K (s,0) = e~V hy)gn (o) + (k2, X(, 8) (e~ — 0®572) hi)g, (o))
<CA'(s—0)s3+Ce “(s—0) <CA'(s—0)s3 < CA'(s —0)s73.
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We have by lemma A.1 and the same arguments |ba] = |(ke, (K(s,0) —
252 hy)ga(0) + (K, (—1 + X(, )) (K (5,0) — 025~ 2)ha)ga(0)] < (s — 0)(1 +

s—0)s72A"s 2logs + Ce (s —0) < CA'(s —0)s™3

if 0 > s9 > s2(A", A", p*).

b_ can be treated exactly as by, it is bounded by C(s — o) A" s73.

Since K(s,0) — 02572 = K(s,0) — e(*=E 4 (=L — 1) 4+ (1 — 0%572),
we write be = be,1 + be g + be,3 with be 1 = (k2, x(.,8)(K(s,0) — es=LYq,(0)),
be,Z = (k27X('7S) 0-5‘—0 dTLeTqu(U))a be,3 = (k27X('78)(1 - 023_2)‘18(0))'

From (46), we bound b, 3 by C(s — 0)s~ ' A"g71/2e=C7 < O(s — o) A's™3 if
o> 59 > s3(A A", *) Since L is self- adjoint |be,2| <

ey/ s—0o
J S dyLkax (-, 8))(y dr [de—F——

—T 2 —
,—1) exp[—i(y a=e ,)) JA"o 1/2,
é[ y2 (ye_T/2 E)Z]

Now, we have 2! 7 a-e7) ' < ¢=CKo)s < =25 for ly| < 2Ko+/s and
|z| > Ko+/a (if Ky is big enough and sg > p*). Hence,
— s—o —T/2_ .2
[beo < CA"s™H2 [e=v"/Rdy [ dffdmﬁexp[—%%]

< CA"s V%(s —0)e™® < CA'(s —0)s 3 if 0 > 59 > s4(A', A", p*).
Using these techniques and lemma A.1 we bound b, ; in the same way.
Adding all these bounds yields the bound for |as(s)].

—s

i1) Estimate of a_(y, s):
By definition, a_(y, s)

= P_(x(-,8)K(s,0)q(0)) = P-(x(-,8)K(s,0)q-(0))

(65) + 4 ()P (x(, ) K (s,0)hs) + P_(x(-, ) K(5,0)qe(0))
r=0

where P_ is the L2(R, du) projector on the negative subspace of £ (see subsec-
tion 2.2). In order to bound the first term, we proceed as in [3]

(66) K(s,0)q-(0) = / dze” K (s, 0, ., 7)  (x)

where f(z) = e=*"/4q_(z, ). From Step 1, we have
e” 1K (s,0,y,2) = N(y,z)E(y, ) with

(y—e—(5=0)/2y2

(61)  N(y2) = dn(l —c 77 2ermrer /e st

and E(y, = [du;;7(w)e ) Viw(n)otnydr q o f® = f and for m > 1,
fem Uy = [Y _d f( ™) (z). From (46) and the following lemma, we can
bound f( m).

Lemma A.2 |f(-™)(y)] < CA"s™2(1 + |y|3)3~mev"/%,

Proof: See lemma 6 in [3].
By integrating by parts, we rewrite (66) as

2

(K(s,0)q-(0))(y) = Z T“/@TN y,2)0:E(y, ) f "~ (z)da

(68) /83 (y,2)E(y,2) f% (2)d
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From (67), we get for s —o>1landr € {0,1,2,3}
2Ny, 2)| < O™ 5= (Lt Jy| + [o])7e""/1el=02 y, z).

Using the integration by parts formula for Gaussian measures (see [11]), we
have:

= %/ / drdr'8,T (r, ") /duZ;"(w)V’(w(r),o +7)
0 0

(69) V'(w(r'),+r)elo 4V k)

+ %/ dT@mF(T,T)/d,uZ;”(w)V”(w(T),J+7-)efos_0
0

dr"'V(w(r"),o+1"")
By (16), we have V (y,s) < Cs~! and ‘ij < Cs™ /% forn = 0,1,2. Combining
this with (64) and using s < 20 we have

Jdugzo@)elo VD < 0 and |0, B(y, )| < Cs7 (s — o)1+ 5~
o)(|y| + [x)-

Using (46), (68) and all these bounds, we get
(K (5,0)q-(0))(y)| < CA"s™2e=C=0)2(1 + [yf*) if o > 50 > 85(p*) and s —
o > 1. This yields |(P_x(.,s)K(s,0)q_(0))(y)| < CA"s=2e=(5=0)/2(1 + |y|?) if
s—o0 > 1. For s —o <1, we use directly lemma A.1, corollary 3.1, (46) and
C < e=(5=9)/2 to get the same estimate.

Now, we consider the second term in (65) (r = 0,1,2). From corollary 3.1,
lemma A.1, and the fact that |y| < 2K,s'/2, we obtain:

|4-(@) (X (-, 8)K (5,0) ) (y) — 4 (0)e* =02 (x (., 8)he ) (9)]
(70) < C'max(A', A")s73+ 2 logs.(s — o) (1 + s — 0)e* 7 (1 + |y|*)

Hence P_{q,(0)(x(.,8)K(s,0)h,)(y) — g, (0)e=D=7/2) (x(, s)h,) (y)} satisfies

the same bound. Since P_h, = 0 and [(1 — x(.,s))h,| < Cs~/2(1 + |y|?), we

can bound ¢, (0)e(*=?)1=7/2) P_(x(., s)h,) by (70). Hence, the second term of

(65) is bounded by C A" s=2e=(5=9)/2(1 4 |y|?) if & > 59 > s6(A’, A", A", p*).
For the last term in (65), we use (46) and a) of lemma 3.5 to get

I+ [y*) 7 (-, ) K (5,0)ge(0) 2= < CA"e* s/ sup(1 + [y|*) ™

Y,r
(m _ ye—(s—d)/2)2
expl g ey I + (3= 0)) (1~ x(a,0)
< CA"s™2 s—0<tg
- | e ¢ s—o >t

for a suitable constant to. This yields a bound on the last term in (65) which
can be written as CA"e~(4=)"5=2(1 + |y|?) for o > sy large enough.
Hence, combining all bounds for terms in (65), we have

la—(y,9)] < Os (A& (=2 4 Aem =) (1 4 [y ).

Estimate of a.(y, s):

We write a.(y,s) = (1 — x(y,5))K(s,0)q(0) = (1 — x(y,5))K(s,0)(q(c)
+¢¢(0)). From (46) and corollary 3.1, we have |g;(y, s)| < CA™o~1/? and ||(1 —
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x(y,8) K (s,0)q(0) || < A™e5~7s71/2if ¢ > 59 > s7(A', A", A™). Using (46)
and the following lemma from [3]:

Lemma A.3 |K(s,0)(1— x(0))|le~ < Ce—(s—a)/p
we have [|[(1 — x(y,5)K(s,0)ge(0)[lL= < A"e”(87)/Ps71/2 which yields the

conclusion.

This concludes the proof of lemma 3.5.

B Proof of lemma 4.3

Let us recall lemma, 4.3:

Lemma B.1 There exists Ag > 0 such that VA > Ag, dsg(A) > 0 satisfying
the following property:

Vso > s¢(A), ADg(s0) neighborhood of (T',a) such that Ye > 0,

3s1(A, €,50) > s0, AT, a I-manifold in Dg(so) satisfying:

V(Ta a) el |(T= a) - (T,&)| <e

Vs € [so0,s1], 4(T,a,s) € Va(s),

(71) (@0;@1)(11, G/,Sl) € 6VA(31);
(72) d(Le, (4o, 1) (-, -, 81),0) = —1L.

In this lemma, we want to control the evolution of §(7T',a,s) in Va(s), for
(T, a) close to (T, &). Hence, in a first step, we use s ,(s) € V4(s) Vs > 5, to
give estimates on different, components of Gr,(s), for (T, a) near (T',a). From
these estimates, we introduce a function (o, ¢1)(7T, a, s) close to (4o, ¢1)(T, a, s),
but much more simple, and show that (go, ;) satisfies properties analogous to
(71) and (72). Therefore, we extend this result to (go,d1), by continuity, and
then finish the proof of lemma 4.3.

Step 1: Asymptotic development of §(7',a) for (T,a) near (T, a)
Applying (13) and (3), one time to (7',d) and one time to (7', a), we write:

(73)  4(T,a,y,5) ={(1—r)—p—¥q(f,a,%,s_1og(1_T))}
sty -1+
* =) =1+ e s —Togi = 7))
_ 2,2 1
- -1+
+ {(1—7)"71 . =,

2p(s —log(1 7))  2ps

with 7 = (T — T)e?®, and o = (a — a)e*/2. Now, we use §(T,a,s) € Vi(s) for
5 > 8o, to give a development of Gr,q(y,s), when |7| < 1, and |a| < 1.
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Lemma B.2 (development of §(T,a) near (T,a)) There exists s7 > O such
that Vs > s7, V(T,a) € R? satisfying |(T — T)e®| < 1 and |(a —a)e?| < L, we
have:
74 60 (T = T, o285 . T 2, 2
M) @) = 609+ 0 + T et
1 2 1
G(T,a,s) = @(T,a, s)-l—O(a 085 + al 2.1. Osg38)
adO 660 1
—(T = — T /2
(75) 8T( ,a,8) 8T( a,s)+e*(0O(r+s )),
94o _ 94 o5/2 logs o
(76) 5a La:8) = 5 (Ta,8) +e20(—5- ?),
O¢1 0@ s 1
(77) 6_T(T’a’5) = 6_T(T’a’8) +e O(%),
9 _ 0q gt L1 el
(78) %a (T,a,s) = Ba (T,a,s)+e’?0(— + 2+ )
with
(79) o(T,a,s) = —F u
qo(4,a, = 8ps? Py
oK
g1 (T - -
ql( JG’JS) s 2p,
and T = (T — T)es and o = (a — &)e%'
Moreover,
I
(a9 < %84 oll g
; L |l +]e
3
ji-(T,ay,8) < O+ G+ 55)

@Tays) < 2
Proof of lemma B.2:
The idea is simple: for s > §g, , we try to express each component of §(7,a) in
terms of the corresponding component of §(T', @), and bound the residual terms
using §(T', a, s) € V;(s) and other estimates that follow from.
Hence, we first give various estimates following from (T, @, s) € V;(s), and then
, we prove only some of the estimates in lemma B.2, since the other estimates
can be obtained in the same way.

i) We write the estimates following from §(T', a, s) € V;(s).

Lemma B.3 (Consequences of §(T',a,s) € V;(s)) 3s16 > 0, Vs > s16,

(50) a9 < 2.
PRSI Clogs
(81) 6o (7, ,, ) < =21+ [y,
S 5K 1 8(}0 ~ C
2 Go (T, a _ —_ — —(T.a < =
(8 ) qO( 50’73) 8p82+0(82)7|66( 7a73)|—525
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. 1
(83) v (T4, 8)| < C Osggs,
04 1+ y|
T,a <(C—=
(84) gy 9)l < 0= 2,

Proof of lemma B.3:
(80) and (81) follow directly from Definition 3.2.
After some simple calculations, we show that [ dux(y,s)R(y,s) = 82’8‘2 +

O(s72). As in the proof of lemma 3.2, we write the equation satisfied by go(s):

ddo .+ . ) 1
L (Ta,5) = do(T,3,5) + gy + O

),

g3

which implies (82).
By the same way, we write:

dgy - 1, 4 .
I —(T,a,s) = éql(T,a,s)+O(

which yields (83).
From (80), we derive that r = % satisfies

or _9*r 1 or

% = o ~ 3V, + A(y, s)r + D(y, s),

- By

S

with |A(y,s)| < C and, if p > 3 |D(y,s)| < <, otherwise, |D(y, s)| <

MIH

parabolic regularity, (84) follows.

i) Proof of some estimates in lemma B.2: (74) and (75)
(The other estimates follow from similar techniques).
From (73), we have: (jo(T a,s) = I + I, + I3, with

L= (1-7)7% [du(y)x(y,s)a(T,a, L, s — log(1 — 7)),

__1 ) C
L=Q1-7)777 [du(y)x(y,s)(p - L+ e -k
— [du(y)x(y,s)(p— 1+ %)

1
= [du(y)x(y, s){(1L — 1)~ 71 m i
-I3: We have easily: |I3] < C|r|s7!.
-I5: Since all quantities appearing in I are bounded, we can write:

_1)2 a2 __1 12,2 _1
I = O(e=*)+ [ du(y){(p— 1+ prsiltel’ =5t _(p— 14 -0y ~5tr)

T —1)2 a)? R
+571 S @) — 1+ Gt =) 7+ 0(7),

=0(e™*) + O(?)

1)?(y+a —1)24% 4 — —1)%y%\—1- -1
+fd[1 {4p(1p'r)()s (?{og(i 7)) - = 4p)sy }pTll(p_ 1+ (b 4p)sy ) Pt

12 2 12,2
+O fdlj’ {4p(1(pr)1()s£?{:gc(li—r)) - 41))3 £ }2)

—1)2 2 __1_

+pﬂi * P oS du(y)p -1+ 4p(1(pr)1()s (Z{::(? ) T J diu(y)r}, hence,
I — 5| < Ce™* + CT +Cr|s~t + Ca?s™t + Cr2572 + Ca?s72 + Cats™2 +

C|T|S 1 . Therefore,
I — ;25 < Ce™® + Cr% + C|r|s™' + Ca®s™.
-I,: Using (80), we write:
L = O(rs™'2) + [ du(y)x(y, s)d(T, a, F s —log(1 — 7)). If we introduce a
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new integration variable: z = 5+—a we obtain: I; = O(rs~'/?) 4+ Ly + Ly with
P exp(— EVIT=2)?)
Ly = [ x(z,5 —log(1 — 7))4(T, a,z,5 — log(1 — 7)) - dz, and
= f{X(ZV 1—7- oz,S) - X(Za s — log(l - T))}é(fa &,z, s — IOg(l - T))
exp(— (z./1_r_a)2)
T dz.

~ 22
= [ X(z 5~ log(1 = 7)i(T, &, 2,5 — log(1 — 7)) “P = exp ()
exp(2az\/14T‘r—a )dZ
= o(Ts—l/2 )+ [ x(z,5 —log(1 — 7))4(T, &, 2,5 — log(1 — 7))

exp(—— {1+ 2az\/ﬁ a? + %(20@\/14—7——(12 )2 f()l eXp(g(Wi \/14_"'_‘12))d§}dz

Usmg (81), we obtaln. Ly = O(rsY/2) + Go(T', a4, s —log(1 — 7)) + agy (T, &, s —
log(1 — 7)) + O(a?s72log s). By (82) and (83), we have:

Li = —g + O(1571/2) + O(573) + O(a?s % log 5).

|La| < O [ |PAZE=2 — 2| (100(T 8,2, 5 — Log(1 = 7)) + 14e(T 8,2, 5 —
log(1 — 7))|) exp(—C2?%)dz

Using (81) for g, (80) for ¢e, and the fact that g = 0 for |z| < Ko+/s yields:
Ly < C{|7]s72 + |a|s71/2}(s7 2 log s + e~*). In conclusion,

L = — g5 +0(rs71/2) + O(s7%/2) + O(a?s ™2 log 5). Adding I, I> and I3 yields
(74).

and then we use 2L $9%0 4 conclude.

9do _
ar — € ar

We compute % instead of 3,
With the previous notations, we write:

94 _oh ., 0L | 0%
BT(T’a’S)_ ar + ar + or *

oI5 .
or *

s — 1_(1— )T

il ), and |2| < Cs~L.

2p(s—long(1—7')) (]' - s—logl(l—‘r)

0ls
Br

o))
o

1.
=

||o>

__1 _1)2 a2 1 1

P (=) R J a9 o L+ e ) T 4 (1)

1 +a 2(1—(s—log(1—7 y+a _1_%

fd/‘y XY, 8) =7 = (e 4)p((1y—7'))2((s—1c()g(1—g7'())2 D (p— 1+4p(1( T)()s(log(i T))) Pl
Computing as for I,, we obtain: % =0(r) + zﬁ +0(s71).

oL
%BZTM1+M2+M3 with
M= ;5L(1-n)7"F 1fdﬂ y)x(y,5)d(T,a, \%’r— s —log(1— 7)),
My = gL (1= 7)777 [ du(y) )ﬁ%a’a% —log(1 - 7)),
My=25(1-7)" 71 [ du(y) y,8) 7= 24(T,a \/_as—log(l—r))

From (80), (84), and 1ntegrat10n by parts we derive: | 2| < |M;|+|Ma|+|M;] <
Cs~1/2.
this concludes the proof of lemma B.2.

Step 2: Behavior of (g, 1) near blow-up
We use the explicit asymptotic development given in lemma B.2 to construct a
1-manifold T" that is mapped by (do, ¢1) into OVa(s).
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Lemma B.4 (Behavior of ({o,41)) 3Co = Co(p), JAg > 0 VA > Ag,
dsg(A) > 0 Vs > s9(A), IT 4,5 rectangle in

Da,=(T,a) + (—CoAe=*s572 CoAe572) x (—CoAe~ 551, CoAe~5571)
such that V(T,a) € Tas, (G0, )(T,a,s) € dVa(s),

and d(FA’s, ((jo, (jl)(., . 3), 0) =—1.

Proof:

Since (go,q1) given in (79) is almost the linear part of (do, §1) (see lemma B.2),
we can first show for (go, §1) an analogous version of lemma B.4, then use lemma
B.2 to conclude. We use scaling arguments to get uniform estimates in s. Indeed,
let us introduce:

(85) Q=1(Qo,Q1):(—CoA,CoA)? — R

(7,8) — l(_5_” -k _~ﬁ)
T, 0 15 Tp_l, a4p,
and
Qs = (Qo,Q1)s : (~CoA,CoA)? — R2
. s . T . a

(86) (T:a) — Z(quql)(T+ @aa'f_ g:s):
where Cy = Co(p). Note that @ is independent of s, and that

A A~ = Al o s

(QO,Q1)(T#1;5) = S_Q(QO;QI)((T_T)E 52,((1—0,)628).

A A A A A I s

(qo,ql)(T,a,s) = 8_2(Q05Q1)S((T_T)e 32,(a—a)e2s).

The conclusion of lemma B.4 follows if we show that there exists a 1-manifold
T in (=CoA, CoA)? such that V(7,&) € T, Qs(7,a) € 8C, and d(T', Q,,0) = —1.
From lemma B.2, we compute for s > s17(A): ||Q—QS||01((_CA’CA)2) < CA]'\)}%; —
0 when s — +o0.

It is easy to see that Vg € [0, 1), 3T, rectangle such that ¥(7,&) € Ty, Q(7,a) €
(1+n)dC, and d(T',, Q,0) = —1.

From the continuity of topological degree, we know that there exist g > 0, €g >
0 such that for each curve I’ (indexed by C) satisfying ||T'— To|| Leo(ac) < MoV2
(Ty itself is indexed by AC), for each continuous function Q : (—CoA, CoA)? —
R? satisfying ||Q — QllLe((=coa,004)%) < €0, We have: d(T,Q,0) = —1.

Since we have ||Q — Qs||L°°((—COA,COA)2) < 614—1:’/%3, and from (85) Jac Q =
2

— oAz <0, we can take s large enough, (s > s11(A, €0,70)) so that:

(87) ~V(7,8) € Dy, Qul(7,@) € eat(1+ D)C,
(88) —V(7,8) € (—CoA, CoA)?, JacQ,(7,d) < 0,
Yw € Isz NImQ, if w = Qs(§) then

(89) €= Q7 (W) < o,

(90) —||Q - Qs||L°°((—C’oA,C’oA)2) < €.
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By (90) and (87), we have d(T',,,Qs,0) = —1. Therefore, by (87), Yw € (1 +
), d(Tp,,Qs,w) = —1 (the degree is the same in the same component of
R2\Q,(T,,)). Combining this with (88) and the definition of topological degree
for C! functions yields Yw € (1 4+ “2)C, there exists a unique(7,a&) € R? such
that Q,(7,&) = w. Hence, Q, is a diffeomorphism from (Q,)~1((1 + )C) onto
(14 T)C. Thus there exists a piecewise C' 1-manifold [ interior to T',,, such
that Qs maps T onto 8C (f is diffeomorphic to 4C). By (89), |f‘ - f‘O’A| < no-
Therefore, we derive: d(T, Qs, 0) = —1. This concludes the proof of lemma B.4.

Step 3: Conclusion of the proof of lemma 4.3
We take A > Ay, so > max(89 + 1, s7,59(A4)) and € > 0. Vs; > sg, we consider
Dy, and T4 5, given by lemma B.4. If s; > s12(4, €, 80), then ¥(T,a) € T4 4,,
|(T,a) — (T,a)| < €, and (T,a) € D;(so) (with the notations of lemma 4.1).
Therefore, for such s;, we have |(T —T)e®!| < %%4 and |(a —a)e?| < (’;—f‘. This

implies Vs € [sq, 1], |(T —T)es| < C;—;“ and |(a — a)e3| < C;_A_
What we want to do now is to show that Vs € [sg,s1], ¢(T,a,s) € Va(s). By
lemma B.2, we have:

For so > s13(A), V(T,a) € Tas,, Vs € [sq, s1]:

) cA
(91) |q0(T7 a, S)' S 32
) CA
(92) |61(T,a,s)] < -
. log s
(93) 62T 0,8)] < €=
A 1
(94) l4—(T,a,y,s)] < C(+ Iyl‘q’)s—2
(95) Q(Ta,y,5) < =
qe b 7y7 f— \/g‘
Therefore, if A > Ay4, |G2(T, a,s)| < AZI%%—S,
(96) i (Tay,8)| < A1+ yP) 5 0T 0y, )] < 2o
q_ 7a7y7s —_— y SQ,qe 7a7y’s _\/g'

It remains for us to show that |G, (T, a, s)| < S%, for m =0, 1.
Following the proof of lemma 3.2, we easily prove:

Lemma B.5 (Transversality property) 345 > 0, VA > A5, 3s15(A) such
that Vsg > s15(A), Vs1 > so, for any solution q of (15), satisfying:

-Properties (91) to (95), for s € [so, s1],

-ds € (so, s1] such that (qo,q1)(s) € dVa(s),

we have the following property:

30 > 0 such that Vs_ € (s — 6,5), (qo,q1)(s_) € int(Va(s_)).

If A> Aqs and so > s15(A), then by lemma B.5, V(T',a) € T4 s,

(97) Vs € [s0, 1), (do, 41 )(T, a,s) € int(Va(s)).
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Indeed, this follows if we apply lemma B.5 to s; ((Go,d1)(s1) € 8Va(s1) by
lemma B.4) and to s € (so, 51], and use A

I'={s €[s0,51)|Vs" € [s,51), (G0, G1)(T,a,s") € int(Va(s'))}-

The conclusion of lemma 4.3 follows for A > Ag = max(A4y, A14, A15),

so > max(8o + 1,57,59(4), s13(A4),515(A4)), Ds(s0) = Di(so), and for € > 0,
s1 = s12(A,€6,50) and T'e =T 4 4,.
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Blow-up results for vector-valued nonlinear
heat equations with no gradient structuref

Hatem Zaag
Université de Cergy-Pontoise, Ecole Normale Supérieure

1 Introduction

We are interested in the following reaction-diffusion equation:

o}
(1) = Aut (L i)l (0, ) = uo(e)
where, § € R, p € (1,400),p < (N+2)/(N—-2)if N > 3,and up € H =
WLprL (RN | C) N L®(RY, C).
(1) is a special case of the vector-valued equation:

(2) % = Au + F(u),u(z,0) = ug(x),
where u(t) : z € RN — RM | F:RM — RM is regular and F is not necessarily
a gradient.

For simplicity, we focus on the study of (1) (results for equation (2) will also
be presented in section 5).

Equation (1) appears in the study of various physical problems (plasma phy-
sics, nonlinear optics). See for example Levermore and Oliver [15] and the refe-
rences inside. Blow-up results for vector-valued equations have been intensively
studied in differential geometry. See for example a review paper by Hamilton
[12].

The Cauchy problem for equation (1) can be solved in H. u(t), solution
of (1) would exist either on [0, +00) (global existence), or only on [0,7), with
0 < T < +o0. In this case, |u(t)|g — +0o when t — T', we say: u(t) blows-up
in finite time T in H. In this paper, we are interested in the finite time blow-up
for equation (1).

If § = 0 and up(z) € R, then (1) can be considered as real-valued. Blow-
up in this real case has been studied by various authors. Relying on the use
of monotony properties and maximum principle, Ball [1] and Levine [16] find
in this case obstructions to the global in time existence for (1). Other authors
investigated the asymptotic behavior at blow-up of blow-up solutions of (1),
0 = 0. See for example Weissler [20], see for a study in the scale of similarity
variables Giga and Kohn [11], [10], [9], Filippas and Kohn [5], Filippas and
Merle [6],... The notion of asymptotic profile (that is a function from which,
after a time dependent scaling, u(t) approaches as ¢ — T') appears also in
various papers: see for example Bricmont and Kupiainen [4], [3], Berger and
Kohn [2] for a numerical study. In the scalar case and in one dimension, Herrero
and Velazquez give a classification of possible blow-up profiles. They use the

t Article a paraitre dans Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 1998.
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maximum principle and the decay in time of the number of oscillations of the
solution. Some of their results are generalized to N dimensions in [19].

Most of the techniques used for § = 0 in the cited papers can not be applied
in the case ¢ # 0, since (1) is complex-valued (no maximum principle applied),
and the equation does not derive from a gradient.

Another method has been introduced in [18] in the case § = 0 (see also [4]):
Once an asymptotic profile is derived formally for (1), the existence of a solution
u(t) which blows-up in finite time with the suggested profile is proved rigorously,
using a nonlinear analysis of equation (2) near the given profile. This approach
which does not use maximum principle allows us to find blow-up solutions for
vector-valued heat equations (even with no gradient structure). In this paper,
we aim at adapting this method to show the existence of a blow-up solution for
equation (1) with d # 0.

Let us remark that the scalar case provides us with a blow-up solution if
6 = 0. Unfortunately, this result is a one dimensional result and it fails when we
perturb slightly the nonlinearity. Indeed, let us mention the case of the following
vectorial equation:

(3) % = Au+ [ulP " u +ifu| "y, uppn = 0
with 1 < ¢ < (p+ 1)/2, the method of Ball [1] yields a blow-up solution (%) :
Q — C where Q is a bounded domain of RV, see appendix A for details.

We show that there exists g > 0 such that for each § € [—dg, dg], equation (1)
has a blow-up solution. We give in addition a precise description of its blow-up
behavior. Indeed,

Theorem 1 (Existence of a blow-up solution for equation (1) for small
9)

There exists 6o > 0 such that for each § € [—dp,d0], there exist initial data ug
such that equation (1) has a blow-up solution.

This Theorem follows directly from the following proposition which specifies
the behavior of u(t) near blow-up. Indeed, up to a time dependent scaling, u(t)
approaches a universal profile

(p—1)? o 1
(4) (P—1+W|Z|) »

when ¢t — T'. More precisely:

Proposition 1 (Existence of a blow-up solution for equation (1) with
the profile (4) )
There exist 69 > 0, To > 0 such that for each § € [—do, do], for each T € (0,Ty],
for each a € RN,

i) there exist initial data uy such that equation (1) has a blow-up solution
u(z,t) on RN x [0, T) which blows-up in finite time T at only one blow-up point:
a,

i) moreover, we have

(5) lim, T — ) ¥=F (o + (T = O108(T ~ 1))} 2,1) — f3(:)*+ |y = 0
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(6) with fs(z) = (p—-1+ 4(5;_7_?2”242)—?—11.

iti) There exists u. € C(RV\{a},C) such that u(z,t) — u.(z) ast = T
uniformly on compact subsets of RN \{a}, and

14i8
8(p—8%)|log |z —af[] "
(7 ux(z) ~ P17 —af as T — a.

Remark: Estimate (5) is really uniform in z € RY. In previous papers dealing
with the case § = 0, only Bricmont and Kupiainen [4] and Merle and Zaag [18]
give such a uniform convergence. In most papers, the same kind convergence is
proved, but only uniformly on smaller subsets ( for |z| < C/+/|log(T — t)| in
[5],--)-
Remark: In fact, we show that property i¢) is a consequence of 7). We want
to point out that for the heat equation (6=0), i44) was known just in dimension
one using the decay in time of the number of oscillations of the solution (Cf
Herrero and Velazquez [13]).
Remark: To prove Proposition 1, we linearize in a way equation (1) around
61“5, and give a nonlinear finite dimensional reduction of the problem. Then,
we solve the finite dimensional problem using index theory. The proof is more
difficult than in [18], because of the vectorial structure, the presence of a coupling
between coordinates, and the presence of one more neutral direction. These
techniques give then as in [18] a stability result with respect to the initial data
of the behavior described in Proposition 1 (see section 5).
Remark: Center manifold theory do not apply here. It fails to give a uniform
estimate such as ¢7). One can point out that even if it works, a center manifold

theory gives a convergence only uniform in the region {|z|/|log(T —t)| < C}.
For discussion in the case § = 0, see Filippas and Kohn [5], page 834-835.

Remark: We see from (6) that 0 < o < /p. Since equation (1) is rotation
invariant, for each w € S', we can find initial data ug such that the corresponding

solution has the profile f;+i5w.

From this result, one can ask: what happens for § > §,? Does equation (1)
still have blow-up solutions? We conjecture the existence of b0 > 0 such that for
|8] < do, equation (1) has blow-up solutions, while for 4] > g, no blow-up is
possible for solutions of equation (1). That is, all solutions are globally defined.
Indeed, from the formal asymptotic analysis, one can remark that for [§| > /p,
f;“‘s is no longer bounded, and the analysis fails. Another question arises: what

happens with the critical value ¢ = 50? Unfortunately, we are not able here to
give a precise value of dg and a rigorous proof of what is conjectured.

As an extension of Theorem 1, one can mention that using the same tech-
niques, we have the same result for the following vector-valued equation:

(8) ‘Ull_? = Au+ |uP u + G(u), u(@, 0) = uo(z)

where
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Dut):z e RY 5> R pe (1,+0), p < (N+2)/(N-2)if N > 3,
uop € H = WhrHL(RN  RM) 0 L(RN | RM ),

2) G: RM — RM ig a perturbation of |u|P~ u satisfying: G(u) = G1(|u|*)u,
|G(u)| < Clu|", |G(Mur) — G(Aug)| < CA"|ug — ua| for |uq|, |us| < 1, A > 1,
r € [l,p), Gy : Rt — Rt

Indeed,

Theorem 2 (Existence of a blow-up solution for equation (8)) .
There exist initial data uo such that equation (8) has a blow-up solution.

Let us mention briefly the organization of the paper. The proof of Proposi-
tion 1 relies strongly on a double-scale description of u(t), solution of (1). We
first give in section 2 an equivalent formulation of the problem in the scale of
the well known similarity variables (see Giga and Kohn [11],..). Then, working
in the original scale, we prove in section 3 the existence of a single-point blow-up
solution for equation (1) such that (5) holds. In section 4, we return to the origi-
nal scale u(x,t) and use the invariance of equation (1) under the transformation
(to,A) = ux(z,t) = /\%u(\/xm,to + At) to show that estimate (5) yields the
equivalent (7) for the profile u, in the original scale. We conclude in section 5
by giving some comments about the stability of the result of Proposition 1 and
detailing the case of equation (8) (M > 3).

Without loss of generality, we can now assume that a = 0 and N = 1.
The same proof holds in higher dimensions (see [18] for the analysis of the case
N > 2). We write each complex quantity (number or function) z as z = 21 + iz
with 21,29 € R.

The author wants to thank Professor F. Merle for his helpful suggestions
and remarks.

2 Formulation of the problem

As we mentioned just before, the proof of Proposition 1 will be completed in
two steps. In the first step (section 3), it is enough to construct u(t) a solution
of equation (1) satisfying (5), since this implies directly that u(t) blows-up in
finite time T at only one blow-up point: 0 (parts ) and i) of Proposition 1).
Indeed, it easily follows from (5) that lim; 7 |u(0,t)| = 400, which means that
u(t) blows-up in time T at the point 0, and
limg_, (T — t)P_il |u(b,t)| = 0 for b # 0, which implies in turn that «(t) does not
blow-up at b # 0, and therefore blows-up only at the point 0. This last result
follows directly from a Theorem by Giga and Kohn (Theorem 2.1 in [11]).

In a second step (section 4), we show how the behavior of the limiting profile
ux(z) near the blow-up point (part i) of Proposition 1) can be derived from
the behavior of u(t) as t — T given by (5).

Hence, our first goal is to construct u(t) a solution of (1) satisfying (5).

To have an idea about the blow-up growth of u, solution of equation (1), we
compare this solution with a blow-up solution of the corresponding differential
equation

du

p (1 4 3d)|u|P~ u.
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This solution is u(t) = ¥ ((p — 1)(T —t))~ ;Tf, withT > 0,0 € R

Now, we consider u, a solution of equation (1) which blows-up in finite time
T > 0 at one blow-up point 0 € R. We expect u to grow with a similar rate near
blow-up. If we introduce convenient “similarity variables”

T

Yy JT—1
9) s = - log(TlJ;st)
’U)(y,S) = (T_t)ﬁu(xat)a

then, we can look for bounded non zero solutions of the following equation
(which follows from (1) through (9)):

611)_

(10) 95

Aw — —va &l +¢5)L1 + (1 + i) |wP~lw
-

2.1 Formal asymptotic analysis

Since equation (10) is of heat type, one can ask whether it has self-similar
solutions, or at least, approximate ones. We have the following lemma:

Lemma 2.1 (Formal asymptotic behavior of w) .
i) The only self-similar solutions w(y, s) = vo s) of (10) are the constant

ones: vg =0, or vo = ke?, with k = (p — 1)_ﬁ and 6 € R.
it) If equation (10) has a solution of the form

(11) f% is

with v; regular and bounded, then, there exists @ € R such that

. p— 1)2 _14is ) .
(12) vo(2) = e (p—1+ ﬁz% =1 = el fi5(2)1H,
where f5(2)'19 is the suggested profile in (4).

Proof.
i) The equations satisfied by such a vy are

1, .o Vo
(13) 0= —izvo(z) -1+ z5)p —

(1 + i5)|vo|”_1v0,

and —$zv((z) = v{ (2). It is easy to see that the only solutions are the constant
ones, and that — % + |vg|P~tvg = 0. This yields the conclusion.

1) If we substitute the form (11) in equation (10) and set z = %, we
find (if s — +4o00) that vy satisfies (13). Searching a non constant solution
vo(2) = p(2)ei®®, with p > 0, one finds that vo(z) = e (p— 1 +bz2)~ 51, with
b>0,0€eR

In fact, there is only one possible value of b. Indeed, if we substitute the
expanded form (11) in equation (10) and compare elements of order 1, we ob-

tain F(z) = 0, where F(z) = jzvg + vy — 201 — (1 +148) ;% + (1 +i6){(p -
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1)|U0|p_3U0 ('UO,I'UI,I +’Uo,2’01,2) + |’U0|p_1U1}, and Vj = 0j1 +’L'Uj’2, j=12 Accor-
ding to regularization properties of equation (10), it is natural to require that

v1 is C3, which implies that F is C2. F”(0) = 0 implies b = f&—_lgj). ]

Remark: Looking for approximate solutions of (10) or for solutions of (10) in
the expanded form (11) is a well known approach used in various problems such
as nonlinear optics, and also nonlinear heat equations (see for instance Galaktio-
nov, Kurdyumov and Samarskii [7] for approximate self-similar solutions in the
case of global existence (in time), see also Galaktionov and Vazquez [8] where
an approximate solution is shown to be an admissible blow-up profile in the case
of a heat equation with (1 + u)log®(1 + u) as a nonlinearity). Unfortunately,
computation can not be carried out easily for the form (11) in the present case,
and we are unable to show the existence of a solution for equation (10) with such
a form. In fact, instead of using this linear approach, we use a nonlinear one in
section 3 to show that (10) actually has a solution w(y, s) which approaches (in
L) fg(\%)”“ as s — +oo. This approach (instead of the linear one) yields

the stability of such a solution (see section 5).

2.2 Transformation of the problem

Using similarity variables (see (9)), we see that proving (5) is equivalent to
proving that (10) has a solution satisfying

. Y \1+is —

(14) Jlim [y, 5) = fo( o) e =0,
where f1+i5 is given by (4).

In order to prove this, we will not linearize equation (10) around fH'“;
it suggested by (14), because the linear operator of the linearized equation has
two neutral modes which are difficult to control. We will instead use modulation
theory and take advantage of the invariance of (10) under the action of S (T}, :
w — e, for each y € R): in fact, we introduce q(y, s) : [-log T, +00) = C
and 6(s) : [ logT, +00) — R such that

W) = )+l ,5))ei )
(15) { 0 = [x(9)(a,s) - oa(y, )
where . y p .
16)  plus) = 1 (o) + g ) k= (= 1)
(17) (@, 8) = xo (421,

Xo € C§°([0,+00),[0,1]), with xo = 1 on [0,1] and xo = 0 on [2,+00], Ko is
a constant large enough, and
6_y2/4

(18) du(y) = ﬁ

The introduced liberty degree 6(s) is fixed by the second equation of (15).
It will appear in the course of the proof that this second equation makes one of
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the neutral modes of the perturbation ¢ to be zero, which simplifies greatly the
control of g.

One can remark that we don’t linearize (10) around e*(*) f1+“5 but around

(). Up to the natural action of S* (multiplication by Ii_“s) which simplifies

the study of the linear operator of the equation on g, these two expressions differ
from each other by a term of order %, so that (at least) some components of g
are smaller that %, which helps to have g(s) — 0 in L° as s — +oo.

Now, we claim that proving parts ¢) and #¢) of Proposition 1 reduces to
proving the following proposition:

Proposition 2.1 (Equivalent formulation of Proposition 1, i) and ii))
There exist 5o > 0, So > 0, such thatVé € [—dg, do], Vso > So, gs, € —(-, 50)+
H such that the system

ao) B9 = (0w PO R0
= fx(y,S)(Qz(y,) 61 (y, s))du(y)

where
Ly(g) =Ag— %y.Vq -1+ ié)%
+(1+ i‘?){(P — D]p|P 3 p(p1a1 + 202) + [P 1a},
(20 B(g) =1+id){le+alP (e +q) —lelPtp

—(p = 1)[epfP~? (<p1q1 + p202) — l¢lP~'q},
R(eﬂy’s) - R*(ya ) dsﬁpa
R*(y,s) =—%8 +2¢p—3y.Vo—(1+i6) ;% + (1 +1id)|p[" ",

with initial data (q(y,so),O(so)) = (¢s,(y),0) at s = s, has a unique solution
(q,0) for s > so, satisfying Br_il_l lg(s)|lzee =0, and F0 € R such that §(s) —

Os as s — +o00.

Indeed, due to (15), the first equation in system (19) is equivalent to (10),
hence, it is equivalent to (1) (use (9)). In addition, once proposition 2.1 is proved,
we haves [[w(y, ) — ¢/ 5198 f5 (1 )1+0]| o

< 1€ (a(y, s) + ¢(y, 5)) — = ‘“°g")f( =) e (use (15))

< lla(s)llz + [1(e*) — e=)ip(y, 5)l| L~ + ||€’9 (p(y,s) = 672 fs( =) +0) e
< lg(s)||z= + C|0(5) — O] + Cs™t — 0 as s — 400 (see (16)).
Therefore, w(y, s) approaches e(f—310g) £; ( )H‘“s in L*(R) as s = 400.

Since (10) is rotation invariant, we can replace w by e~ (Peo—dlog K)yy t0 obtain
(14), which is equivalent to (5) through similarity variables (see (9)).

Hence, we must study system (19) for (¢,8) € L>®(R) x R to solve the
problem. Its evolution is mostly influenced by its linear part L, 4(q) = (L, —
zji)(q). Let us study more carefully this operator. £, ¢ is a R-linear operator
defined on D(L,9) C L*(R,C,du). Since we are interested in the behavior of
(g(s),0(s)) in L>*(R) x R as s — 400, let us consider the limit as s - +oo of
Ly,6(r) for a fixed r € L*(R,C) (note that L>(R,C) C L*(R,C,dp)).

Since §(s) will be shown to have a limit when s — +00, we can think that
the effect of g—z appearing in the expression of L6 (see (20)) will be negligible.
Therefore, L,,9(r) — L£(r) = Ar — 1y.Vr+ (1 + id)r; as s — +oo (see (20) and

(16)). The following lemma provides us with the spectral decomposition of £:
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Lemma 2.2 (Eigenvalues of £) .

i) L is a R—linear operator defined on L2(R,C,du) and its eigenvalues are
gwen by {1 — T|m € N}. Its eigenfunctions are given by
{(1 + 48)hy, thy|m € N} where

m!
21 m — " (=1)" m—2n_
(1) @) = 32 e U
We have: L((1 + i6)hm) = (L — 2)(1 +i6)hn, and L(ihm) = —Zihp,.
i) Each r € L?(R,C,du) can be uniquely written as
r(y) = (1+i8) (550 Frmhm (y)) + i( 550 F2,mhm (), where fj,, € R.

Proof:

i) From [18], we know that {h,,|m € N} is a total family in L*(R,R,du),
and that (A — %y.V)hm = — 3 hy. Hence, we decompose each
re L*(R,C,dy) as r(y) = 31 (r1,m + ir2,m) hm ().

m=0

X € R is an eigenvalue for £ <= 3r € L*(R,C,du),r # 0,Lr = \r

(1—%—A) T1,m =0
< Ir£A0VmeN X Tim (=D Ao =0
<~ dneNAX=1-2

2
The computation of eigenfunctions is easy and we shall skip it.

ii) We write r = (1 + i6)Fy + ifs, with 7; € L2(R,R,dpu), and use the fact
that {hy,,|m € N} is a total family in L*(R, R, du). [ |

Let us consider (g(s),8(s)) a solution of system (19). We will use an integral
formulation of its first equation in terms of the fundamental solution of £,. We
want ||g(s)||lr= — 0 as s — +oo. This L*® control will result from the L*®
control of (1 — x(v,s))q(y,s) and x(y, $)q(y, s) (see (17) for x):

1) in the “regular” region |y| > Ko+/s, L, behaves in L*(R,C,dp) like
an operator with a fully negative spectrum. We will show from (20) that the
fundamental solution of £, between sy and s; > s is a strict contraction from
L>(ly| > Kov/s) to L*(R). Therefore, the control of (1 — x(y,s))q(y,s) in
L*>(R) will be done without difficulties.

2) in the “singular” region |y| < Kov/5, £, behaves in L*(R, C,dp) like L.
In order to control xq(y, s), we expand it with respect to the spectrum of L in
L%(R,C,du), but we will control xq in L (R) and not only in L?(R, C,du) (see
section 3 for the rigorous analysis).

By lemma 2.2, £ has two expanding directions ((1 + id)ho, (1 4 id)hy), two
null ones ((1 + 4d)ha,iho) and countably many negative ones.

Here, the situation is a bit more complicated than in [18], because we have
two null directions (instead of only one).

Our strategy to control all the components of xq so that ||xg(s)||re~ — 0 as
s — +00 is to control the part of xg corresponding to the negative spectrum of
£ and the one parallel to (14 i8)h, (which corresponds to the null eigenvalue)
as in [18]. The component parallel to ihg (which corresponds also to the null
eigenvalue) has been fixed by the second equation of (19) to be zero (using
modulation theory and the phase invariance of the equation).

However, the analysis of system (19) is longer than the equivalent analysis
in [18], because of terms with g—g, and the presence of strong coupling between
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the two scalar parts: §; and §» of g, satisfying: ¢ = (1 4 i0)d1 + iG=. Fortunately,
% will be controlled near the profile ¢ (see 16), and, although the coupling will
be of critical size, its effect will be controlled by &, which can be chosen small.

3 Existence of a blow-up solution for equation
(2)

In this section, we prove proposition 2.1, which implies parts i) and i) of
Proposition 1 and then Theorem 1.

3.1 Geometrical property for ¢

As in [18], the convergence of ||g(s)||L~ to zero as s — +oo will follow from
a geometrical property: g(s) € Va(s), where Va(s) C L*(R, C) shrinks to ¢ =0
as s — +o0o. The structure of V4(s) respects the free-boundary moving in g at
the rate /s, and also the eigenfunctions of the operator £ (Cf lemma 2.2).

In order to define V4(s), we introduce the following useful notations:

For each g € L*(R,R) and s > 0, we define gy(y,s) = x(v,s)g(y) and
9e(y,8) = (1 — x(y,5))g(y). Since L*(R,R) C L?(R,R,du), we introduce for
each m € N, gn,(s) as the L?(R,R,du) projection of gy(y,s) on hp, (Cf (21)).
We also let g_(y,s) = P_(gp) and g, (y,s) = P1(gy), where P_ and P, are the
L?(R, R, du) projectors respectively on Vect {h,,|m > 3} and Vect {h,,|m > 1}.
Thus, we write either

2
(22) 9W) = gm()hm(y) + 9- (¥, ) + ge(y, 5)
or
(23) 9(y) = go(8)ho(y) + 91 (y,5) + ge(y, 5)-

For each z € C, we write in a unique way z = (1 + id)Z; + iZ2, where Z; and
Zo are real.
Hence, if r € L (R, C), we write: r(y) = (1 + )71 (y) + i72(y) and expand
71 and 75 respectively as in (22) and (23). Thus, we write: r(y) = (1 + i6)71(y) +
i72(y)
= (L4 { o P () (y) + F1r,— (v, 8) + 71, (4, )}
(24) + i{72,0(8)ho(y) + 72,.(y, 8) + F2,e(y,5)}-

Definition 3.1 For each A > 0, for each s > 0, let Va(s) be the set of all
functions v in L (R, C) such that

|71,m ()] < As72, for m=0,1,

|71,2(5)] < A%(logs)s™,  |fa0(s)| < As7?,
I71,-(y,8)] < A +[yl®)s™2, |F2,1(y, )] < A+ yP)s?,
[F1,e(s) e < A%s72, [Fa,e(s)llLee < A?s72,

where r is given by (24).
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Remark: We note that L>°(R, C) C L%(R,C, du), which justifies the expansion
with respect to the eigenvalues of £ in definition 3.1.

Remark: It is easy to see that if g(s) € Va(s), then Vy € R, |q(y,s)| <
C(A)s~1/2 (see [18] for details). Therefore, ||g(s)||1=®,c — 0 as s — +o0, and
we obtain a convergence in L (R, C) and not only in L?(R,C, du), as in other
papers (see [5],..). We emphasize that a convergence in L2(R, C, du) or more ge-
nerally in H™(R, C,dpu) yields a convergence in L*([- R, R], C) for each R > 0,
and never a uniform convergence on R.

With this remark, we claim that proposition 2.1 follows from the following
proposition:

Proposition 3.1 Equivalent formulation of Proposition 1, i) and i)
There exists A > 0, 6o > 0, So > 0, such that Y6 € [—dp,d0], Vso > So,
I(dy,d1) € R? such that system (19) with initial data at s = sg

Qinan(,50) = (1+0) fo(A)?(do + dry/v/5p) — (&)1
(25) + 2 (sinf5log(2)] — & cos[dlog( £ )]) fol A=) B(s0)

0(50) = 0

(where fo is given by (6),

y,So)d/l,( )
(26) T 20— 52)’ﬁ( 0) = fx Y, S0)du(y)

has a unique solution (q,6)q,,4, for s > so, satisfying q(s) € Va(s), Vs > so.

Indeed, once proposition 3.1 is proved, we take for gs, the expression in (25).
From ¢(s) € Va(s), Vs > sg, we have ||¢(s)||r~ — 0 as s — 400, and 6, such
that 8(s) = 0 as s = +00. Indeed, we have the following lemma:

Lemma 3.1 VA > 0, 3s3(A) > 0 such that Vé € [—1,1], Vs > s3(A), if q(s) €
Va(s), then |£(s)| < &

This lemma implies f:goo 4 (s)|ds < +00, which gives 6 such that 6(s) = oo
as s = +oo. We give the proof of this lemma in the next subsection.

In order to understand the dynamics of ¢ and 6, we derive the equations
satisfied by ¢; and g2 (q(y,s) = (14+140)d1(y,s) + id2(y, s), Cf decomposition
(24)) and 6:

Lemma 3.2 (Equations satisfied by ¢, o and 6) If q satisfies (19) for
s > sq, then:

M ly5) = (L4 Vial,9) + 59 (D + (Via(y,5) + 2 ()
(27) ~ + Bl (q(ya S)) + Rl (0’ Y, S)a
P (y5) = (Vo = (48D () + (L~ 14 Vanly, ) — 60 ()

(28) + BQ(q(yas)) +R2(9’y73)7
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do
i / XU 8)((1+ 62)@1 + 653 + (1 + 62 + 62 )dp

=/ (£L—-1 Q2du+/ qzdu+/x(%,1dl+¥/z,2@z)du

(29) + [xBa@dn+ [ xtv.9)B5(0.9).

where

(30) L=A- %y.v +1,
Vii(y,s) = (A=)l = 557) + (0= 1)p[P?(p] — 6°¢3) —
Vip(y,s) = —0(lolP~ = ;55) + (0 — D’ (p1 - 5soz)<pz
Vai(y,s) = 1+ 0(lelP~" = 255) + (0 — D]elP~> (o1 + dpa)pa}
Vao(y,s) = 1+l — 555) + (0 — DlpP 293},

@ is given by (16), (14 i8)By +iBy = B, (1+i6)Ry + iRy = R, and B, R are
given by (20).

Proof: (27) and (28) follow directly from (19). For (29), we note that we
derive form (19) £ [ x(y, q2(y, s)dp(y) =0 (G = g2 — 6g1). Therefore

S x(y;s ( s)du(y) = — [ 3 (y, 8)d@(y, s)dpu(y). Multiplying (28) by x and
1ntegrat1ng w1th respect to du yields (29). |

The proof of Proposition 3.1 follows the general ideas developed in [18].
Indeed, it is divided in two parts:

-In a first part, we reduce the problem of the control in V4(s) of all the
components of g(s) to the problem of controlling (¢1,0(s), G1,1(s)), which are the
components of ¢ corresponding to expanding directions of L (see (24) and lemma
2.2). That is, we reduce an infinite dimensional problem to a finite dimensional
one.

-The second part of the proof is devoted to the solving of the finite dimen-
sional problem, using 2-dimensional dynamics of (g1,0,d1,1)(s) and a topological
argument (index theory) based on the variation of the 2-dimensional parameter
(do,d:) appearing in the expression (25) of initial data gq,,4, (¥, So0)-

3.2 Proof of the geometrical property on ¢(s)

First, we prove lemma 3.1 which insures that proposition 3.1 implies propo-
sition 2.1 and then Proposition 1 4) and ).

Proof of lemma 3.1:

We control % thanks to equation (29). Let us estimate each term appearing
in:

If so > s3(A), we have the following estimates.

- Since ¢ € V4, the left-hand side of (29) is (in absolute value) greater than
C|%| where C > 0.

- Since £ is self- adjomt in L2(R, du), fx = 1)godp = [(L£ — 1)xGodp =

—y“/8
f(gyx 2yay)qze y /Sef dy. From (17), |8 y8y| <C, and———yagj =

0 for |y| < Ko+/s. Hence, we can bound e~¥"/8 by e~K35/8 and use q(s) € Va(s)
to obtain | [ x(£ — 1)godp| < Ce™* (if Ky is large enough).
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- The same argument yields | [ ‘Z—’S‘(jng < Ce™".

- We have |V;;(y,s)] < Cs™'(1 + |y|?) (see lemma B.1 in appendix B).
Combining this with Definition 3.1, we get | [ x (V2,141 +V2,2¢2)du| < Cs™3logs.

- We have |x(y,s)B(q(y,s))] < Clq? for g(s) € Va(s) (see lemma B.4).
Therefore, | [ xBz(g)dp| < [ xlql*dp < Cs=5.

- From (20), |fx(y,s)fi;(y,s)| < & (see lemma B.5).

Combining all the previous estimates gives: |2£| < &. |

Now, we give the proof of proposition 3.1 following the plan announced in
the previous subsection.

Part I: Reduction to a finite dimensional problem
Here, (g, ) stands for a solution of system (19) with initial data (25). We show
through a priori estimates that finding (do,d1) € R? such that Vs > so q(s) €
V4(s) is equivalent to finding (do,d;) € R? such that Vs > so (G1,0(s),d1,1(5)) €
Va(s), where

Definition 3.2 For each A > 0, for each s > 0, we define Va(s) as being the
set [-4, 4] C R2.
Proposition 3.2 (Control of ¢(s) by (G1.0(s),d.1(s)) in Va(s)) There
exists A1 > 0 such that for each A > A;, there ezists §;(A) > 0, 51(A) > 0 such
that for each 6 € [—01,01], so > s1(A), we have the following properties:
-if (do,d1) is chosen so that (G1,0(s0),d1,1(S0)) € VA(SO), and,
-if for s1 > so, we have Vs € [so, $1], q(s) € Va(s) and q(s1) € 0Va(s1),
then .

i) (41,0(51),1,1(51)) € OVa(s1),

i) (transversality) there exists o > 0 such that Vn € (0,10),

(qr0(51 +m),q1,1(51 +n)) & Va(s1 +m) (hence, q(s1 +n) & Va(s1 +1n)).

Proof: see Proof of Proposition 3.2 below.

Now, we fix A > A;, and do = d1. We note ¢(do, d1) = qa,,q4, (See proposition
3.1).

Part II: Topological argument for the finite dimensional problem
In the following proposition, we initialize the finite dimensional problem and
study the Cauchy problem for system (19).

Proposition 3.3 (Initialization and Cauchy problem for system
(19)) There exists sa(A) > 0 such that for each § € [—dg,do], for each so >
SZ(A)7

i) there exists a set Dy, C R? topologically equivalent to a square with the
following property:

q(do,d1,50) € Va(so) if and only if (do,d1) € Ds,.

it) For each (do,dy) € Ds,, 3S = S(do,d1) > so (mazimal) such that system
(19) with initial data (25) at s = so has a unique solution (q,6)(do,d1) on
[s0,S), with q¢ and 6 C? and q(s) € Vat1(s), Vs € [so0, S).

iii) (q,0) is continuous with respect to (do,d1,s).
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Proof.

i) From (25), we have
(jl (do, dl, Y, 30) = fo(\/y%)p(do + d1 \/ygo) — % COS[(S log(%)] and
G2(do, d1,y, 50) = —4-(6 —sin[d log(-)])(1 — 6(so)f0(\/y%)p). The expression of
Gy is similar to the expression of initial data (33) for the similar equation (15) in
[18]. g2 is a sum of two terms appearing in the mentioned formula (33) in [18].
Hence, one can adapt without difficulties lemmas 3.1 and 3.3 of [18] to conclude
(note that q~2’0 (do, dl, 50) = 0)

i1) As if to use (15) in a reverse way, we introduce

(31) w(y,s) = e (q(y, 5) + ¢(y, ))-
Therefore, our problem is equivalent to the following system in (w, 6):

ow 1 w
g _ = _ ) P ; p—1
(32) s Aw 2y.Vw 1+ zé)p 1 + (1 440)|w|P w

F((6(s),s) =0
where F'(§,s) =
(33) COS(G) (’LUQ’() (S) — 5w1,0 (3)) + sin(0)(—w1,0 (S) — 5’[[)2,0 (S)) — @2’0 (S),
with initial data

(34) ’LU(d(],dl,So) = q(do,d1,80)+(,0(80),
(35) (s0) = O.

By a simple calculation, we have w(dy, d1, so) € H. Hence from classical theory,
we have local existence and uniqueness of a C? solution for (32) with initial data

(34).
In order to prove existence and uniqueness for 6(s), we apply the implicit
function theorem to F mnear (6,s) = (0,s0). First we compute 2L(6,s) =

— 8in(8) (wa,0(8) — dw1,0(8)) + cos()(—w1,0(s) — dwa(s)) and

55 (0,50) = —p1,0(50) — p2,0(s0) — (1 + 0%)d1,0(50) — 0G2,0(s0) (use (31)). By
(16),

—¢1,0(80) — dp2,0(s0) = —k as sp — +00. Hence, if s9 > s2(A) and (do,dy) €
D,,, then q(so) € Va(so) C Vati(so) and 25 (0,s9) # 0. Since F(0,50) = 0
(because §2,0(do,d1,50) = 0), and F is C2, we have existence and uniqueness of
C? 4(s).

We add that the solution (g,6)(s) is well defined if we require q(s) € Vay1(s).
i14) Using again the equivalent formulation (31), we see that

(q,60)(do,d1, s) is a continuous function of (¢(do, d1, s0), s). Since g(do, d1, so) is
continuous in (dp,d1) (it is affine, see (25)), we obtain #i4). |

Now, we fix Sp > max(s1(A4),s2(A4)), and take § € [—dg, do], so > So. Then
we start the proof of Proposition 3.1 for A, § and s,.
We argue by contradiction: According to proposition 3.3, for each (dg,d;) € Ds,,
system (19) with initial data (25) has a unique solution on [sg, S(do, d1)) and
q(do, d1, s0) € Va(so). We suppose then that for each (do,d1) € Ds,, there exists
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s > 8¢ such that q(do,d1,s) & Va(s). Let s«(do,d1) be the infimum of all these
s. By proposition 3.2 (s; = sx), we can define the following function:

®:D,, — OC

s«(do,d1)? . .
(o) — 2D G ) oo, )
where C is the unit square of R2.
Now we claim

Proposition 3.4 i) ® is a continuous mapping from D, to OC.
i1) There exists a non-trivial affine function g : Dy, — C such that ® o g‘glc =
Id|3c.

From that , a contradiction follows (Index Theory). Hence, there exists
(do,dl) such that Vs Z S0, q(do,dl,S) S VA(S)
This concludes the proof of proposition 3.1, and also the proof of parts i) and
i1) of Proposition 1. |

Proof of proposition 3.4:

i) Part 4i) of proposition 3.3 implies that (G1,0(s),d1,1(s)) is a continuous
function of (do,d1). Using the transversality property of (¢i,0(s«),d1,1(s«)) on
dVa(s.) (ii) of proposition 3.2), we claim that s, (do,d;) is continuous. There-
fore, ® is continuous.

it) If (do,d1) € ODs,, then from i) of proposition 3.3 , g(do, d1, $0) € Va(so)-
According to the proof of lemma 3.3 in [18], (G1,0(S0),d1,1(50)) € OVa(s0)- Ap-
plying i) of proposition 3.2 with sq and s; = so, we have s.(do,d1) = so, and
®(do,dy) = %(51,0(30),(71,1(80))-

Let T : (do,d1) € Dgy — %(ql,o(so),(jl,l)(so)) € C. From (25), T is affine. Hence
do T\571350 = Idjgp,,. This concludes the proof of proposition 3.4. |

Now, we give the proof of proposition 3.2.

3.3 Proof of proposition 3.2

As we suggested in the formulation of the problem, the proof follows the
general ideas of [18]. However, it is more complicated because of terms with %
or because of strong interference between §; and G» (see (27), (28)). Therefore,
we summarize arguments which are similar to those exposed in [18] by showing
how to adapt them to the present context, and emphasize the arguments relative
to these new terms.

We divide the proof in three steps:

- In Step 1, we give a priori estimates on ¢(s) in V4(s): assume that for given
A > 0 large, p > 0 and an initial time s > s4(4, p), we have ¢(s) € Va(s) for
each s € [0,0 + p], where o > so. Using system (19) which is satisfied by ¢, we
then derive new bounds on G2, Gi,—, Gi.e, Go,1. and o in [0, 0 + p] (involving
A and p).

-In Step 2, we show that these new bounds are better than those defining
Va(s) (see definition 3.1) provided that p < p*(A). Since Gi,2(s) = 0 by hy-
pothesis in (19), only ¢i,0(s) and Gi,1(s) remain to be controlled: the problem
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is then reduced to the control of a two dimensional variable (G1,0(s),G1,1(s))-
Afterwards, we conclude the proof of part ) of proposition 3.2.

-In Step 3, we use dynamics of (§1,0(s), §1,1(s)) to prove its transversality on
OV a(s) (part ii) of proposition 3.2).

Step 1: A priori estimates of q.
From equations (27) and (28) (which are equivalent to the first equation of
system (19)), we write the integral equations satisfied by §; and ga:

qi(s) = Kl(S;U)%(U)+/sdTK1(SaT)V1,2(T)(12(T)

+ [ arkis,nBu@dr + [ arki(s, 0 Ry (0)

o

)+ [ ki) GO+ 6a(r) + () + ()

b(s) = Ki(s,0)d(0 / drK (s, 7)Vau ()i (7)
+ / drK,(s,7)Bs(q dT+/ drK, (s, 7)R3 (1)

— / drK»(s,T) ( (1 +6%)@1 (1) + 3@2(7)) + (1 + 6%)di (1)
(37) + 9¢2(7)}

where K is the fundamental solution of £+V; 1, K> is the fundamental solution
of L—1+ Va9, L is given by (30),

B(q) = (1 +i6)By + iBs,

R*(y,s) = (1 +i0)R* + iR%, B and R* are given by (20).

We now assume that for each s € [0,0 + p], q(s) € Va(s). Using (36, 37), we
derive new bounds on all terms in the right hand sides of (36, 37), and then on
q.

In the case ¢ = sg, from initial data properties, it turns out that we obtain
better estimates for s € [sg, s¢ + p].
More precisely, we have the following lemma:

Lemma 3.3 There exists Ay > 0 such that for each A > Ay, p* > 0, there
exists sq(A, p*) > 0 with the following property:
Vo € [—-1/2,1/2],Vsg > s54(A, p*), Vp < p*, assume Vs € [o,0 + p], q(s) € Va(s)
with o > sg.

D)g, estimates:
We have Vs € [o,0 + p],
i) (main linear term)

1
ara(s)] < A?Z5Z 4 (s —0)CAs T

A

a1~ (y,5)] < Cle 36D A4 e~ A2)(1 4 [yf*)s~2
lare(s)lpe < C(A2e= 5> 4 Ael=9))s5—3,

where, as in decomposition (22),

Ki(s,0)q1(0) = Z o1,m (8)hm (y) + 01, (Y, 8) + a1, (y, 5).
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If o = so, and q(so) satisfies (25), then
log s
s 2(s)| 20 4 CA(s — s0)s7>,
o1, ,8)| < O+ [y, ()l < C(1L+e=)s7h.
i¢)(interference term)
lt1,2(8)] < C|0|A(s — 0)e* 7573,
e~ (y,8)] < Clo]A%(s — o) (1 + [y]*)s
lie(8)llz= < Cl6|(A* + e~ A) (s — )51/,
where, as in decomposition (22), [’ drKi(s,7)V1,2(1)d2(r) =
Z le +L1—(y7 )+L1,€(y73)'
i) (nonlinear term)
(s —o)
[Bia(s)] < PEEEVCR
Bi-(,9)] < (s— )1+ y*)s™> 7 [Bre(s) o < (s —0)s™77°,
where € = €(p) > 0, and as in (22), f; dr K, (s,7)By(q(1)) =
Z/Blm +/31—(y7 )+/81,6(y53)‘
i) (main corrective term)
m2(s)] < (s-0)Cs7%
m-(y:8)] < (s=0)CL+1y)s™2 lIm,e(8) o= < (5 —a)s™/4,
where as in (22),
[ arkis. D7) = (0,5 Z (o) + 91, (,5) + 1.6 (:9).

v) (small terms)

Mia(s)] < Cls—oa)s?
ALy, 9)] <

where as in (22), f drKi (s T)g—( {041 () + Go(7) + 651 (7) + @2(T)} =

ZAlm +A1—(y7 )+A1,e(y7s)'

C(s = )1+ [y1*)s™>, e (8)llz= < O(s = 0)s™*/2,



108 Blow-up results for vector-valued nonlinear equations

) estimates:
We have Vs € [o,0 + p],
i) (main linear term)

e, 1 (4, 5)]| Cle 26D A+ e~ A2) (1 + |y*)s 2,
(s=0)

”a2,e(3)||L°° < C(Aze_ P +A)S_%,

IA

A

where, as in decomposition (23),

Ks(s,0)q2(0) = aa(y,s) = az,0(s)ho(y) + a2, 1(y,5) + a2,(y, 5)-
If 0 = sg, and q(so) satisfies (25), then
(38) s, 1 (y,8)] < C(L+ |y*)s™, llas,e(s)l|o < Cs™2.
i1) (interference term)
12,1 (y,9)| < CI8|A(s — o) (1 + |y1*)57>, ll12,e(8) | = < CI5]A%(s — 0)s™'/2,
where as in (23), [T drKs(s,7)Vau (1)@ (1) =
12(y,8) = 12,0()ho(y) + t2,1.(y,5) + 12,6(y, 5)-
iii) (nonlinear term)
Bos(,8)] < (s = )1+ y[*)s™> 7 [1Bae(9)ll < (s —0)s7 77,

where € = €(p) > 0, and as in (23),

/ dTKz(S,T)Bz (q(T)) = [ (ya 5) = /BZ,O(S)hO(y) + ﬂ2,J_(ya S) + /BZ,e(ya 3)'
iv) (main corrective term)

ey, ) < Cs72(s =)L+ ), Inze(8) oo < (s = 0)s™/4,

where as in (23),

/s drKs(s, T)R3 (1) = 12(y, 8) = 72,0(8)hm (y) + 12,1 (Y, 8) + 72, (3, ).

v) (small terms)
Do, (y,8)] < Cls =o)L+ 1yl)s™>, [Aze(s)l|ree < C(s —0)s72,

where [ drKs(s,7) % (1){=0G () — (1 + 6%)di (1) — 6¢a2(1) — (1 + 6%)@1 (1)} =
A2(Y, 8) = A2,0(8)ho(y) + A2, 1(y,8) + A2,e(y, 8), as in (23).

Proof: see appendix B .

Step 2: Lemma 3.3 implies i) of proposition 3.2

Here, we derive i) of proposition 3.2 from lemma 3.3. We follow the method
used in [18] to prove proposition 3.4 starting from lemma 3.12. Indeed, from
integral equations (36, 37) and lemma 3.3, we derive new bounds on G 2(s),
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G1,—(¥,8), G1,e(y,8), Go,1(s) and G, (y, s), assuming that Vs € [o,0 + p], q(s) €
Va(s), for p < p* and o > s¢9 > s4(A4, p*). The key estimate is to show that for
s=0+p (or s € 0,0+ p] if 0 = 50), these new bounds are better than those
defining V4(s), provided that p < p*(A).

Comparing lemma 3.3 here and lemma 3.4 in [18], we see that we have
additional terms:

-Interference terms Iii) and I144),

- Small terms Iv) and IIv).

If we try to adapt the proof of proposition 3.4 of [18] in order to prove
a similar result, we see that the introduction of small terms does not change
anything to the proof, since they are

either of lower order, if compared for example with linear terms (speaking
in terms of power of s): A1.—, A1 and Age,

or of the same order, but with a “small” coefficient (compared with A): Aj o
and Ao | .

This is not the case of interference terms I4) and I1%), which have a critical
growth in terms of power of s. But recalling that in the mentioned proof in [18],
we have (s — o) < p < p* <log %, if we assume that:

C|o|Alog A-eo8d < 1 (Cf 11,), Cl6|A%log & < 4 (Cf u,-), C|9|(A% +

elog 5 A) log % SZATz (Cf 11,¢), Cl6|Alog % < f (Cf 12,1) and

C|5|A%log & < 4~ (Cf 1),

which is possible if || < d5(A), with d5(A) > 0, then all these terms, while

remaining with critical growth, have a reasonable coefficient (1, 4 or ATQ)
Therefore, adapting the proof of Proposition 3.4 in [18] for |0] < d5(A4), we

prove a similar proposition:

Proposition 3.5 There exists A5 > 0 such that for each A > As, there exists
05(A) > 0, s5(A) > 0 such that for each & € [—d5,05], so > s5(A), we have the
following property:

-if (do,dy) is chosen so that (G1,0(50),d1.1(50)) € Va(s0), and,

-if for s1 > sg, we have Vs € [sg, s1], q(s) € Va(s),

then Vs € [s0, 1] » |G1,2(5)] < A%s~logs — 5, [d1,_(y, )| < A(1 + Jy*)s2,

2

~ 2 ~ _ ~
ez < £, 11 (0, 9)] < 20+ ly)s7, [de(3)llim < 2.

By definition of (g,6) (Cf system (19)), we have Ga,0(s) = 0. If in addition
q(s1) € OV4(s1), we see from definition 3.1 of V4(s) that the first two compo-
nents of ¢(s1), namely ¢ 0(s1) and ¢i,1(s1) are in GVA(sl). This concludes the
proof of part i) of proposition 3.2.

Step 3: Transversality property of (Gi,0(s1),41,1(s1)) on BVA(sl)
To prove part ii) of proposition 3.2, we show that for each m € {0,1}, for
each e € {—1,1}, if Gim(s1) = esé, then dq;;" (s1) has the opposite sign of
1

d%(es—’;‘)(sl) so that (d1,0,G1,1) actually leaves V4 at sy for s; > so where s will
be large. Now, let us compute d?i%(sl) and d?ils’l (s1) for g(s1) € Va(s1) and

CA2

51

(G1,0(51),d1,1(s1)) € OVA(sl). First, we note that in this case, ||q(s1)||L~ <
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and | (y, 1)| < CA21%52L (1 + |y|®) (Provided A > 1). Below, O(l) stands for a
1

quantity whose absolute value is bounded precisely by ! and not CI.
For m € {0,1}, we derive from equation (27) and (21): [ dux( sl)aqs1 km =

/dﬂX(Sl)ﬁﬁlkm+/dﬂX(31){V1,151+V1,2¢72}km+/dMX(81)B1(q)km

+ [ dpx( sl)R*(sl Vem + [ dpx( 51) (sl){5q1 + Go + 0p1 + Pa bk, where k,, =

m/”hm”LZ(R R, dp) (see (21)).
We now estimate each term of this identity:

) | [ dux(s1) 5ok — 02| = | [ dpEaikm| < [ dpl 9| Sae k| < Cemr if
so > s3(A).
b) Since L is self-adjoint on L?(R,dp), we write

/ dpx(s1) LGk = / dpL(x(s1)km)d-

Using L(x(s1)km) = (1 — B)x(51)km + 5¥km + %2 — Lky,),

we obtain [ dux(s1)Laikm = (1 — 3)G1,m(s1) + O(CAe™51).

¢) We have Vy € R,|V”( s)| < %(1 + |y|?). Therefore, | [ dux(s1){Vi,@1 +

Vi2Gatem| < [duCsTt(1 + |y[?)C A2s72 log s1|km| < CA%s7%log s,

d) A standard Taylor expansion combined with the definition of V4 shows

4 2

that [x(y, 51)B(a(y, 51))| < Clal* < C(las|? + |ge[?) < FEEL-(1+ JyP)? +
2 ~ 4 2

1{\y|2K\/§1}(y):/4—_31' Thus, | [ dux(s1)Bi(q)km| < % + Ce™*1.

e) From lemma B.5 in appendix B, we have | [ dux(s1)R: (s1)km| < % (Ac-

1

tually it is equal to 0 if m = 1).

f) From lemma 3.1, we have |2 (s;)| < Cs;>. Hence, | [ dux(s1)% (s1){6q +

G+ 0p1 + B2)km| < Csy?.

Putting together the estimates a) to f), we obtain

M () = (1 - ™%+ 0(C2) 1 00+ 82

31 51 51

log $1

)

whenever §i n,(s1) = esA. Let us now fix A > 2C(p), and then we take s;(A)
1

larger so that for so > s1(4), Vs > sq, @ + O(CA‘“ﬂg—s) < M Hence, if
e=—1,Mm(g) <0,ife=1, d'“ ™ (s1) > 0. This concludes the proof of part

ds
i1) of proposition 3.2. It also concludes the proof of part ii) of Proposition 1,
and then the proof of Theorem 1. I

4 Blow-up profile of u(t) solution of (2) near
blow-up point

We prove in this section part ii¢) of Proposition 1.
We consider u(t) solution of (1) constructed in section 3, which blows-up in
finite time T' > 0 at only one blow-up point: 0. We know from section 3 that:

14is C
(39) i‘ég“ —t)7 1 “Z\/ —t)|log(T t)|at)_f(z)|§m
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with (p—1)?

p— 2\ —itid
40 =p-14+4——4 -T,
(10) 1) = 0= 1+ 4P o)

Adapting the techniques used by Merle in [17] to equation (1), we derive
the existence of a profile u, € C(R\{0},C) such that u(z,t) = u.(z) ast - T
uniformly on compact subsets of R\{0}. We want to find an equivalent function
for u, near the blow-up point: 0.

For this purpose, we define for each ¢ € [0,T'), a rescaled version of u(¢):

(41) o(t, &,7) = (T — t) 7T u(EVT — 1, ¢+ (T — t)7)

where £ € R, 7 € [—75,1) C [0,1). From equation (1), we see that v(t,&,7)
satisfies the same equation as u(t, z):

(42) V1 € [—TL_t,l),% = Agv + (1 +46)|v[P~ .
Stated in terms of v(t), (39) becomes:
14i5 é‘
43 1—7) 5Tt &) — <
IR Y e e el
c

Vlog{(T—8)(1-7)}

We proceed in two steps:
- first, we consider r > 0 and estimate v(t,£,7) and its derivatives locally

near £(r,t) € R satisfying |£(r,t)| = r/|log(T — t)|. We show that v(¢,€,7) is
bounded, and that it does not vary much for |£ — £(r, t)| bounded and 7 € [0,1],

- then, we can identify v(t,&,0) (approximated by (43)) and v(t,&,1). For
each z € R\{0}, we write |z| as |£(r,t)|\/(T —t) = r/(T —t)|1log (T —t)| for
some r > 0 and ¢ < T and combine this identification with (41) to get the
equivalent of u.(z) for z — 0:

) 14is
8(p — 6%)|log ||| ] *~*

“ R N

For simplicity, we omit ¢ in the notation and write v(&,7) for v(t, €, 7), £(r)
for &(r, t).

Part I: Estimate for v near r+/|log(T — t)|

From (41), v blows-up at time 7 = 1 at only one blow-up point: 0. Using
(43) and a lower bound shown by Giga and Kohn in [11] on blow-up rate for
v, we derive a local bound on v for 7 € [0,1), |£ — £(r)| bounded, independent
from r and ¢. Using classical parabolic theory and the fact that v depends in a
certain sense only on 7 for |7| small, we show that v actually does not depend
much on 7 € [0,1) for |£ — &(r)| bounded.

Proposition 4.1 (Estimate on %(f(r),r)) There exists r1 > 0 such that

Vr > rq, 3t1(r) < T such that Vt € [t;1(r),T), VT € [0,1), %({-’(r),rﬂ <
Clf ()P
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Proof.

Step 1: Local bounds on v near £(r) for 7 € [-1/2,1)
We crucially use a lower bound on blow-up rate for v established by Giga
and Kohn in [11] to show that |v| is bounded for £ near £(r) and 7 € [-1/2,1).

Lemma 4.1 (Lower bound on blow-up rate for v) .
i) (Giga—Kohn) There emsts € = €(p, 6, N) > 0 with the following property:

If for |€ — £(r)| < 3y/|log(T —t)|, 7 € [-1/2,1)
(1-n)7rpE | <e
then V€ € R with |€ — &(r)| < 24/|log(T —t)|, Vr € [-1/2,1), |v(&,7)] < C.

i1) There exists r9 > 0 such that Vr > 1o, ta(r) < T such that Vt €

[ta(r), T), if |€ — &(r)] < 24/|log(T —t)|, T € [-1/2,1) then
lv(& )| < C.

Proof.
i) follows immediately from Theorem 2.1 in [11]. ¢%) is a direct consequence

of i) and estimate (43). Indeed if |€—&(r)| <34/|log(T —t)] and T € [-1/2,1),
then we have by (43) (1 — 7)7 7 |u(&,7)| < C|f(r )|+C|10g( —1)|~1/2. [ |

Step 2: Local bound on 42 (¢,7) near &(r) for 7 € [0,1)
- 7 = 0: From a parabolic estimate and (43) considered for 7 < 0, we have

for ¢ — £(r)] < /Tlog(T —B)]:
&%v 1 62f 3 ¢
|a§2 (5, ) |10g(T—t)|@(\/|10g(T—t)|)| = \/llOg(T_

Hence, from (42), we have for r > r3, t > t3(r), | — &£(r)| < /|log(T —t)|
52(&0) < Clf(r)l.

- 7 € [0,1): We use the equation satisfied by 2% and standard tools of
localization and local estimates with the semi-group eTA to conclude. Indeed,
if z(¢,7) = 8 v |2, it follows from equation (42) and i) of lemma 4.1 that V7 €
[0,1), V€ € R with |€ — &(r)| < /[log(T —t)|, & < Az + Mz, where M =
M(p,6,N).

We can consider ¢ € C°(R) satisfying ¢(€) = 0 if |€ — &(r)| > /|log(T — 1],
0< o<1, ¢(6) =1if |¢ - &(r)| < /|1og(T —1)|/2, and [V¢| + [Ad| < C.

If w(é,7) = e ™Mp(€)z(€,7), then w satisfies:
9u < Aw + e ™M(—zA¢ + 2V2.V¢) and V€ € R, |w(€,0)| < C|f(r)[?.

If 7 €[0,1), then

w(é(r),7) < (e"w(0))(&(r),T)
i do _le—¢)?
" / W/ dze”™ =" (2| Ag| + 2|V2||V ) (2, 0)

T do llog(T—t)[/4 _ |2—g(r)|2
2 - —o T 8(r—0
Clf(r)] p+/0 n(r — o)1 /dme sr=a) ¢ 8r-a) C

IA
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(lemma 4.1 4¢) implies by parabolic regularity that for r > ro, t > ta(r), (2| Ad|+

21V2||V6]) (2, 0) < C, for o € [0,1) and |z — £(r)] < /[ Tog(T — 1))).
Therefore, w(&(r), T) < C|f(r)|?P + e 08T =N If t > #,(r), then

w(é, ) < C|f(r)[*P, which implies V7 € [0,1), |52(&(r), 7)| < C|f(r)[?.

Taking 1y = max(re,r3) and ¢1(r) = max(ta(r),t3(r),t4(r)) concludes the
proof. |

Part II: Conclusion of the proof

For each r > r; and each z € R\{0} small enough, we define ¢(r,z) € [0,T)
by
(45) 2| = [€(r) VT =t = ry/(T — t(r,2))|log(T — t(r,z))|.
Applying proposition 4.1 to v(#(r, z)), we estimate the difference between wu, (x)
and u(z,t(r,z)) and then between u,(z) and f(r). Then, by simple asymptotic
calculation, we reach the equivalent (44).

Lemma 4.2 (A first estimate on the profile u.(z)) Vr >rq,
ARy (r) > 0 such that Vz € R with 0 < |z| < Ra

14is
(T = t(r, 2)) =T uu(z) — f(r)] < Clf(r)]P,
where t(r,x) is uniquely determined by (45).

Proof:

Using proposition 4.1 and (43), we write for r > r1, t > t1(r): V7 € 0,1
o(E(), ) — ()] < [o(E(r), ) — v(E@), ) + [o(€(r), 0) — £(r)] < CIF ()|
C|log(T — t)|~1/2.

Stated in terms of u, this gives: V7 € [0,1)

+

(46) (T — ) T u(E(r)WT — t,t + (T — t)r) — £(r)]

< C|f(r)|P + Cllog(T —t)| /2.
From this estimate, we derive Ra(r) > 0 such that Vz € R with 0 < |z| < R,
we have: V7 € [0,1)

1tis
(T = t(r,z)) »=Tu(z, t(r,z) + (T — t(r,2))7) — f(r)| < C[f(r)7,
where t(r,z) is given by (45). If we let 7 go to 1, we have the conclusion of
lemma 4.2. |

Now, we conclude the proof of estimate (44). For this purpose, we consider
an arbitrary € > 0 and look for R, > 0 such that for 0 < |z| < R,,

| |2 14i8 8( 52) 14i8
T p—1 p— p—1
ug(z) — | s <e
'[—logm] (=) [@—1)2] |

If we consider an arbitrary r > ry, then by lemma 4.2, we have for 0 < |z| < R»

14i8

|E = e =

(47) < | {L] TPt )] )]
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+ 27T - t(r,z) 7T u*@:) — ()]

o) - [T -

1+4i8

We fix r(€) > ry such that |[2r2] 77 £(r) — [%] " <eand [f(r)P! <.
From (45), we have

|z?

—log |z|

log(T — t(r, z))
og(T — t(r,z)) + log |log(T — t(r,z))| + 2logr’

= 2r%(T — t(r, m))l

Let R, > 0 sufficiently small and smaller than R»(r(€)) such that for 0 < |z| <
R.
14i8

ﬂ " - 7'2 — U\r,r ?—Tif € ’I"2 — U\r,r P+1
o] @ =t < 2@ e

Hence, for 0 < |z| < R., we have from (47): |[_1|§£w ]“1’6 ux(x) — [8((;’ 16)22 ]H“i

< 2r3(T = t(r,))]7 7 [ua(w)| + Cerm T | f(r)| + €
< CermT|f(r)|(1 + Ce) + Ce (use lemma 4.2 and |£(r)|P~1 < ¢)
< Ce. This concludes the proof of part #i%) of Proposition 1.

5 Generalization and comments

As a first application of the techniques in previous sections, we have the
following stability result concerning the behavior described in Proposition 1:

Theorem 3 (Stability with respect to initial data of the profile (4))
Let § € (—61,01) where 61 > 0 and consider 4o initial data constructed in
Proposition 1. Let 4(t) be the solution of equation (1) with initial data 0o, T' its
blow-up time and a its blow-up point.
Then there exists a neighborhood V of iy in H with the following properties:
For each ug € V, u(t) blows-up in finite time T = T (ug) at one single point a =
a(up), where u(t) is the solution of equation (1) with initial data ug. Moreover,
u(t) approaches the profiles (6) and (7) near (T,a) similarly as (t) does near
(T,a).

The proof of this theorem relies strongly on the techniques developed in
sections 2, 3 and 4. We give just the key ideas of the proof.

Consider initial data ug in a neighborhood of iy and wu(t) the corresponding
solution of (1). Then, for each (T, a) near (T',a), we introduce as in section 2 a
two-parameter group acting on u(#):

(T,a) — (¢(T,a,y,s),0(T,a,s))

where

{ Q(T7a7y73) w(T,a,y,s)—(p(y,s)
G@20(s) = 0,
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w(T, a) is defined similarly as in (9) by

Vo
s = —log(T —1t)
1+4i8
w(yas) = (T—t)PTl’U,(:E,t),

and ¢ is given by (16).

Therefore, our problem reduces to searching a parameter (T'(uo), a(ug)) such
that
(48) Vs > s0,9(T,a,s) € Va(s)

for some sg > 0 and A > 0 (see definition 3.1). Indeed, T'(ug) and a(ug) will
be shown then to be respectively the blow-up time and point of u(t). Moreover,
we derive directly form (48) an estimate analogous to (6) and then, by the
techniques of section 4, an other estimate analogous to (7).

By uniform a priori estimates analogous to proposition 3.2, we reduce this
problem to a finite dimensional one. We solve it using a non-degeneration pro-
perty of the two-parameter group acting on 4(t) itself (see [18] for similar argu-
ment). Hence, we reach the conclusion of Theorem 3.

The proof used for equation (1) applies in a more general case:
consider the following vector-valued heat equation:
du

(49) i Au+ [uPru 4+ G(u), u(z,0) = uo(z)

where

Dult):zeRY 5 RM pe(1,400), p< (N +2)/(N —2)if N >3,

2) G:RM — RM is a perturbation of |u|P~lu satisfying: G(u) = G1(|u|*)u,
|G(u)] < Clu|", |G(Aur) — G(Auz)| < CA"|uy — ug| for |ug,|us] < 1, A > 1,
r € [1,p), G; : Rt — Rt G needs not be a gradient,

3) up € H = WILPH(RNV RM) 0 Lo(RN  RM).

Using the same techniques as in the case M = 2 (equation (1) with § = 0),
we show the following blow-up result for equation (49):

Theorem 2: (Existence of a blow-up solution for equation (49))
There exist initial data ug such that equation (49) has a blow-up solution.

This Theorem is a direct consequence of the following proposition which
describes more precisely the behavior of u(t) near blow-up. Indeed, after a time
dependent scaling, u(t) approaches a universal profile

(50) (p—1+ %Vﬁ)_ﬁw,

when t — T, where w € SM~1, In fact, we have the more precise result:

Proposition 2 (Existence of a blow-up solution for equation (49) with
the profile (50))
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There exists Ty > 0 such that for each T € (0,To], for each a € RY, for each
w € SM=1 there exist initial data ug such that equation (49) has a blow-up
solution u(z,t) on RN x [0,T) which blows-up in finite time T at only one
blow-up point: a. Moreover,

(1) lm(T -7 u(a+ (T - )]1og(T — 1)) 2,0) = f(2)w

uniformly in z € RN, with

(52) ﬂ@z@—1+@§§Lm%7%.

Remark: Structural stability: In [18], a particular version of this Proposition
was shown in the case M = 1 and G = 0 (without perturbation): Single point
blow-up and a blow-up profile (52). There, this result was shown to be stable
with respect to perturbations in initial data. With proposition 2, the blow-up
solution constructed in [18] is shown to be structurally stable in a certain class of
functions, since this solution behaves in the same way when we take a non zero
G and consider a higher dimension (M > 2): we still have single point blow-up
with the same scalar profile (52).

A Appendix: A blow-up result for % = Au +

lu|P~1u
+i|u/7'u on bounded domain for ¢ small

We consider the complex-valued heat equation (3):

d
(53) 6_1: = Aut [uff u+ il
upe = 0,

where u(t) : © — C, Q is a bounded domain of RV, p € (1,+0), p < (N +
2)/(N—-2)if N >3,and ¢ > 1.

Proposition A.1 (Existence of blow-up solutions for equation
(53)) Assume 1 < g < (p+1)/2. There exists A(Q,p,q) > 0 such that for each
ug € HJ(Q) with |lug|lz2(n) > A and E(ug) < 0 where

_1 2 _L p+1
(54) Euo) = 2/Q|Vu0| do p+1/0|u0| dz,

equation (53) with initial data uo has a unique solution u € C([0,T), Hj(R))
with 0 < T < 400, which blows-up in H () ast — T.

Proof.

From classical theory, we know that if 1 < ¢ < p and uy € Hg(f), then
equation (53) with initial data ug has a unique solution defined on [0,T") with
T =T, € (0,+c] and u € C([0,T), H}(R)). Moreover, if T' < +o0, then u(t)
blows-up in H3(Q) ast — T.
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Hence, proposition A.1 will be proved if we show that for 1 < ¢ < (p+1)/2,
||u0||%2(9) > A (to be chosen later) and E(ug) < 0, we have T, < +00.

We proceed as follows: first we give estimates on u(t) for ¢ € [0,T), then we
use a blow-up result for an integral inequality to conclude.

Lemma A.1 (Estimate for u(t), solution of (53)) If
2(t) = ([, [u(z, t)|PHdz)? P+ | then Vt € [0,T),

t t o
(55) z(t) > ) A% + cz/ doz(o)PH1/2 03/ da/ dsz(s)?
0 0

0

where ¢; = ¢1(Q,p) >0, ca = ¢2(R,p) > 0 and c3 = ¢c3(Q,p,q) > 0.

Proof:
For simplicity, we omit z, Q and dz in following expressions of the type
fQ |u(z,t)|>dx.

From (54), £ B(u(t)) = R(— [ ae(t)Au(t) — [ Ju(t)P~ u(t)@(t)).
Sl o g e S B

<~ [ < o))

< —[lu(®)* + 5 f|ut W+ [ ( )|29) (Cauchy Schwartz),

< =1 [|u®)]? —|— c1(Q,p,q)([ Ju(t)|PF1)24/(P+1) (Holder). Integrating this in-

equality and using E(ug) < 0 gives

(56) E(u(t)) < ca(Q,p,9q) /0 ds( / [u(s)|pt1)2e/(e+1)

Now, if we multiply equation (53) by @(t) and take the real part, we obtain
using expression (54

(57) %/lu(t) = —4E(u(t)) + _/| )P+

Using (56), [ |u(0)|? > A? and
(J u(?) |”"‘1 2/(1""1) > ¢1(Q,p) [ |u(t)|? (Holder), we have the conclusion by in-
tegrating (57). |

Now, the conclusion follows directly from lemma A.1 and the following
lemma:

Lemma A.2 (Blow-up result for an integral inequality) Let
z € C([0,T),R") such that

t t t'
(58) 2(t)>B+a / dt'z(t')PH1/2 _p / dt’ / dsz(t)?
0 0 0

where 1 <p,1<qg<(p+1)/2,a>0 and b>0.
There exists By > 0 such that if B > By, then T < +00.

Proof.

Let g(t) = %z(t)(”“)/z—bffot dsz(s)?. Let us show that V¢ € [0,T), g(t) > 0.
We proceed by a priori estimates. For B > 0, we can define T* = sup{T"’ €
[0,T)|Vt € [O,T’),fot dt'g(t") > 0} > 0. Then we have V¢t € [0,T*), g(t) > 0.
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Indeed, we have Vt € [0,T*) fot dt'g(t") > 0. Therefore, (58) yields z(t) >
+ %fot dsz(s)PT1/2 which gives z(t) > B and 2(t) > af dsz(s)P+D/2
Hence, g(t) = 22(t)P+1)/2 — bff dsz(s
aB@=D/25(t) — b [ [ dsz(s
“B(” 1)/2“f dsz(s (p+1)/2 bffotdsz(s)q
e 2 B(r-1)/2 fo dsB ”'H 12=44(5)9 — bff(f dsz(s)?
(4 BP=9—b) [ dsz(s)?. Now, if B > (4ba‘2)1/(”“1) then V¢ € [0,T%), g(t) >
0. This yields T* =T and Vt € [0,7T) fo dt'g(t") > 0.

I\/VIV

Therefore, (58) implies that

t
vVt € [0,T),2(t) > B+ g/ dsz(s)PTV/2,
0

Hence, T' < % < 400 by classical arguments. |

B Appendix: Proof of lemma 3.3

Lemma 3.3 consists in a priori estimates on terms appearing in the integral
equations satisfied by ¢ and g (see (36), (37)). Let us recall them:

W) = Kilso)no)+ [ 4K (5,7) Vi a(r)ia(r)
+ /s drK; (S,T)Bl (¢)dr + /s dr K, (S,T)R*f (1)

+ / drK, (s, r)d"( {051(7) + Pa(T) + 861 (7) + G2(7)}

B(s) = Ko(s,0)d(0 / dr (s, 7) Va1 (1) (7)

—+ /sdTKQ(S,T)BQ(q)dT+/ dTKZ(SaT)R;(T)

o

— [ arkals, N T +2)50(0) +62(0) + (1 + P)in(7)
R AG)

where K is the fundamental solution of £+V; 1, K is the fundamental solution
of L —1+ Va4, L is given by (30),

B(q) = (14 i8)B; +iB,

R*(y,s) = (1 +i0)R + iR, B and R* are given by (20).

From these expressions, we obviously see that the main step in doing a priori
estimates is the understanding of the behavior of the kernels K; and K,. By
definition, K; and K, can be considered as perturbations of e and ef(£=1)
respectively. Hence, we give the proof in two steps:

-in Step 1, we give estimates on the integral operators K; and K», nonlinear
term B(q) and corrective term R* appearing in equations (36) and (37).

-in Step 2, we use these estimates to prove lemma 3.3.
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Step 1: Estimates on linear, nonlinear and corrective terms of (36)
and (37).

In order to estimate K; and K5, we follow the perturbation method used in
[18] (and before in Bricmont and Kupiainen [4]). Since K; and K- correspond
respectively to the operators £ 4+ V1 ; and £ — 1 4 Va5, we estimate first the
potentials V; ; so we are able to adapt the cited method which compares K; and
K, to e?£ and e?(£~1) respectively. Then, we show that B(q) can be considered
in some sense as a quadratic term, and R* is in fact small as s = +o0.

Lemma B.1 (Estimates on potentials V; ;, |6] <1/2) Vs > 1,

Vinly,8) < Cs7, |G| < Cs7/%, n=0,1,2,
|‘/1,1 (y,S)' S Cs_l(l + |y|2); ‘/l,l(ya 8) = _41_3h2(y) + ‘/l,l(yJS) with

[Vii(y,s)| < Cs~2(1+ |y|Y), Ve >0, 3C, > 0, Is. such that

— 52
sup  Via(y,s) - (5T <e
3235,%205 p-

. _ 82
with —% < -1-1/(2p).
b)Vaso(y,s) < Cs™t, |d ;/i2| <Cs ™2 pn=0,1,2,

d
Va,2(y,8)| < Cs7HL+ |yI?), Va2 (y,8) = s7'Qs(y) + Va,2(y, ) with Qs a poly-
nomial of degree 2 with bounded coefficients and |V (y, s)| < Cs™2(1 + |y|*),
Ve > 0, 3C. > 0, s, such that

1+ 42
sup | —14Vaa(y,s) —(-1— b1

s>se,l>c.

)| <e

wll=

. 2
with —1 — 1;% <-1-1/p.
¢) For V.=Vj 4 or Va1, we have |V (y,s)| < C|d|, and

V(y, )| < Clols™ (1 + [yf*).

Proof.

The expressions of V; ; are given in lemma, 3.2.

a) Vi,1(y,8) < (1= 0%)(19(0,9) P~ — ;57) + (p = DI(0, )P~ (| (0, 5)* —
0)—1~C(0)st <Cs™L

We introduce Wi 1(z,s) = V11(y, s) with z = y/+/s. In order to prove the
next estimate, it is enough to prove that |%| <C,n=0,1,2. Since V3 ; is
a sum of products of terms |¢|P~! and ¢;/|¢|, j = 1,2, our problem reduces to
proving that these terms have bounded first and second derivatives with respect
to z, which follows easily (see (16), the key estimates are % = W fs

d |fs] < || with b= =12
and |f5| < || with b= 77=5)-

We introduce Wi 1 (Z, s) = V1 1(y,s) with Z = |y|?/s. We can Taylor expand
Wi,1 near Z = 0 to have W11(Z,5) = W1,1(0,s) + Z2931(0,5) + O(Z2) with
W11(0,8) = 1/(2s) + O(s~2) and 6?}’1 (0,8) = —1/4 + O(s™!). Returning to
V1,1, this yields the next two estimates.

The last estimate is obvious from the expressions of Vi, and ¢.
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b) For the first term, we make a change of variables by setting
Y = k7 5(y/V3) + 1/ (2(p — 82)s) € (1/(2(p — %)s), 1/2(p — 8)s) + 1] and
Va,2(Y, s) = Va.2(y, s). Then, it is easy to see that V5 2(., s) is increasing. There-
fore,
Vaa(Y,s) < Vao(1/(2(p — 6%)s) + 1,5) ~ C(8)s~! < Cs~'. For next estimates,
do exactly as for V1.

¢) Same proofs, one has to be careful with the parameter §. |

Lemma B.2 (Estimates on K, |§| <1/2) .
a)Vs > 71 >1 withs <27, Vy,z € R, |Ky(s,7,y,2)| < Ce*"E(y, ), with

oc _ e _(ye??—z)’
€ (y,.’l)’) - \/47r(1—e*9) exp[ 4(1_6—6) ]:

1K (5, 7)(1 = X(7))|1= < Ce=(e=/Co),

b) For each A' >0, A" >0, A" >0, p* > 0, there exists
so(A', A" A" p*) with the following property:
Vso > sg, assume that for o > sq,

|Qm(0')| S AIU_Z’m = Oa ]-7 |CI2(U)| S AI’(IOgU)U_2a
-0l < A+ g (@)l < A",
then, Vs € [0,0 + p*]
log o
32
la_(y,5)] < Cle~ 3= AM 4 o=(=0) 41y(1 4 |y )52,
1
2

||ae(3)||L°° S C(A”e_ (";") +A”’e(s_‘7))s_ ,

AII

IA

|z (s)] +(s—0)CA's™3,

where, as in decomposition (22),

2
(59)  Ki(5,0)a(0) = a(,5) = 3 am()hmy) + oo ,5) + au(y.s).
m=0

¢) For each A' >0, A" >0, A" >0, p* > 0, there exists
s10(A’, AY, A p*) with the following property:
Vsg > s10, assume that for o > sq,
lgm(0)| < A'o™%,m=0,1,]g(0)| < A"07%,
lg-(y,0)| < A"(1+1y[)o™%, lge(o)llp= < A'0™2,

then, Vs € [0,0 + p*]

A"s3 4 (s—0)CA's™3,
CA" (1 +ly*)s2,

oz ()]
la—(y, s)|

IAIN

where K1(s,0)q(o) is expanded in (59).
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Proof:

In [4] (proof of lemma 1), the authors prove the estimate for an integral
operator K corresponding to £ + V (see (30) for £), where V is a particular
function. However, their result is in fact true for a larger class of operators
satisfying estimates of the type a) in lemma B.1. Hence, lemma B.2 follows. W

Lemma B.3 (Estimates on K», |§| <1/2) .
a) Vs > 1 >1 with s <21, Vy,z € R,
Ky(s,7,y,2)| < Ce=G=mel=L(y o) with
Y Y
or _ 0 —6/2__ _\2
e (y,.’c) - \/47r(el—e—9) exp[— (y;(l_e_san)) ]7

152 (s, 7)(1 = x(7) L= < Ce=(o=m)/P.

b) For each A' > 0, A" > 0, p* > 0, there exists
s11(A', A", p*) with the following property:
Vso > s11, assume that for o > sg,
lgo(0)] < Ao™?,m=0,1,]|q1(y,0)| < A'(1+ |y])o—?,
_1
lge(o)llL < A'o72

b

then, Vs € [0,0 + p*]

C(e—%(s—a')Al +e—(s—a’)2AII)(1 + |y|3)3_2,
ST A)sh,

IA

laL(y, )]
lae(s)llzee < C(A"e™

where, as in decomposition (23),

Ks(s,0)q(0) = a(y,s) = ao(s)ho(y) + a1 (y,s) + ac(y, s).

Proof:

Again, we can adapt the proof of lemma 1 in [4] with £ replaced by £ — 1
and V replaced by V5 2, without difficulties. Indeed, one checks easily that V5 o
satisfies all useful estimates: b) of lemma B.1. |

Lemma B.4 (Estimates on B(q(7)) for ¢(7) in V4(7), 6] <1/2) .
VA >0, 3s19(A) > 0 such that V1 > s15(A), q(7) € V(1) implies
Ix(y,7)B(a(y, )| = |(1 +d)xB1 +ixBs| < Clqf?,

|B(g)| = |(1+ i) By +iBs| < Clg|” with p = min(p, 2).

Proof:
Start with (20) and do the same as in the proof of lemma 3.6 in [18]. |

Lemma B.5 (Estimates on R*(y,s), |0| <1/2) Vs > 1, if R* is expanded as
in (24), then: } .

|{5T,0(8)| <Cs7?, R;,l(s) =0, |}~3i2(s)| <Cs7?,

[Ri —(y,5)] < Cs72(1+ [y®), |1R] ()l < Cs™, and

[R50(s)] < Cs72, [R5 | (y,8)| < Cs2(1+ [yl), 1IR3 (s)llpe < O™
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Proof: Ril(s) = 0 since R* is even. All the other estimates follow from the
three following estimates: |x(y, s)R*(y, s)| < Cs™2(1 + |y|*), |R*(y,s)| < Cs~!
and |R} 5(s)| < Cs™2.

Proof of |x(y,s)R*(y,s)| < Cs™*(1 + |y[*):
From (20), we have R*(y, s)

- g(p +Ap— —y Vo—(1+ 15)1% + (1 +i0)|pP
o . —1)y?
— i ) (g 2
(1 +40)™"(fs + 2(p—52)8) ( 2(p — 02)s2 + 4(p_52)32f5)

K )16 (p_ 1)y2 fp
20p—3d2)s” Alp—d2)s”’
K w—1, (p— 1y
—) Gt

2(p
. K ; - —1)%y° 2p—1
+ Qi) (f g 52)3)16(_2((;1:— 52))ng’ - f((ﬁ— 512))2ys2 o)

+ (L+i0)s™"(fs +

+  (L+i8)ids™(fs +

)1+i6)‘

(60)+ (1+i8)k=0((fs + ﬁ)”*“ - pi T(fs + 0 f52)5

Some of these terms are easily seen to be bounded by Cs~2(1 + |y|?), whereas
others need some calcqlatiqn: we divide the others by
(L+48)(fs + 5 ”52)3)“;#;_“; and obtain
QUy,s) = ZR 17 — S 17 = S5 (s + sptmys) +(Fs + sl Tt
remains to prove that |x(y, 5)Q(y,s)| < Cs™2(1+]y|?). We write Q(y, s) = (f5+
m)p - f7- 2(p 52)Sf6 2(p—52';(p—1)s' Setting z = |"’| >0 and Q(z,s) =
Q(y,5), we have |Q(0,5)| < Cs™2 and |52(z,5)| = p|‘"’f“{(f6 + sty )P -
fg’_l - %]‘é’_lﬂ < Cs7lif 2 < 2Ky, (Taylor expansion). Therefore, if

z < 2Ky, |Q(2,5)| < Cs72+0(|z|s71). Returning to @, this gives the result.

Proof of |R*(y,s)| < Cs™!
Thinking of R* as a function of |y|?s~! and s (see (60)), this estimate is
. . 2
obvious for all terms except (1 + i6)x~%(fs + = ”52)3)“5(51’2;12;'5‘)'3 f5+ (f& +
s )? — i1 fs) = (L4 iR~ (fs + 5055 ) 3 (fs + q5mys)? — £7)- Wi
conclude using a Taylor expansion.

Proof of |R{2(s)| < Cs™3:
From (60), we have

f* - 9% _1 p—1_ 1 _

Ri(y,s) = —— =+ Ap1 = 55.Ver + (|¢| - 7)(%1 = 0p2).
Starting from R} ,(s) = [ du(y)x(y,s)R:(y,s) h2§y), one carries out easy but
long asymptotic calculatlon to get the result. |

Step 2: Conclusion of the proof of lemma 3.3
We now prove lemma, 3.3.
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Ii) Case o > so: Apply b) of lemma B.2 with A’ = A, A” = A% and A" = A.

Case 0 = s¢: From (25),
@1 (y, s0) = fo(Fz)P (do+dry/v/5,) —%((m)”“). Since (do, dy) is chosen
so that (G1,0(50),d1.1(s0)) € Va(s0), we have from lemma 3.1 in [18], |§1,.m (s0)| <
Asg?, m = 0,1, |G1,2(s0)] < (logso)sg?, |d1,—(y,50)] < Csz?(1 + |y|°) and
|G1,e(s0)||pe < 351/2. We apply b) of lemma B.2 with A’ = A, A" = C,
A" =1 to conclude

Iii): We have from lemma B.1 [V} 5(y, s)| < C|8|s71(1 + |y|?).
Since (1) € Va(7), |Vi2(y,7)G2(y, )| < CAIS|T73(1 + |y|*).
Hence, |11,2(s)| = |C [ duha(y) [ drK1(s,7)Vi,2(7)da(T)|
< C [du(L+|yP) [7 dre=DEC A1 (1 + |z
< CAlslo= [ du(i'+ |yl®)(s — o)er7
< CAlb|s™3(s —0)e*™ 7, if ¢ > s0 > p*.

If we set Q(y,7) = V1,2(y,7)d2(y, ), we have by lemma B.1 |V; 2(y,7)| <
C|d] and then |Qm(7)| < C[0|AT2,m =0,1,2,[Q—(y,7)| < C|o|A(1+|y[*)772,
|Qc(y,7)| < C|6|A%27~1/2. Applying lemma B.2 and integrating between ¢ and
s yields good estimates for ¢, and ¢ .

Iiii): Using lemma B.4 and a) of lemma B.2, we do the same as for the
nonlinear term in Proof of lemma 3.4 in [18].

Iiv): From lemma B.5, we have |R} (7)| < C772, R (1) = 0, |R} ,(7)]
< 07_37 |R;,—(y17)| < CT_2(1 + |y|3)a |Rf,e(3/;7')| < Crt.
Applying lemma B.2 b) and integrating between ¢ and s gives the results for
71,2 and ;.
For 7 .,we use the following estimate: |R*(y,7)| < Ct~', and compute:
el =1 J; drE1 (s, 7)Ri (7)]
< [ dre*=?£CT71 (use lemma B.2 a))
< Co (s —0)e"7 < Cs™3/*(s — o) if 59 > s5(p*).

Iv): We set Q(y,7) = %(7){6¢1 + G> + 6@1 + @2}. By lemma 3.1, we have
|48 ()| < Cr=2. Using ¢(7) € Va(r), ¢ bounded and a simple calculation, we
have:

Qm(7)] < CAT™2,m = 0,1, |Q2(7)| < Cl|77%, |Q—(y,7)] < CA(L + [y|*)7~2,
Qe(y, 7)| < CT72.

Using lemma B.2 ¢), we obtain estimates for A  and A; _. For A ., use
|Q(y,7)| < C772 and do as for v .

I17): For o > sg, use lemma B.3.

For o = sg, we have from (25)
@2(y, 80) = o= (8 cos[dlog(-)] — sin[dlog(=)])(1 — ﬁ(so)fo(\/ys_o)) where o and
B(so) are given by (26). It follows easily that gao(so) = 0, |G, (¥, s0)| <
Csy2(1 + |y|®) and |Go(y,80)| < Csyt < s(l)/2. Apply b) of lemma B.3 to
conclude.
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ITii): we have by lemma B.1 |Va1 (y,7)| < C|6] and |V2,1(y, 7)| < C|8]7~1(1+

|y|2) If Q(yaT) = ‘/2,1(3157-)61 (yaT)a then
|Qo(7)| < C|3|A%s*log s, |QL(y, )| < Cl6|As™? and
1Qc(y,7)| < C|5|A%s1/2,

Using lemma B.3 b) yields the conclusion.
ITiii): Using lemmas B.4 and lemma B.3 a), we do the same as for Iii7).
ITiv): Same estimates as [iv).

IIv): By lemma 3.1, we have |%(T)| < C772. Using lemma B.3 a) and
integrating over [o, s] yields the conclusion.
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Reconnection of vortex with the boundary
and finite time Quenching’

Frank Merle
Institute for Advanced Study and Université de Cergy-Pontoise
Hatem Zaag
Ecole Normale Supérieure and Université de Cergy-Pontoise

Abstract: We construct a stable solution of the problem of vortex reconnection
with the boundary in a superconductor under the planar approximation. That is a
solution of o 1

—h
E =Ah+e Hy — E
such that h(0,t) — 0 as ¢ — T. We give a precise description of the vortex near the
reconnection point and time.
We generalize the result to other quenching problems.
Mathematics subject Classification: 35K, 35B40, 35B45

Key words: quenching, blow-up, profile

1 Introduction

1.1 The physical motivation and results

We consider a Type II superconductor located in the region z > 0 of the
physical space R3. Under some conditions, the magnetic field develops a particu-
lar type of line singularity called vortex (see Chapman, Hunton and Ockendon
[5] for more details and discussion). In general, a vortex is not situated in a
plane, but under some reasonable physical conditions, the planar approxima-
tion is relevant. In this case, a vortex line at time ¢ > 0 can be viewed as
L) = {(z,y,2) = (z,0,h(z,t))|z € Q} where @ = (-1,1) or @ = R, and
h > 0 is a regular function. The physical derivation gives that h(z,t) satisfies
the following equation:

hi = hge + e_hHO - FO(h) (I)

where Hy is the applied magnetic field assumed to be constant, Fp is a regular
function satisfying

1 1
(1) Fy(k) ~ z and Fé(k)rv—k—2 as k— 0.
We assume:
i) In the case where ! = R
Fy(k) ~ Ce™2 as k— 400
@) |Fi(k)| < Ce™2k as k— 400
h(z,t) ~ az+by as = — +oo

h(z,t) ~ —asx+by as = — —o0

where a; > 0 and as > 0. For simplicity, we take by = b2 = 0 and a; = as.

t Article paru dans Nonlinearity 10, 1997, pp. 1497-1550.
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ii) In the case where Q = (—1,1),
3) h(1,t) = h(-1,t) =1.

One can remark that boundary conditions of the type i) are closer to the physical
context. Nevertheless, boundary conditions of the type i7) are mostly considered
in the literature in order to simplify the mathematical approach of the problem.

Similar results can be shown with other types of boundary conditions (mixed
boundary conditions on bounded domains). Indeed, our analysis will be local
and therefore will not depend on boundary conditions.

Classical theory gives for any initial vortex line L(0) = {(z,0, ho(z))|z € 0}
where hg is positive, regular and satisfies boundary conditions, the existence and
uniqueness of a solution to (I)-(2) and (I)-(3) locally in time. Therefore, there
exists a unique solution to (I) on [0,7) and either T'= 400 or T < 400 and in

this case 1khn} inf h(z,t) = 0, i.e. h extinguishes in finite time, and if o € Q is
=T zeQ

such that there exists (xy,t,) = (z0,T) as n — +oo satisfying h(z,,t,) — 0
as n — 400, then zq is an extinction point of h.

This phenomenon is called a vortex reconnection with the boundary (the
plane z = 0). Two questions arise:

- Question 1: Are there any initial data such that T' < +00?

- Question 2: What does the vortex look like at the reconnection time?

Equation (I) with a more general exponent can also appear in various phy-
sical contexts (combustion for example), and the problem of reconnection is
known as the quenching problem.

Indeed, we consider

hy = Ah — F(h), h>0 (I1)
where
(HI) F € C¥(RY), F(k) ~ o and F(k) ~ — 2 as k-0
+ ) o A AL 2

with 3 > 0 and h is defined on a bounded domain Q C RV with boundary
condition A = 1 on 9. The case 2 = R" can also be considered with hypothesis
(H1) and (H2) where

(H2) |F(k)| + |F'(k)] < Ce™* as k— +oo
h(z,t) ~ ailz|] as |z|—= +o0

Few results are known on equation (II). For 8 > 0, some criteria of quenching
are known for solutions defined on (—1,1) with Dirichlet boundary conditions
(or mixed boundary conditions) in dimension one (see Deng and Levine [6], Guo
[12], Levine [18]). Even in that case, few informations are known on the solution
at quenching except on the quenching rate (See also Keller and Lowengrub [17]
for formal asymptotic behavior). In particular, there is no answer to questions
1 and 2 for problem (I).

To answer questions 1 and 2, we will not use the classical approach which
consists in finding a general quenching criterion for initial data and in studying
the quenching behavior of the solution. As in [22] and [25], the techniques we
use here are the reverse: we study the quenching behavior of a solution a priori,
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and using this information, we prove by a priori estimates the existence of a
solution which has all the properties we expect. Using this type of approach, we
prove then that this behavior is stable. Let us first introduce:

“ 1)2
(4) ®(z) = (ﬂ+1+%|z|2)1/(5+1),

and Hj (z) defined by:

i) In the case @ = RN: H} (x) = H*(z — zo) where H* is defined by:

. 21,12 ﬁ
H(@) = [SHEEL]™ for 2 < C(ar, )
(5) H*() = ailz| for [ > 1

H*(z) > 0,|[VH*(z)| >0 for z#0 and H* € C*(RY).

ii) In the case where  is bounded:

1

HE (z) = [%] T for |z — mo| < min (C(B), Ld(zo, 02))
H; (r)= 1 for |z — x| > 1d(z0,00)
Hy (z) > 0,|VH*(x)| >0 for x # xo and H} € C™(Q\{zo}).

We also introduce H, the set to initial data:
(6) H={kcy+H nW>»RN)|1/k € L®(RV)}if Q =RV

where ¢y € C®(RN), ¢» = 0 for |z| < 1, ¢(z) = a1|z| for |z| > 2 and a; is
defined in (H2),

(7) H={ke H nW*»>*(Q) | 1/k € L= ()} if  is bounded.
We claim the following:

Theorem (Existence and stability of a vortex reconnection with the
boundary or quenching for equation (II) with g > 0)
Assume that Q = RN and F is satisfying (H1) and (H2), or Q is bounded and
F is satisfying (H1).
1) (Existence)For all zo € Q, there ezists a positive ho € H such that for a
To > 0, equation (II) with initial data ho has a unique solution h(z,t) on [0,Tp)
satisfying lim h(zo,t) = 0.
t—To
Furthermore,
i)
: (To —t)t/P+1 1
lim || -3
t—To h(.T(] + Z\/—(TO — t) IOg(TO — t),t) @(Z)
i) h*(z) = tl_i}r%0 h(z,t) ezists for all x € Q and h*(z) ~ H; (z) as x — xo.
2)(Stability) For every € > 0, there exists a neighborhood Vo of hg in H
with the following property:
for each ho € Vo, there ezist Ty > 0 and &y satisfying

|T0—T(]|+|.Z'0—.i'0| SE
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such that equation (II) with initial data ho has a unique solution h(z,t) on
[0,To) satisfying lim h(t, %) = 0. In addition,
t—To

T, — t)1/8+1
- lim [|- ( 0~ ) = — ||z~ =0,
2T h(Zo + Z\/—(To —t)log(Tp —t),t) (2

- h*(z) = tlir% h(z,t) exists for all z € Q and h*(z) ~ H; (r) as x — .

— 1o
Remark: In the case § = 1 (equation (I)), this Theorem implies that the
vortex connects with the boundary in finite time. Let us note that the profile
we obtain is C! (which is not true for 8 > 1). Using the precise estimate of the
behavior of h at extinction, it will be interesting to check the validity of the
planar approximation in the physical problem near the reconnection time for a
behavior like the one described in the theorem.
Remark: We can also consider a larger class of equations:

% = V.(A(z)Vh(z)) — b(z)F(h)

where F satisfies (H1) and (H2) with 8 > 0, A(=) is a uniformly elliptic N x N
matrix with bounded coefficients, b(x) is bounded, and b(xg) > 0.

Using the stability result and techniques similar to [21], we can construct for
arbitrary given k points in Q a quenching solution h of equation (II) which
quenches at time T exactly at the given points. The local quenching behavior
of h near each of these points is the same as the one given in the Theorem.
Remark: We have two types of informations on the singularity:

- Part i): it describes the singularity in some refined scale variable at zo where
we can observe the quenching dynamics. We point out that the estimate we
obtain is global (convergence takes place in L*°).

- Part ii): it describes the singularity in the original variables and shows its
influence on the regular part of the solution.

We see in the estimates that these two descriptions are related.

In order to see why such a profile is selected, see [22] and [25] for similar discus-
sions.

Remark: Part i) is valid only for some extinction solutions. We suspect this
kind of extinction behavior to be generic (see [15] for a related problem). Indeed,
we suspect ourselves to be able to show existence of extinction solutions of (I)-(2)
such that:

h(z,t) — hy(x)

where h}(z) ~ C|z|¥, k € N and k > 2. Unfortunately, this kind of behavior is
suspected to be unstable.

1.2 Mathematical setting and strategy of the proof

The case 2 = RV is different from the case € is a bounded domain in the
way how to treat the Cauchy problem outside the singularity.

Let us consider the problem of the existence of a solution such that 7) and
i) of the Theorem hold. We first note that once the existence result is proved,
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the stability result can be proved in the same way as in [22]. In order to prove
the Theorem, we use the following transformation:

ey

o B+1
h(z,t)>

(8) u(z,t) =
where h is the extinction solution of (II) to be constructed, and o > 0. On its

existence interval [0,7'), u(t) satisfies

ou |Vul?
i Au—a ” + f(u) (I11)

where a = a(a, 8) =1+ 1,

9) Fu) = aPF U FaPmu—3) = uP + fi(u)
with p = p(a, f) = 22

(H3) { ?ff:fﬂ’ fi(v) = o(v?) and fi(v) = o(v?~"') as v = +o0

and in the case Q = RV,

(14) 1F@)] + |f'(0)] < CvM+& exp(—aFF v %) as v = 0,
u(z,t) ~ #Irl as |z| = +o0

Now, with the transformation (a, 3) — (a(a, 8), p(a, 8)), the problem of finding
a solution h of (II) such that thn} in@fR h(z,t) = 0 is equivalent to the problem of
—1 ze

finding a solution w of (IIT) such that
Jimy u(®)| 5 = +oo,

(that is a solution of (IIT) which blows-up in finite time).
Problem (IIT) can be viewed as a gradient perturbation of the nonlinear heat
equation (a = 0)

% = Au+ |ulP"tu (Iv)
where u(z,t) is defined for x € RV, ¢+ >0,p > 1 and p < (N +2)/(N — 2) if
N > 3.

For this equation, Ball [1], Kavian [16] and Levine [20] obtained obstructions
to global existence in time, using monotony properties and the maximum prin-
ciple. Another method has been followed by Merle and Zaag in [22] (see also
Giga and Kohn [10], [9] and [8], Bricmont and Kupiainen [4], Zaag [25]). Once
an asymptotic profile (that is a function from which, after a time dependent
scaling, u(t) approaches as t — T') is derived formally, the existence of a solu-
tion u(t) which blows-up in finite time with the suggested profile is then proved
rigorously, using analysis of equation (IV) near the given profile and reduction
of the problem to a finite dimensional one.
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In the case a = 0, the existence and stability of a blow-up solution u(t) of
(IV) such that at the blow-up point zo:

lim [|(7 — )7 u(zo + /(T — ) 10g(T — 1)z, ) — Fo(2) |1 = 0

where

(P=1)? o 1/
[0} = -1 /(p—1)
o) = (p— 1+ L)
is proved in [22]. Bricmont and Kupiainen obtained the existence result using
renormalization group theory (see [4]).
In these new variables, and with the introduction of

(10) o(z)=(p—1+ 4(11()1)__1,)1) 2|2) 71
- and Uz, (@) = T HE, ()7,

1
= [w] Ui Q =RV, 7y = 0 and |z| < C(ay, ), the Theorem is

(p—1)%[=[*
equivalent to the following Proposition:

Proposition 1 (Existence of blow-up solutions for equation (III))
Assume that Q = RN and f is satisfying (H3) and (H{), or Q is bounded and
f is satisfying (H3).

For each a € (1,p), for each o € Q, there exist regular initial data vy such that
equation (III) has a unique solution u(x,t) which blows-up at a time Ty > 0
only at the point xg.

Moreover,
i) tl_igo u(z,t) = u*(z) ewists for all x € Q\{x0} and u*(z) ~ U;, (x) as x — 0.

i)

lim
t—)To

(To = )P Tu(zo + ((To — )] log(To — 1)) 22,0 — @) _ =0.
Remark: This proposition provides us with a blow-up solution of (III) in the
case a € (1,p). Let us remark that we already know that blow-up occurs in the
case a < 1: .

-Ifa<1andv=(1—a)71ul"? then v satisfies:

ov ' p—a
12 Z = Av+o?  with p = 1.
(12) e v+ wit p 1—a>
-Ifa=1and v = (p—1)logu, then v satisfies
ov v

It is well-known that equations (12) and (13) (and then (III)) have blow-up
solutions.

We introduce similarity variables (see [10], [8] and [9])):

r — X9

y= \/T——t’s = _log(T - t)awT,wo(yas) = (T - t)ﬁu(mat)a

(14)
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where x is the blow-up point and T' the blow-up time of u(t), a blow-up solution
of (III) to be constructed (we will focus on the study of solutions that blow-up
at one single point). We now assume zo = 0.

The study of the profile of u as t — T is then equivalent to the study of the
asymptotic behavior of wr 4, (noted w) as s — oo, and each result for u has an
equivalent formulation in terms of w. From equation (III), the equation satisfied
by w is the following: Vy € RV, Vs > —logT"

ow 1 w |Vwl|? _ s s
— = A — —. _—— ——a— p p—1 p—1
(15) s w5y Vw P a— +wP +e filer—Tw)

where fi(v) = f(v) —vP and f satisfies (H3) and (H4).
The problem is then to find w a solution of (15) such that

oy, $) = (=)l — 0 as s - +oo.

We introduce

(16)  o(y,s) = @(%) +

(-1
— 1) =
W and q(y, s) = w(y,s) — ¢(y, s)
__1_
where @ is introduced in (10) (the introduction of the term (1’2_(1)% is not
p—a)s

necessary but it simplifies the calculations).
Then q satisfies: Vy € RV, Vs > —log T

0 _Bs_ s
(A7) 52 = (L+V(,9))a+B(@) + T(2) + Ry, s) + e FTi(e7 (p + q))
with £=A = 3y.V+1, V(y,s) = pp(y, )" " — 25,
B(q) = (¢ + @) — ¢? —ppP~'q,

Vy+Vg|? Vol|? ol Vol|?
T(q) = —a 20 4oV R(y,s) = =32+ Ap—1y.Vo— & + P —aYEL.

Therefore, the question is to find w a solution of (15) or ¢ a solution of (17)
such that

(18) Jim [lg(s)z~ = 0.

The equation satisfied by ¢ is almost the same as in [22], except the term
T(q). As in [22], we introduce estimates on g in the blow-up region |z| < K or
ly| < Ko+/s, and in the regular region |z| > Ky or |y| > Ko+/s where z = % is
the self-similar variable for q. The estimates of T'(q) in the region |y| < Ko+/s
follow from regularizing effect of the heat flow. One can remark that the Cauchy
problem for an equation of the type ?9—7; = Au — |Vu|? + uP is suspected not to
be solved in H! or W1p+1,

In the analysis of [22], the estimates in the region |y| > Ko+/s imply smallness
of g only, and do not allow any control of T'(g) in this region. In other words,
the analysis based on the method of [22], that is to estimate the solution in the
z variable is not sufficient and must be improved. For this, we add estimates
in three regions in a different variable scale (centered in the original z variable
not necessarily at the considered blow-up point) using techniques similar to
those used in [25] to derive the exact profile in z variable: u(z,t) — u*(z) as
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t = T where u*(z) ~ U*(z) as x — 0 (see (11) for U*). This part makes the
originality of the paper. We expect that such techniques can be useful in various
supercritical problems.

We first define for Ko > 0, ¢¢ > 0 and t € [0,T) given, three regions covering
RN :

Pi(t) = {z||z| < Ko/—(T —t)log(T —t)}
= {w | Iyl < KoVs} = {z | |2 < Ko},
PB(t) = \/ T —t)log(T — 1) < |2| < €0}

Ko s Ky es
= —_— < < = — < J—
1< < et = o | 52 << O,

Ps(t) = {z|lz]2e/4} ={z ]|yl 2 —62} ={z|lz[ =2 —2}

fori =1,2,3, P = {(z,t) € RN x [0,T)|z € P;(t)},

p— j— r — p— z
where s = _log(T_t), Yy = ﬁ, z = % = \/W
In Py, the “extinction region” of h (which is also the blow-up region of u),
we make the change of variables (14) and (16) to do an asymptotic analysis
around the profile ®(y/+/s).
Outside the singularity in region P>, we control h using classical parabolic esti-
mates on k, a rescaled function of h defined for z # 0 by

k(z,€,1) = (T —t(x) ~Fh (z + /T —t(z)&, (T — t(x))T + t(z))
where £0/(T — t(z))] log(T —t(z))| = |z| . From equation (II), we see that k

satisfies almost the same equation as h: V€ € RN, V1 € [—%, 1):

Ok
or

1

= Ak — (T — t(2)) 5 F((T — t(x)) 71k)

where (T — t(z)) 51 F((T — t(z)) k) ~ % as (T — t(z)) 57k — 0.
We will in fact prove that h behaves for || < ag+/|log(T —t(z))| and T €
[tq‘i f((;”)) ,1) for some tq < T, like the solution of

ok 1

or L8’
In Ps, the regular region, we estimate directly h. This will give the desired
estimate.

The proof of the existence result of the Theorem will be presented in section
2. Assuming some a priori estimates in Py, P, and P;, we show in section 2
that h(t) can be controlled near the profile by a finite dimensional variable.
Adjusting the finite dimensional parameters, we then conclude the proof. We
present a priori estimates in P; in section 3, and in P, and P; in section 4.

The authors thank R. Kohn who pointed out various references on this pro-
blem. Part of this work was done while the second author was visiting the
Institute for Advanced Study.
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2 Existence of a blow-up solution for equation
(16)

In this section, we give the proof of the existence result of the Theorem. The
proof will be given in the case @ = RV (we will mention the differences with
the case  is bounded, when it is necessary, see section 4). We assume N = 1
in order to simplify the notations. The same calculations and proof hold in a
higher dimension (see [22] and [25]). We assume zo = 0 since (II) is translation
invariant. For simplicity in notations, we simplify hypothesis (H1) and assume
that

(19) Yo € (0,1], F(v) = Uiﬂ

Same calculations holds without this simplification.

Let us first remark on the following about the Cauchy problem for equation
(I1).
Lemma 2.1 (Local Cauchy Problem for equation (II)) The local in time
Cauchy problem for equation (II) is well-posed in H where H is defined by (7)
if Q is bounded, and by (6) if @ =R.

Moreover, in both cases, either the solution h exists for all time t > 0 or
only on [0,T) with T < 400, and in this case th_)rr% grelgh(x,t) = 0.

Proof. The case (2 is bounded follows from classical arguments.
For the case Q = R, we define h(z,t) by h(z,t) = ¥ (z) + h(z,t). This way,
(II) is equivalent to

Using (H1) and (H2), we see by classical arguments that this equation can
be solved in H. [ ]

Let us consider 8 > 0 and T > 0, all fixed. The problem is to find to < T
and hg such that the solution of equation (II) with data at to h(z,t0) = ho
extinguishes in finite time 7" > 0 at only one extinction point x = 0 and:

(T —t)1/B+1 1

21 - lim - = () =0
2y LYy s o WU R T L
- h*(z) = lim h(z,t) exists for all z € R and
t—=T
(22) h*(z) >0 for z #0,h*(x) ~ H*(z) asx — 0

where & and H* are introduced in (4) and (5).

As explained in the introduction, (21) and (22) follow from the control of
h(z,t) for t € [to,T) in three different scales, depending on the three regions
Pl, P2, and P3.

a) In Py, the extinction region, we rescale h by means of (8), (14) and (16)
in order to define for ¢ € [tg,T), q(s) where s = —log(T — t) and

Yy e R a(y,5) = (T =7Tulyy/T—£t) — ¢y, ),
Vz € R, u(z,t) = aP+tTh(z,t)”® and a > 0,
(23) y (p—1)~ 7T
oly,s) = ®(F)+ Fpma
p= %ﬁ“, o= and ® is given in (10).
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Remark: To prove the Theorem, we can take a = 1. Nevertheless, we need
to keep a > 0 general, if we want to deduce directly Proposition 1 from the
Theorem.
The equation satisfied by ¢ is (17): Vy € R, Vs > —log(T — tp):
9q

(24) 95 = (L+V(y,s)a+B(a) +T(q) + R(y,s) + e 7 1 fi(em T (p +q))

with £= A~ 3y.V +1, V(y,5) = pp(y, s)"" = 72,
B(g) = (¢ +9)" — " —pe" ', )
T(q) = a2 +al¥20 R(y,s) = — 52+ Ap—§y.Vo— ;5 + P —al¥2,

fi(u) = aF Ut F(aFu—3) — uP.

We note that L is self-adjoint on D(L£) C L?(R,du) with

e 4
25 d =
(25) ) = ~7=
and that its eigenvalues are {1 — 2'|m € N}.
(3] '
In one dimension, hy,(y) = Z m (=1)"y™~2" is the eigenfunction

< nl(m — 2n)!

corresponding to 1 — . We introduce also km = hm/||hm|72(,q,) and note
that Vect {hy, | m € N} is dense in L(R,dp).

We are interested in obtaining L*°(R) estimates for g. Since L*®(R) C
L%(R,du), we will expand ¢ (actually, a cut-off of q) with respect to the ei-
genvalues of £. Nevertheless, the estimates we will obtain will be L* and not
L2(R, dp).

The control of h(t) for t € [to,T') in this region P; is equivalent to the control
of g(s) for s € [—log(T — o), +00) in a set Vi, a(s) so that Sll)rglo llg(s)||L~ = 0.

The definition of Vi, 4(s) requires the introduction of a cut-off function

(26) X(0,9) = xol )
where
(27) Xo € C°(R*,[0,1]), xo =1 on [0,1], xo =0 on [2, +0c0).

b) In P,, we control a rescaled function of h defined for z # 0 by V¢ € R,

V1 € [tTO:f((g ,1):

(28) k(z,&7)=(T - t(x))_ﬁh(x + VT —t(z), (T — t(x))T + t(z)),
where t(x) is defined by

(29) ol = "2 VT @108 (T — &) = -2 /Ao log )

with 0(z) =T — t(x).
Let us note that 6(z) is related to the asymptotic profile H*(z).
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Lemma 2.2 For fixred Ko, we have:
~ 1
i) H*(z) ~ k(1)8(x )W as ¢ — 0,

. . 11
ii) [VH*(z)| ~ (ﬁ+1)Ko 7 llzsz(z)lé?(m) PH172 gs x — 0 where

(30) B = (@ + 0 - + CL K

Proof: From (29), we write:
log |z| =1log & + Llogf(z) + 1 log|log#(z)| and

z? _ 2Kj log 0(z)
—loglz| — 1600( )log 0(z)+log |log O(z )H—210g Therefore
(31) log 6(x) ~ 2log 2| and 6(z) ~ 82 i NN
K3 Tlogla]
1
s * 7 z|? B+1
Since H*(z) = k(1) [%] and
1 1
. k(1 gle2 AT ,
|\VH*(z)| ~ (Brngo 7 1(()g)|.z'|| [K§||1§z|;|w||] when z is small (see (5)), we
get the conclusion. [ ]

k satisfies almost the same equation as h: V1 € [t0 t(z) ,1), VEER,

(32) % = Ack — 0(2) P F(6(z) k).

L
+

We will see that the estimates on k allow us to write 8(z)5+I F'(8(x) ﬁlc) =
for suitable £. If we show that k(7) behaves like k (see (30)) which is a solution

of the ODE

di 1
dr L8
M with 7' = 14+ BHDES C(Ko,A)
defined for 7 € [0,7") with 7' = 1+ *=7=% > 1, and that [V¢k(r)| < et

then according to lemma 2.2, this yields that h(z,t) behaves in P like H*(x)
and |Vh(z,t)| < C(Ko, A)|VH*(z)| if z and T — to are small, which is almost
the estimate 4¢) of the Theorem.

c¢) In P3, we estimate directly h using the local in time well posedness of the
Cauchy problem for equation (IIT).

More formally, we define for each t € [to,T) a set S*(t) depending on some
parameters so that h(t) € S*(t) means that h is controlled in the three regions
as described before. We show then that if Vi € [to,T), h(t) € S*(t), then (21)
and (22) hold and the Theorem follows.

Let us define S*(t):

Definition of S*(t) and S*

I) For allto < T, Ko >0,€ >0,0a0>0,4A>0,86>0,Cy>0,Co >0
and no > 0, for all t € [to,T), we define S*(to, Ko, €0, @0, 4, b0, Cf, Co, Mo, t) as
being the set of all functions h € H satisfying:

i) Estimates in P;: q(s) € Vi, 4(s) where s = —log(T —t), q(s) is defined
in (23) and Vi, a(s) is the set of all functions r in WH(R) such that

Irm(s)] < As™2 (m=0,1), Ira(s)] < A%s~Zlogs,
» (2 " )I As2(A4 ), Ire(yos)| < A2

<
Dis)l < A+,
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where

(1= x(y, 8)r(y), r_(s) = P_(x(s)r),
[ dukm (y)x(y,9)r(y), ri(s) = Pr(x(s)r),

x is defined in (26), P_ and P, are the L?(R,du) projectors respectively on
Vect {hm|m > 3} and Vect {hpy|m > 2}, du, hy and ky, are introduced in (25).

(34) Te(y, )

form eN, rpy,(s)

ii) Estimates in P: For all |z| € [52/(T — t)[log(T — t)|, €],
T=7(z,t) = 55, and |¢] < ao/[logb(z )|
|k(fﬂ,§77')A— k(T)| < do, [Vek(z, €, 7)| < W and |VZk(z,&,7)| < Co
where k, k, t(z) and 6(z) are defined in (28), (30) and (29).

i) Estimates in P3: For all |z| > ¢, |h(z,t)—h(z,t0)| < no and |Vh(z,t)—
Vh(z,t0)| < mo.

II) For all to < T we define S*(to, Ko, €0, 0, A, 0o, Cf, Co, 10) =
{k S C([to,T),H) | Vt € [to,T),k(t) S S*(to,Ko,Eo,ao,A,(S(),Cé,Co,’f]o,t)}.

Remark: Note that according to (25) and (34), we have for all r € L*(R),

<3
—~
<
~—

I
[

(35) rm(8)hm(y) +7-(y,5) +7e(y, ),

m=0

=

(36) ry) = rm(8)hm(y) +71(y, ) +7e(y, )-

m=0

Therefore, i) yields an estimate on ||g(s)||L~ and || (g—g)J— ()|l poe-

Remark: The estimates on h are in W1 *°(R). In particular, they are global.
The estimates on g—z in P, V¢k in P, and on Vh in P;3 allow us to control
the term T'(q) appearing in the equation satisfied by g (see (24)). We remark
that the estimate ¢(s) € Vi, a(s) describes h mainly in P;. The estimate on g,
involved in definition (33) is useful only in the frontier between P, and Ps.

Now we show that if we find suitable parameters and initial data such that
h € S*(to, Ko, €0, @0, A, 0o, C§, Co, o), then the Theorem holds.

Proposition 2.1 (Reduction of the proof) For given to < T, K, €0, oo,

A, b0, C§, Co and 1o such that 5o < %l::(l) and 1o < %I |i>nf/4 h(z,t0), assume
T|~Z€0
that h € S*(to, Ko, €0, 0, A, 60, C}, Co,m0). Then h(t) extinguishes in finite time

T only at the point xg = 0, that is thn% h(0,t) = 0 and Vx # 0, there exists
—
n(z) > 0 such that

(37) liminf min  h(z',t) > 0.
ST [a'—z]<n(z)

Moreover, with ® and H* defined by (4) and (5),

( —t)F
(38) tlggllh T =0 heT =00

1
= oo = 0,
) Z) ”L (R)
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h*(z) = 1th_)n% h(z,t) exists for all x € R and

(39) h*(z) > 0 for x #0 and h*(z) ~ H*(x) as z — 0.

Proof. We assume that h € S*(to, Ko, €0, @0, 4, %0, C§, Co,Mo). One can remark
that once (38), (37) and (39) are proved, it follows that
i) th_)rrqlﬂ h(0,t) = 0: h(t) extinguishes at time T' at the point z = 0,
ii) z = 0 is the only extinction point of h.
It remains then to prove (37), (38) and (39).

Proof of (37):
From iii) of Definition of S*(¢), we know that if |z| > <, then V¢ € [to,T),
h(iL‘,t) Z h(l‘,to) — Mo 2 infmz% h(iL’,to) — To 2 %inf|m|2% h(.’[l,to)) > (. This
yields (37) for |z| > €.

From i) of Definition of S*(t), we have V|z| € (0, o], for ¢ close enough to
T, [k(z,0,7(2,t)) — h(r(2,1))| < 8o where 7(z,t) = 55}, Therefore,
k(z,0,7(z,1)) > k(r(z,t)) — 8 > k(1) — k(1) (from (30) and &y < 1k(1)).
From (28), it follows: h(z,t) > %I::(I)Q(a:)ﬁ > 0. This yields (37) for 0 < |z| <
€0-
’ Proof of (38):
We consider ¢(s), the function introduced in (23). Let us show that

(40) llg(s)l| oo (m) — 0 as s — +o0.

From ) of the definition of S*(t) and (35), we have Vs € [—log(T — o), +00),
q(s) € Vi, a(s) and

la(y, s)| = 11y /<2K0v3} (Z qm (8)hm (y) + q— (y,8)> + qe(y, 5)|

m=0
< 1y <okoys(As T2 (1+|y)+ A% log s(ly[>+2) + As~2(1+y[*)) + A%s~1/2 <
C(Ky, A)s~'/? and (40) follows.

Let 2 € R and g(2) = (T —)"/%+ h(zy/=(T = ) log(T — 1),) — 51=. We
have
9(2) . o 1
< CO|(T — t)3F aF ¥ h(z\/—(T — ) log(T — 1),1)~® — a1 d(z)~2|%

where @ = max(a, 1).
Using (4) and (23), we have o = 1/(p—a) and 8 = (p—a)/(a—1), therefore
1

51 = p-1>
1 1 — 1)~ /-1)
B+ (ﬂ+)||) A = (25 )_(p )

aFFTd(z)7 = ( a 2(p—a)s

9

and (T — t)ﬁaﬁh(z\/—( —t)log(T —t),t)~

=(T —tpluz\/ T —t)log(T —t),t) with s = —log(T —t).
Combining this w1th (23) again, we get

9(2) < C(0, B) (la(e/=Tog(T =), — log(T — )| +1/|10g(T — 1))

< C ([lg(s)llLoo(r) + 1/[log(T — t)|)* — 0 as t — T by (40). This yields (38).

Q=

-



Existence of a blow-up solution for equation (16) 141

Proof of (39): From the proof of (37) and classical theory (see Merle [21]
for a similar problem), there exists a profile function A*(z) such that Vz # 0,
tlin% h(z,t) = h*(z) > 0. To show that h*(z) ~ H*(z) as z — 0, we give the
—

following localization estimate:

Proposition 2.2 (Localization in P,) Assume that k is a solution of
equation

1
(41) kr = Ak —

kB

for T € [0,70) with 1o < 1(< T). Assume in addition: V1 € [0, 7q],

i) For €] < 26, |K(¢,0) — k(0)] < 6 and |VK(&,0)| <6,

ii) For [¢] < 72, k(E, ) > Lh(r).

i) For |¢ < 760, [V2k(E,7)| < Co,

where k is introduced in (30). Then there exists € = (8, &) such that Vr € [0, 7],

fOT‘ |§| < &37
|k(&,7) — k(1) <€ and |VE(£,7)| <€, wheree = 0 as § = 0 and & — +o0.

Proof: We prove in section 4 a more accurate version of this Proposition (Propo-
sition 4.1). One can adapt without difficulties the proof to the present context.
|

Let us apply this Proposition to k(z,&,7) when z is near zero with 7 = 1
and & = |logf(z)|'/%. We first check all the hypothesizes of the Proposition:

Lemma 2.3 If z is small enough, then k(z,£,7) satisfies (41) for
€] < |log8(z)|'/* and T € [0,1). Moreover,

(42)i) sup |k(z,€,0) — k(0)| + |Vek(z,£,0)| < d(z) = 0 as z — 0,
[€]<[log 8(z)|*/4

ii) for €] < [logf(x)|%, Vr € [0,1), k(z,€,7) > 3k(7),
iii) for |€| < |log8(z)|7, Vr € [0,1), |V2k(z,&,7)| < Co.

Combining this lemma and Proposition 2.2, we get V= € [0,1), |k(z,&,7) —
k(1)| < e(z) — 0 as z — 0. Using (28), (30) and letting 7 — 1, we obtain

(43) 0(a)" 7 (&) ~ B(1) = (b 22:1{3 ) o

By lemma 2.2, we obtain h*(z) ~ H*(z) as z — 0, which concludes the proof
of Proposition 2.1.

Proof of lemma 2.3
1) and 444): Since (29) implies that 6(z) — 0 as x — 0, we have by combining
(38) and (28):
up [/, £,0) — 1/d(— SV
€< log 6(z)] /4 6(=)| loge( )|
(4), the first part of (42) follows.

From i) of the Definition of S*(t), we have |V¢k(z,&,0)| < ﬁ and
g0(z

|V§k(m,§, 0)| < Gy for |¢| < |logf(z)|'/4, if 2 is small. This yields the second
part of ¢) and 3i).

)] = 0 as z — 0. Hence, from
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i1): From i) of the Definition of S*(t), it follows that for z small en-
ough, we have |k(z,¢&,7) — k(1)| < & for |¢] < |logf(z)|'/* and 7 € [0,1).
Hence, i) follows from (30) since 8y < $k(1). By the way, this implies that
|0(a:)ﬁk(m,§, 7)| < 1 for €| < |log#(z)|'/* and 7 € [0,1). Therefore, it follows
from (32) and (19) that k satisfies (41). |

From this Proposition, the proof of the Theorem reduces to find suitable
parameters tg < T, Ko, €0, ag, A, do, Cf, Co, no and hg € H so that the
solution A of equation (II) with data h(tg) = ho belongs to
S*(tg,Ko,Eo,ag,A,(sO,Cé,C(),n()).

Unfortunately, the spectrum of £ which greatly determines the dynamic
of ¢ (and then the dynamic of h too) contains two expanding eigenvalues: 1
and 1/2. Therefore, we expect that for most choices of initial data hg, the
corresponding ¢o(s) and ¢;(s) with s = —log(T — t) will force h(t) to exit
S*(tg,Ko,Eo,Oég,A,dg,C(I),Co,ng,t).

As a matter of fact, we will show through a priori estimates that for sui-
tably chosen to < T, Ko, €0, oo, A, do, C}, Co and 19, the control of h(t)
in S*(to, Ko, €0, a0, 4,0, C§, Co,mo,t) for t € [to,T) reduces to the control of
(90(s),q1(s)) in
(44) Va(s) = [-As™2, As™2]?

for s > —log(T — to) (qo(s) and g¢1(s) correspond to expanding eigenvalues
in the ¢ variable). Hence, we will consider initial data h¢ depending on two
parameters (dy,d;) € R2, and then, we will fix (dy,dy) using a topological ar-
gument so that (go(s),qi(s)) € Va(s) for all s > —log(T — t), which yields
h(t) € S*(to, Ko, €0, 20, A, 80, Ch, Co, Mo, t), thanks to the finite dimensional re-
duction.

Let us define

R~

ho(do, di, ) = (T — to) P a P {<I>(z) +(do + dlz)XO(KLZ)lG)}_ 1 (2, o)

(45) +H*(z)(1 - x1(z,t0))
where z = z/+/(T — to)|log(T — to)|,

1o O (e e

®, xo and H* are defined in (10), (27) and (5). The problem now reduces to
find (do,d;) in some D C R? such that
h(do,d1) € S*(to, Ko, €0, 20, A, do, C, Co,m0)-

The proof is divided in two parts:

i) Finite dimensional reduction:

From the technique of a priori estimates, we find suitable parameters tqg < T,
Ky, €,00, A, do, Cf, Co and 19 so that the following property is true: Assume
that for t, € [to,T), we have Vit € [to, t.],

h(t) € S* (to, Ko, €0, O, A, 50, C(I), Co, No, t) and
h(t*) (S 85*(t0, Ky, €0, 009, A, do, C(I), Co, 10, t*), then
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(qo(5+),q1(54)) € BV4(s,) where s, = —log(T —t.), go and ¢, follow from ¢ by
(34), ¢ and V(s) are defined in (23) and (44).

ii) Solution of the finite dimensional problem:

We use a topological argument to find a parameter (dg,d;) € R? such that
(d0(s),q1(s)) € Va(s) for all s > —log(T — tq), and therefore,
h € S*(to, Ko, €0, @0, A, 00, C§, Co, o). This yields the Theorem.

Part I: A priori estimates of h(t), solution of equation (II) and
finite dimensional reduction

Step 0: Initialization of the problem

We claim the following lemma:

Lemma 2.4 (Initialization of the problem) There exists Ko1 > 0 such
that for each Ko > Ko1 and §; > 0, Ja;1 (Ko, 61) > 0 and C*(Ky) > 0 such that
VOt(] S aq (K(),(sl), Hel(Ko,(sl,OC()) > 0, such that VEO S El(Ko,(sl,ao), VCl > 0,
VA > 1, 3t1 (Ko, b1, €0, A,C1) < T such thatVig € [t1,T), there exists a rectangle
D(to, Ko, A) C R? with the following properties:

If h(x,to) is defined by (45), then:

i) ¥(do,d1) € D(to,Ko,A), h(to) € H defined in (6), (go(s0),q1(s0)) €
VA(SQ) deﬁned mn (44) and h(to) € S*(to,Ko,Eo,ao,A,(sl,C*(Ko),Cl,O,to),
with sg = —log(T — to). More precisely:

@)l <A ln(s0)] < dsy”
lg2(s0)|  <sg" logso g (y;50)] < Csg (L+yf)
—1/2 —
sl <55t 1(3) sl <P+l
1
|52(y, 50)] < 's0° for |yl > Ko/s0,

| ] _ to—t(m)

for all |x|e[%\/<T—t)|log< = ") and

)
€] < 2001/[Tog8(z)], [k(z,&,m0) — k(no)| < 51, Vek(z, €, 70)| < —SE)_ gpq
(z

[1og 6(z)|
|V k(z,€,70)| < Cy where k, k, t(z) and 0(z) are defined in (28), (30) and
(29)

) (do,d1) € D(to, Ko, A) & (g0(50),41(50)) € Va(so),

(do,d1) € 8D(to, Ko, A) < (go(50),1(50)) € OVa(0),
(g0(80),q1(80)) is an affine function of (do,d1) when (do,d;) € dD(tg, Ko, A).

Proof: See Appendix A.

Step 1: A priori estimates
We now claim the following estimates:

Proposition 2.3 (A priori estimates in P;) There exists Koz > 0 such that
for each Ko > Ko, there exists A2(Ko) > 0 such that for each A > Ax(K),
€0 > 0 and C§ < A3, there exist n2(€0) > 0 and ta(Ko, €0, A, C}) < T such that
for each ty € [t2(Ko, €0, A, C4),T), do < 2k(1), ap > 0, Co > 0 and no < n2(eo),
we have the following property:

- if h(z, o) is given by (45) and if (do,d1) is chosen so that
(90(50),q1(s0)) € Va(so) defined in (44) with so = —log(T — to),
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- if for some t. € [to,T), we have
Vt € [to,t*], h(t) S S*(to,Ko,60,&0,A,50,06,Co,7]0,t) then

la2(s:)l < A%s7%logs. — 5%, lg-(y,s.)]

< 3

ey, 8)] < Al (%), (y,5)] < 4
where s, = —log(T —t.), q is defined in (23) and the notation is given in (34).
Proof. See section 3. |

Proposition 2.4 (A priori estimates in P,) There exists Koz > 0 such that
for all Ko > Koz, 61 <1, & > 1, C§ > 0, Cf* > 0 and C§* > 0 we have the
following property:
Assume that k is a solution of equation

ok 1
4 = Ak— —
(47) or K kB

A

forT €[m, ) with0 <7 <71 <1(<T).

Assume in addition: NT € [11,T2],

i) VE € [~260,260], [k(E, ) — k(r)| < 61 and [Vh(€, )] < %2,

ii) VE € [0, 0], |Vk(€, )| < G2 and |V2h(E,7)| < G,

iii) V€ € [- 152, 2], k(€ 7) > Fh(7),

where k is given by (80). Then, for & > &os(Clyr,Cs,Cy*) there exists € =
€(Ko, C§*, 61,&0) such that V€ € [—&o, o], YT € [11, 2],

|k(€,7) — k(r)| < e and [VE(E,7)| < 2, where e — 0 as (81, &) = (0, +00).

Proof: See section 4. |

Proposition 2.5 (A priori estimates in P;) For alle > 0, ¢¢ > 0, g > 0,
and o1 > 0, there exists t4(€,€0,00,01) < T such that Vt € [t4,T), if h is a
solution of (II) on [to,t«] for some t. € [to,T) satisfying

i) for |z| € [¢, ], Vt € [to, 4],

(48) oo < h(z,t) < o1, |Vh(z,t)| < 01 and |V2h(z,t)| < o1,

i) h(z,to) = H*(x) for |z| > 2 where H* is defined by (5),
then for |z| € [, 4+00), Vt € [to, ],

|h(z,t) — h(z,t0)| + [Vh(z,t) — Vh(z,10)| < €.
Proof: See section 4. [ |

Step 2: Finite dimensional reduction
From Propositions 2.3, 2.4 and 2.5, we have the following;:

Proposition 2.6 (Finite dimensional reduction) We can choose parame-
ters to < T, Ky, €, oo, A, 8, C) and Cy and ng such that the following pro-
perties hold: Assume that h(z,tg) is given by (45) and (do,d;) € D(tg, Ko, A).
Then,

7,) h(to) €eHN S*(to, Ky, €0, g, A, do, C(I], Co,no,to).
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Assume in addition that for some t. € [to,T), we have Vt € [to, t4],

h(t) € S* (to, Koy, €0, a0, A, dg, C(I], Co, Mo, t) and

h(t.) € 05*(to, Ko, €0, @0, A, 00, Ch, Co, 1o, t+) then

i) (go(+),q1(5+)) € OV4(s.) where q is defined in (23) and s, = —log(T —t,.).
iit) (Transversality) there ezists v > 0 such that Vv € (0,10),

(d0(5+ + 1), 41 (54 +1)) & Va(s, +) (hence

h(t* + I/) ¢ S* (to, K(), €0, O, A, 50, C(I], Co, Mo, ty + I/))

Proof We proceed in two steps: we first show that we can fix Ky, g and Cy
independently from A, take A > A7 and choose €, ag, C§, 1o and to in terms of
A, so that i) and 44¢) hold. In the second step, we fix A and ¢¢ so that 4i¢) holds
too.

Proof of i) and ii)
It follows from the following lemma:

Lemma 2.5 There exist constants Kq, 6y, Co, and Ay > 0 such that for all
A > Az, there exist eg(A) > 0, ap(4), C}(A4), 17(A) and t:(A) < T such that
for all ng < n7 and tg € [t7,T), and under the hypotheses of Proposition 2.6, i)
and i) hold.

Proof

Let us first choose suitably the constants, and then show that ) and 44) of
Proposition 2.6 follow for this choice.

All the constants we are referring to below appear either in lemma 2.4 or
Propositions 2.3, 2.4 or 2.5.

We proceed in ten steps:
1) Fix K() = 4max(K01, K02, Kog).
ii) Fix dp = %min(l?:(l), 1) (note that k(1) depends only on Kj). Fix Co = 1. Let
Ar(Kj) be large enough so that A7 > max(1, A2(Ky)) and for all A > A7(Ky),
A3 > C§(A) where we introduce
CMA)=4nmx(ayﬁkg+nv¢mmumme,£%§%,c%K@)wnh
C*(Kj) defined in lemma 2.4 and C3 a constant which is independent of all the
parameters and appears in lemma, 2.6.
Consider A any number larger than A;(Kjp), and consider C{(A).
iii) Applying Proposition 2.4 with Ky, C§ = 2, C§*(A) = 2C{(A) and C§*(A) =
LC4(A), we get &(A) > 1 and 67 (A) < 1 such that for all & > & and & < 6f,
the conclusion of the Proposition holds with ¢ = %0.
iv) Let &1 (A) = min($6;(A4),d) and C; = .
v) We claim the following lemma:

Lemma 2.6 VA > Ay, there exist as(Ko,d1(A)) > 0 such that for all oy < as,
there exists €5(ag, A) > 0 such that for all g < €5(ay, A), there are t5(eg, A) < T
and 15 (€9, A) > 0 such that for all no < ns(€0, A) and to € [ts(eo, A),T),

if for all t € [to,ts], h(t) € S*(to, Ko, €0, 0, A, d0,Ch,Co,Mo,t) for some t, €
[to,T), then we have for |z| € [£2/(T — t.)[log(T — t.)|, €0

i) For |¢| < Zagy/|log(z)| and for all T € [max(0, %), %]

k(z,.,.) satisfies (47) and, |Vek(z, &, 7)| < %, |ng(m,§,7)| < 2Cy and
k(z,€,7) > k(7).
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i) For |¢| < 2a0v/[logf(z)] and 7 = max(2242) 0): |k(z,&,7) — k()| < &

0(z)
_ G4
and |V£k(1‘,£,7')| < 4 |log9($)|'

Proof: We focus on the proof of the fact that for |z| € (0, €],
for |¢| < Zag/|1logf(z)]|, for ¢ € [max(0,t(z)),T), we have

2C{(A)
where 7 = t;(tf)”), and: for |z| € (0, €], for |€] < 2a9+/|log(z)|,
(50) k(2. €, 70(2) = k(o ()| < &1
1
0 1%0(4)

where 79(z) = max( too—(i()z), ).
The other estimates follow by similar techniques.
Let 6 > 0 to be fixed later. If ag < ay(Kjy,d) for some a7(Ky,d) > 0, then

we have from (29): for €] < 2ag+/|logé(z)|,

(52) (1 =d)lz] < |z +&v/0(2)] < (1+0)|z|.
Proof of (49):

From (28), we have

(53) Vek(z,€,7) = 6(z) " FATEVA(z + £/8(2), 1).

Let us denote z + £1/6(z) by X and distinguish three cases:
- Case where | X| < %\/(T —t)|log(T — ?)|:
From (8), we write VA(X,t) = C 2% (X, 1).
u o
From 7) of the Definition of S*(t), we get

i — (e
|(T t) 'u,(X,t) CI)( (T_t)|10g(T—t)\)|

CA’K}
= |€I(\/%;—108(T — 1) + sp—ayriesr—o1| < 7 log(Tit)| by lemma B.1. Mo-
reover,
1 1
IVu(X,t) — (T — )" 713 |log(T — )| "3 V&(——X— )| =

Lo (T—1)|log(T—t)|
(T = )71 V(2 — log(T — 1)
< (T —t)~ 717 2|log(T — t)|"2CA2K3 (see the proof of lemma B.1)
Hence, by (9), we obtain:
1 1 1 2
T — )71t Vh(X,t) — |log(T — t)| "2 V& (——xZ——
(7 — ) P TR(X, 1) — [log(T — )~ d V()
CsA’K§
< == -0 and
= Voem—o]
IVHOX 0] < (CoA? K + IVl a0 ) (7 — 757~ log(T — ] 2.
This gives by (53):

Vek(o,&,7) < (355) " 110g(T — )|~ Cy(4).
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Since (1 — §)|z| < |X| (see (52)) and |X| < Ko+\/(T — t)|log(T — t)|, we have

2] < 72 5)\/ t)|log(T - ¢)|.
From (29), we have |a:| — 6(z) is an increasmg function. Therefore,
0 < Oy T TR T — 1)~ 3y AL () 31

Moreover, we have t > t(z), therefore, T' — t < (z). Hence,
|Vek(z,£,7)| < 2C4(A)|logf(x)|~ % if & is small enough.

- Case where |X| € [£e\/(T — t)[log(T — t), €):
We write VA(X,t) = 6(X) 55 ~3 Vek(X, 0, 555). This gives by (53):
(X FHT T2 t—t(X
ng(l‘,{,t) = (9((9;))) Vﬁk(X 0, 9(&)))
From i) of the Definition of S*(t), we obtain:
1 _1 _1
Vok €, < C(A)llog @ _1 x G(X)ﬁ-li—l i|log9(X)\ 2‘
Vik(e 7)) < Cy(4) logo(a)]~+ x A0 1est0
Using (52) and taking ¢ small enough, this yields

[Vek(z, ¢, 7)| < 2C5(A)|log b(x)| ™2
- Case | X| > €: If 9 < § min |Vh(z',to)|, then we have from i) of the

|z'|>€o
Definition of S*(¢):
[Vh(X,t)| < (14 9)|Vh(X,t0)| < (1+9)|Vh(yz,t9)| wherey =1—-46if 8> 1
and y=1+4§1if 8 <1 (see (52)).
From lemma 2.2, we get:

IVA(X, )| < (1+0) (;g';g;oa( AT

FFT%
Arguing as before, we obtain from ( 3):
3

|Vek(z,€,7)| < (Eiﬁglj)(oﬂogO( )72 < 2C{(A)|logf(x)|~2 if § is small
enough. This concludes the proof of (49).

Proof of (50):
If |z| > Bo /(T —ty)[log(T —to)], then (29) yields ¢(z) < to and 7o(z) =

too(t()m) Hence, (50) follows from lemma 2.4.

If 2] < Iio V(T — to)|log(T — to)|, then t(z) > to and 7o(z) = 0. From (28) and
(30), we let X =z + £+/6(z) and write:

K(2,€,0) — O)| = 8(a) Th(X, t(0) — ((8+ 1) + S 5) | <14 11

where I =[6(a)”PTh(X, (=) = (6 + 1 + 5" srfioeaey)

and IT = | ((ﬁ +1)+ (ﬂ+;)2 o(x)‘iga(zn) - ((ﬂ +1)+ (ﬂ+1)2 11{5,-2)‘”rl I
From 1) of the Definition of S*(t), (23) and the fact that

| X| < (1+8)|z| < (H"S)KO\/ )| log 8(z)| < Ko/0(z)|log8(x)|, we get

I < CA2K3|logb(z)|~2 < CA2K0|10g( —t0)| 2, since

|z| < Bo\ /(T —to)|log(T — to)|. Now, if T — to is small enough, then I < &

From (52) and (29), we have (1 — §)252 16 < W 1+ 5)2—¢L Hence

if § is small enough, we obtain I] < & 3
This concludes the proof of (50).

Proof of (51):
If |z| > Eo /(T —t)[log(T —to)], then (29) yields ¢(z) < to and 7o(z) =
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tOH_(i()z) Hence, lemma 2.4 yields: for |§| < 2a94/|log ()],
Vek(,€,70(z))| < C*(Ko)|logb(z)| 72 < iC( )-
If |2| < Bo\/(T — to)|1log(T — to)], then t(z) 2 to and 7o(x) = 0. With X =

z + &\/0(z), we write: Vek(z,&,0) = 0(z)” 741 %Vh(X t(z)). Arguing as for
the first case in the proof of (49), we get:

[Vek(e,€,0)] < [Cs 42K + V82 500,100 | 108 6(2)| %
< 1Cy(A)|log b()] 2.

This concludes the proof of (51) and the proof of lemma 2.6. |
vi) We now fix ag(A) = min (% 1(Ko,01(A)), as(Ko, 01(A)),1). We also fix
eO(A) < min(e; (K0,51 (A),a(A)), e5(ap(A), A)) such that

A)+/|logb(eg)| > §0(A

v11) Then, we take n7(A) = 1 min(ns(e0(A)), 75 (€0(A), A)) and consider 5y < 7.
viil) By direct parabolic estimates, it is easy to see that there exists tg(A4) < T
such that for all ¢ € [ts,T), if
h(to) € S*(to, Ky, €9, 0, A, do, C(I], C1, 1o, to) and Vt € [to, tl],
h(t) € S* (to, Ky, €0, 0, A, do, C(I), Co, "o, t), then
h(tl) € S*(to, K(), 60, o, A 50, C('], %, No, tl).
ix) Let 09(A) = 1k(1)8(2) 7 and o1 (A) = max(2k(0)8(%2) 7+,

(0(F)FHT 2 :9( )FHT 2 0\ zig -1

0 /ltog0(D))’ “0/ Tog o (D)’ ,Cof(R)7F177).

x) Let t7(A) = max(t1 (Ko, 01(A),e0(A), A, C1),t2(Ko, €0(A), A, C{(A)),
t4(", €0,00,01),t5(e0(A), A),t6(A)), and consider t, an arbitrary number in
[t7(A),T).

Now, we show that ¢) and i¢) of Proposition 2.6 hold for this choice. Let us
assume that h(to) is given by (45) and (do,d;) € D(to, Ko, A). Then, lemma
2.4 applies and h(to) € H N S*(to-Ko, €0-a0, A, 01,C*(Kp),0,%0). Since §; < do,
C*(Ko) < C§ and 0 < ng, %) follows.

We now assume that in addition, we have Vt € [to, t.],

h(t) € S*(to, Ko, €0, @0, A, b9, C{, Co, 10, t) and

h(t.) € 8S5*(to, Ko, €0, 0, 4, b0, Cf, Co,No, t.) for some t. € [to,T). According
to the Definition of S*(t), three cases may occur:

Case 1: q(s«) € OVik, a(s«). From ii) of lemma 2.4, Proposition 2.3 and
i) of the Definition of S*(t), we have (go(s+),q1(s+)) € 8Va(s,) which is i) of
Proposition 2.6.

Case 2: There exist x and £ such that
|z| € [%\/(T —t.)|log(T — t.)|, €0] and €] < ap+/|log(z)|, and either

|k(z,&,m1) — k(r)| = & or |Vek(z,&,m)| = \/|C:a< or |V2k(z,&,m)| = Co =
1, where 7 = t*a_(i()z) <1
According to viii) and lemma 2.4, we have |V§k(m,.{;’,n)| < 3. Let 1o =

max(toa(t()m),O) and & = ao/|logf(x)|. Note that & > ag+/|logb(eo)| > & .

Since ag < 1, it follows from lemma 2.6: .

- For [£] < 2ag+/|logb(z)|, |k(z,& 10) — k(10)| < 61 and |Vek(z,§,70)]
Cod) G4

4+/|1og b(z)| — 4o °

IA
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- For [¢] < Tagy/|logf(z)| and for all 7 € [r0,71]: k(z,.,.) satisfies (87) and

Vek(z,&,7)| < 294 |\ V2k(x,€,7)| < 2C) and k(z,&,7) > Lh(r).

Applying Proposition 2.4 yields:

For [¢] < agy/[log(2)], |k(z, &, 1) ~k(n)| < § and |Vek(z, &,m)| <
Co(A)
[log 6(z)|’

Case 3: There exists 2 € R such that |z| > ¢ and |h(z,t.) — h(z,t0)| = 10
or |Vh(z,t.) — Vh(z,t0)|] = no. From i) of the Definition of S(t), we have:

vVt € [th ] for |1‘| € [%)a ETO]: |k($70;7—) - ];:(T)| < 507 |ng($,0,7’)| < m

and |V2k(x 0,7)| < Cop, where 7 = t;fs”). Using (28) and the fact that §p <
k( ) < 1k(0), we obtain:

%
LR(1)0(@) 7T < h(a,t) < 3k(0)6()7H, [Vh(z,1)] < Ct 22— and
)

23Cs(4)
[log 6(z)]
which contradicts the hypotheses of Case 2.

|log 6()

|V2h( t)| < Cob(z )5+1_ . Therefore, oo(A) < h(z,t) < o1(4),
|Vh(z,t)] < o1 and |V2h(z,t)| < o1. From (45), we have h(z,ty) = H*(z)
for |z| > . Hence, Proposition 2.5 applies and we get: |h(z,t) — h(z,t0)| +

|Vh(z,t) — Vh(z,to)| < R < 19, which contradicts the hypotheses of Case 3
This concludes the proof of 4) and i) of Proposition 2.6.

Proof of ii1):

Let us recall that Ko, dp and Cy are fixed independently of A, where A is
taken larger than some A; > 0, €, g and C are fixed in terms of A, and
to € [t7(A),T), no < n7(A), for some t7(A) < T. and n7(A) > 0. Let us prove
this lemma:

Lemma 2.7 There exists Ag > 0 such that for all A > Ag, there exist tg(A) <
T and ns(A) such that for all to € [ts,T) and o < ns(A), and under the
hypotheses of Proposition 2.6, the conclusion iii) holds.

Proof: From lemma 2.5, we have: Vt € [to, t.], R
h‘(t) € S*(t07K0760aa0;Aa5070(1)5 Co;ﬂo,t) and (qO(S*)7Ql(S*)) € 6VA(S*)5 which
means that g, (s.) = €As;? for some m € {0,1} and € € {—1,1}. From (44),

the conclusion follows if we show that edq—"‘(s*) > 0.

From (24) and (34), we have: [ x(s. as L(ss)kmdp = [ x(54)Lq(sx) kmdp+

I x(52) [V(s2)a(s.) + Bla) + T(q) + R(s.) + € 55 f1(e7T (9 + )| md.
If we take to € [t11(Ko,€0(A),A4,0,Cf),T) and 1o < m11(e0(A)), then we get
from lemma 3.2 (see section 3):

B () — (1= DY (5.)] < 2

53

for some Cg independent from all the other constants. Since g, (s.) = €As;?2,

we have e24m (s,) > 0 for A > 4Cs. [ |

Conclusion of the proof If we take A = max (A7, Ag) and
no = min(n;(A),ns(A), glmln h(z,t0)) ( r‘nln h(z,to) > 0 according to (45)
>

| z[>F

and (5)), and to = max(t7(A),ts(A)), then both 7) and i) of Proposition 2.6
hold. This concludes the proof of Proposition 2.6. Let us note that with this
choice, the reduction of the proof of Proposition 2.1 holds. |
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Part II: Topological argument

From Proposition 2.6, we claim that there exist (do,d;) € D(to, Ko, A) such
that h(do,d1) € S*(to, Ko, €0, 0, A, 0, Ch, Co,mo). The proof is similar to the
analogous one in [22], let us give its main ideas.

We proceed by contradiction: From i) of Proposition 2.6, we have
V(do, d1) € Dto, Ko, A),
h(do, dl, to) € Hn S*(to, K(), €0, O, A, (50, C(I), Co, No, to) Therefore, we define
for each (do,d1) € D(to, Ko, A) a time t.(do,d;) as being the infinitum of all
t € [to,T') such that
h(do,d1,t) & S*(to, Ko, €0, 0, A, 80, Ch, Co, Mo, t). By i) of Proposition 2.6, we
have A
(90, q1)(do, d1, $«(do,d1)) € OVa(s«(do,d1)) where s, = —log(T — t.).

Hence, we can define from (44) the following function:

v D(to,Ko,A) — 0C
(do,dy) - 2ldod) (g0 ;) (do,di, 5+ (do, dr))

where C is the unit square of R2.
Now we claim

Proposition 2.7 i) ¥ is a continuous mapping from D(tg, Ko, A) to OC.
i1) There exists a non trivial affine function g : D(to, Ko, A) — C such that
¥ Oglgé = Id|3c.

Proof. The proof is very similar to the proof of Proposition 3.3 in [22], that is
the reason why we give only the important arguments.
i) follows from the continuity in H of the solution h(¢) at a fixed time ¢ with
respect to initial data, and the transversality property 4ii) of Proposition 2.6.
From i) of lemma 2.4, we have VY(dy,d1) € 0D(to, Ko, A), s«(do,d1) = so
and #4) follows. |

From Proposition 2.7, a contradiction follows (Index Theory). Therefore,
there exist (do,d1) € D(to, Ko, A) such that
h(do,dy) € S*(to, Ko, €0, 20, A, 0o, Ch, Co,m0)- By Proposition 2.1 and the Con-
clusion of the proof of Proposition 2.6, the main Theorem follows.

3 A priori estimates of u(¢) in the blow-up zone

This section is devoted to the proof of Proposition 2.3. Let us consider tg <
T, Ky, €, ag, A, dy, C}, Co and n9. We assume that (dg,d;) is chosen so
that (go(s0),q1(s0)) € Va(so) where sq = —log(T — to), and that Vt € [to, t.],
h(t) e S* (to, Ky, €0, ap, A, o, C(I), Co,no, t) for some t, € [to, T)

Then we improve some of the bounds given in 4) of the Definition of S*(#)
for h(t.). More precisely, we improve the bounds of ¢2(s4), ¢— (¥, 54), qe(¥, 54)

and (g—;)J— (v, 84) with s, = —log(T — t.).
For this purpose, we consider the equation (24) satisfied by ¢(s) and the one
. dq .. . .

satisfied by 8—y(s) as well as their integral formulations:

0q

(54) 0=—5.+ (L+V(y,s))qg+ B(q) +T(q) + R(y,s) +
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_ _Pps s
e »1 f1(e?=T (¢ + q))
with £= A — 5.V +1, V(y,5) = po(y, )P~ — ;25
B(q) = (QO + q)p _2<pp _ p(p];—lq’ 2
T(q) = —a2 T 1+l R(y,s) = 52+ Ap—§y.Vo— 35 + ¢ —alTe,
fi(u) = aFFTultE Famu=t) - u?,
if r(y,s) = 3%(y, ) then

% = (L5 +V)r+ 5 (B@) + T(@)(y,8) + Ray,5)

_s, 0 s
e (G + AT (o + )
with Ri(y,s) = §2(y, s) + Gy a(y, s),
if K(s,0) and K;(s, o) are respectively the fundamental solution of £ + V
and £L— 1 +V (note that K;(s,0) = e~ "= K(s,0)), then for s > o > s9, q(s) =

s

(55) K(s,0)q(o) +/ drK(s,7)(B(gq(7)) + T(q(7))) + /S drK(s,7)R(7)

+ [ drk(s, e E A (o(r) + a(r),

and

(56) r(s) = Ki(s,0)r(o) + /s drK1 (s, 7)( 4 (B(q) + T(q))(7) + Ry(7))

dy

4 / " arK, <S,T>e—r<g—§<ﬂ + () F(e75 (9(r) + a(7)).

We proceed in two steps: in Step 1, using the fact that
h(t) € S*(to, Ko, €0, 0, A, 8, Ch, Co,mo,t) for t € [T —e~7, T —e~(“+P)] for some
o > sg and p > 0, we derive bounds on terms in the right hand side of equation
(54) truncated by x and projected on hg, and on terms in the right hand sides
of equations (55) and (56), expanded respectively as in (35) and (36).

In Step 2, we use these bounds and these equations to find new bounds on ¢q_,
g. and r; on one hand, and a bound on %2(3) on the other hand. This latter
bound yields a better estimate on go(s) (this estimate is obtained differently

from the analogous term in [22] and [25]) .

Step 1: A priori estimates of ¢(s)

We first show that if (do,d;) is chosen so that (go(so),q1(s0)) € Va(so),
then ¢(so) is strictly included in Vi, (o). In other words, at initial time s,
the finite dimensional variable (go(s0), ¢1(s0)) determines the size of the hole
function g(sg). In fact we have an estimate more precise than the one in lemma
2.4:

Lemma 3.1 For each A > 0, there exists so(A) > 0 such that for each so >
52(A) and Ko > 20, if h(z,to) is given by (45) and (do,d:) is chosen so that
(90(30),q1(s0)) € Va(so), then

lga(s0)] < sy2logso, |a—(y,50)] < Csy?(1+ Jyl*),
—1/2 —
lge(y, 50)| < 597, r(y.s0)] < sg2(1+ [y,
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and |r(y, 50)| < 55"* for [y| > Koy/50-

Proof. The proof is included in the proof of lemma 2.4: See the end of its Step
2. |

Now we consider o > so and p € [0, p*]. We suppose that

Vt € [T —e 7, T — e~ (otP)] h(t) € S*(to, Ko, €0, 0, A, 80, Cb,Co,m0,t). Then
we give bounds on terms in right hand sides of equations (54), (55) and (56),
expanded as in (34).

Remark: In fact, we give in lemma 3.2 estimates on equation (54) projected
on h,, with m = 0,1 or 2. Only m = 2 is useful for the proof of Proposition 2.3.
The estimates for m = 0 or 1 are in a large part the same, they are useful for
the proof of Proposition 2.6.

Lemma 3.2 There exists K17 > 0 and Ay, > 0 such that for each Ko > K1,
€ >0, A > A, p* >0, C) > 0, there exists t11 (Ko, €0, A, p*, C}) with the
following property: .

Vto € [tll(Ko,Eo,A,p*,C(’)),T), Vp S [O,p*], fOT all (50 S %k(l), Qg > O,
Co > 0 and ng < m1(e) for some m11(€0) > 0, assume that
- h(z,to) is given by (45) and (do,d1) is chosen so that (go(s0),q1(s0)) €
VA(S())

- for some 0 > —log(T — to), we have ¥t € [T — =7, T — e~ (7] h(t) €
S*(to,Ko,Eo,Oéo,A,(S(),C(I),Co,no,t). Then, Vs € [0‘,0‘ + p],

I) Equation (54): If m = 0,1 or 2,

67) | [ X0 50, )~ (o)) < e
69 | [ X0 k@)L, dn - (L= Pian()] < e
(59) [ X0 eV (a1l < 57
(60) | [ X0k B, )l < Cs57°
(61) | [ x0T @)l < 5721
(62) | [ X0k R 9| < Cs7?
(63) | [ X F (T + )l < e
If m =2, then we have more precisely:
00 | X 0k@V 0909+ ()| < CAs
©) | [xkOT@0 - w)] < CAs
(66) | [ X 9kRE,9dn] < C57°

II) Equation (55):
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Case o > sg:

(67)  la-(s)] < C(AemCmV2 4 A%emG)s72(1 4+ |yf)
(68) lac(y,s)] < C(A%e~C~7/P 4 AKGe*=7)s™ 1/

where a(s) = K(s,0)q(o) is expanded as in (35),

(69) B-(y,5)] < Cls—o)s>(A+yl)

(70) Be(y,s)| < (s—o)s™/?

where §(s) = [, dTK (s, 7) (B(a(r)) + T(a(7))),

(71) y-(,8)] < C(s—0)s7*(1+yl’)

(72) Me(y,8)] < CK§(s—o)e*7s7!/?

(73)

where v(s) = [ dTK(s,7)R(7) is expanded as in (35),

=,
V)

C(s —o)s™*(1+ [yl)
C(s —o)s™1/?

—~
N
>

~—
lE
—~
N
»
=
IA A

where §(s) = f; dTK(S,T)e_PPTslfl (e7=1 (¢ +q)) is expanded as in (35).
Case o = so: More precisely,

(76) la—(y, )|
(77) lae (y, 5)|

III) Equation (56):
Case o > sq:

Cs™(1+|yf)

<
< CK3e*=7s71/2,

(78)|P1 (x(3) K1 (5, 0)r(0))] < C(Ae 57 + C(Ko)Che =) =1

W91PLS) [ drs (7)o (B0) + T(@)(7)| < Cls — oI

52
’ 1+ [yl
(80) PL(s) [ drEa(s,m) ()] < C(s — o)
’ -7 690 1, ==
(81) IPLOx [ drka(s,m)e (G + NAE (o + )
<C(s— 0)1':'—23"3 where P, is defined in (34).
Case o = so: More precisely,
(82) [PL(x(8)K1(s,0)r(0))| < Cs72(1+|y[*).
Proof. See Appendix B. |

Step 2: Lemma 3.2 implies Proposition 2.3
Let Ko > Koz > 0, €0 > 0, A > As(Ky) > 0 where A5(Kp) will be fixed
later, and Cj < A3. Let to > 0 to be fixed in [t2(Ko, €0, 4, C}),T) (where
t2 (Ko, €0, A, C§) will be defined later). Consider dp < %I%(l), a9 > 0, Co > 0 and
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no < ma(en). Let h(do,d1) be a solution of equation (IT) with initial data (45)
defined on [to, t,] with t, € [to,T), such that
- (do, dy) is chosen so that (go(s0),q1(s0)) € Va(so) (s0 = —log(T — to) and q is
defined by (23)),
-Vte [to, t*], h(t) € S* (to, Ky, €g, g, A, 50, C(’), Co, 7o, t) and
q(s«) € OV, a(84).

We want to show that

lg2(s«)| < A?s;%logs. —s7°, |g—(y,s4)]

83 T
B s < Lo 1 (g, 5.)

IAIA

where 5
r@@=£m@

We consider p1 (Ko, A) > p2(Ko, A) two positive numbers (which will be fixed
later in terms of Ko and A). The conclusion follows if we treat Case 1 where
sx — So < p1 and then Case 2 where s, — sg > pa. The proof relies strongly
on estimates of lemma 3.2. Therefore, we suppose Ko > K11, A > A1, Cf <
AS’ to 2 max(tll(KOa €0, AaApla C(I))a tll(K07 €0, A, P2, C(I)))a So = — IOg(T - to) 2
max(p1, p2), €0 > 0, dp < %k(l), Co > 0 and ng < n11(€0)-

Case 1: s, — 59 < p1(Ko, A)

We apply lemma 3.2 with A, p* = p1, p = s« — S0 and o = s¢.

From equation (54) with m = 2, we obtain: Vs € [so, S«],
|g5(s) + 257 Lga(s)| < CAs™3 + 2e=* < CAs™3. Therefore, Vs € [sq, 5],
| (s%¢2(s))] < CAs™!, and then, using s, < 2so (indeed, s, = s + p <
so + p1 < 28¢), we obtain |g2(s.)| < s52s2|g2(s0)| + 2A(s« — s0)s; 3. Using
lg2(s0)| < sg 2 log so which follows from lemma 3.1, we get |ga(s4)| < 572 log 5.+
C A(sx —s0)s; 3. Together with estimates concerning equations (55) and (56) in
lemma 3.2, we obtain:

—2

lga(ss)| < s;%logs, + 2C; As,?
lg—(y,8:)] < Ci(l+ 5. —s0)s.>(1+[yl*)
|2y, 52)] < CiKGe™ (1 + s, —so)ss />
IrL@, s < Ci(l+ (5« —50)"/2 + (54 — 50))57 (1 + [y]*)
< 201 (1 + 54— s0)sy 2 (1 + [y?).

To have (83), it is enough to have

A2 A 3 _8.+—s A2
(84) 1< X 2C1(1+ 84 —80) < 2 and C1 Kge®* 7%°(1 + s. — s9) < 5
on one hand and 21
_ Og S« _
(85) 201 As;2 < 7 5.8

on the other hand.

If we restrict p; to satisfy 2C1(1+ p1) < A/2 and C1 K§e (1 + p1) < A?/2
(which is possible with p; = 3/2log A for A > Ag(K)p) large enough), then (84)
is satisfied, since s. — so < p1. Now if sg > sg(A), then (85) is satisfied. Thus
(83) is satisfied also. This concludes Case 1.
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Case 2: s, — 5o > p2(Ko, A)

We apply lemma 3.2 with A, p = p* = p2 and 0‘ = 8, — p2. From equation
(54) with m=2, we obtain Vs € [0, s.], |g5(s) + 257 1g2(s)| < CAs™3. Using the
same argument as Case 1 and |gz2(0)| < A%0 2loga and then estimates on
equation (55) and (56), we obtain:

lg2(s4)] < A%s;2log(ss — p2) + 2C2 Apys]?
la-(y,5)] < Ca(Ae™/2 + A% 4 py)s (1 + Jy[?)
lae(y,s:)] < Ca(A2e772/P + AKZer* + K§pyer?)si™/?
ri(y,s0)] < Ca(Ae™P2/2 + C(Ko)Che ™ + pa/? + pa)s (1 + [yl?).

Since C}y < A3, in order to obtain (83), it is enough to have

FA,p0(s4)

Co(Ae=r2/? 4 A2e=P5 4 p2)

Cy(A%e=P2/P 4 AK3er? 4+ K3 pyef?)
Co(Ae=r2/2 4 O(Ky) ABe=P2 + pol/2 + py)

with fa,p,(s:) = A2s72log s, — s7% — [A2s72log(sx — pa2) + 2C2Ap2si®].
We now fix ps so that Co K3 Aer2 = A?/8,i.e. p, =log (A/(8C2K¢E)). Then,
the conclusion follows if A is large enough. Indeed, for all A > 1, we write

£ 4,108 ot (s2) —8;° (A2 log

(86)

ININ IN IV
l"|3>t\:|:'t=“3|i> S

—2C5Alog

A A 1) |
8CL K3 8CLK3
A%(log ﬁg)Q
s2(s —log ﬁﬂ ’
Then we take A > A7 (Ko, C}) for some A7(Kjp) such that

A A
A%log——— —2C,Alog——— -1 > 1
RETeN ¢ e T ToN ¢ =
A —(log s52—5)? A A
C-(A —-1/2 AZ 8Co K3 1 < =2
(g ge) A tlegars) S 3
A A A A?
O, (A? YR AR — 4+ Kilog ——————) < —
2 G s A g g TR le s msaRs) S 3
A —(log z2—5)? A
C-(A —1/2 C(K. A3 8Co K3 1 1/2
(Alggrggg) Y+ CEo e =T o (log )
+log —3'80;4[(0) < g.
Afterwards, we take sq > s7(Kp, A) so that Vs > s,
A2 (log #)23_2(3 — log ﬁg‘)_z S 6_3/2.
This way, (86) is satisfied for A > A7(Kp) and sq > s7(Kp, A).
This concludes Case 2.
We remark that for A > As(Kj), we have p; = 3 log A > log 50 K3 = po.

If we take now Koz — Klla Az(KO) — max(An,Ae(Ko),A»;(Kg) Ag(Ko))
and to = max(tu(Ko, €0, A, pP1 (A), C(’)), T — e‘pl(A),
tll(Koa €05 Aa pZ(Koa A)7 C(I))a T - e_pQ(KO’A)aT - e_SG(A)a T - 6_87(K0,A))5
n2(€0) = n11(€o), then we conclude the proof of Proposition 2.3.
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4 A priori estimates in P» and P
In this section, we estimate directly the solutions of equation (II).
4.1 Estimates in P,

_1
Let us recall that k() = ((5+ (1 -71)+ %If—g) "' and that it is
defined for 7 € [0, 7] with 7' > 1.
Proposition 4.1 There exists Koz > 0 such that for all Ko > Kys, §; < 1,

& >1and C§ >0, Cy >0, Ci™* >0 we have the following property:
Assume that k is a solutwn of equation

ok 1
(87) o Ak — w8

forT €m,m) with0 <1 <71 <1(< T) Assume in addition: VT € [11, 2],
i) V€ € [—2&, 28], |k(&, 1) — k(11)| < 61 and |VE(&, )| < %

i) V€ € [ 152, T2, [VA(E,7)] < G- and [V2K(E,7)| < G,

iti) V€ € [T, o] k(g 1) > %l;:( ). Then, for & > &3(Cy,CE,CY*) there
exists € = (Ko, C}*, 01,&0) such that V€ € [—&o, &), VT € [7'1,7'2]

|k(€,7) — k(r)| < € and |VE(E,7)| < 2, where € 0 as (81, &) = (0, +00).

Proof: We can assume 73 =0 and 75 =79 < 1.
Step 1: Gradient estimate

Lemma 4.1 Under the assumptions of Proposition 4.1, we have
Ve € [-Ee, 50 vr € [0,70] [VE(E, 7)| < 2557, if & > &os(Clr, CF, Ci™).

Proof: We have V¢ € [—2&, 2&], V7 € [0, 10],

8 Vk
5-Vk = A(VE) + By

From iii), we have for |¢] < ¢, | | < 1 for Ko large. If § = |Vh|?, then,

by a direct calculation, 2‘9’“A ( ) < Af and 6, < Af+ C0 for |z| < 74@. Let
us consider x; € COO(]RN) such that x1(z) = 1 for |z| < ﬁ, x1(z) = 0 for
|z| > 750 ,0<x1 <1, |Vxa] <& and [Ax1] <e . Then, 6; = x10 satisfies the

followmg inequality:
01.,_ S A01 — 2VX1V0 — AX19 + 001

< A§; + C(CY, 06‘)5621{@5@\52&0} + C6;. With 6, = e=C76;, we have

cy?

&
Therefore by the maximum principle, V¢ € [—282, %] vr € [0, 7], (&, 7)
%"+ O(Cl, Cy)2€ %' Hence, for €] < *"ﬂ vr € [0,1], |Vk(E,7)|

C"* _;_w —0'65 < 2Ga” 20 ,if & > Eo3(Ch, C&, Cl*), which yields the conclu-
sion.

B2, < A8z + C(Cg", C5)& 1 360

{350 <Jo|<260} and 0 < 65(0) <

<
<
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Step 2: Estimates on k&
We are now able to conclude the proof of Proposition 4.1.

Lemma 4.2 For |¢| < &, V7 € [0,70], we have |k(€,7) —k(7)| < €, where e — 0
as & — +oo and 61 — 0.

Proof. Let us consider k; a solution of equation (87) such that V¢ € [-2,2],

V7 € [0, 0], |k1(€,0) — k(0)| < 8y, |Vk1(€,7)| < €. Let us show that for |¢] < 2,

V7 € [0,70], [k1(0,7) — k(7)| < C(Ko)e+51 where C(K) is independent from e.
We have VT € [0,70], k1(0,7) = |B2(0)| f|§|<2 ki (§,7)dz + ka(7), and

kl(gﬁ)ﬁ = |Bz(0)\ fl&ISZ kl(g,T)ﬁdf + k3(7), where |By(0)| is the volume of the

sphere of radius 2 in RV | ||k2||L~ < 2€ and ||k3||p < Ce.

_ In the distribution sense, for € small enough, considering

k(r) = ng,lw fmsg k1 (&, 7)d€, we have

1 dk 1
e Ce < 7r < e + Ce
and |k(0) — k(0)| < Ce + 4.

Together with (87), we obtain by classical a priori estimates that V7 € [0, 7o),
|k(T) — k()| < C(Ko)e+dy (since Cy < |k(r)| < C} (Ko)) and therefore V|¢| < 2,
V7 € [0,70], |hi(0,7) — h(1)| < C(Ko)e + 1. Applying this result to hy(€,7) =
h(7,& — x0) for zg € [—&o + 2, & — 2], from the assumption and step 1 we obtain
lemma 4.2.

Lemmas 4.1 and 4.2 yield Proposition 4.1.

4.2 Estimates in P;

We claim the following

Proposition 4.2 For all € > 0, ¢¢ > 0, 09 > 0, and o1 > 0, there ezxists
ta(€, €0,00,01) < T such that Vt € [ts,T), if h is a solution of (II) on [to,t.] for
some t. € [to,T) satisfying

i) for |z| € [, ], Vt € [to, ],

(88) o0 < h(z,t) < o1, |Vh(z,t)| < o1 and |V3h(z,t)| < 01,

i) h(z,t0) = H*(x) for |x| > ¢ where H* is defined by (5), then for |z| €
[%7'1'00)’ Vit € [tht*]’

|h(z,t) — h(z,t0)| + |Vh(z,t) — Vh(z,to)| <e.

Proof.

Let us obtain the estimates on h for || > €. The estimates on Vh can be
obtained similarly. We argue by contradiction. Let us consider t. € (o, t.) such
that
(89) Vt € [to, te), ||h(z,t) — h($5t0)||L°°(|z|2%°) <e

and [[A(z tc) — b, to)l| o= a1

) =
We can assume € < & min H*(x). We can remark that (5) implies that
2>
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|h(z,t0)| = H*(z) > Co(eo) > 0 for |z| > ¢, therefore, we have

|F(h(z,t))| < C(eo) for |z| > ¥ and t € [to, )

From assumption ¢), we have in fact Vt € [to,tc], for @ < |z| < ¢, h(z, )
oo > 0 and |F(h(z,t))| < C(op). We then consider hq (z, t) X1(z)h(z,t) where
x1 € C*(RY,[0,1]), x1 = 1 for |z| > L, x1 = 0 for |z| < & 60 , IVxal < Q and
[Ax1| < ch We then have:

h
% — Ahi — 2Vx1.Vh — Axih — x1 F(h).

Since Vt € [to, t.], [2Vx1-VA| + [Ax1h| < Cle0,01)1 20 ¢y < 0y (2), we write

% = Ahi + fi(z,t) — xaF(h)

with | f1(z,t)| < C(eo,al)l{%ogﬂs%o}(x).

Let us now consider the case of a bounded domain Q and the case Q = RV,
since there is a small difference in the proof.

i) Q is a bounded domain:

In this case,
Vt € [to,te), hi(t) — S(t — to)hi(to) = ftto dsS(t — s)[fi(z,t) — x1 F(h)] where
S(.) is the linear heat flow. Hence,
|h1(£) = ha(to)|Lo < |ha(t) = S(t—to)ha(to)| L +|S(t —to)ha(to) — ha(to) |z <
S ds[|S(t = 8) fi(s)| 1 + |S(t = 5)C(e0, 00)x1 F ()| 1]
+|S(t = to)ha(to) — ha(to)|L~
< J ds[A=| fi ()|Lx +S(t = 5)C(e0, 00) 1y | 1]
+|S(t — to)h1(to) — hi(to)| Lo
< Cleo,00,01)/T—to +|S(t —to)x1H* — x1 H*| -
NOW, if to € [t5(€, 60,0’0,0’1),T), then we have |h1(t€) — hl(t0)|Loo < %, which is
a contradiction with (89).

Therefore, Vt € [to, 1] |h(2,t) — h(z,t0)| Lo (o> 20) S €.

ii) Case Q0 = RV : we define ha(z,t) = ¢(z)+h1(z,t) where ¢)(z) is introduced
in the introduction (such that ¢ € C®°(RY), ¢ =0 on [—1,1], ¥(z) = a1|z| for
|z| > 2). From the fact that 222 = Ahy + F(ha(z) + 9(z)) + At and that for
|v| > 1, |F(v)| + |F'(v)] < Ce™?, we obtain using similar techniques:

Vt € [to,ts), |ha(z,t) — ha(z,t0)|L~ < € or equivalently: Vt € [to, t«),
|hi(z,t) — hi(z,t0)|Le < €. This concludes the proof of Proposition 4.2.

A Proof of lemma 2.4

We must show that for suitable (do,d;) € R?, the estimates of the Definition
of S*(t) hold for ¢ = #o. Since estimate 4ii) holds obviously, we show in a
first step that h(ty) € H and estimate i) holds, for all choices of (do,d1),
provided that to is near T. Then, in step 2, we find D(to, Ko, A) such that
V(do,d1) € D(to, Ko, A), q(s0) € Vi,,4(s0), where g is the function introduced
in (23).

Step 1: Estimate ii) of the Definition of S*(t)



Proof of lemma 2.4 159

Let us first remark that from (45), (5) and (6), we have h(ty) € ¥ + H' N
W2 (R). Moreover, one can see from (45), (10), (27) and (5) that Vz € R,
h(z,to) > C(to,do,d1,€0) > 0. Therefore, h(to) € H.

Let us consider ty < T, Ky, €, g, 01, and C;, and show that if these
constants are suitably chosen, then for |z| € [£2/(T — to)[log(T — to), €] and
|€] € 2a9+/|logé(z)|, we have

to—tz), ; (to—t@) Ok, . _C"(Ko)
) Jhto, & g - () <, 15 < ogd(z)|

and |VZk| < C1 where £, k, t(z) and 8(z) are defined in (28), (30) and (29).

Let us first introduce some useful notations:

K L 2
(91) 6o =T —to, 7(to) = —/Bollog o] and R(to) = 6| logbo|%,

and remark that thanks to (31), we have for fixed Ko:
16 - 64 -
0(r(to)) ~ o, 6(R(to)) ~ 7=500[logbo["™",  8(2R(t0)) ~ s=b0|logbo[*™",
0 0

(92) log 8(r(to)) ~ log 8(R(to)) ~ log8(2R(to)) ~ logby as to — T
If o < Il(_(? and ¢ < %C(al,ﬂ), then it follows from (29) that for |z| €
[r(t0), 0] and |€| < 2ag+/|log8(x)|, we have |£4/0(x)| < % and

o) Bl oy 2 < oy 6v/8@)) < 2ol < 20 < Clan.)

Therefore, we get from (28), (45), and (27): for |z| € [r(to),€0] and [£] <

a0 /TIog Az, k(z, €, o7 16e)) =

(93)

(94) Dxi(z +&v/0(x),t0) + (I1)(1 — xa1(z + £4/0(2), o))
with () = (9?3)) i é(%) and (IT) = 8(z) " P H*(z + £,/0(2)).

Estimate on k:
By linearity and (46), it is enough to prove that for |z| € [r(to), 2R(t9)] and
€] < 2a01/[log 0(z)[,

and for |z| € [R(to), €] and €] < 2a0+/|log6(z)],

We begin with (95). From (4) and (30), we have:
_1
(- & (752) | =1 (0 (el + EHESESEEE) ™

43 A(z)[log fo|
K2\ FT |e+6y/0(@)|? A
—((B+ DGy + EHEE) T < o) SERS - K
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| log f(z) 4 |2
log 6o KO\/\ log 6o

Since |z| € [r(to), R(to)] and |¢] < 2ag+/|log 8(x)|, we have
2 2
log(0(R(to)) (1 _ g0y _ /log 6(=) 4¢ _
( log 6o (1 4K0 )) 1< ( log 6o + Ko\/10g00> 1

2

log(6(r(t0))) oo
(97) 5( W(1+4E)> ~1.

_2
< CKFF

From (97) and (92), we find a5(Ky,d1) and t5(Ky, 1) < T such that Vo < as,
vtO € [t57 )7

to— t(m) B+l log 0(z) It 81
(D) = (2752) | < O 1\ b + ot P - 1P < %

Now, we treat (96). Let |z| € [R(to),€0] and |£| < 2a9+/|logO(z)|. We have
from (94), (5), (29) and (30),

1

(1) = | BD2lae i@ |77 [ (a1 50y Tlog b(a) L+l G and
830 (x)|log |z+£+/0(z)]] 88| log |z+€ /0(‘%_“

7 [ to—t(z)
)~k ()|
(B+1)2 50 /I 10g 6(z) | +¢ |2 G e (B+1)2K2] T
[ 86| log |z+£+/6(2)|| ] [(’3-"1)(9(;))"’ 643 ]

K, 2

(B+1)2 |TO\/\1059(E)|+E| . K_g _ 6o
83 oglareya@ & ) ~BFD (f)(w )

< C(Lh) + (I2)]

| Ko\ /|10g 0(z) +£|
[log |z+£+/0 ()] 8
Let us bound (7). Since [¢| < 2a9+/]log8(z)|, we have from (29),

1
2 A+T
| % \/Nog8(@)+a0/10g 8 @) k2
|10 la-+a0/0(z) Tog 0(2) | 8

1

B+1

~—A

ﬁll 1
T
Wlth I]_ and (12) = ‘9—; o

(

A

I(I)] <

log 6(x K 2 K2 ﬂ+1
ey (4 a0) -
Since |z| < € and logé(z) ~ 2log|z| as z — 0 (see (31)), we find ag(Ko,d1)
such that for each ag < ag(Ko,d1), there is €g(Ko,d1, o) such that for all
€0 < (Ko, 01,00), for |z| € [R(to),€0] and |€] < 2ap+/]|log b(z)|, we have

§
(98) () < 5
Let us bound (I2). Since |z| > R(to), we have from (92), |(I2)]| < ‘H(R(to)) B+
< C(Koy)] log60|_;. Therefore, if tg > t(Ko,01), then
51

(99) I(I2)[ <
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Combining (98) and (99), we get: If ap < ag(Ko,01), €0 < €5(Ko,d1,0) and
to > te(Ko,d1), then for |z| € [R(to), €] and |€] < 2a0+/|log8(z)]|, (96) holds.

Estimate on 85
From (94), we have for |z| € [r(to), €0] and |€] < 2ag+/|log6(x)|,
g_lg(m: é—, toa—(i()z)) =F, + Ey + E3 where E, =

oy (o)™ VO V<f>(““9(”)xl<m+wo<x),to>,

(-'L') \/00'10g00| \/00'10g00|
(101) B> =0(z)> FIVH*(z + &/0(@))(1 — x1(z + £/0(), 1))
(102) Es = Ef(z)?7 6x1 z + £/0(), to) with

_ ﬁ * $+£ _ * T
Ey =6 @(W *M) H*(z + £,/8(x)).

In order to get the estimate on ag’ it is enough to show that for

(103) |z| € [r(to), 2R(to)] and |€] < 2a0v/[log8(z)], |E:| < _ O
[log 8 ()]

(104)  |z| € [R(to), €0] and [¢] < 2a0+/|log8(z)], |E2| < %’

(105) |a| € [R(to), 2R(to)] and |¢] < 2a0+/[Tog0(@)], |Es] < —2 ) _
|log 6(z)|

We begin with E;. Let |z| € [r(to),2R(to)] and |¢| < 2a9+/]| log 8(z)|. From (4),
it follows that |[V®(z)| < C|z|é:r€ Therefore, by (100),
T 1
1< ) el
\/€o|log 90| (90“03 90|)2(5+1)
11 1-8
< |log | "F¥16(z) =" FHC(B )lz] B (by (93))
< O(Ko)|log 8(x)|™2[log fo| "7+ [log 6(2) | 7+ (by (29))
< C(Ko)|1og 6(x)|~ | log 6| "#7 | log 8 (r(to)) |77 (since |z] > r(to))
< C(Kp)|logb(z)|~2 for tg > t7(Ko) (use (92)), which implies (103).
Now we treat Es. Let |z| € [R(to), 0] and |£] < 2ag+/|log 0(z)|. From (101),
we have |Ey| < 6(z)2 71 |[VH*(z + £,/0(2))|
< 6(z)? 7T |VH*(yz)| with y = 3isf<landy=1if B> 1 (use (93) and
(5)). According to lemma 2 2,
\VH*(yz)| ~ C(Ko)% ~ C’(Ko)% as ¢ — 0. This implies
T og b(z
(104) for € S 67(K0).

1
2|
1
2|
1

Now we show the bound on E3. We consider |z| € [R(to), 2R(to)] and |£] <
|log6(z)|, and find a bound on Ej;. From (102),
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ﬁ+1)2 erey@@P | [y rei@e 177
E |:(,8 + 1)00 + |10g 90| :| 33 |log|m+§ ,—0(‘%)“ . F‘I‘Om
(93) and (91), we have

(B+1)* |z +&/0(2)
B logho] = Colho)

B+17 e+ e0@E_ _ .,
35 Jlogla +£v/B@)| ~ C )

_L
with a(tg) ~ Clo|logbo|P~. Therefore, |E4| <C[00|10g00|p 1] B+
(ﬂ+1) / _

a(to) < (B+1)0 +

and a(tg) <

B 2 2
p—11" A+ [z+€4/6(2)] |z+£\/0(1|
< C [00|10g00| ] o + Tlog o log [2+€ '_G(m Sl lo 0og 0o

_ 8
< C [6o]log bo[P~] " PFT |6g + bo| log bo|P~2 loglog fo| (use (93), (91) and
|z| € [R(to), 2R(t0)]). Hence

(106) |E4| < COFFT |log 00|_(Pﬁ_+11m [1+ |log8|P~? loglog o] -
Using (46) and (27), we have

8X1

(107) < 085 % |log | 5.

From (92) and the fact that |z| € [R(t0), 2R (t0)], we have:
6(x)} 7 < B(5R(t)} FH < C(Ko) 8ol logflP=1]* "7 if o > t(Ko),
withd=2if >1andd=1if 8 < 1.

Combining this with (102), (106) and (107), we get
|Es| < C(Ko)|logbo|~P+3 [1 + | logo|P~2loglog o] < |logfo|~7 if
to 2 ts(K()).

Since log 8y ~ log(R(to)) as to — T (see (92)) and R(to) < |z|, this yields
(105) for to Z tg(Ko).

The expected bound (90) on g—'g follows from (103), (104) and (105).

Estimate on Ak:
In the same way, we show that if ¢y > t10(Ko, €0, C1), then
for |z| € [r(to),€0] and €] < 2ag+/|logf(z)|, we have |ng(x &= G(m | < Ch.

Step 2: Estimate i) of the Definition of S*(¢)
From (23) and (45), we have x(y, s0)q(y, s0) =

lyl K lyl
W)’“’(WKO/M) 2= @0 JsoKo "

Using (34), (26), (25) and simple calculations, and taking Ko > 20, we have: if
tg 2 tll; then

(108) (do + d

_ 1yl [yl
QO(SO) =dy fxg(mjzo/le)d/‘ - 2(pfa)30 fXO(\/s_gKo )dp,,
q1 (30 = \?;? %Xo(ml;é!]/lg )d,Ua

(109)
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and

(110) two(s0) = dg(1+0(e_3°))—m+0(e_s°)
_ e

(111) q1(s0) = \/%(1+0( )

(112) g2(s0) = doO(e™*°) + O(e™?%°),

1
|g-(y, s0)| < Ce™(1 + |do|)(1 + [y[*) + Cldi|s, *e™*|y|

+ 30275 (1= Xo(25)) + (Ido| + d1 ) (1 = Xo( 555 755)-

Since Vn € N, |xo0(z) — 1] < Cy|2|", and Ky > 20, we get

C.(1+|y®
(113) lg—(y,s0)| < (Ido|+|d1|+—)7( 3/|2| )
SO SO
Let us show that c
(114) |ge (y, 50)| < —-
S0

From (23), we have gc(y,s0) = @1 + Q2 where Q> = 5555-(1 — x(y,5)) <

~%0_ _a_
Csyt and Q1 = (1 — x(y,9)) [% - @(#)] with z = ye™2¢/2 and
to =T —e—50,

If |z| < R(to) (see (91) for R(to)), then we have from (45), (46) and (27) @, = 0.
If |z| > R(to), then we have from (10), (45), (91), (9) and easy calculations:

B(L) < B(A)) < Csp! and

Vo V50 .
30 T a
h(zto) > X1 (2, 0) (T — t0) 71 C [@(Lj}?‘”) + (1= a2, 00) H* (R(to))

> (T — to) 7 53 .
Therefore, by (9), |Q1]| < Csy"', which yields (114).
By analogous calculations, one can easily obtain:

94 (Ido] + |da] + 1/s0) (1 + [y]*)
o9 <
| ( 6y)L (o) < LT T

(115)

and |52 (y, s0)| < 55" for |y| > Koy/50.

From (109), one sees that g : (do,d1) — (go(s0),¢1(s0)) is an affine function.
Let us introduce D(ty, Ko, A) = g1 ([—f‘g, %]2). D(to, Ko, A) is obviously a
rectangle.

If (do,d1) € D(to, Ko, A), or equivalently |gnm, (so)| < f‘g for m = 0,1, then,

from (110) and (111), we obtain |do| < Csy* and |d;| < CA50_3/2. Combining
this with (112), (113), (114) and (115), we obtain VA > 0, there exists t15(A) <
T such that for each tg € [t12,7T):

la2(s0)] < sg”logso, lg—(y, so)| < Csg?(L+lyP),
—1/2 o —

sl <55 [(8), @es)l < s+ ),

|52 (y,50)| <s5" for [y| > Koy/30
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and ¢(so) € Vi,,4(s0)-

Now, putting the conclusions of Steps 1 and 2 together and taking Ky; = 20,
a1 (Kg, (51) = min (%, OA5(K0, (51), a6(K0, 51)) , €1 (Ko, 51, Oéo)
= min ($C(a1, B), €6(Ko, 61, x0), €7(Ko)), t1 (Ko, 61, €0, A, C1) =
max (5 (Ko, 01), te(Ko, 61), t7(Ko), ts(Ko), te (Ko), t10(Ko, €0, C1), t11, t12(4)),
we reach the conclusion of lemma 2.4 7). %) is obviously true by construction
and by (109). |

B Proof of lemma 3.2

We start with some technical results on equations (54), (55) and (56) (Step
1). In Step 2, we conclude the proof of lemma 3.2.

Step 1: Estimates on equations (54), (55) and (56)
i) Sizes of ¢ and Vq:

Lemma B.1 For all Ko > 1 and €9 > 0, there exists t;(Ko,€o) such that
Vto € [t1,T), for all A > 1, a9 > 0, Co > 0, C) > 0, o < Lk(1) and
no < mi(eo) for some mi(eg) > 0, we have the following property: Assume
that h(z,to) is given by (45) and that for some t € [to,T), we have h(t) €
S*(to,Ko,Eo,Oéo,A,(S(),C(’),Co,t), then:

i) Iy, 9)] < CAPKZs—17% and |q(y, )| < CA%s=logs(1 + |y,

i) |Vaq(y, s)| < C(Ko,Ch)A%s71/2, |Vq(y, s)| < C(Ko,Ch)A%s~2 log s(1 + |y|?),
(1 —x(y,s))Va(y,s)| < C(KO)C(')S_%, where s = —log(T —t) and q is defined
in (23).

Proof:

i): From 4) of the definition of S*(t), we have ¢(s) € Vk,,a(s). Therefore, the
proof of lemma 3.8 in [22] holds.

i1): Arguing similarly as for ¢), we obtain from %) of the definition of S*(t) and
(26):

A’K}
75
Since |Vp(y,s)] < Cs~'/? and s=/2 < s72|y|? for |y| > Koy/5 and Ky > 1,

we have to prove that |(1— x(y,5))V(¢+ ¢)(y,s)| < C(Ko)Chs~/? in order to
conclude the proof.

log s
x(w,9)Va(y, 9)| < CA?=52(1 + [yf*) and |x(y, $)Va(y,s)| < C

From (23), this reduces to show that Vt > to, for |z| > r(t),

_ o IV (T =t Tt
(116) |Vul(2,t) = Cla) 17 (2, 1) < C(Ko, Co) Tos T T
(117) where r(t) = Ko/(T — t)|log(T — t)|.

Let us consider two cases:
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Case 1: |z| € [r(t), €0]- We use the information contained in i) of the defini-
tion of S*(t). From (28), we have

1

(118) h(z,t) = 6(z) P+ k(z,0,7(z,1))
(119)  and Voh(z,t) = 6(z) 1~ Vek(z,0,7(z, 1))

with 7(z,t) = t;(tz(”)”). Therefore, since p = %ﬁﬂ,

VM (1) = ()G D ekl (1 (5,

(120) o

Using the definition of S*(t), we have for |z| € [r(t), €0]

R !
(121) [k(z,0,7(x,t)) — k(7)| < do and [Vek(z,0,7(z,1))| < G

~ Vlogd(@)

Since do < 1k(1), (120) and (29) yield for |z| € [r(t), o]:

—(7H+3) —(7E+3)
(122) |Vh1| (z,t) < C(KO)C(’)L < C(KO)C(')M
het |log 6(z)| V[10g 8 (r(1)) |
with C(Kp) = E(O)LQH. Since r(t) — 0 as t — T (see (117)), we have from (31)
2 r(t)?

(123) 0(r(t)) and log@(r(t)) ~logr(t) ast — T.

" K3 [logr(t)]
Using (117), we get

B(r ()~ (71D N (T -t~
Tog@G @) v/IlogT — 1)

for some constant Cy. Therefore, if tg € [t2(Kj),T) for some t5(Kp) < T, then
we have for t > t,

ast— T

@) T, -y Tt
[Tog(6(r(®)))] [log(T — 9)

Using (122) and (124), we find (116) for |z| € [r(t),e0], provided that ¢, €
[t2(Ko), T).

Case 2: |z| > €9. We use here the information contained in #i¢) of the defini-
tion of S*(¢), which asserts that

(124)

Ih(z,£) — h(z,t0)] < 1o and [Vh(z,1) — Vh(z, to)| < no

for |z| > €o. Let n1(€0) = %min{lnllin |h(z,t0)], |n‘lin |[Vh(z,to)|}. According to
T|>€g T|Z€0

(45) and (5), we have 1 (o) > 0. If o < m1(e0), we get for |z| > €o:

Vh Vh VH*
f|m+l (m,t) = Clm—f-l (a:, 0) = C};ll*(a-i-l) (I)
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from (45). Therefore, proving (116) for all ¢t > to reduces to prove it for ¢ = to.
From (5), one easily remarks that I}Yg:_‘l) (z) < C(eg) for |z| > €. Therefore, if
to € [ta(€o),T') for some t4(€p) < T, then we get (116) for t = t,.

This concludes the proof of (116) for ¢t = to and |z| > €, hence for ¢t > ¢,
and |z| > €. Thus, with ¢ (Ko, €e9) = max(t2(Kp),ts(€)), this concludes the

proof of (116) and the proof of lemma B.1. |

i1) Estimates on K and Kji:

As we remarked before, K (s,0) = e~(*=9)/2K(s,0). Hence, any estimate
on K holds for K; with the adequate changes.

Since K is the fundamental solution of £L—1/2+V and £—1/2is conjugated
to the harmonic oscillator e=2"/8(L — 1/2)e*’/8 = 82 — 22/16 + 1/4 + 1/2, we
give a Feynman-Kac representation for K;:

(125) Ki(s,0,y,2) = e(s—0)(L-1/2) (4, 7) E(s,0,y,7)
where B
(126) E(s,0,y,7) = / a7 (w)ede Vit

and dpu;; 7 is the oscillator measure on the continuous paths w : [0,s — o] —
R with w(0) = z, w(s — g) = y, i.e. the Gaussian probability measure with

covariance kernel I'(7, 7") = wo(7)wo (7')
(127) 42(e=Hr—r — mHra| 4 bR =4l _ mheme) ']

which yields [ du;;7w(T) = wo(7) with
wo(T) = (sinh 25%)~!(ysinh £ + zsinh 2=2=T).
We have in addition
9/2

(128) AL/ (y 1) = 47r:1 — exp[— (y:(_l — e_—ax)) -

6/2 2

Using this formulation for K;, we give estimates on the dynamics of K and
K; in the following lemma:

Lemma B.2 i) Vs > 7 > 1 withs < 27, [ |K(s,7,y,2)|(1+]|z|™)dz < e*~"(1+
ly[™)-

i) There ezists Ko > 0 such that for each Ko > Ko, A' > 0, A" > 0,
A" >0, p* > 0, there exists
s2 (Ko, A', A", A" p*) with the following property: Vso > sa, assume that for
o > S0, q(0) is expanded as in (35) and satisfies

lgm(0)] < A'o™2m=0,1, |g(o0)]
la-(,0)l < A"+ [yP)o™2, lge(y,o)]

then, Vs € [0,0 + p*]

A"(logo)o~2,

<
< AIIO.—%’

|Oé_(y,8)| C(e—%(s—a)AIII +Alle—(s—a-)2)(1 + |y|3)s—27
(s—

lae(y, 8)] < C(A"e"F™ + A" K3el=))s~ 3,

IN

where a(y, s) = K(s,0)q(0) is expanded as in (35).
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iii) There exists K3 > 0 such that for each Ko > K3, A' > 0, A” > 0,
A" >0, A" >0, p* >0, there exists
s3(Ko, A", A", A A" p*) with the following property: Vso > s3, assume that
for o > sg, r(0) is expanded as in (36) and satisfies

[ro(0)] A'o~2, r1(0)]

< A"(log 0)o2,
r-(g,0)l < A"+ |yP)o2, Ire(y,o)]

AIIIIO_—% ,

IAIA

then, Vs € [0,0 + p*]
|PL(x(3) K (5,0)r(0)] < Ce 3D A 4 A= (=) (1 4 [y|*)s 2.

Proof: See corollary 3.1 in [22] for 7). See Lemma 3.5 in [22] for 4i).
Since Ki(s,0) = e"(679)/2K (s,0), and 44) and 44) have similar structure,
one can adapt without difficulty the proof of i) (given in [22]) to get iii). W

iii) Estimates on B(q):

Lemma B.3 VKo > 1, VA > 1, 3s5(Ko, A) such that Vs > s5(A, Ko), q(s) €
Vio,a(s) implies [x(y,$)B(q(y, 5))| < C(Ko)lq|* and |B(q)| < Clg|P with p =
min(p, 2).

Proof: See Lemma 3.6 in [22].

iv) Estimates on T(q):

Lemma B.4 For all Ky > 1, A > 1 and €g > 0, there exists t6(Ko, €0, A) < T
and ne (&) such that for each ty € [te(Ko, €0, A),T), ag >0, C{ >0, dp < %12:(1),
Co >0 and no < ng(eo):

if h(x,to) is gz’ven by (45) and h(t) € S*(t05K05€03a05A750;067007n03t) fOT‘
some t € [tg,T), then

(29) (o )T @ + 20290 < O, A1 + 4 4 9
(130) X s)T@| < C(Ko, A)x(y,s) (s lal +57/2|Vq])
(131)  [(1 -3 NT@] < C(Ko,Co)min(s™, 5]yl

where s = —log(T —t) and q is defined in (23).

Proof:
Proof of (129) and (130): They both follow from the Taylor expansion of
_ _|Ve+ove? | Vel
F§) = 19, — T~ for 6 € [0,1]. Let us compute
1\ — Vet+0Val> 5 Vq.(Vo+0Vq)
F'(6) = 4 o502 22 ptba 7 2
_ Vo+0V Vq.(Vo+0V v
F"(6) = 20 ($+0q)g| +4g q((vﬂfﬂq)Z 2 - 2‘904:1;(

From F(1) = F(0) + F'(0) + J, (1 — 0)F'(6)df, we write

2 1
X(, 9)T(q) = ax(y, s)(q'Zﬁ' - m%) ta / (1— 6)x(y, 5)F" (8)db.
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Using (23), lemma B.1 and (26), we claim that for so > s7(4, Ko), Vs > so,
2 2
V6 € [0,1], [Vo| < 0573, 75 < 0l and

Ix(y, s)F" (6)] < C(Ko, A)x(y,s) (s~ [al* + |Va]*)
< C(Ko, A)(s71|g| + s72|Vqg|). Therefore, (129) and (130) follow.

Proof of (131): From (23), we have -V | (y,s) < Cs™1. Therefore, if Ky > 1,

(26) implies that (1 — X(y,s))lv“’| (y, ) < min(Cs~!,Cs~%2|y|?). In order to
prove (131), it then remains to prove that

(1= x(y, ) Y29 (y ) < min(Cs~1, Cs~5/2[y[?), or simply, for [y] > Koy/3,

‘V‘fp;qu(y, s) < Cs™1, since Cs™! < Cs™5/2|y|® for |y| > Ko/, if Ko > 1.

From (23), this reduces to show that Vt > to, for |z| > r(t),

(T — )71
|log(T' — )]

(@.8) = C(0) V1 (2. 1) < 050,

[Vul?
(132) -

where 7(t) is introduced in (117). The proof of (132) is in all its steps completely
analogous to the proof of (116) given during the course of the proof of lemma
B.1, that is the reason why we escape it here. |

v) Estimates on R(y,T):

Lemma B.5 Vy € R, Vs > 1,|R(y,s)| < Cs~1,
|R(y,s) — C1(p,a)s™2| < Cs73(1 + |y|*) for some C1(p,a) € R, and
|55, 8)| < Cs™"P(ly| + ly|*) where p = min(p,2).

Proof: From (54), we have

d 1 Vel?
R(y,s)=—£+A¢——y.Vgo—L+<p”—a| 4 where

0s 2 p—1 ©

a _1 (p—1)° Yy
133) oy, 8) =@ + & @ =(p—14b2) 71, p=L ) Y
(133) ¢(y,s) + (p—1+bz%) -0 "= J
o= gotoy and £ = (p —1)” 7=1. Therefore,

_ _ 4pb®2® Fop—1
T I i e

— @p (p l)s‘l‘(p - (p 1)25 %) .

Proof of |R(y, s)| < Cs™!: It follows form (134), and the fact that |z|2®?~1 +
®<C,pl <®!and 9P — ¢?P| < Cas™!

Proof of |[R(y, s) — C1(p,a)s 72| < Cs™(1+|y|*): If |2| > 1, then 1 < s74[y|?
and |R(y, s) — C1(p,a)s 2| < O™ x (s7'[y[?)* < Cs~3(1 + [yl*).
Let us focus on the case |z| < 1. The method we use consists in expanding
each term of (134) in terms of powers of s~! and 22. From (133), one can easily
obtain the following bounds: for |z| <1, Vs > 1,

|®P — kP + (pbf)g 22| < Ozt |92P~1 — k2771 < C22,

—1)a? _ _ —
P — BP — 2P 1—%@9 2| < Cs72, |®P l—ﬁﬁ-ﬁzﬂﬁcza
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|®P~2 — kP~2| < C2? and |¢T?P — @21 < 057
Combining all these bounds with (134) and (133), and using |z| < 1, we get the
result.

Proof of |‘g—f;(y, )| < Cs™17P(|y| + |y|®): The proof is completely similar to
the above estimates. We just give its main steps. First, use (134) to compute
‘?9—5. Then, show that Vy € R, Vs > 1, |%(y,s)| < Cs27P, in the same way
as for |R(y,s)| < Cs™!. Therefore, if |z| > 1, this gives the expected bound. If
|2] < 1, expand all the terms with respect to s and z? to conclude. |

vi) Estimates on fi:
Lemma B.6 Yu >0, |fi(u)| +|fi(v)| < C.

Proof: According to (24), (H2) and (19), we have:
fi(u) = Q%UH%F(aﬁu_é) — P, fl(u) = —F'(aPTu~%) — puPt,
Vv € (0,1], F(v) =v=? Vo > 1, |F(v)| < Ce™ < C. Therefore,
-if @FfTu~% < 1, then fi(u) = fl(u) =
-if aPFTu~% > 1, then u < aF%T and |fi(w)] + |fi(u)] < C(a). |

Step 2: Conclusion of the proof

Here, we use the lemmas of Step 1 in order to conclude the proof. Therefore,
we assume that Ky > max(1, K5, K3), g > 0, A > 1, to > max (t1 (Ko, €),

T — exp(—s2(Ko, A, A%, A, p*)), T — exp(—s2(Ky, C, C, C, p*)),

T — exp(—s2(Ko, A,1,C, p*)), T — exp(—s3(Ko, CA,CA%,CA,C(Ky)Ch, p*)),
T — exp(—53(K0, CA, C, 1, 1, p*)), T — exp(—s5 (Ko, A))7 te(K(), €0, A)),

do < %k(l), ag>0,Co>0,C) >0, no <min (1 (e), ns(€o))-

We consider o > —log(T — to) and p < p*, and suppose that Vt € [T —
e=?, T — e~ (719)] h(t) € S*(to, Ko, €0, 0, A, b0, Cly, Co, t). Using the definition
of S*(¢), and the lemmas of Step 1, we start the proof of the estimates of lemma
3.2

Below, O(f) stands for a function bounded by f and not by C'f. We use the
notations introduced in (34).

I) Equation (54)
Since ¢, (s) = & [ x(y, 8)km (¥)a(y, 8)dp = [ 2 (xq)kmdp, we obtain:
| [ Xy, 8)kun(y) 52 (y, 8)dn — a4}, (5)] = Ifa—x( 8)km (y)a(y, s)dpl
< cAlnge 25 by lemma B.1, (25) and (26). If so > s12(Ko, A), then (57) follows.
Since L is self adjoint and £km = (1= )km, there exist two polynormals
andesuchthatlfxy, () q(y, s)dp— (1= 3 )am(s)| = [[£ -

X(5Yhmla(5)dn] = | [(2 P (y) + 25 Qum(y))a(s)e
< CA2K3 —1/2¢=2s by lemma B.1, (25) and (26). Therefore,
|fx(y,s)km(y)[,q(y,s)du| < e ?if 59 > 513(Kp, A), which yields (58).

From (54), |V (y,s)| < Cs~1(1 + |y|?). Therefore,
| [ x(y, $)km(y)V (y, s)dp| < CA’s™%logs < 575/ for s > s34(A), by lemma
B.1 and (25). This yields (59).

From lemmas B.3 and B.1, and (25), we have

| [ Xy, $)km(y) B(a)(y, s)dp| < C(Ko)A's™*(log s)”.
Now, if s¢9 > s15(Ko, A), then (60) follows.




170 Reconnection of vortex with the boundary and quenching

By lemmas B.4 and B.1, and (25), we write:
| [ x(y,8)k2(y) T (q)(y, 5)dp| < s>~/ for so > s36(Ko, A), which is (61).
From (54), [V(y,5) + 20/(s(p — a))ks| < Cs=2(1 + [yl*). Since |ao(s)]| +
lga(s)| < CAs™2 follows from ¢(s) € Vi, a(s), and since [ x(s)k3q(s)dp =
q2(8) + cogo(s) + caqa(s), we get (64) for so > s7(A).

From lemma B.5, we have |R(y, s)| < C(s72 + s73|y|*). Using (25), we get
(62).

From lemma B.6, we have le” o= lfl(er T(p+q))] < Ce~7-1. Therefore, as
before, | [ x(y, 8)km(y)e” 71 fy(e7 T (p+q))dp < Ce™ 71 < e~* for s large and
(63) follows.

From (54), |V (y,s) + 2p/(s(p — a))ka| < Cs™2(1 + |y|*). Since |go(s)| +
lga(s)| < CAs™2 follows from g¢(s) € Vik,,a(s), and since [ x(s)k3q(s)dp =
g2(8) + cogo(s) + caqa(s), we get (64) for so > s7(A).

By lemmas B.4 and B.1, and (25), we write:
| [ x(y, 8)k2(y)T(a) (y, s)dp + E| < 572 for sy > s16(Ko, A, Cp), where
E = a/4 [Va(y,s)(x(y,s) L2 (y? — 2)e~ v/ /\/Im)dy
—a/4fq(y,S)V-(><(21,S)V90/90(.1/2 —2)e” v/ //AT)dy
= 0(e™*) — a/4 [ a(y, 5)X(y, 9)V-(Vep/(y* — 2)e™W"/4 [\/4m)dy
By sunple calculation,
IV-(Veo/p(y” — 2)e™ WP /4 |\/AT) — (ha(y) + ha(y)/4)/(s(p — a)).e™ 141"/ /\/dm]
< P(ly|)e~1¥1*/4/s2 where P is a polynomial. Hence E = O(CA2s~*logs) —
a/(4s(p—a))(8qz2(s) +caq4(s)) = O(CAs™*) —2a/(s(p—a))g2(s) and (65) holds.

(66) follows from lemma B.5, (26) and (25).

II) Equation (55)
(67) and (68) follow from lemma B.2 i7) applied with A" = A" = A and
A" = A2

Lemmas B.3 and B.1 yield
|B(q(z,7))| < Clg(z,7)[P < CA*PT=*P(log 7)P(1 + |2[°)P.
Lemmas B.4 and B.1 yield
IT(q(z, 7))| < [x(z,7)T(q(z,7))| + |1 — x(z,7))T (g(z, T))|
< C(Ky, A7 log (1 + |z|*) + C(Ko, C4)T~%/2|z|>.
Therefore, |B(gq(7)) + T(q(7))| <

as9) oo a0 { PB4 P + B0 )}

This way, [3(y, s)| = | [, drK(s,) (B(a(7)) + T (a(7))) |
< [, dr [ dz|K(s,7,y,2)||B(a(z, 7)) + T(a(7))|
< C(Ko, A, Cp) [, dr {77 (log 7)? [ da|K (s, T,y,2)|(1 + |«|*7)
+1752log T [ dz|K (s, T,y,z)|(1 + lz[2)}
< C(Ko, A, Cp)(s — 0)e = {5727 (log 5)P(1 + [y|*?) + s=*/* log s(1 + |y[*) }
if s9 > p* (Indeed, s < o+p<o+p* <o+ s <20 <27, and lemma B.2
applies). Hence,

Ix(y, 5)B(y, 5)| < C(Ko, A, Cy)(s — 0)e*~7 {57 (log s)P (1 + [y[*|y[*P~?)
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+57%2log s(1 + |y|? )}

< C(Ko, 4, Cy)(s — 0)e* =7 {s7*P(log )P (1 + |y|* (Kov/5)°P~?)
+57logs(1+ y*)} < (s — 0)s2(1 + [y*), if s0 > s17(Ko, 4,p%,Cp) (use

P > 1). This yields |8, (s)| < C(s — 0)s~2 for m = 0,1, 2 and then (69).

Lemmas B.3 and B.1 yield |B(g(z,7))| < Clq(z,7)|P < CKP A2Pr—P/2,
Lemmas B.4 and B.1 yield
IT(q(z,7))| < C(Ko, A)7~t + C(Ko, C))T7L.
Therefore, |B(q(7)) + T(q(7))| < C(Ko, A, CH)TP/2.
This way, | [ drK (s, 7)(B(a(7)) + T'(a(7)))]
< [, dr [ dz|K (s, 7,y,2)||B(a(z, 7)) + T (q(z.7))]
< C(Ko, A, C) [? dTT"—’/2fdz|K (s,7,9,)|
< O(Ko, A, Ch)s7P/%(s — 0)e*™7 if 59 > p* (Indeed, s < 27 and lemma B.2
applies). Hence |B.(y, s)| < C(Ko, A,C})s7P/%(s —a)e?” < (s —a)s™ /% if 59 >
s18(A, p*, C}) (use p > 1). This yields (70).

Lemma B.5 implies that V7 > 1, Vz € R, |Ru(7)| < C772, m = 0,1,
|Ro(7)| < C172logT, |R_(z,7)] < C172(1 + |2|°) and |Re(z,7)| < CT71/2,
Applying lemma B.2 4i) with A’ = A” = A" = C and then integrating with
respect to T € [o, s] yields (71) and (72).

From lemma B.6, we have |e”7-T f; (e71 (¢ + q))| < Ce 7-1. Therefore,
16(y,s)| = |K(s,7)e" 71 fi(e7=7 (p + q))| < Ces~Te 7T according to i) of
lemma B.2. Hence,
|7 K(s,m)e” #1 fi(e7T (9 + )| < Cs = 0)e*™7e =1
<C(s— a)e”*e_ﬁ% if 59 > p*,
< (s—0)s72if s > s19(A4, p*). As before, this implies (74) and (75).

From lemma 3.1 we have |g.(s0)| < Asg?, m = 0,1,

|a>(s0)| < 552 1og 0, g—(y,50)] < Csg(1 + [y*) and |ge(y, s0)| < 55 '/%. Tf we
apply lemma B.2 i7) with A’ = A, A" =1, A" = C, then (76) and (77) follow.

III) Equation (56)

From definition 34, we have for m =0, 1,
rm() = [ Valy, o)x(y, o)km (y)dp
= —IQ(y,U)V(x(y,U)kme‘-” /*/ar)dy

fq o)X, )V( me‘yQ/“/\/E)dy

~ e e X o ' = Oe=) + (1 + D (o)
Hence, 1f o 2 S0 2 S21, then |r0( )| < CAc~? and |ri1(0)| < CA%0=2logo. We
have |r) (y,0)] < Aoc=2(1 + |y|®) since q(0) € Vi, ,a(c) (see the definition of
S*(t)), and |re(y,0)| < C(Ko)Cho~/? by lemma B.1. Now, we apply lemma
B.2 i) with A’ = A" = CA, A" = CA? and A" = C(K,)C} to conclude the
proof of (78)

Estimate (79) is harder than estimate (78) because it involves a parabolic
estimate on the kernel K;.

Setting I(z,7) = B(q(z,7)) + T(gq(x, 7)), we write
Ky(s,7) 5, (B(@) + T())(7) = [ dael~ 2 (y, 2) E(s, 7.y, 2) G (2,7)
= (I)+ (II) with (I) = dzd,es=TE=1/2) (y 2)E(s, T,y,z)](2,T) and
(II) = — [dyels—m)(E= 13 (y,2)0, E(s,7,y,z)I(z,7). Let us first bound (I).
From (128), (I) =
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(s=7)/2  9(g_ye—(s—T)/2 —(s=)/2_4)2
fd'r\/4ﬂ_e(1_87(57,,_)) i‘:(ly_ee—(s—-r)) €Xp (_%) E(377'7y=$)1(33,7')-
If so > p*, then 0 < E(s,7,y,7) < C (use for this V(z,7) < C7~! which is a
consequence of (54), (126), du;, " is a probability and s < o +p <0+ p* <

0+ so < 20 < 27). Using (135), we get

< , o(s—=7)/2 da 2lye=(s—/2 _g|
(D] = € (Ko, 4, Co) Var(l—e= (=) J Var(1—e=(s—7) X Viar(l—e=(—7) X

—(s—7)/2_ 2 i _ _
exp (—%) (772 (log 7)P (1 + |2|°P) + 775/2log 7(1 + |z[?))
o ge=(s=T)/2

\/4#(1—6*(3*"')) ’

where p = min(p, 2) > 1. With the change of variables £ =
e(s—‘r)/Z

|(I)| < C(K07A7C(l))\/ﬁ {7——213(10g7-)13><
fd§|§|e_52(1 + |63/An(1 — e=(=7)) — ye=(=7)/23P) 4 +75/2 Jog 7 x
[ delele® (1 + €/FRT = e — ye~ (=21} hence |(1)] <

els=7)/2 { (log T)P
47 (1 — e—(s—7)) TP

_ log T
(136)C(Ko, A, Ch) (1+ |yl°P) + Tf/z 1+ IyIB)}-

Let us bound (II) now. Using the integration by parts formula for Gaussian
measures (see [11]), we have 0, E(s,0,y, ):

1 8S—T S§—T
= 5/ / dTldTQ(?zF(Tl,Tg)/d,ufl;T(w)V'(w(Tl),a +71) %
0 0

s

(137) V'(w(r),0 + m)edo 4V (r)otms)

]' =T T T: W(T: o173
+§/ dnawf(ﬁ,n)/dﬂZ;T(w)V”(w(ﬁ),U+7'1)6f0 drsV(w(rs).047s)
0

F
and (137), we get (for sq > p*)
|0:E(s, 0,y,2)| < Cs™'(s —7)(1+ s — 7)(ly| + |z]).
Using this, (128) and (135), we obtain
y= (=72 _gy2

|(II)| < els=m/2 [ \/#7,(5,,)) exp (—(4”(1_67_(5_7))) (ly] + |[)x

Cs7Hs—1)(1+5s—71)C(Ko, A,C}) {772 (log 7)P(1 + |z|*P)
+775/2log 7(1 + |z|*) }.
Arguing as for (I), we get:

By (54), we have |Z-X| < Cs™/2 for n = 0,1, 2. Combining this with (127)

(ID)] < C(Ko, A, Co)e® (s = 1)(1 45 = 7)s7 (L + [y])

(138) (B arwen + 2 av e}

Combining (136) and (138), we obtain
| 5 drK1(5,7) G5 (7)] < C(Ko, A, Cf) {s7*P(log )P (1 + [y/*7)
+575/21og s(1 + |y|®)} x
; { \/47r(i(iei)(i2—r)/2) +elm (s —r)(1+s—7)s7H (1 + |y|)} dr
< C(Ko, A, C) {577 (log s)P(1 + [y[*7) + 57/ log s } x
(275 —a +e=2((s — )2 + (s —0)?)s~ 1 (1 4+ |y])) (so > p*, which implies



Proof of lemma 3.2 173

27 > s). Multiplying this by x(y, s) and replacing some |y| by 2K+/s, we get:
Vs € [0‘ o+ pl,

Xy 8) [, dTK1(s,7) GL(T)| < C(Ko, A, Cp) {5~ FHI/2 4+ 5752} (1 + [y[*)
Vs — T(ep + el 12(p*3/2 4 p3/2)s _1/2) If s > sg > s22(A, p*), then

Ix(y, s f dr K (s T)g— )| < Cs72y/s —7(1+ |y|®) (use p > 1). Therefore,
|PL(x(y,s) [, drKi(s,7) g (7)) < Cs72Vs = 7(1+ [yf°).

This concludes the proof of (79).

By definition, Ry (z,7) = g’; (z,7) + 6 V.q(z,7). From (54), we have
%‘y/ (z,7)| = 2pbp(z, T)P~2(p — 1 + bx? /7)~P/ P~V gr—1 with
b = (p—1)?/(4(p — a)). Setting z = x7~'/2 we easily see that

ay V. (z,7)| < Cr~1/2. Using lemmas B.1 and B.5, we get

|Ri(z,7)| < CT_(1+p)(|iL'| + |z]?) + CA27=5 2 log (1 + |z|?)
< CT_(2+62(7’))(1 + |z[?) with e2(p) > 0 if s9 > s33(A). Therefore,
|K1(s,T)R1§ ) =1[Ki(s,7,y,z) Ry (2, 7)dz|
(

~\=s

(r
(r

< Cr=@tel®) (K (s,1,y,2)(1 + |2|°)dz

< Cr=(teaP)e(s=7)/2(1 4 |y|?) by lemma B.2 7). Hence,

7 drE (5, )Ry (7)] S C(1+ [gfF) [? drr=Grea®) o=z

< C(s — g)e(s—d)/Qs—(Z-i-ez(p))(l +|y|?) if ¢ > 50 > p*.

Now, if 0 > sg > s23(p*), then

| [, drEq (s, T)Ri(7)| < C(s — 0)e? /25~ CHeaPl(1 4 [y|?)

< (s —0)s72(1 + |y|?). By classical arguments, this yields (80).

From lemmas B.2 and B.6, and the fact that ‘g—‘; < C1t71/2, we have:
|e_T(g—‘§ + 1) fl(em1 (¢ + q)| < C(Ko,Ch)A2r=1/2e~7. Therefore, i) of lemma
B.2 yields:

Ki(s,7)e" (32 + 1) f{ (7T (¢ + q))| < C(Ko, Cg)A%e™>"771/2¢~7. Hence,

| J7 drK (s, m)e™" (32 + 1) f1(e77T (¢ + @))| < C(Ko, Cp)A%(s — 0)e™>" &2
< C(Ko,CH) A2 (s — o)e” 5712~ 5 if 59 > p*

(s — 0)s™2 if s > s24(Ko, A, p*). Thus, by classical arguments, (81) follows.

Since 1 (s0) = O(e™%0)+(m+1)gm+1(so), we have from lemma 3.1 |ro(so)| <
CAsg?, Iri(s0)| < Csg” log so, |1 (9, s0)| < 55> (1+|y[*) and |re(y, 50)| < 55>,
Applying lemma #i7) of B.2 with A’ = CA, A" = C, A" = A" =1 yields (82).
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Estimations uniformes a I’explosion pour les
équations de la chaleur non linéaires et applications’

Frank Merle

Université de Cergy-Pontoise
Hatem Zaag
Ecole Normale Supérieure et Université de Cergy-Pontoise

On s’intéresse a I’équation de la chaleur non linéaire

Ut Au + uP

(1) { w(0) = ug >0,

ott u est définie pour (z,t) € RN x[0,T),1 < pet (N —2)p < N +2. Différentes
généralisations de cette équation peuvent étre considérées (voir [12] pour plus
de détails):

2)

ot u est définie pour (z,t) € @ x[0,T),1 <pet (N -2)p<N+2,Q2=RN ou
Q est un ouvert convexe borné et régulier, a(z) est une matrice symétrique et
uniformément elliptique, a(z) et b(zx) sont C? et bornées.

{ wy = V.(a(z)Vu) + b(z)u?
’LL(O) = UOZO,

Plus précisément, on s’intéresse au phénomene d’explosion en temps fini. Une
littérature importante est considérée a ce sujet. On pourra citer les travaux de
Ball [1], Bricmont et Kupiainen et Lin [3] [2], Chen et Matano [4], Galaktionov
et Vazquez [6], Giga et Kohn [7] [8] [9], Herrero et Velazquez [10] [11] (voir [12]
et [13] pour les références). Dans la suite, on note T le temps d’explosion de
u(t), une solution explosive de (1).

Le probléme qui nous intéresse est celui d’obtenir des estimations uniformes
optimales et de donner des applications de telles estimations.

Pour de telles estimations, on est amené & considérer I’équation (1) dans sa
forme auto-similaire: pour tout a € RV, on pose

y T
3) s = —log(T —1)
waly,s) = (T —t)7Tu(z,1).

On a alors que w, = w satisfait Vs > —logT, Vy € RV:

ow 1 w
4 — = Aw — —y. [ — P
(4) P w 2wa p_1+w

Le probléme est d’estimer w,(s) quand s — 400, que a soit un point régulier
ou un point d’explosion (a est dit point d’explosion lorsqu’il existe (an,t,) —
(a,T) tel que u(an,t,) = +o00) de faCcon uniforme.

t Note parue dans les actes du séminaire EDP 1996-1997, Ecole Polytechnique, pp. XIX-1
XIX-8.
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Giga et Kohn ont démontré qu’en fait les variables auto-similaires sont les
bonnes variables pour mesurer les solutions explosives dans les sens suivant: il
existe 9 > 0 tel que Vs > s,

1
€0 < [w(s)|p~ < —.
€o
On se propose dans un premier temps d’affiner ce résultat pour obtenir de
la compacité dans le probleme.

1 Un théoréme de Liouville pour ’équation (4)

Pour ceci, on s’intéresse & un probleme de classification de solutions globales.
On a le résultat suivant:

Théoréme 1 (Théoréme de Liouville pour (4)) Soit w une solution
de (4) définie pour (y,s) € RN x R telle que ¥(y,s) € RV x R,
0 <w(y,s) < C. Alors, on est nécessairement dans l'un des cas suivants:
i) w=0,
i) w=kK ol k= (p—l)_Plfl,
#4i) Iso € R tel que w(y,s) = p(s — so) ou

o(s) = k(1 +e*) 7.

Remarque: Remarquons que ¢ est une connexion dans L* des deux points
critiques de (4): 0 et k. En effet,

R P — —

L + @75 p(—00) =k, p(+00) = 0.
Remarque: Il suffit d’avoir une solution de (4) définie sur (—oo, s*) pour avoir
un théoreme de classification (voir [12]).

On peut obtenir comme corollaire

Corollaire 1 Soit u une solution de (1) définie pour (z,t) € RV x (—o0,0)
telle que ¥(z,t) € RN x (—00,0), 0 < u(z,t) < C(T — t)_ﬁ. Alors,

soit u = 0,

soit 3T* > 0 tel que u(z,t) = k(T™* — t)_ﬁ.

Pour les démonstrations, voir [12]. Les outils clefs de la démonstration sont:

i) une classification des comportements linéaires de w(s) quand s — —oo
_lw?
dans L%(RN) (L?(?c(RN)) 01\1 p(y) = (6;1‘”)1‘\1,/27
ii) les transformations géométriques

’I.U(y, S) — wa,b(ya S) = ’LU(y + ae%as + b)

pour a € RN et b € R,

iii) un critere d’explosion en temps fini dans les variables auto-similaires: si
pour un certain so € R, [w(y,so)p(y)dy > [ kp(y)dy, alors w(s) explose en
temps fini.
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2 Estimations optimales a ’explosion

Par un argument de compacité, on obtient les estimations uniformes sui-
vantes sur la solution w(s) de (4):

Théoréme 2 (Estimations optimales & I’ordre zéro sur w(s))
Si w(so) € HY(RN), alors
0|z ) = £ e V()] o) + [AW(S) | o) = O quand 5 = +oc.

Remarque: Cette estimation est aussi valable pour un ensemble de solutions
(voir [12]).

Cette estimation est trés importante car elle donne pour une solution la
convergence de w,(s) vers un ensemble limite dans L{?, uniformément par rap-
port 3 a € RV . Ceci nous permet ensuite par linéarisation autour de cet ensemble

de démontrer le

Théoréme 3 (Estimation optimale & ’ordre un sur w(s)) Sous les hypo-
théses du Théoréme 2, Ve > 0, il existe s(ep) tel que Vs > s(ep), AC1,C2 > 0
tels que

N
lw(s)lze < n+<2—;+eo>—
Ch
o < —
IVl < 7
V() < &

Remarque: Dans le cas N = 1, en utilisant une propriété de Sturme Développée
par Chen et Matano (qui affirme que le nombre d’oscillations en espace de
la solution est une fonction décroissante du temps), Herrero et Velazquez (et
Filippas et Kohn) ont montré des estimations de ce type.

Remarque: La constante g—: est optimale (voir Herrero et Velazquez, Bricmont
et Kupiainen, Merle et Zaag).

3 Localisation a ’explosion

Le Théoréme 2 implique que dans la zone singuliére du type {y | w(y, s) >
5}, Aw est petit devant w” (ou de faCcon équivalente, Au est petit devant
u?). Un phénomene de localisation sous critique introduit par Zaag [15] (sous le
seuil de la constante) nous permet de propager ces estimations dans les zones
singulieres: “u(z,t) grand”. Il en découle le théoreéme suivant:

Théoréme 4 (Comparaison avec 1’équation différentielle ordinaire) Si
uop € HY(RN), alors Ve > 0, 3C > 0 tel que Vt € [£,T), Vz € RV,

lug — uP| < eu? + C..

Remarque: Ainsi, on démontre que la solution de ’équation aux dérivées par-
tielles est comparable uniformément et globalement en espace-temps & une équa-
tion différentielle ordinaire (localisée par définition).
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On peut noter que le résultat reste vrai pour une suite de solutions sous
certaines conditions.
Remarque: De multiples corollaires découlent de ce théoréeme. Par exemple,
Veg > 0, il existe to(eg) < T tel que pour tout a € RV, t € [ty, T), si u(a,t) <
(1—60)/&3(T—t)_1’_11 , alors, a n’est pas point d’explosion. (Ceci précise un résultat
de Giga et Kohn ou tg = to(€o,a)-

4 Notion de Profil au voisinage d’un point d’ex-
plosion

On considére maintenant a € RV un point d’explosion de u(t) solution de
(1). Par invariance par translation, on se ramene & a = 0. La question est de
savoir si u(t) (ou wp(s) définie en (3)) a un comportement universel ou pas
quand t = T (ou s = +00).

Filippas, Kohn, Liu, Herrero et Velazquez ont démontré que w évoluait sui-
vant I’une des deux possibilités suivantes:

-VR >0, sup ‘w(y,s) — |:I€ + (trAk — lyTAky>] ‘ =0 (L)

lyl<R 2ps 2 sltd
quand s — 400 pour un certain § > 0 avec

m=a( e o) e

k€ {0,1,..., N — 1}, @ une matrice N x N orthogonale et In_j l'identité des
matrices (N — k) x (N — k).
-VR >0, sup |w(y,s) — k| < C(R)e™“°® pour un certain ¢y > 0.
ly|<R
Dans un certain sens, ces résultats démarquent mal d’un point de vue phy-
sique la transition entre les zones singuliere (w > «a ot a@ > 0) et réguliere

(w ~ 0). En utilisant la théorie de la renormalisation, Bricmont et Kupiainen
ont démontré dans [3] 'existence d’une solution de (4) telle que

C
Vs > so, Vy € RY, [w(y, 5) —m%n <

ou fo(z) = (p—1+ %Mz)_ﬁ. Merle et Zaag ont démontré dans [14]
le méme résultat grace a des techniques de réduction en dimension finie. Ils y
démontrent aussi la stabilité par rapport aux données initiales de telles compor-
tements.

Dans [15], Zaag montre que dans ce cas, u(z,t) = u*(z) quand ¢t - T

_1
uniformément sur RV \{0} et que u*(z) ~ [%] "™ quand z — 0.

Dans un premier temps, on est en mesure de démontrer grace aux estimations
du Théoréme 4, un théoréme de classification des profils dans la variable % (qui

sépare partie singuliere et réguliere dans le cas non dégénéré).

Théoréme 5 (Classification des profils & 1’explosion)
Il existe k € {0,1,..., N — 1} et une matrice N X N orthogonale Q tels que
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w(Q(2)v/s,8) = fr(z) uniformément sur tout compact |z| < C, ou

N—-k
fi(2) = (p—1+ U7 37 5) T sik < N—Let fn(2) = k= (p—1)77.
i=1

Un des problemes intéressants qui en découle est de relier toutes les notions
de profils connues: profil pour |y| borné, ‘L\/sl borné ou z ~ 0. On démontre
que ces notions sont équivalentes dans le cas d’une solution qui explose en un
point de faCcon non dégénérée (cas générique), ce qui répond & de nombreuses
questions posées dans des travaux précédents.

Théoréme 6 (Equivalence des comportements explosifs en un
point)

Soit a un point d’explosion isolé de u(t) solution de (1). On a ’égquivalence
des trois comportements suivants de u(t) et de wo(s) (définie en (3)):

i) VR >0, \S\ung w(y,s) — [n+ WITS(N — %|y|2)] ‘ =o0 (%) quand s — +00,
i) VR > 0, sup |w(zv/s,5) — fo(2)| = 0 quand s — +oo avec fo(z) =
lzI<R

—1)2 _1
(= 1+ 2 |e)77,
i44) Jeo > 0 tel que pour tout |z — a| < €, u(z,t) = u*(z) quand t - T et

* 8p|log |z—al| | P-T
u*(z) ~ [(p_1)2|$_a|2 quand T — a.

Remarque: . Dans le cas N = 1, certaines implications étaient déja démon-
trées.
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Optimal estimates for blow-up rate and behavior
for nonlinear heat equations’

Frank Merle
Institute for Advanced Study and Université de Cergy-Pontoise
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Ecole Normale Supérieure and Université de Cergy-Pontoise

Abstract: We first describe all positive bounded solutions of

ow 1 w

N Aw— Ty — 2y ur.

0s v 2y Vw p—1 tw

where (y,5) € RN xR, 1 < pand (N —2)p < N +2. We then obtain for blow-up
solutions u(t) of

ou
A p
5 u+u

uniform estimates at the blow-up time and uniform space-time comparison with
solutions of u' = u?.

1 Introduction

We consider the following nonlinear heat equation:

W gu = Au+|uff~'u in Qx[0,T)
w = 0 on 900 x[0,T)

where u(t) € H'(Q2) and Q@ = RV (or Q is a convex domain).
We assume in addition that

1<p, (N—2)p< N+2andu(0)>0.

In this paper, we are interested in blow-up solutions u(t) of equation (1): u(t)
blows-up in finite time T if u exists for ¢ € [0,T) and tlln% lu(®)||gr = +o0. In
—

this case, one can show that u has at least one blow-up point, that is a € Q such
that there exists (an,tn)nen satistying (an,t,) — (a,T) and |u(an,t,)| = +oo.
We aim in this work at studying the blow-up behavior of u(t). In particular, we
are interested in obtaining uniform estimates on u(t) at or near the singularity,
that is estimates “basically” independent of initial data.

We will give two types of uniform estimates: the first one holds especially
at the singular set (Theorem 1) and the other one consists in surprising global
estimates in space and time (Theorem 3). It will be deduced from the former
by some strong control of the interaction between regular and singular parts of
the solution. Various applications of this type of estimates will be given in [12].

For the first type of estimates, we introduce for each a € 2 (a may be a
blow-up point of u or not) the following similarity variables:

— r—a

Yy T—1
(2) s = —log(T—1)
waly,s) = (T —8)7Tu(z,t).

t Article paru dans Comm. Pure Appl. Math. 51, 1998, pp. 139-196.
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w, (= w) satisfies Vs > —logT, Vy € D, s:

3) ‘96—1: — Aw— %y.Vw S R

where

(4) Doy ={y €RY [a+ye™*/? € Q}.

We introduce also the following Lyapunov functional:

) Bw) =3 [ IVuPody + 5 [wPody— — [ 1wl oy
e—lyl?/4

(6) where p(y) = W

and the integration is done over the definition set of w.

The study of u(t) near (a,T) where a is a blow-up point is equivalent to
the study of the long time behavior of w,. Note that D, s # RY in the case
) # RY. This in fact is not a problem since we know from [8] that a ¢ 99 in
the case Q is C%“, and therefore, for a given a € Q, D, ; = RY as s — +oo.
Let a € Q be a blow-up point of u.

If Q is a bounded convex domain in RY or = RV, then Giga and Kohn
prove in [7] that:

(7)

Vs > —logT, |wa(y,s)lL=(p,,) < C or equivalently
Vt e [OaT)a ”u(mat)”LO‘J(Q) < C(T - t)_ﬁ-

They also prove in [7] and [8] (see also [6]) that for a given blow-up point a € €2,

lim w,(y,s) m(T—t)ﬁu(a—ky\/T—t,t):n

=1l
s——+4o00 t—T

where Kk = (p — 1)_ﬁ, uniformly on compact subsets of RY. The result is
pointwise in a. Besides, for a.e vy, lirf Vw,(y,s) = 0.
§—1T00

Let us denote L*°(D, s) by L.

In this paper, we first obtain uniform (on a and in some sense on u(0))
sharp estimates on w,, and we find a precise long time behavior for | w,(s)||L,
[[Vwe(s) || and ||Aw,(s)||r~ (global estimates).

Theorem 1 (Optimal bound on u(t) at blow-up time) Assume that 2
is a convex bounded C** domain in RN or Q = RY. Consider u(t) a blow-up
solution of equation (1) which blows-up at time T. Assume in addition u(0) > 0
and u(0) € HY(Q). Then

(T = )7 u(t)ls=@) = k= (P~ 1777 ast > T
and
(T = )7 Au(®) [0y + (T = )72 [Vu(®)| o) = 0 as t = T,
or equivalently for any a € Q,
|lwe(s)||lLe — k as s = +o0

and
|Awgy (8)||Lee + [[Vwe(s)||pee — 0 as s = +o0.
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Remark: We can point out that we do not consider local norm in w variable
such as L%(dy) with dy = e~/ 4dy as a center manifold theory for equation
(3) would suggest. Instead, we use L> norm which yields results uniform with
respect to a € . Indeed, we have from (2) that Va,b € Q, V(y, s) € Dy,

wb(ya S) = wa(y + (b - a)e%’s)a

which yields ||wy|lpee = ||wp||pee, ||Vwallze = [|[Vwp|lre and ||Aw,|p- =
| Aws|| o).

One interest of Theorem 1 is that in fact, its proof yields the following
compactness result:
Theorem 1’ (Compactness of blow-up solutions of (1)) Assume that
Q) is a conver bounded C>* domain in RN or Q = RN. Consider (up)nen @
sequence of nonnegative solutions of equation (1) such that for some T > 0 and
for alln € N, u,, is defined on [0,T) and blows-up at time T'. Assume also that
|un (0) || 2 () is bounded uniformly in n. Then

sup(T — )77 ||un(t)||poo () — & as t — T
neN

and

sup (T = 7T [ Aun ()]l (@) + (T = T [ Vun(®)] (e ) = 0

neN
ast —T.
Remark: The same results can be proved for the following heat equation:
ou
= = V.(a(@)Vu) +b(@) f(w), u(0) >0

where f(u) ~ uP as u — +00, (a(z)) is a symmetric, bounded and uniformly
elliptic matrix, b(x) is bounded, and a(z) and b(x) are C*.

Let us point out that this result is optimal. One way to see it is by the fol-
lowing Corollary which improves the local lower bound on the blow-up solution
given in [8] by Giga and Kohn.

Corollary 1 (Lower bound on the blow-up behavior for equation (1))
Assume that Q is a conver bounded C*° domain in RN or Q = RN. Then for
all nonnegative solution u(t) of (1) such that u(0) € H'(Q) and u(t) blows-up
at time T, and for all g € (0,1), there exists to = to(eg,u0) < T such that if
for some a € Q and some t € [to,T) we have

(8) 0 <u(a,t) < (1—e)r(T —t) 51,
then a is not a blow-up point of u(t).

Remark: The result is still true for a sequence of nonnegative solutions w,,
blowing-up at 7" > 0 and satisfying the assumptions of Theorem 1’, with a t
independent of n.

Remark: « is the optimal constant giving such a result. The result of [8] was
the same except that (1 —ep)x was replaced by €y small and it was required that
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(8) is true for all (z,t) € B(a,r) x [T —r%,T) for some r > 0 (no sign condition
was required there).

The proof of Theorem 1 relies strongly on the characterization of all connec-
tions between two critical points of equation (3) in L;>. Due to [6], the only
bounded global nonnegative solutions of the stationary problem associated to
(3) in RN are 0 and &, provided that (N —2)p < N + 2. Here we classify the so-
lutions w(y, s) of (3) defined on RY x R and connecting two of the cited critical

points between them, and we obtain the surprising result:

Theorem 2 (Classification of connections between critical points of
(3)) Assume that 1 < p and (N —2)p < N+2 and that w is a global nonnegative
solution of (3) defined for (y,s) € RN xR bounded in L. Then necessarily one
of the following cases occurs:

i)w=0orw=k,
or ii) there erists so € R such that V¥(y,s) € RY x R, w(y,s) = (s — so) where

(9) p(s) = R(1+€) 77T
Note that ¢ is the unique global solution (up to a translation) of
___¥ P
Ps = p—1 +

satisfying ¢ — Kk as s - —o0 and p — 0 as s = +o0.

Remark: This result is in the same spirit as the result of Berestycki and Ni-
renberg [1], and Gidas, Ni and Nirenberg [5]. Here, the moving plane technique
is not used, even though the proof uses some elementary geometrical transfor-
mations. It is unclear whether the result holds without a sign condition or not.
The assumption w is bounded in L* and is defined for s up to +o0 is not really
needed, in the following sense:

Corollary 2 Assume that1 < p and (N—2)p < N+2 and that w a nonnegative

solution of (3) defined for (y,s) € RN x (—oo, s*) where s* is finite or s* = +oc.

Assume in addition that there is a constant Cy such that Va € RV, Vs < s*,

E,(w(s)) < Cyp, where

(10) Eq(w(s)) = B(w(. + ae?, 5))

and E is defined in (5). Then, one of the following cases occurs:
)w=0orw=k,

or i) Isg € R such that V(y,s) € RY x (—o0,s*), w(y, s) = p(s — so) where

p(s) = K(1+e) 77T,
or #ii) Isg > s* such that V(y, s) € RY x (—oo,s*), w(y,s) = ¥(s — so) where

Y(s) = £(1 —e*) 771,
Theorem 2 has an equivalent formulation for solutions of (1):
Corollary 3 (A Liouville theorem for equation (1)) Assume that 1 < p
and (N —2)p < N +2 and that u is a nonnegative solution in L of (1) defined
for (z,t) € RN x (—00,T). Assume in addition that 0 < u(z,t) < C(T—t)_ﬁ.
Then u = 0 or there exist Ty > T such that ¥(z,t) € RN x (=00, T), u(z,t) =
w(To — )" 71,
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Remark: u = 0 or u blows-up in finite time 7y > T'.

The third main result of the paper shows that near blow-up time, the solu-
tions of equation (1) behave globally in space like the solutions of the associated
ODE:

Theorem 3 Assume that Q is a convex bounded C*® domain in RV or Q =
RY. Consider u(t) a nonnegative solution of equation (1) which blows-up at
time T > 0. Assume in addition that u(0) € HL(RYN) if @ = RY. Then Ve > 0,
3C. > 0 such that Vt € [£,T), Vz € Q,

ou
22 ylP 1yl < P
(11) T |uP™ | < elul? + Ce.

Remark: (11) is true until the blow-up time. Let us point out that the result is
global in time and in space. The same result holds for a sequence u,, as before
(Theorem 1°). For clear reasons, the result is optimal.

Remark: Let us note that the result is still true for equation

0

6—1: = V.(a(z) V) + b(z) f(u)

where f(u) ~ u? as u — 400, (a(z)) is a symmetric, bounded and uniformly
elliptic matrix, b(z) is bounded, and a(z) and b(z) are C*.

The conclusion in this case is

128 b)) < el f(w)] + C.

ot

It is unclear whether Theorems 1, 2 and 3 hold without a sign condition.
Remark: v’ = uP? is a reversible equation. Therefore the non reversible equation
behaves like a reversible equation near and at the blow-up time. Theorem 3
localizes the equation. In particular, it shows that the interactions between two
singularities or one singularity and the “regular” region are bounded up to the
blow-up time.

Note that Theorem 3 has obvious corollaries. For example:
If 2o is a blow-up point, then

-u(z,t) = +o0 as (z,t) = (29, T) (In other words, u is a continuous function
in R of (z,t) € 2 x (0,7)).

- Jep > 0 such that for all z € B(zg,€6) and t € (T — €y, T), we have
Su(z,t) > 0.

Let us notice that theorems 1 and 3 have interesting applications in the
understanding of the asymptotic behavior of blow-up solutions u(t) of (1) near a
given blow-up point xg. Various points of view has been adopted in the literature
([8], [2], [9], [14]) to describe this behavior. In [12], we sharpen these estimates
and put them in a relation.

In the second section, we see how Theorems 1 and 3 are proved using Theo-
rem 2. The third section is devoted to the proof of Theorem 2.
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2 Optimal blow-up estimates for equation (1)

In this section, we assume that Theorem 2 holds and prove Theorems 1 and
1’, Corollary 1 and Theorem 3. The first three are mainly a consequence of
compactness procedure and Theorem 2. Theorem 3 follows from Theorem 1 and
scaling properties of equation (1) used in a suitable way.

2.1 L™ estimates for the solution of (1)

We prove Theorems 1 and 1’ and Corollary 1 in this subsection.

Proof of Theorem 1: Let u(t) be a nonnegative solution of equation (1) defi-
ned on [0,7'), which blows-up at time T' and satisfies u(0) € H'(2). It is clear
that the estimates on w, for all a € Q follow from the estimates on u by (2).
In addition, the estimates on u follow from the estimates on w, for a particular
a € Q still by (2). Hence, we consider a € Q2 a blow-up point of » and prove the
estimates on this particular w, defined by

wo(y,s) = e 7 iu(a+ye 2, T —e™?).
Note that we have Va,b € Q, V(y,s) € Dy s,
wb(ya S) = wa(y + (b - 0)6%78).

We proceed in three steps: in a first step, we show that w,, Vw, and Aw, are
uniformly bounded (without any precision on the bounds). Then, we show in
Step 2 that blow-up for equation (1) must occur inside a compact set K C Q
and that u, Vu and Au are bounded in Q\ K. We finally find the optimal bounds
on w, through a contradiction argument.

Let us recall the expression of the energy E(w) introduced in (5), since it
will be useful for further estimates:

1 1 1
12) E(w,) = = [ |Vwa|? ol ——/ ofP*
(12) E(wa) 2/I W|pdy+2(p_1)/lw|pd ) lwa """ pdy

where p is defined in (6) and integration is done over the definition set of w. By
means of the transformation (2), (12) yields a local energy for equation (1):

Eap(u) = tﬁ_%ﬂ/ B|Vu(nc)|2 _Iﬁ u(x)|p+1] p(ﬂ@\;ia)dm
(13) T [l e

Without loss of generality, we can suppose a = 0. We recall that the notation
L stands for L*(Dg s).

Step 1: Preliminary estimates on w

Lemma 2.1 (Giga-Kohn, Uniform estimates on w) There ezists a
positive constant M such that Vs > —logT + 1, Vy € Dy s,

lwo(y, 8)| + [Vwo(y, )| + [Awo(y, s)| + [VAwo(¢, 5)] < M

ow
and |52 (,9)] < M(1+Jy).
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Let us recall the main steps of the proof:

Since u(0) > 0, we know from Giga and Kohn [8] that there exists B > 0 such
that

(14) Vt€[0,T), Vz € Q, |u(z,t)| < B(T —t)"#1.

In order to prove this, they argue by contradiction and construct by scaling
properties of equation (3) a solution of

0 = Av+vPinRN
v > 0
v(0) > 3

which does not exist if (N —2)p< N +2and p > 1.

The estimate on wy is equivalent to (14).

For sgp > —logT + 1 and yo € Do_s,, consider W (y', s') = wo(y' + yoe?, so +
s'). Then W(0,0) = wo(yo, s0) and W satisfies also (3). If yoe™ 2 (which is in
1) is not near the boundary, then we have |W(y',s")] < M for all (y',s") €
B(0,1) x [-1, 1]. By parabolic regularity (see lemma 3.3 in [7] for a statement),
we obtain [V (0,0)| + |AW(0,0)] + |[VAW(0,0)| < M' = M'(M). If yoe™ %
is near the boundary, then lemma 3.4 in [7] allows to get the same conclusion.
Since this is true for all (yo, s0), we have the bound for Vwg, Awg and VAwy.

The estimate on 85’;0 follows then by equation (3).

Step 2: No blow-up for u outside a compact

Proposition 2.1 (Uniform boundedness of u(z,t) outside a compact)
Assume that Q = RN and u(0) € H'(RY), or that Q is a convex bounded C*
domain. Then there exist C > 0, t; < T and K a compact set of 0 such that
Vt e [t1,T), Vo € Q\K, |u(z,t)| + |Vu(z,t)| + |Au(z,t)| < C.

Proof. Case Q@ = RN and u(0) € H*(RY): Giga and Kohn prove in [8] that
uniform estimates on &, ; (13) give uniform estimates in L{S, on the solution of
(1). More precisely,

Proposition 2.2 (Giga-Kohn) Let u be a solution of equation (1).

i) If for all x € B(20,6), Exr—ty(u(to)) < o, then Vo € B(zo,3), Vt €
(%,T), lu(t, z)| < n(e)(T — t)_ﬁ where n(o) < ca?, > 0, and c and 0
depend only on p.

i1) Assume in addition that Yz € B(zo,9), |u(#,x)| < M. There exists
oo = oo(p) > 0 such that if o < og, then Vz € B(z,3), Vt € (to'zi'T,T),
|u(t, )| < M* where M* depends only on M, §, T and ty.

Proof: see Proposition 3.5 and Theorem 2.1 in [8]. |
Now, since u(0) € H'(RM), we have u(t) € HY(RY) for all t € [0,T).
Therefore, for fixed 9 and o < gg, (13), (6) and the dominated convergence
theorem yield the existence of a compact Ko C RV such that Vo € RV \Kj,
&, 1to(ulto)) < 0.
Hence, 1) of Proposition 2.2 applied to u(. + z1,.) for z; € Ky and with § =1,
asserts the existence of a compact K; C RY such that Vo € RV\K;, Vt €
(%L T), Ju(z,t)] < M.
Parabolic regularity (see lemma 3.3 in [7] for a statement) implies the esti-

mates on Vu and Au on Q\K with a compact K containing Kj.




Optimal blow-up estimates for equation (1) 195

Case Q is a bounded convex C>% domain: The main feature in the proof
of the estimate on |u(z,t)| is the result of Giga and Kohn which asserts that
blow-up can not occur at the boundary (Theorem 5.3 in [8]). The bounds on
Vu and Au follow from a similar argument as before (see lemma 3.4 in [7]).

Step 3: Conclusion of the proof

The result has been proved pointwise. Therefore, the question is in some
sense to prove it uniformly.

We want to prove that ||wo(s)||p~ — K as s — +oc.

From [7] and [8], we know that |wy(0,s)] = & as s = +oo if b is a blow-up
point. Since ||wp(s)||z~ > |wo(ae?, s)| = |w,(0, s)], this implies that

lim inf ||wo(s)||re > &
oo

15 ..
U5) and timint o (s)]lz= + [ Vuro(s)llz + |Awo(s) s > s

The conclusion will follow if we show that

(16) lim sup llwo(s)llLee + [[Vwo(s)llLee + | Awo(s)l| L < k-
S§—>100

Let us argue by contradiction and suppose that there exists a sequence
(8n)nen such that s, — +00 as n — +0o and

lim ||lwo(sn)|lL= + |[Vwo(sn)||lLe + |[Awo(sn)||Le = & + 3€o where € > 0.

n—+4oo

We claim that (up to extracting a subsequence), we have

either lim ||Jwo(sn)||Le = K+eo
n—+oo
(17) o0 lm [Vuo(sle = e
or Jm [l Awo(sa)llze = eo.

From Proposition 2.1 and the scaling (2), we deduce for n large enough the

existence of y%o), y%l) and yg) in Do, such that

[wo(sm)llLe = |wo<y£°>,lsn)|,
(18) or |Vwo(sy)|lpe = |Vw0(y£),sn)|a
or |Awo(sn)lpe = |Awo®?, sm)|-

Let y, = yg) where 4 is the number of the case which occurs. Since y,, € Dy s,,,
(4) implies that y,e~*"/?> € Q. Therefore, we can use (2) and define for each

n €N

U"(ya 3) = wyne—’n/Z(ya s+ Sn)
e} e_%u(ye_ﬁ% +yn€_3"/2,T_€_(s+S"))

(19) = wo(y+ ynes/z, S+ 8p)

We claim that (v,,) is a sequence of solutions of (3) which is compact in
C3 (RN x R). More precisely,

loc
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Lemma 2.2 (v,)nen 9 a sequence of solutions of (3) with the following pro-
perties:
i) nllg-loo [v,(0,0)] = & + €0 or nll)r_'r_loo |V, (0,0)] = €

or nll)r_ir_loo |Av,(0,0)| = €.

i) VR > 0, Ing € N such that ¥n > no,
- vn(y, 8) is defined for (y,s) € B(0,R) x [-R, R],
- U > 0 and ||vn|| oo (B(0,r) x|~ R,R])) < B where B is defined in (14).
- Im(R) > 0 such that ||vn|lcs (a0, r)x[—r,R) < M(R)-

Proof. i) vy, satisfies (3) since w,, ,-s./2 does the same. From (19), (17) and (18),
we obtain 7): lim |v,(0,0)] =k + € or lim |Vv,(0,0)] =€
n—+o0o n—+0oo

or ngrfw |Av,(0,0)| = €.

i1) Let R > 0.

If © = RV, then it is obvious form (19) that v, is defined for (y,s) €
B(0,R) x [-R, R] for large n.

If Q is bounded, then we can suppose that up to extracting a subsequence,
yne /2 converges to Yoo € Q as n — +oo. In fact yoo € Q. Indeed, since
u(y%o)e_s"/z,T —e=%) = ep-T1,,(0,0) — +00 as n — +0o
(or |Vu(y£1)e_s"/2,T —e )| = es"(ﬁ+%)|V1}n(0,0)| — 400, or
|Au(y£2)e_s"/2,T—e_3")| = es"(ﬁ+1)|Avn(0,0)| — +00), in all cases, Yoo is a
blow-up point of u. Therefore, Step 2 implies that ¥, € K and that B(yuo,00) C
Q for some §y > 0. Together with (19), this implies that v, is defined for
(y,s) € B(0,R) x [—R, R) for large n.

From (19), (14) and the fact that w > 0, it directly follows that v, (y,s) > 0
and ||[val|pee (B(0,R)x[—R,R])) < B- .

From lemma 2.1 and (19), it directly follows that V(y, s) € B(0, R) x [ R, R],
[vn (Y, 8)|+ Vv (y, )| +|Avn (y, )|+ |VAv,(y,s)| < M and |22 < M x (1+R).
Since w > 0, parabolic estimates and strong maximum principle imply that
vnllcs(B(o,r)x - r,R)) < M(R) for some m(R) > 0. Just take m(R) = M x (1+
R).

Now, using the compactness property of (v,) shown in lemma 2.2, we find
v € C2(RN x R) such that up to extracting a subsequence, v, — v as n — +00
in C2,(RY x R). From lemma 2.2, it directly follows that

i) v satisfies equation (3) for (y,s) € RV x R

ii) v > 0 and [|v|| e (rvxr) < B

iii) |v(0,0)] = k + €g or |Vv(0,0)| = €0 or |Av(0,0)| = € with ¢ > 0.

By Theorem 2, 4) and 4i) imply v = 0 or v = k or v = @(s — sg) where
p(s) = k(1 + es)_zﬂ_il. In all cases, this contradicts #i4). Thus, Theorem 1 is
proved. |

Proof of Theorem 1 The proof of Theorem 1’ is similar to the proof of
Theorem 1. Let us sketch the main differences.

Step 1: One can remark that a uniform estimate on E(wp,4(S0)) where
so = —logT is needed. Since [luo|m2(q) is uniformly bounded, we have the
conclusion.

Step 2: One can use a uniform version of Giga and Kohn’s estimates, as
they are stated (for example) in [11].
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Step 3: Same proof.

Proof of Corollary I: Let us prove Corollary 1 now. We argue by contradiction
and assume that for some ¢y > 0, there is t,, = T" and (a, )., a sequence of blow-
up points of u in  such that

1

VneN, 0 <ulan,ty) <(1—e)r(T —1t,) 1.

Let us give two different proofs:

Proof 1: Consider the following solution of equation (3):

'Un(ya 3) = W, (y’ s — log(T - tn))

From Proposition 2.1, a,, € K, since it is a blow-up point of u. As before, we
can use a compactness procedure on v, to get a nonnegative bounded solution
v of (3) defined for (y,s) € RN x R such that |v(0,0)| < (1 —¢p)x and v, — v in
C? ... Therefore, Theorem 2 implies that v = 0 or v = (s — s0) for some s9 € R.
In particular, E(v(0)) < E(k). Since E(v,(0)) — E(v(0)) as n — +00, we have
for n large E(w,, (—log(T —t.))) = E(v,(0)) < E(k), and in particular a,, can
not be a blow-up point of u (we have from [6], for any blow-up point a of u,
E(wy(s)) > E(k) for all s > —logT). From this fact, a contradiction follows.

Proof 2: Tt is a more elementary proof based on Theorem 3. Since a,, is a
blow-up point and that the blow-up set is closed and bounded (see Proposition
2.1), we can assume that a,, — ao where as is a blow-up point.

We know from Theorem 3 that for some C%o , we have Vx € Q, Vt € [%,T),

ou €2
(20) —(z,t) —uP(z,t)| < 50

p
- Ju(z, ) + C.

Nlo )

In particular, u(z,t) = +00 as (z,t) = (a0, T) (see next subsection for a proof
of Theorem 3 and this fact (22)-(23)). Let » > 0 such that

2

(21) V(z,t) € B(0,n) x (T —1,T), Cz < %Oup(m,t).

0
2

For large n, a, € B(aw,n) and t, € [T —n,T). Therefore (20) and (21) yield

Vt € [tn,T), %(an,t) < (14 ) (an, t).

Since 0 < u(an,t,) < k(1 — €)(T — tn)_ﬁ, we get by direct integration:
Vit € [tn, min(T,T*(e))),

T—t, 7
0 <wu(an,t) <k {W ~ (1 +e)t - tn)}
with T*(eo) = t, + (1-&&% > T if g < €1(p) for some positive € (p).

Thus, a,, is not a blow-up point and a contradiction follows.
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2.2 Global approximated behavior like an ODE

We prove Theorem 3 in this subsection. It follows from Theorem 1 and
propagation of flatness (through scaling arguments) observed in [14].

Let us first show how to derive the consequences of Theorem 3 announced
in the introduction:
If zq is a blow-up point of u(t), then

(22) u(z,t) = +o0 as (z,t) = (2o, T)

(23) and ey > 0 such that V(z,t) € B(zg, &) X (T — €,T), %(m,t) > 0.

Proof of (22) and (23):
From Theorem 3 applied with € > 0, there exists C. such that V(z,t) € Qx[Z,T)

ou

(24) e

(z,t) > (1 — e)uP(z,t) — C..
Let A be an arbitrary large positive number satisfying
(25) (1-¢eA?-C. >0.

From the continuity of u(z,t), there exist ¢, > 0 and e; > 0 such that Vx €
B(zo, €1),
(26) u(z, T —e3) > A.

From (24) and (25), we have Vz € B(zo,€1), 24(z,T — €2) > 0. Now we claim
that V(z,t) € B(zo,€1) X (T —e€2,T), u(z,t) > A (which yields (22) and (23) also,
by (24) and (25)). Indeed, if not, then there exists (z1,t1) € B(zo, €1)x(T—€2,T)
such that u(z1,t1) < A. From the continuity of u, we get to € (T — €a,%1] such
that Vt € (T — €a,t2), u(z1,t) > A and u(z1,t3) = A. From (24) and (25), we
have Vt € (T — €3, t5), 2%(z1,t) > 0, therefore, u(z1,t2) > u(z1,T — €2) > A by
(26). Thus, a contradiction follows, and (22) and (23) are proved.

We now prove Theorem 3.

Proof of Theorem 3: Let us argue by contradiction and suppose that for some
€0 > 0, there exist (z,,t,)nen @ sequence of elements of  x [%,T) such that
Vn € N,

(27) |Aw(Tn, tn)| 2 €o|u(Tn, tn)[? + n.

Since || Au(t)|| = (o) is bounded on compact sets of [T,T), we have that t, — T
as n — +o0o. We can also assume the existence of 2o, € 2 such that z,, = 2
as n — +oo. Indeed, if not, then either d(z,,dQ) — 0 (if Q is bounded) or
|zn| = 400 (if @ = RY) as n — +oo, and in both cases, (27) is no longer
satisfied for large n, thanks to Proposition 2.1.

We claim that z., is a blow-up point of u. Indeed, if not, then parabolic
regularity implies the existence of a positive d such that
lu(., t)|lw2.o (B(ze0,5)) < C for some positive C, which is a contradiction by (27).

Theorem 1 implies that u(zy,, t,)(T —t,) T s uniformly bounded, therefore,
we can assume that it converges as n — +o00.
Let us consider two cases: .
- Case 1: u(zy, tn) (T —t,) =1 = &' > 0 ((zp,t,) is in some sense in the singular
region “near” (Zeo,1")). From (27), it follows that ||Au(ty)||ze > |Au(zn, tn)| >
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N\ P P
€0 (%) (T —t,)” »-1 with ¢, — T, which contradicts Theorem 1.

- Case 2: u(Zn,tn) (T — tn)P_11 — 0 ((zn,tn) is in the transitory region between
the singular and the regular sets).
Let us first define (¢(xr))n such that t(x,) < t,, t(x,) = T and

(28) (@, Hwn))(T = t(zn)) 7T = ko

where kg € (0, k) satisfies V¢t > 0, Va € Q, Sa,t(not_ﬁ) < Lo B <0
and og is defined in Proposition 2.2.

Step 1: Existence of #(z,)

Since 7, is a blow-up point of u, tll,n% U(T oo, t)(T — t)ﬁ = k. It follows
that for any § > 0 small enough, there exists a ball B(z,d") such that Vx €
B(ze0,9"), 5P_i1u(:n,T —4) > ?’"4&. Since z, — oo as N — 400, this implies
that

(29) Vn > nq, 5ﬁu(mn,T—5) > £t Ko

for some n1 = n41(8) € N. Since u(zp, tn)(T — tn)zo1T1 — 0, we have the existence
of ts(xzy) € [T —4,t,] C[T —6,T) such that u(zy,ts(z,))(T — t(;(a:n))P%l = kKo,
for all n > ny(d), where no(d) € N. Since § was arbitrarily small, it follows from
a diagonal extraction argument that there exists a subsequence t(z,) — T as
n — +oo such that ¢(z,) < t, and

1
w(@n, Haa))(T — Hen)) 7T = ko.
Now, we claim that a contradiction follows if we prove the following Propo-
sition:

Proposition 2.3 Let

(30) va(&,7) = (T = t(z0)) T u(@n + E3/T — t(@n), t(xn) + 7(T = t(zn))-
Then, vy, is a solution of (1) for T € [0,1), and there exists ng € N such that
Vn > ng,

(31) Vr € [0,1), |Ava(0,7)] < Zlon(0, )P

Indeed, from (31) and (30), we obtain: Vn > ng, Vt € [t(z,),T),
|Au(zn, 1)) = (T = t(za)) " TV Agvn (0, 7(t, n))|
< (T - t(xn))_ﬁ|vn(0a7—(tan))|p = Z|u(zn,t)|P with 7(t,n) = ;—_tt((a;,;)),
which contradicts (27), since ¢, > #(x,). Thus, Theorem 3 is proved.

Step 2: Flatness of v,
In this Step we prove Proposition 2.3.
We claim that the following lemma concludes the proof of Proposition 2.3:

Lemma 2.3 i) Véo > 0, VA > 0, Ins3(do, A) € N such that Yn > nz(do, A),
for all |€] < A and T € [0,3], |va(€,0) — ko| < do, [Vevn(€,7)] < do and
|Agvn(§,7)| < do.

it) Ve > 0, VA > 0, dny(e,A) € N such that Vn > n4, V7 € [0,1), for
€] < 4, lon(é,7) —0(7)l <€ [Von(&,7)| < € and [Avy(§, 7)| < € where 9(r) =

Ko

p—1 P—1 -
P ((i) - 7') is a solution of g—ﬁ = 0P with 9(0) = kKo.



200 Optimal estimates for blow-up rate and behavior

Indeed, if € is small enough and n is large enough, then V7 € [0, 1), v,(0,7) >
58(0) = % and |Av,(0,7)] < (5)” ¢ < $loa(0, 7).

Proof of lemma 2.3: i) Let 4o > 0 and A > 0. From (28) and (30), we have:
for all |¢] < A and 7 € [0, 3]:
’Un(O, 0) = Ko,
[0n(€,0) = v2(0,0)| < (T — () 7T 72 A|| Vu(t(20)) || oo ()

Von(€,7) = (T = H(wn)) 7TV (20 + /T = H(o0), an) + (T~ H(zp)))

= (ﬁ)”j+§ (T — (t(zn) + 7 (T — t(24))) 7772 x

Vu (a:n + 6T —t(@n), tan) + (T — t(xn))) and

Ava(&,7) = (T = @) P Au (20 + &y/T = @), an) + (T = t(zn))) =

()7 (0 = toa) + 7 (T )7
Au (a;n + 6T —t(@n), tan) + (T — t(mn))).

Since 7 < 3, ¢(2,,) = T as n — +o0, and (T — t)PlTl"'%HVu(t)HLoo(Q) +
(T - t)ﬁ—‘rl“Au(t)”Loo(Q) — 0 as t = T (Theorem 1), 7) is proved.

i1) From ¢) and continuity arguments, it follows that for all || < A,
Ee.1 (vn(0)) < 2&1(ko) < 0p for n large enough, by definition of k. Therefore,
from Proposition 2.2 (applied with § = 1 and using translation invariance), we
have V7 € [L,1), V[§] < 4, |vn(&,7)| < M(p).

By classical parabolic arguments, we get

3 A
(32) V€ [ 1), VI < 55 [val + [Von| +|Ava| < M(p).

Now, using 7), (32) and classical estimates for the heat flow, we get for all € > 0:
V€| < 4, V7 €[0,1), [Vua(&,7)| < € and |Av, (€, 7)| < € if n > ns(e, A).

Since v, is a solution of equation (1), combining this with i) and ODE
estimates yields for all € > 0: V|¢| < f, Vr € [0,1), |vn(€,7) —9(7)] < € if
n > ng(e, A). This concludes the proof of i4). |

3 Classification of connections between critical

points of equation (3) in L,

We prove Theorem 2 and Corollaries 2 and 3 in this section.

We first prove Theorem 2, and then we show how Corollaries 2 and 3 can be
deduced from Theorem 2.

Proof of Theorem 2: We assume that 1 < p and (N — 2)p < N + 2, and
consider w(y, s) a nonnegative global bounded solution of (3) defined for (y, s) €
RY x R. Our goal is to show that w depends only on time s.

We proceed in 5 steps.

In Step 1, we show that w has a limit w4 as s — +o0o, where w4 is a
critical point of (3), that is w1 = 0 or wio, = k. We focus then on the non
trivial case, that is w_, =k and w4 = 0.

In Step 2, we investigate the linear problem around &, as s - —o0, and show
that w would behave at most in three ways.
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In Step 3, we show that among these three ways we have the situation
w(y, s) = (s — s¢) with p(s) = k(1 + es)_P_il. We then show (respectively in
Step 4 and in Step 5) that the two other ways actually can not occur, we find in
fact a contradiction through a blow-up argument for w(s) using the geometrical
transformation:

(33) a — w, defined by w,(y,s) = w(y + ae?, s)

(w, is also a solution of (3)) and a blow-up criterion for equation (3).

Step 1: Behavior of w as s - +o0

This step can be found in Giga and Kohn [6]. The results are mainly conse-
quences of parabolic estimates and the gradient structure of equation (3). Let
us recall them briefly. We first restate lemma 2.1 of section 2:

Lemma 3.1 (Parabolic estimates) There is a positive constant M such that
V(y,s) € RN x R,

ow
[0 + (Tl 9)] + S, 9] < M and |520,9)] < 21+ o),

Lemma 3.2 (Stationary solutions) Assumep < (N+2)/(N—2) or N < 2.
Then the only nonnegative bounded global solutions in RN of

1 w
4 = Aw — =. _ p—1
(34) 0 w 2va p_1+|w| w
are the trivial ones: w =0 and w = k.

Proof: The following Pohozaev identity can be derived for each bounded solu-
tions of equation (3) in RV (see Proposition 2 in [6]):

p—1
(V2 pV = 2) [ [Vulpdy + 205 [P (Tulody = .
Hence, for (N —2)p < N + 2, w is constant. Thus, w = 0 or w = k. |

Lemma 3.3 (Gradient structure) Assumep < (N +2)/(N —2) or N < 2.
We define for each w solution of (3)

— 1 2 # 2 — L p+1
EEw) = 3 [ Vulpdy+ s [ oty = o= [t pay
o—lyl?/4
(36) where p(y) = A

Then, Vsq,s2 € R,

(37) / /R )
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Outline of the proof: (see Proposition 3 in [6] for more details).

One may multiply equation (3) by %—f p and integrate over the ball B(0, R)
with R > 0. Then, using lemma 3.1 and the dominated convergence theorem
yields the result. |

Proposition 3.1 (Limit of w as s — +oc) Assume p < (N +2)/(N —2) or
N < 2. Let w be a bounded nonnegative global solution of (3) in RN*L. Then

Wioo(y) = sﬂriloow(y,s) exists and equals 0 or k. The convergence is uniform

on every compact subset of RN . The corresponding statements hold also for the
limit w_oo(y) = lim w(y,s).
§—>—0CC

Outline of the proof. (see Propositions 4 and 5 in [6] for more details).

Let (s;) be a sequence tending to +o00, and let w;(y, s) = w(y, s+ s;). From
lemma 3.1, (w;) converges uniformly on compact sets to some wioo(y,s) and
Vw; — Vwi a.e. Assuming that s;4; — s; — +00, one can use lemma 3.3 to
show that w; does not depend on s. Therefore, Wy = 0 or wi = & by lemma
3.2. The continuity of w then asserts that wy., does not depend on the choice
of the subsequence (s;). The analysis in —oo is completely parallel. |

According to (37) (with s; = —o0 and sy — 4+00), there are only two cases:
- E(w_oo) — E(wioo) = 0: hence, %—’: = 0. Therefore, w is a bounded global
solution of (34). Thus, w = 0 or w = k according to lemma 3.2. This case has
been treated by Giga and Kohn in [6].
- B(w-co) — B(wico) > 0: since E(x) = (5 — ;q)s*T" [ pdy > 0 = E(0), we
have (W_co,Wioo) = (k,0). It remains to treat this case in order to finish the

proof of Theorem 2.
In the following steps, we consider the case

(w—007 w+oo) = (K, 0)

Step 2: Classification of the behavior of w as s & —oc:
Since w is globally bounded in L* and w — & as s — —o0, uniformly on
compact subsets of RV, we have lim |lw —&||z2 = 0 where L3 is the L*-space
§——00

associated to the Gaussian measure p(y)dy and p is defined in (36).
In this part, we classify the Lﬁ behavior of w—k as s = —o0. Let us introduce
v =w — k. From (3), v satisfies the following equation: V(y, s) € RV +!,

(38) % = Lo+ S

where

1
(39) Lv=Av— §y.VU +vand f(v) = |v+ &P (v + &) — kP — prP L.
Since w is bounded in L, we can assume |v(y, s)| < M, and then |f(v)]| < Cv?

with C = C(M).
L is self-adjoint on D(£) C L2. Tts spectrum is

spec(L) = {1 — %|m € N},
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and it consists of eigenvalues. The eigenfunctions of £ are derived from Hermite
polynomials:

-N=1:
All the eigenvalues of £ are simple. For 1— 7 corresponds the eigenfunction

(40) 1) = 3

n=0

— 2n)' (_1)nym—2n.

hy, satisfies [ hphmpdy = 2"n!0pm, . Let us introduce
(41) b = B o 25

- N>2:
We write the spectrum of £ as

mi+ ...+ my

spec(L) = {1 — 5

|ma, ...,mn € N}.
For (m1,...,mn) € NV, the eigenfunction corresponding to
1— m1+--2-+mN is

Yy — hm1 (yl)"'th (yN)7
where h,, is defined in (40). In particular,

*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunction
is

(42) Ho(y) =1,

*% is of multiplicity IV, and its eigenspace is generated by the orthogonal
basis {H; i(y)|i = 1,..., N}, with Hy ;(y) = h1(y;); we note

(43) Hl(y) = (Hl,l(y)7""H1,N(y))’

*0 is of multiplicity N(N+1) , and its eigenspace is generated by the ortho-

gonal basis {Hs;;(y)|i,7 = 1,..., N,i < j}, with Hy ;;(y) = ha(y;), and for
i < j, Haij(y) = ha(y:)h1(y;); we note

(44) Hy(y) = (Ha,i;(y),i < j).

Since the eigenfunctions of £ constitute a total orthonormal family of L%,
we expand v as follows:

(45) (Y, 5) = Y vm(s)-Hm(y) +v-(y, )

m=0

where

vo () is the projection of v on Hy,

v1,i(s) is the projection of v on Hy ;, v1(s) = (v1,i(8), ...,v1,n(8)), H1(y) is given
by (43),

va,35(s) is the projection of v on Ha ;j, i < j, va(s) = (va,5(s), < j), Ha(y) is
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given by (44),
v_(y,s) = P_(v) and P_ the projector on the negative subspace of L.
With respect to the positive, null and negative subspaces of £, we write

(46) (Y, 8) = v1+(Y, 5) + Vnunn (y, 8) + v-(y, )

where ’U+(y, S) = P+(’U) = Zm 0 'Um(S) Hm(y)7
Vnuii(Y, 8) = Pnun(v) = v2(8).Ha(y), Py and P,y are the L% projectors respec-
tively on the positive subspace and the null subspace of L.

Now, we show that as s — —oo0, either vg(s), v1(s) or va(s) is predominant
with respect to the expansion (45) of v in L2. At this level, we are not able to
use a center manifold theory to get the result (see [3] page 834-835 for more
details). In some sense, we are not able to say that the nonlinear terms in the
function of space are small enough. However, using similar techniques as in [3],
we are able to prove the result. We have the following:

Proposition 3.2 (Classification of the behavior of v(y,s) as s - —o00 )
As s = —o0, one of the following situations occurs:

i) v1(8)] + [[onu (Y 8)l L2 + [[v-(y, 8)l| 2 = o(vo(s)),

i) [vo(s)| + lvnuu(y, $)llz2 + llv-(y, s)llz2 = o(lv1(s)]),

i#) 104 (5, )22 + 10— (3, 5)l1z3 = olomatt (> 9)llz2)

Proof: See Appendix A.

Now we handle successively the three cases suggested by proposition 3.2 to
show that only case i) occurs.

In case i), we end up to show that w(y, s) = p(s—sp) for some so € R, where
@ is defined in (9). In cases i7) and ii), we show that the solutions satisfy through
an elementary geometrical transformation a blow-up condition for equation (3)
considered for increasing s, which contradicts their boundedness, and concludes
the proof of Theorem 2.

Step 3: Case i) of Proposition 3.2: 35y € R such that w(y, s) = ¢(s—sp)

Proposition 3.3 Suppose that |v1(s)] + lvnui(y, 8)llzz + lv-(y, s)llz2
= o(vg(s)) as s — —oo, then there exists so € R such that:
i) Ve > 0, vo(s) = — 7€t + 0(e®9%) as s — —o0,

i) V(y, s) € RV w(y,s) = p(s — s¢) where ¢(s) = k(1 + es)_ﬁ.

Remark: This proposition asserts that if a solution of (38) behaves like a
constant independent of y (that is like vg(s)), then it is exactly a constant.

Proof: i) See Step 3 of Appendix A and take sg = —log(— M)

We remark that we already know a solution of equation (38) which behaves
like 7). Indeed, ¢(s — so) — & = (¢(s — so) — k)ho is a solution of (38) which
satisfies

es7% 4 0(6(2_6)3) as § — —o0.

ol —s0) — = L

From a dimension argument, we expect that for each parameter, there is at most
one solution such that:

vo(s) ~ — e’7% as s =& —o0.

p—1
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(if for example, center manifold analysis applies). We propose to prove this fact.
In other words, our goal is to show that

V(y, S) € RN+17U(y7 S) = (,D(S - SO) - K.

Since (38) is invariant under translations in time, we can assume so = 0 without
loss of generality.
For this purpose, we introduce

(47) V(y,s) =v(y,s) — (p(s) — k) = w(y,s) — ¢(s).
From (3), V satisfies the following equation:

ov

5s = (L+1Us)V+EV)

where £L=A — 1y V +1,1(s) = —% and
F(V)=|o+ V[P (p+ V) —¢P — ppP~1V. Note that Vs < 0, |F(V)| < C|V|?
where C'= C(M) and M > ||v|| -

We know from Step 3 in Appendix A that

Vo(s)| + [Vi(s)] = O(e®=9?), [[Vauu(s)ll 1z = o(e®) as s — —oo.
The following Proposition asserts that ¥V = 0, which concludes the proof of
Proposition 3.3:
Proposition 3.4 Let V' be an L™ solution of
ov
— =(L+Us)V+F(V)
0s
defined for (y,s) € RV x R such that V — 0 as s — +o00 uniformly on compact
sets of RV,
[Vo(s)| + V()] = 0(e2=9%) and ||Viun (s)]12 = ole") as 5 — —oo.
Then V = 0.
Proof: see Appendix B.
Step 4: Irrelevance of the case where v;(s) is preponderant

In this case i7) of Proposition 3.3, we use the main term in the expansion of
v(s) as s = —oo to find ag and sg such that

(48) / Wao (4, 50)p(y)dy > &

where w,, is defined in (33). Since w > 0, we find that (48) implies that w,,
(which is also a solution of (3)) blows-up in finite time S > so (and so does w),
which contradicts the fact that w is globally bounded. It is in fact mainly the
only place where the hypothesis

w >0

is used. More precisely, let us state the following Proposition:

Proposition 3.5 (A blow-up criterion for equation (3)) Consider W > 0
a solution of (3) and suppose that for some so € R,
J Wy, s0)p(y)dy > [ kpdy = k. Then W blows-up in finite time S > sq.
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Proof We argue by contradiction and suppose that W is defined for all s €
[s0,+00). If V.= W — k, then V satisfies equation (38). Let us define

20(s) = / V(y,5)p(y)dy.

Integrating (38) with respect to pdy, we obtain

2() = 20(5) + / V(. 9))pdy

where f(z) = (k +2)? — kP — pP~ 'z for kK + 2 > 0.

It is obvious that f is nonnegative and convex on [—&, +00). Since W = k+V >
0, p>0and [ pdy =1, we have the following Jensen’s inequality:

/ F(V(y,))pdy > f( / V(y, 8)pdy) = f(z0(s)).

Therefore,
(49) 20(5) > z0(s) + f(20(s)).

Since f(z) > 0 for z > 0 (f is strictly convex and f(0) = f'(0) = 0) and
z0(s0) > 0 by the hypothesis, by classical arguments, we have Vs > sq, 24(s) > 0,
therefore, Vs > sq, 20(s) > 0. By direct integration, we have Vs > sq,

2(3) gy too dy
s—50< / - < / T
z0(80) (."l?) z0(s0) f(.Z')
Since f(lz) ~ ‘zl‘p as s — +o00, a contradiction follows and Proposition 3.5 is
proved. |

Proposition 3.6 (Case where v;(s) is preponderant) Suppose that
[vo(s)] + llvnun(y, s)llzz + llv-(y, s)llzz = o(|vi(s)]), then:

i) 3C1 € RV\{0} such that vo(s) ~ 2|C1[®se® and vi(s) ~ Cre®/? as s —
—00.
i) Jap € RN, 3sg € R such that [ wa, (y,50)p(y)dy > k where wq, introduced
in (33) is a solution of equation (3) defined for (y,s) € RN x R satisfying
lwao ll oo RV xRy < B-

From Proposition 3.5, i) is a contradiction.
Remark: w, has a geometrical interpretation in terms of w(y, s). Indeed, from
w(y, s), we introduce u(x,t) (as in (2)) defined for (z,t) € RV x (—o0,0) by:
= —=, s=—log(~1), u(z,t) = (~t) FTw(y,s).

Now, if we define 1, (y, s) from u(z,t) by (2) as

, 5= —log(—t), ba(y,s) = (—t)7Tu(z,1),

n

then, w, = w,.
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Proof of Proposition 3.6: i) follows from Step 3 in Appendix A.

Therefore, we prove i). It is easy to check that w, satisfies (3). Moreover,
from (33) we get ||wal|poomnxr) = ||W]|Loe(mrxr) < B. We want to show that
there exist a € RY and sy € R such that [w,(y, so)p(y)dy > k. From (33), we
have:

Jwaly, s)pdy = [w(y + ae*/?, 5)pdy.
Let us note a = ae®/2. The conclusion follows if we show that there exist sy € R
and a(so) € RV such that [w(y + a(so), so)pdy > k.

For this purpose, we search an expansion for [w(y + a, s)pdy as s & —o0

and a — 0.

_ly=af?
Jwly +a,8)pdy = [w(y,s)p(y — a)dy =k + [ v(y, ) Sgymrdy
o] oy
=k+e 1 [o(y,s)py)e= dy
Lo/ 2 ay
=k+e 1 [v(y,s)p(y) (1 + %+ (e.y) fol(l — §)egTd§) d
|

= o+ (1 OffaP) o0 )+ (1)

where (I) = e 5 [ dyv(y, s)p(y) S [y dE(1 — €)ets".
Using Schwartz’s inequality, we have

(D] < (J oly, )p)dy) " (fdy 2 p(y) (fy de1 —§)e£%)2>1/2
< @l x 5 (fdy|y|4p<y) (Ji aea —g)e%)z)” i

o 1/2
< [lv(s)llez x 155 (f dulyl*p@)e)” = Claf|lv(s)l.z
Therefore us1ng the fact that |lu(s)||rz ~ 2[vi(s)|
[w(y +a,s)pdy = k +vo(s) + v (s) + O(|al?e/?)
=k + £|Cy|>se® + ose®) + a.Cles/2 + o|a|e®/?).

p

O(e®*/?) and i), we get:

Now, if we make @ = a(s) = —1 |c | and take —s large enough, then [ w(
a(s),s) — k > La(s).Cre?/? = — 5/2 —|C1| > 0, and the existence of ag and s is
proved.

This concludes the proof of Proposition 3.6. |

Step 5: Irrelevance of the case where vs(s) is preponderant
As in the previous part, we use the information given by the linear theory
at —oo to find a contradiction in the case where #i%) holds in Proposition 3.2.

Proposition 3.7 (Case where vy(s) is preponderant) Assume that

o 9z + -5, )1z = o(lvmaa(,9)l2), then:
i) there exists 6 > 0, k € {0,1...,N — 1} and @ an orthonormal N x N
matriz such that

Vnut(y,8) = yLA(s)y — 2trA(s)
K 1
where A(s) = “Ips Ao+ O( 1+5) as s — —0oo,

_ In_p O -1
and In_y is the (N — k) x (N — k) identity matriz. Moreover,

lv(s)llzz = —p% ? +0 (|s|++6> ; vo(s) = 0(5%) and v1(s) = O(=)-
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i) Jag € RN, Jsg € R such that [wa,(y,50)p(y)dy > k where wq, defined in
(33) is a solution of equation (3) satisfying ||wa,||Le®r~xr) < B.

From 4%) and Proposition 3.5, a contradiction follows.

Proof of i) of Proposition 3.7

The first part of the proof follows as before the ideas of Filippas and Kohn
in [3]. Then, we carry on the proof similarly as Filippas and Liu did in [4] for
the same equation when the null mode dominates as s — 4+o0. Since the used
techniques are the same than in [3] and [4], we leave the proof in Appendix C.

Proof of ii) of Proposition 3.7

We proceed exactly in the same way as for the proof of i) of Proposition
3.6. w, satisfies equation (3), and the L* bound on w, follows as before.

By setting a = ae®/2, the proof reduces then to find so and a = a(sg) such
that [ w(y + a(so), s0)pdy > k.

For this purpose, we search an expansion for [w(y + ,s)pdy as s & —oc0
and a — 0.

ly—a|?
Jwly+a,8)pdy = [w(y,s)p(y — a)dy =k + [v(y, s) gryardy
_lei? e
=r+e 1 [o(y,s)p(yle
_lal? fo
= e Loty 9)0) (1+ Lo G g €7 dg) d
We write
(50) [ty -+ aopdy = -+ (1) + (1D,
where e 2
() =e "% (v ()+av1())+6‘deyv(y7 $)p(y) S [ de(1 - €)2et S
lal?
and (IT) = te= 7 [o(y,s *p(y)dy.
From 1) of Proposition 3 7 and Schwartz’s inequality, we have
C 3
(51) (D)] < _+c|f;||
Since v = v_ + Vpuu + 4+ = V— + Upuy + 1.y + v, we have from the

orthogonality of v_ and vy + v4:
lo|?

(IT) = =5 [w(y,s)(ay)*pdy

= T (unls) [ @)?pdy +01(9)- [ 9(0.9)pdy) + 5 [ () pdy
_|ﬂ|
= wo(5)0al2) + 5 [ (47 Als)y — 26r A(s)) () oy

al? _la®
=0 (I ‘ILJ) + 5 TR J (T Aoy — 2trAp)(a.y)? pdy
for some § > 0, according to 7) of Proposition 3.7, with

m=a( e D) e

With the change of variable Yy = Q‘ (@ is an orthonormal matrix) we write:

(11) = 0 (k) + = 4p||f§ x (Qa.z)*p(2)dz,
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therefore,

(52) (II) =

s|z/z ~2@uatniz 0 (15 ) o (7).

Gathering (50), (51) and (52), we write:
Jwly + a,s)pdy

a3 oo 10 (5) o (),

4pISI

Now, if we take a = a(s) = |S‘+/4Q_lel where e! = (1,0, ...,0), then

K 1

If we take —s large enough, and a(s) = e~*/2a(s), then

/w(y + a(s)e’’?,s) > k.

This concludes the proof of i) of Proposition 3.7 and the proof of Theorem
2.

We now prove Corollaries 1 and 2:

Proof of Corollary 2:

We consider w a nonnegative solution of (3) defined for (y,s) € RV x
(—00,5*) where s* € RU {4+00}. We assume that there is a constant Cy such
that
(53) Va € RN, Vs < s*, E,(w(s)) < Co

where E, is defined in (10).

Through some geometrical transformations, we define below , a solution of
(3) defined on R x R, which satisfies the hypotheses of Theorem 2. Then, we
deduce the characterization of w from the one given in Theorem 2 for w.

Let us define u(t) a solution of (1) by:

t), u(@,t) = (=) "7 w(y, )

=2 s=-1o (-
y_\/—_t’ - g

where (z,t) € RV x (—oo,T*) with T* = —e~*" if s* is finite and T* = 0 if
s* = 4o00. Then we introduce @ a solution of (3):

(54)

z
T —

(55) y= , 5= —log(T* — 1), W(y,s) = (T* — t)7=Tu(z,t)

o~

defined for (y,s) € RNV x R. We have then V(y,s) € RN x (—oo, s*),
Yy
VI+T*es’
We claim that @ € L®° (RN x R). Indeed, from (53), (54) and 4) of Proposition

2.2, we have V(z,t) € RN x (—o0,T*), |u(z,t)| < M(Co)(T* — t)_ﬁ. Hence,
(55) implies that V(y,s) € RN x R, |w(y, s)| < M(Co).

(56) w(y,s) = (14 T*e*) 7T s —log(1 + T*e®)).
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Since w is nonnegative, W is also nonnegative, and then, by Theorem 2 we
have:
either w =0, or w = &
or w(y,s) = p(s — so) for some so € R, where ¢(s) = x(1 + es)_ﬁ.
Therefore, by (56), we have:

either w = 0, or w(y,s) = k(1 — e5=%" )51
1

or w(y,s) = (1—e=%") 51k (1+exp(s —log(l —e*~*" —s9))) 7~
1

=r(l+e’(e® —e*")) 7.
Since sqg is arbitrary in R, this concludes the proof of Corollary 2.

Proof of Corollary 3:

Let u(z,t) be a nonnegative solution of (1) defined for (z,t) € RN x (=00, T)
which satisfies |u(z,t)| < C(T — t)_ﬁ. We introduce w(y, s) = wo(y, s) where
wp is defined in (2). Then, it is easy to see that w satisfies all the hypotheses
of Theorem 2. Therefore, either w = 0 of there exists ¢y > 0 such that V(y,s) €
RV w(y,s) = k(1 + toes)_z’_il. Thus, either v = 0 or u(z,t) = k(T + to —
t)_ﬁ. This concludes the proof of Corollary 3.

A Proof of Proposition 3.2

We proceed in 3 steps: In Step 1, we give a new version of an ODE lemma
by Filippas and Kohn [3] which will be applied in Step 2 in order to show that
either vy, or vy is predominant in Lf) as s — —oo. In Step 3, we show that in
the case where vy is predominant, then either vg(s) or v;(s) predominates the
other.

Step 1: An ODE lemma

Lemma A.1 Let z(s), y(s) and z(s) be absolutely continuous, real valued func-
tions which are mon negative and satisfy

i) (x,y,2)(s) = 0 as s &> —o0, and Vs < s, z(s) + y(s) + z(s) # 0,

i1) Ve > 0, dsg € R such that Vs < sq

2 > cpz—e(z+y)
(57) l#] < e(x+y+2)
y < —coy+e(x+ 2).

Then, either x +y = o(z) or y + z = o(z) as s & —o0.

Proof: Filippas and Kohn showed in [3] a slightly weaker version of this lemma
(with in the conclusion z,y,z — 0 exponentially fast instead of z + y = o(2)).
We adapt here their proof to get the proof of lemma A.1.

By rescaling in time, we may assume ¢y = 1.

Part 1: Let € > 0. We show in this part that either:
(58) sy (€) such that Vs < s2, z(s) + y(s) < Cex(s),

(59) or Jdsa(€) such that Vs < so, z(s) + y(s) < Cez(s).
We first show that Vs < sg(e€), 8(s) < 0 where § =y — 2¢(z + 2).
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We argue by contradiction and suppose that there exists s, < sp(€) such
that B(s«) > 0. Then, if s < s, and B(s) > 0, we have form (57)
Bls) = § - 2e(i+2) < —y+ e@+2) + 23z +y + 2) — 2e(z — €@ +)) <
—€(1 — 4e — 8€?)x — €(3 — 2¢ — 8€2)z < 0.
Therefore, Vs < s, 6(s) > B(s«) > 0, which contradicts 8(s) - 0 as s - —o0 .
Thus

(60) Vs < sole), y < 2€(z + 2).
Therefore, (57) yields

z > %z — 2ex
(61) B < Se(z+2)

Let v(s) = 8ex(s) — z(s). Two cases arise then:

Case 1: Aso < sp(e) such that y(s2) > 0.

Suppose then v(s) = 0 and compute (s).
Y(s) = 8ei — 2 < 16€*(z + 2) — 52 + 2ex = —2(s) (1 — 2¢ — 16€2).
Since z(s) > 0 (otherwise z(s) = 0, z(s) = 0 and then y(s) = 0 by (60), which
is excluded by the hypothesis), we have

v(s) =0= 4(s) < 0.

Since y(s2) > 0, this implies Vs < s3, v(s) > 0, i.e. 8ex(s) > z(s). Together with
(60), this yields (58).

Case 2: Vs < sg(e), v(s) < 0i.e. 8ex < 2(s).
In this case, (61) yields

1 1
Vs < soe), 22 1% and & < (2¢ + Z)Z'

Therefore, we get by integration:

1 s 1 S
2(5) > / (t)dt and a(s) < (2 + ) / 2()dt,
which yields z(s) < (8¢ + 1)z(s). We inject this in (61) and get
&(s) < 2e(z + z) < 2ez(2 + 8¢). Again, by integration:
z(s) < 26(2 + 8¢) [°__ z(t)dt < 8e(2 + 8e)z(s). Together with (60), this yields
(59).

Part 2: Let € < 5. Then either (58) or (59) occurs.

For example, (58) occurs, that is Js2(€) < sg such that Vs < s5, 24y < Cex.
Let € < € be an arbitrary positive number. Then, according to Part 1, either
Vs < sy, z+y < Ce'z for some sh(e'),
or Vs < s, y + z < C€'z for some s5(¢').

Only the first case occurs. Indeed, if not, then for s < min(ss,s)), z <
Ce'z < Ce'Cex < C?6%x since € < €. Since (Ce)? < 1, we have z = 0 and
z =y =0 for s < min(ss, s}), which is excluded by the hypotheses.

Do the same if (59) occurs.

This concludes the proof of lemma A.1. |

Step 2: Competition between vy, vy, and v_
In this step we show that either |lv_(s)||zz + [[v+(s)llz2 = ollvnuu(s)||z2)
(which is case #i7) of Proposition 3.2) or
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llv—(s)llL2 + llvnuu(s)llzz = o([lv4(s)l|z2) (which yields case ) or iz) of Propo-
sition 3.2) in Step 3).

This situation is exactly symmetric to the one in section 4 in Filippas and
Kohn’s paper [3]. Indeed, we are treating the same equation (38), but we have
lv(s)llLge. — 0 as s — —oo whereas in [3], ||v(s)||ree — 0 as s — +oo. Never-
theless, the derivation of the differential inequalities satisfied by v_, v, and
vy in [3] is still valid here with the changes: “s — +00” becomes s - —oo
and “s large enough” becomes “—s large enough”. Therefore, we claim that [3]
implies:

Lemma A.2 Ve > 0, 3sg € R such that for a.e. s < sp:

2 > (3-ez—el@+y)
|| < elx+y+2)
g < —(3-ey+e(z+2)
where 2(s) = o4 (5)llz2, ©(5) = [onun(s)l1z2 and

y(s) = lv—(s)llzz + llly|>v*(s)ll 23 for a fived integer k.

Now, since [[v(s)|[ze — 0 as s = —o0, we have (z,y,2)(s) = 0 as s = —oo.
We can not have z(s1) +y(s1) +2(s1) = 0 for some s; € R, because this implies
that Vy € RY, v(y,s1) = 0, and from the uniqueness of the solution to the
Cauchy problem of equation (38) and v(s;) = 0, we have V(y,s) € RV x R,
v(y, s) = 0, which contradicts k +v — 0 as s = +00. Applying lemma A.1 with
Cco = i, we get:
either [lu_(s)llz2 + [[v4(s)ll22 = o(l[vnuu(s)llL2)
or [[v—(s)llzz + llvnuu(s)llrz = ollv+(s)llz2)-

Step 3: Competition between vy and v;
In this step, we focus on the case where [|v_(s)||zz + [|vnuu(s)||z2

= 0(|lv4(s)llr2). We will show that it leads either to case i) or case i) of
Proposition 3.2.
Let us first remark that lemma A.1 implies in this case that

(62) Ve > 0, 2(s) = [log(s)]lr2 = O(e379) as s — —oco.

Now, we want to derive from (38) the equations satisfied by vg and v1. We
must estimate [ f(v(y,$))km(yi)p(y)dy for m = 0,1 and i = 1,..N (see (41) for
km)- Let us give this crucial estimate:

Lemma A.3 There exists 6o > 0 and an integer k' > 4 such that for all § €
(0,30), 3so € R such that Vs < so, [v?|y|* pdy < co(k')34* 2(s)?.

) 1/2
Proof Let I(s) = ( [ v |yl* pdy) . We first derive a differential inequality
satisfied by I(s). If we multiply (38) by v|y|* p and integrate over RV, we obtain:

d 7 7
%E(I(s)z) = /v.ﬁv|y|k pdy+/vf(v)|y|k pdy.

Since v is bounded by M, we get [vf(v)|y|* pdy < MC [ v|y|¥ pdy.
After some calculations, we show that
JoLolyl* pdy < §(k+ N —2) [ |y|* 2v?pdy + (1 - §)I(s)*.
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Using Schwartz’s inequality, we find:
1/2
JPlyF ~2pdy < I(s (f v?[y|¥ 4pdy) :

Let us bound (f v2|y|k1_4pdy) I K >4 and § > 0, then

/ 1/2 , 1/2 , 1/2
(f vlyl* ‘4pdy) < (fmsa_l vly|* ‘4pdy) + (f‘y‘za_l v |y|* —4pdy)
< &K ([0 pdy)l/z 621

< 262K /24 (s) + 621 since ([ v? pdy) ~ ([ v3 pdy) 172 _ 2(s) as s — —o0.
Combining all the previous bounds, we obtain:
I'(s) < —0I +d6> % /22 with § = £ —1 - MC — £ (k' + N —2)6%> and d =
E' (K +N-2).
We claim that there exist an integer k' > 4 and d¢ > 0 such that Vd € (0, do),
6 > 1. Hence,
(63) I'(s) < —=I(s) + d6>~* /24(s).
Now, we will derive a differential inequality satisfied by z in order to couple it
with (63), and then prove lemma A.3.

We project (38) onto the positive subspace of £, we multiply the result by
vy p and then, we integrate over RV to get:

1 d
ARG /£U+ U+Pd3/+/P+ v))v4pdy.

Since (Spec £) NRY. = {1, 1}, we have [ Lvi.vipdy > L2(s)%
Using Schwartz’s inequality, we obtain:
[ Pr(f()vspdy| < (f P(f(0)2pdy) " (f 02 pdy)
1/2
< ([ £(0)2pdy)'* 2(s).

Since v — 0 as s — —oo uniformly on compact sets, we have:
J f@)?pdy < C? [vipdy = C? [ 51 v'pdy +C? [ 51 v pdy
< € [v2pdy + C?M25* [v2|y|*¥ p < 4€22% + C2M26* I? for all € > 0, provided
that s < s¢(e, d).
Thus, (f f(1;)2pcly)1/2 < 2ez + CMO¥ /2],
Combining all the previous estimates, we obtain:

(64) 2'(s) > =2(s) — 2ez — CMS* 12I(s).

l\DI»—\

With e = 1/8, (63) and (64) yield:

wen{ 50

12(s) — CM&* 21 (s)
—I(s) 4 62K /25(s).

AN

Now, we are ready to conclude the proof of lemma A.3:

Let y(s) = I(s) — 2d6>~*/22(s). Let us assume (s) > 0 and show that
v'(s) < 0.

Y'(s) = I' — 2d6>* 122" < (=1 +d§>~% /2z) — 2d5? /2 (L2 — CM6¥ /21)
<I(-1+ 1 +20Mds%) = (-2 +2CMs%d)

If we choose dy such that V& € (0,8), —2 + 2CMd?d < 0, then (s) > 0
implies I(s) > 0 and +'(s) < 0. Since y(s) = 0 as s & —oo (because v — 0
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uniformly on compact sets), we conclude that for some s; € R, Vs < s1, y(s) < 0.
Since d = k'(k' + N — 2), lemma A.3 is proved. |

Using lemma A.3, we try to estimate [ f(v)kn (y:)pdy.
Since |f(v) — £v?| < C(M)v?, we write:

(65) [ 1wty =L [ pdy+0([ v i)

For all e > 0, 6 > 0 and s < sy, we write:
| [vPpdy| < | [ 151 03pdyl +1 [, 55-1 v pdy|
<[y o1 VPpdyl + M* [0?|y|* pdy < | [, 51 03Pyl + Mco(k')5*2(s)>.
We fix § > 0 small enough such that Mcy(k')é* < §. Then, we take s < s;(€)
such that |f|y|35_1v3pdy| < 1 <o v?pdy < 5 [v?pdy (because v — 0 in
L>(B(0,0))).

Since [v?pdy ~ z(s)* as s - —oo, we get for s < s5(€), | [vPpdy| < ez(s)?.
Therefore, equation (38) and (65) yield:

2

(66) vg(s) = vo(s) + 5-2(s)* (1 + a(s))

where a(s) - 0 as s & —oo.

Using the same type of calculations as for [ v3pdy, we can prove that
Jv*k1(y;)pdy = O(z(s)?). Therefore, (38) yields the following vectorial equa-
tion:

(67) v (5) = 301(5) + B(s)=(9)’
where 8 is bounded.

From (62), (66), (67) and standard ODE techniques, we get:
Ve > 0, vo(s) = O(e!'=9%) and v, (s) = Cre? + O(e(179)%).
Since z(s)? = vo(s)? + 2|v1(s)[?, we write (66) as
0h(s) = v0(s) + 5 |Ch[%e" (1 + a(s)) +(s)
where v(s) = O(e2(*=9%). Therefore,
(68) Ve > 0, vo(s) = §|01|2368(1 +0(1)) + Coe® + O(e2(1=9%)

as § = —00.

Two cases arise:

i) If Cy # 0, then vy(s) ~ Cre2 > Z|Cy|*se® ~ vo(s). This is case ii) of
Proposition 3.2.

ii) If Cy = 0, then |z(s)| < Cet'=9%, and (67) yields v; = O(e®>=9*%). From
(68), we have vg(s) = Cpe® + O(e2~9)9).
We claim that Cy < 0 (If not, then the function F(s) = e *vo(s) goes to Cp > 0
as s — —oo and is increasing if s < sg. Therefore, Vs < sg, vg(s) > Coe® > 0.
Since v is bounded and k + v > 0, we have from Proposition 3.5 Vs € R,
J (s +v(y,s))pdy < k&, that is vo(s) < 0.
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Hence, Vs < sg, vo(s) = 0 and z(s) = v/2|v1(s)|. Then, (67) implies that
Vs < sg, v1(s) = 0 and z(s) = 0. Since [v?pdy ~ z(s), we have v = 0 and
w = k in a neighborhood of —oo and then on RY x R which contradicts w — 0
as s = +00).
Thus, vy(s) ~ Coe® > Cet?=9)% > |v; (s)|. This is Case i) of Proposition 3.2.
This concludes the proof of Proposition 3.2. |

B Proof of Proposition 3.4

Let us recall Proposition 3.4:
Proposition B.1 Let V be an L* solution of

ov
defined for (y,s) € RNV x R, where L=A - 1y.V+1,1(s) =
FV)=lp+ VP e+ V) —¢P —ppP~'V.
Assume that V — 0 as s = +o0o uniformly on compact sets of RV,

— e 9l

(70) [Vo(s)] + [V (5)] = O(e®~9*) and [[Viua(s)ll2 = o€®) as 5 — —oc.
Then V = 0.

In order to show that V = 0 in RV*!, we proceed in three steps: in Step 1,
we do an LIZ, analysis for V as s - —oo , similarly as in Part 2 of section 2 to
show that either [[V(s)l[z2 ~ [Vi(s)l|zz or [[V(s)llz2 ~ Vauu(s)||z2- Then, we
treat these two cases successively in Steps 2 and 3 to show that V = 0.

Step 1: LIQ, analysis for V as s &> —x

Lemma B.1 As s > —oo , either
i) IV-(s)llzz + [[Vauu (s)llzz = o([IV(s)llz2)
or i) [V_(s)llzz + V4 (s)llz2 = o(IVaun(s)ll12)-

Proof. One can adapt easily the proof of Filippas and Kohn in [3] here. Indeed,
V satisfies almost the same type of equation (because I(s) — 0 as s - —oc , and
|F(V)] < CV?),and V — 0 as s — —oco uniformly on compact sets. Therefore,
we claim that up to the change of “s — —oo ” into “s — +00”, section 4 of [3]
implies

Lemma B.2 Ve > 0, dsg € R such that for a.e. s < sg:

Z > A-0Z-€eX+Y)
1X| < X+Y+72)
Y < —(3-9Y +e(X +2)

where 2(s) = [V (5)llz2, X() = [Vuat(9)llz2 and
Y(s) = IV-(s)llzz + |||y|%V2(s)||L% for a fized integer k.



216 Optimal estimates for blow-up rate and behavior

Since [|[V(s)|lL;e. — 0 as s = —oo and V is bounded in L*, we have
(X,Y,Z)(s) = 0 as s & —oo. Similarly as in Step 2 of Appendix A, we can not
have X (s) + Y (s) + Z(s) = 0 for some s € R. Therefore, the conclusion follows
from lemma A.1, in the same way as in Step 2 of Appendix A.

Step 2: Case [V-(5)llz2 + [Vaur(s)llz2 = oIV (9)l1z2)
Since (69) and (38) are very similar (the only real difference is the presence in
(69) of I(s) which goes to zero as s = —o0 ), one can adapt without difficulty all

the Step 3 of Appendix A and show that V and V; satisfy equations analogous
o (66) and (67): Vs < s

(71) { Vo(s) = Va(s)(1+1(s)) +ao(s)(Va(s)? + 2[Vi(s)[*)
Vi(s) = Vi(s)(5 +1U(s) +ai(s)(Vo(s)® +2|Vi(s)?)

where ag and a; are bounded.
According to (70), there exist B > 0 and s; < sg such that Vs < s;

(72) lao(s)| < B,lai(s)| < B,|Vo(s)| < e¥Fand |Vi(s)| < e¥.

We claim then that the following lemma yields V = 0:

Lemma B.3 Vn € N, Vs < s, [Vu(s)] < (%e(sl)B)zn_le3X2n_1s form =0
s1

and m = 1, where e(s;) = e % He)dt

Indeed, the lemma yields that Vs < sa Vg(s) = V1(s) = 0 for some sa < s3. Since

V(s )||L2 ~ [V (s)llz2 as s = —oco , we have Vs < s3, Vy € RN, V(y,s) = 0 for

some S3 < $o. The uniqueness of the solution of the Cauchy problem Vs > s3,

V satisfies equation (69) and V (s3) = 0 yields V =0 in RVF!.

Proof of lemma B.3: We proceed by induction:

- n = 0, the hypothesis is true by (72).

- We suppose that for n € N, we have
Vs < s1, [Vin(9)] < (%e(sl)B)zn_le?’XZ"_ls for m = 0,1. Let us prove that
Vs < 51, [Vin(9)] < (%e(sl)B)szrl_leS“"s for m =0, 1.

Lot B (s) = Vin(s)e 7 B[ L 10
we have: Vs < sq,

my._ [°1 " "
|E},(s)] < P IZ B x 3(3e(s1)B)*?"~De3*2"s. By the induction
hypothesis lim Fn(s) = 0. Hence, Vs < s1,

. From (71) and the induction hypothesis,

1(t)dt

|—|f da|<f |F! (0)|do

s 3e(sl) (3e (sl)B)Z"“—z [P eex—(1-8)o gy
+1_ n_(1_my)g
= 3><2+(1—ﬂ)( e(s1)B)*"" ~le(3x2"—(1=%))s

Since 3 x 2™ — (1
Vs < s1, |[Vim(s)] < (%e(sl)B)
proof of lemma B.3.

— %) > 2 and [(s) <0, this yields
2" 132" for gy = 0,1. This concludes the

Step 3: Case [[V_(s)llz2 + Vi (5)llzz = o{l| Vit (5) 1 22)
In order to show that V = 0, it is enough to show that V,,,;; = 0 or equiva-
lently that Vi, j € {1,..,N}, Va;; = 0.
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For this purpose, we derive form (69) an equation satisfied by Va;; as s —
—00:

73 V4 ii(8) = 1(s)Va,i5( /F i
(73) 5,i(8) = 2,ij(8 ||H2,]|2 Tz PYY-

We have to estimate the last term of (73):
- if 4 = j, then Hs;(y) = y? — 2 and

(74) | / F(V)Hyipdy| < C / V2pdy + C / V2|2 pdy,

- if i # j, then Hy ;;(y) = yiy; and

(75) | [ PO Hasipdsl < € [ V1P,

The hypothesis of this step implies that
(76) [veiy <z [Viapdy

It remains then to bound [ V?2|y|2pdy. This will be done through this lemma,
which is analogous to lemma A.3:

Lemma B.4 There exists 6o > 0 and an mteger k' > 5 such that for all § €
(0,30), Fso € R such that Vs < so, [ V2]y|* pdy < co(k')6*~* [ V2, pdy.

Proof We will argue s1m11ar1y as in the proof of lemma A.3.

, 1/2
Let I(s (f V2|y|¥ pdy) and use the notation X (s (f 2 lylk pdy) .
From (69), we derive the following equation for I(s):

53T = [ VLIl pdy + 1167 + [ VEWIul oy

2ds

Since v is bounded by M, we can assume |V| < M + 1= M' and get
[VEW)|y|¥ pdy < M C’fV2|y|’c pdy. We can also assume that |I(s)| < 15.

As for lemma A.3, we can show that for all § > 0
TVLVIyE pdy < £ (k' + N —2)I(s)(62F /2 ([ V2pdy)'/* +621) + (1 £)I(s)?.

Combining these bounds with (76), we get:
I'(s) < 61 +d6> ¥ /22 withg =& —1 - L — M'C - E(k + N —2)§ and
d=Fk(k +N —2).

It is clear that there exist an integer k' > 5 and dp > 0 such that Vd € (0, &),
0 > 1. Hence, ,
(77) I'(s) < —I(s) +d8*> ¥ /12X (s).

Let us derive a differential equation satisfied by X.
From (69), we obtain:

(X(s)?) = / Pt (F(V)) Vit pdy.

By Schwartz’s inequality, we have:
| Pratt (F(V))Vauatpdy| < (f Pt (F(V))2pdy) " ( V2,updy) '
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< (JF(V)2pdy)"> X (s).
Since V' — 0 as s = —oco uniformly on compact sets, we have:
JF(V)2pdy < C? [ V*pdy = C? Jiyi<s1 Vipdy + C? Syzs-1 V4pdy
< e [V2pdy + C2M"™5% [V2]y|¥ p < 4€2X2 + C2M'2§* I? for all € > 0, pro-
vided that s < s¢(€, 9).
Thus, (f F(V)2pdy)"* < 2eX + CM's¥ /21
Since |I(s)] < {5, we combine all the previous bounds to get:

(78) |X'(s)| < (2¢ + %)X(s) +CM's¥ 21(s).

With e = 1/12, (77) and (78) yield:

|X'(s)] < L1X(s)+CM'6¥/2I(s)
< 4 '
VS—Sl{ I'(s) < —I(s)+dda>* 12X (s).

Now, we conclude the proof of lemma A.3:

Let y(s) = I(s) — 2d6* % /2X (s). Let us assume 7(s) > 0 and show that
~'(s) < 0.

F(s) =1 — 2d62—k /12 x!
< (=1 +do> ¥ /2X) +2d8>~ % 2 (1 X (5) + CM'8% /1)
<I(-1+4L1+20M'd6* + 1) = I(—% +20M'5%d)

If we choose &y such that V& € (0,dp), —1 + 2CM'6%d < 0, then y(s) > 0
implies I(s) > 0 and ~+'(s) < 0. Since v(s) — 0 as s - —oo (because V — 0
uniformly on compact sets), we conclude that for some s € R, Vs < 51, y(s) <0.
Since d = k'(k' + N — 2), lemma B.4 is proved. |

Lemma B.4 allows us to bound [ V2|y|?pdy. Indeed, for fixed § € (0,d0) and
s < s8p, we have:
SV2lyPedy < [, <5 VIyIPedy + [, 1552 V1Yl pdy
<07 gomn Vipdy 8872 [ poa VI pdy
<872 [V2pdy + co(K')6% [VZpdy = C(8, k') [ V2pdy.
With this bound, (74) and (75), equation (69) yields: Vs < so,

Vyi5(8) = 1(8)V2,i(8) + a2,i;(8) [ Vours (3) [ 72

where a3 ;; is bounded.

According to (70), there exist then B > 0 and s; < sg such that Vs < sy,
Vi,j € {1,...,N},

las,ij(s)] < B, |V2,ii(s)| < €’
We claim that the following lemma yields V' = 0:
Lemma B.5 Vn € N, Vs < 51, Vi,j € {1,...,N},
n n a— s1

Va,is (8)] < (BN2(N + 1)2e(s1)B)?" 162" where e(s;) = e~ Jo {OU,
Indeed, this lemma yields Vs < s1, Vi,j € {1,...,N}, Va;;(s) = 0 for some
sy < s1. Hence, Vs < 55, Yy € RN, Vauu(y,s) = 0, and by the hypothesis of
this step, Vs < s3, Vy € RV, V(y,s) = 0 for some s3 < s3. The uniqueness
of the solutions to the Cauchy problem: Vs > s3, V satisfies equation (69) and
V(s3) = 0 yields V = 0 in RN+,

We escape the proof of lemma B.5 since it is completely analogous to the
proof of lemma B.3.
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C Proof of i) of Proposition 3.7

We proceed in 4 steps: in Step 1, we derive form the fact that [[v(s)|[z2 ~
||Unull(3)||Lg an equation satisfied by vy, (s) as s & —oo . Then, we find in Step
2¢>0,C >0and s € R such that c[s|™" < [Ju(s)]lzz < C|s|~" for s < sp. In
Step 3, we use this estimate to derive a more accurate equation for v,,;. We

use this equation in Step 4 to get the asymptotic behaviors of vyuu(y, s), vo(s)
and vy (s).

Step 1: An ODE satisfied by vpuu(y,s) as s &> —oo

This step is very similar to Step 3 in Appendix B where we handled the
equation (69) instead of (38) as in the present context.

From (38) we have by projection:

2 HM2,i5\F)

We will prove the following proposition here:

Proposition C.1 4) Vi,j € {1,...,N},

Hs45(y)
80 v',s:ﬂ/vfm ,8) =% p(y)dy + o(||vnwir(s)]32)-
) )= 3 [ a0 o+ a9

as § = —00 .

it) There exists a symmetric N X N matriz A(s) such that Vs € R,
(81) Unull (ya S) = yTA(S)y - 2tT'(A(S))
(82) and co[|A(s)|| < llvnuu(s)llzz < CollA(s)||

for some positive constants co and Cy. Moreover,
4
(83) Al(s) = ;pAQ(S) +o([[A(s)[1?) as s = —o0.

Remark: ||A|| stands for any norm on the space of N x N symmetric matrices.
Remark: The interest of the introduction of the matrix A(s) is that it genera-
lizes to N > 2 the situation of N = 1. Indeed, if N = 1, then it is obvious that
VUnutt (Y, 8) = yva(8)y —2v2(s) and that (80) implies vh(s) = 2Lva(s)? +o(va(s)?).
Let us remark that in the case N = 1, we get immediately vy(s) ~ —ﬁ as
s — —oo, which concludes the proof of Proposition 3.7. Unfortunately, we can
not solve the system (83) so easily if N > 2. Nevertheless, the intuition given
by the case N = 1 will guide us in next steps in order to refine the system (83)
and reach then a similar result (see Step 2).

Proof of Proposition C.1:

Let us remark that i) follows directly form 7). Indeed, we have by definition
of HQ,,']' and V2,ij (see (44) and (45))

N

Vnutt (Y 8 sz ij(8)Hz,i5(y) = Z’UZM(S)(yzQ -2)+ sz,ij(s)yiyj- If we
i<j i=1 i<j

define A(s) = (ai;(s)); ; by

1
(84) a;;(8) = v2,4i(s), and for i < j, a;;(s) = a;;i(s) = §v2,,~j (s),
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then (81) follows. (82) follows form the equivalence of norms in finite dimension
w. (83) follows from (80) by simple but long calculations which we escape
here.

Now, we focus on the proof of 7). For this purpose, we try to estimate the
right-hand side of equation (79).

As in Step 3 of Part 3, this will be possible thanks to the following lemma:

Lemma C.1 There exists &g > 0 and an integer k' > 4 such that for all § €
(0,30), 3so € R such that Vs < so, [v?|y|* pdy < co(k")34* [2, ,pdy.

Proof. The proof of lemma B.4 holds for lemma C.1 with the changes V' — v,
F — fandi(s) — 0. |

Now we estimate [ f(v)Ha,;jpdy:
Since f(v) = £v? 4 g(v) where |g(v)| < C|v|?, we write:

(35) [ 1) tasipdy = L [ huHaisody+ (D) +(11)
where

(36) (1) = 5 [ @~ k) Houspdy
(87) and (1) = [ 9(0)Hasspdy.

The proof of Proposition C.1 will be complete if we show that (I) and (II) are
o(|[vnuir(s)||z2)- Since Ha,ij(y) = y7 —2if i = j and Ha,;5(y) = yiy; if i # j, it is
enough to show that for all € > 0, I, Is, I'I; and Il are lower that e||vnu”(s)||L§
for all s < so(€), where

L = f |v2 - viull|pdy7 L= f |U2 - viuu“yPde;
I = [lg(v)|pdy, I, = [|g(v)||y|*pdy.

We start with I;: Since [v?pdy ~ [ 02, pdy,
L = [(v +0v2)pdy <e[v2,pdyif s < s1(e).
For I, we consider § € (0,dp), and write:
I < [y <1 [V* = vhaullyPpdy + [ 551 [0* —vRuullyPPpdy : = Io1 + Do
We first estimate Io;:
Since v = v_ 4+ Vpuu +v4, we have v —v2 = (V4 +0_)? + 205 (V4 + ).
Hence,
I £ fiy<5-1(vs +0-)2yPpdy +2 [ 51 onun (v4 + v-) Iy pdy

_ 1/2 1/2
< 672 [(vg +v-)2pdy + 2 ([ 02yl pdy) " ([ vy +v-)2pdy)'.
Since [v?pdy ~ [ [v2,,pdy, we have
vy +v_)? <83 [02 pdy if s < s5(0).
Since the null subspace of £ in finite dimensional, all the norms on it are equi-
valent, therefore, there exists C4(N) such that:
J vnuulyl*pdy < Ca(N)? [0} pdy.
Therefore, I»1 < (6 +2C4(N)5%/2) [v2,,pdy if 5 < 52(9).
For I»5, we write:
Ios < f)55-1 [v? = v ullyPpdy < 6% 72 [V|y|* pdy + 6% =2 [v}ulyl* pdy

< co(K')? [ 02, pdy + % ~2Ch (N)? [ 02 updy

null
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by lemma C.1 and the equivalence of norms for v,,;. Collecting all the above
estimates, we get
Ir < (042C4(N)332 4co (k') +6* ~2Ck (N)?) [ 2 updy for s < $5(8). If § = §(e)
is small enough, then
L <e[v2,,pdy for s < s3(e).

Now, we handle II; and II, in the same time: we consider § € (0,dy) and
write for m =0 or m = 2:
| [lg()llyI™pdy < C [ v]*|y|™ pdy
< C fiyi<omr WPlyI™pdy +C [ 551 [P ly|™ pdy
< Ceé ™ f\y\ga—l v2pdy + C MK —m fly|25‘1 02|y|* pdy
< (CE'§™™ + CMco(K')6*=™)2 w2, pdy
where we used the fact that v — 0 as s — —oo in L>(B(0,671)), |v(y, s)| < M,
lemma C.1 and [v?pdy < [v2,;,pdy-
Now, we can choose § = §(¢) and then ¢’ = €'(€) such that for s < s5(€)
Jlg)lly|™ pdy < € [ vy pdy.

Setting so(€) = min(s1(€), s3(€), s5(€)), we have: Ve > 0, Vs < sq(€),
I + L + I + I, < 4e [v2,,,pdy. Therefore (I) + (II) = ol[vnun(s)llzz2) as
§— —00.

Thus, combining this with (79) and (85) concludes the proof of Proposition
C.1. |

Step 2: [|v(s)||z2 behaves like |1?‘ as s & —o0

In this step, we show that although we can not derive directly from (80)
the asymptotic behavior of vp;(s) (and then the one of v(s)), we can use it to
show that ||v(s)||L§ behaves like ﬁ as s - —oo . More precisely, we have the
following Proposition:

Proposition C.2 If [[v_(s)(lz2 + [lv+(s)llzz = olllvnun(s)l[z2), then for —s

large enough, we have

c C
~ < <
|8| = “U(s)”L% = Sl

for some positive constants ¢ and C.

Proof: Since [|v(s)|[z2 ~ [lvnuu(s)l|z2, and because of (82), it is enough to
show that o
c
(58) = <Al < =
s Is|
for —s large. The proof is completely parallel to section 3 of Filippas and Liu
[4]. Therefore, we give only its main steps.
We first give a result from the perturbation theory of linear operators which
asserts that A(s) has continuously differentiable eigenvalues:

Lemma C.2 Suppose that A(s) is a N X N symmetric and continuously dif-
ferentiable matriz-function in some interval 1. Then, there exist continuously
differentiable functions Ai(s), ..., An(8) in I, such that for all j € {1,..,N},

A(s)¢ (s) = A;(5)9) (s),

for some (properly chosen) orthonormal system of vector-functions

¢ (5), ..., 8 ().
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The proof of this lemma is contained (for instance) in Kato [10] or Rellich [13].

We consider then A;(s), ..., An(s) the eigenvalues of A(s). It is well-known
N

that Z |A;| is a norm on the space of N x N symmetric matrices. We choose this
i=1
norm to prove (88). From (83), we can derive an equation satisfied by (A;(s));:

Lemma C.3 The eigenvalues of A(s) satisfy Vi € {1,...,N}

! 4p o . 2
Xi(s) = —Al(s) +0 | D_N() |-

The proof of lemma 3.3 in [4] holds here with the slight change: s — +o0
becomes s - —oo and s large enough becomes —s large enough.
Now, we claim that with the introduction of A;(¢) = —A;(—0), we have:
-Vie{l,..,N}

N
Al(o) = %Af(a) +o (Z A?(a)) as o — 400,
i=1

Vo > oq, Z |Ai(o)| # 0 (Indeed, if not, then for all i, A; =0, A; =0, and

2
then A(S), vnui(s) and v(s) are identically zero.)
Section 3 of [4] yields (directly and without any adaptations) that for all
o> 01,

c C
< . < Z
T NCIES:

Since ||A(s)|| = Z [Ai(s)| = Z |A;(—s)|, this concludes the proof of (88) and

i i
the proof of Proposition C.2. |

Step 3: A new ODE satisfied by vpu;(y, s)

In this step, we show that since ||v|| 2 behaves like ﬁT‘, then all the L4
norms are in some sense equivalent as s — —oo for this particular v. Then,
we will do a kind of center-manifold theory for this particular v to show that
e ()12 + llo— (5)l1 2 s in fact O((lumuir(5)]25) and not only o([[vnuu(3)]]z2).
These two estimates are used then to rederive a more accurate equation satisfied
by vnuu (y; 3)

Lemma C.4 If [[v4(s)llz2 + [lv-(s)llz = ol|vnuu(s)l|L2), then
i) for every r > 1, ¢ > 1, there exists C = C(r,q) such that

(/ vr(y,S)pdy) . <C (/ v"(y,S)pdy)l/q

for —s large enough.
i) [log ()2 + llv-(s)llzz = Ol[vnun(s)lZ2) as s = —oo .
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Proof of i) of lemma C.4: The crucial estimate is an a priori estimate of solutions
of (38) shown by Herrero and Velazquez in [9]. This a priori estimate is a version
of 4) holding for all bounded (in L) solutions of (38), but with a delay time;
although they proved their result in the case N = 1 for solutions defined for
s € [0, +00), their proof holds in higher dimensions with s € R.

Lemma C.5 (Herrero-Velazquez) Assume thatv solves (38) and |v] < M <
oo. Then for any r > 1, ¢ > 1 and L > 0, there exist s§ = si(q,r) and
C =C(r,q,L) > 0 such that

(/ v"(y, s+ 8*)pdy>w <C (/ v"(y,S)pdy)l/q

for any s € R and any s* € [s§, s§ + L].

Set st = s§(2,7) and s3 = si(q,2). For —s large enough, we write according

to lemma C.5 and Proposition C.2:
1 1/2

(S v, 5)pdy)""" < Cu ([ 02(y,5 = si)pdy)'* < Caf (s = s7)
< /(s +55) < Cu ([ v (y,5 + 53)pdy)/* < C (J 09y, 5)pdy) /" Thus, i) of
lemma, C.4 follows .

Proof of ii) of lemma C.4: We argue as in Step 2 of Appendix A, and use
the same notations: z(s) = [|vnuu(s)llz2, ¥(s) = llv—(s)llL2, 2(s) = [lv+(s)llz2
and N(s) = ||V?|| r2- We have already derived (in the proofs of lemmas A.3 and

B.4) two differential inequalities satisfied by z and z. By the same techniques
(see also [3]), we can show that

1
2 > 37~ CN
|#'| < CN
1

By i) of lemma C.4, we have N(s) < C|lv(s)||2;, = C(2?(s) + y2(s) + 2%(s)) for
I3
large —s.
Since z,y,z — 0 as s & —00 , we can write for —s large:

2 > %z—C’(nc-i—y)2
lz'| < Cz+y+2)?

1
y < —3y+0@E+2)”

The conclusion then follows form the following ODE lemma by Filippas and
Liu:

Lemma C.6 (Filippas-Liu) Let z(s), y(s) and z(s) be absolutely continuous,
real valued functions which are non negative and satisfy
i) (z,y,2)(s) > 0 as s &> —o0,

i) Vs < sg
2 > coz—ci(z+y)?
lz] < ealz+y+2)?
g < —coy+eci(z+2)>.
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for some positive constants co and cy. Then,
either (i) z,y,z — 0 exponentially fast as s - —o0,
or (ii) for all s < s1, y+ 2z < b(co,c1)x? for some s; < sp.

Proof: see lemma 4.1 in [4].

Now, using lemma C.4, we derive a new equation satisfied by v,qu:

Proposition C.3 Vi,j € {1,..., N},

p Ha,i; (1)
v'ns:—/vfm ,8) =222 p(y)dy + O(|| v (8) ||3.2)-
b9 = g7 [ a9 2+ Olema 1)

as s = —00 .
Moreover,

4p 1
Al(s) = ZAZ(S) + 0(3—3) as § = —oo.

The proof of Proposition 4.1 in [4] holds here with the usual changes: s — 400
becomes s - —o0 .

Step 4: Asymptotic behavior of v, (y, s), vo(s) and vy (s)
Setting A(0) = —A(—0), we see that

4 1
A'(o) = £A2(U) + O(F) as ¢ — +00.

Therefore, Proposition 5.1 in [4] yields (directly and without any adapta-
tions) the existence of § > 0 and a N x N orthonormal matrix @ such that

K 1
Afo) = —AHTUAO-FO(F)
where
In_;p O _
AO — Q ( NO k 0 ) Q 1

for some k € {0,1,..., N — 1}. Together with (81), this yields the behavior of
Vnui (Y, §) announced in i) of Proposition 3.7.
It also yields

oner($)llzz - = (/viuu(y,s)/’(y)dy>l/2
= (Juraow-2eaeyowm)

1/2
_ _ k T _ 2 1
= T lps (/(y Aoy — 2trAo) p(y)dy) +0 (|s|1+5) :

With the change of variables, y = @z, we get since ) is orthonormal:

1/2
N—k /

[vnun(s)llLz = —& /(Z(ﬁ—ﬁ) p(z)dz +O(|S|++5>

i=1
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ps 2

where we used the fact that (y? — 2); is an orthogonal system with respect to
the measure pdy.

Since [|v(s)l| 2 = l[vnun(s) 22 +O (||vnu”(s)||%%) (i4) of lemma C.4), we get

Kk |N—k 1
(89) lv(s)llzz = sV T2 +0 (W) .

Integrating (38) with respect to pdy, we find

wh(s) = va(s) + [ F0)pd.
Since |f(v)| < Cv?, we get from (89)
vy(8) = vo(s) + O(s%) as s =& —oo.
Therefore, it follows that
1
vo(s) = 0(5_2) as s & —oo.

Using lemma C.1, we have: for all € (0,dp),

/ V|yl* pdy < co(K')n** / V2 updy < 2¢o(k" )" / v*pdy.

Therefore,
Jlyledy < [, < Plylpdy + [, 151 0 lylody
<t [v?pdy + 0¥ 7 [0?ly[¥ pdy
< (07 + 2¢o(K)7P) [ v pdy.
If we fix n > 0, then

(90) [ *vlody < 0.k [ opay.

Integrating (38) with respect to y;pdy, we find

1 i
vy,:(8) = 5111,1'(8) + /f(v)%pdy.
Since |f(v)| < Cv?, we get from (90) and (89)

v1(s) = O( !

—) as s — —oo.
s

This concludes the proof of ¢) of Proposition 3.7.
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Refined uniform estimates at blow-up and
applications for nonlinear heat equationst

Frank Merle
Université de Cergy-Pontoise
Hatem Zaag
Ecole Normale Supérieure and Université de Cergy-Pontoise

1 Introduction
We are interested in the following nonlinear heat equation:

uy = Au+uP

(1) { w(0) = up >0,

where u is defined for (z,t) € RV x[0,7),1 < p, (N —2)p < N + 2 and
Ug € Ht (]RN)

In this paper, we deal with blow-up solutions of equation (1) u(t) which blow-
up in finite time 7" > 0: this means that u exists for all ¢ € [0,T), th_)rr% |u@®)||lg: =

+oo and tlirr%”u(t)”Loo = +4o00. Let us consider such a solution. We aim at
—

studying the blow-up behavior of u(t) as ¢ — T'. In particular, we are interested
in obtaining uniform estimates on u(t) and deducing from these estimates the
asymptotic shape of the singularities.

One can show that in this case, u(t) has at least one blow-up point, that
is 2o € RY such that there exists (2, )nen satisfying (zn,tn) — (20,7) and
[w(Zp, tn)] = +00 as n — +00.

For each a € RV, we introduce the following self-similar transformation:

r—a

vy = V=
(2) s = —log(T —1t)
wo(y,s) = (T —t)7Tu(z,?).

Then, we see that w, = w satisfies Vs > —log T, Vy € RV:

ow 1 w
- _z v P
(3) 55 Aw 2y.Vw P + wP.

The study of u(t) near (x9,T) where zg is a blow-up point is equivalent to
the study of the long time behavior of w,, as s = +o0.
Giga and Kohn prove in [10] that there exists g > 0 such that

1
Vs > —logT, €0 < ||we(8)||pee < —
€o
or equivalently:

1

, 1
vt € [0,7), eo(T )77 < Ju(®)llp= < —(T — )77,
0

t article a paraitre dans Geom. Funct. Anal.
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At this level, no other uniform estimates were known.

In [16], we proved the following Liouville Theorem for equation (3):

Let w be a nonnegative solution of (3) defined for (y,s) € RNV x R such that
w € L®(RN x R). Then, necessarily one of the following cases occurs:

(4) w=0 orw=k or Isg € R such that w(y, s) = ¢(s — so)

where ¢(s) = k(1 + es)_ﬁ and k = (p — 1)_ﬁ‘

From this theorem we derived in [16] the following uniform estimates of order
zero:

Consider a solution w of (3) defined for s > —logT (such that u(t) blows-
up at time T ). Then,

(5) |lw(s)||pe — & and ||Vw(s)||re + ||Aw(s)|re — 0 as s = 0.

We also derived from this result the following localization theorem:
Ve >0, 3C > 0 such that Vt € [£,T), Vz € RV,

ou

__up

©) ot

<euP +C..

These estimates are still insufficient to yield precise estimates on blow-up profile.

But, we have a compactness property on w,(s) uniformly with respect to a €
RV, which allows us to claim the following result from linearization around the
limit set as s — +o00:

Theorem 1 (Refined L™ estimates for w(s) and u(t) at blow-up) There
exist positive constants C1, Co and Cs such that if u is a solution of (1) which
blows-up at time T > 0 and satisfies u(0) € HY(RY), then Ve > 0, there erists
so(€) > —logT such that

i) Vs > sg, Va € RV,

lwa(s)llzee <+ (5E+€L,  [Vwa(s)r= < G,
IV2wa(s)llee < S IV3wa(s)lle < S,

where kK = (p — 1)_ﬁ,
W)Vt >T — e,

IN

l[u(®)] e

IViu(t)l| e

_ 1
(Iﬂ?‘l‘(g_; +6)\10g(1Tt)\) (T—t) p—1,

C (T—t)_(P_ll-'—%)
b [log(T—t)[#/2

IA

fori=1,23.

Remark: If v : RY — R is regular, Viv stands for the differential of or-
N

der i of v. For all y € RV, we define |Vo(y)|? = Z(Ojv(y))2, [V2u(y)| =
=t
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2" V2u(y)2| ai Bi
sup and [V3u(y)| = sup =07 v (Y)
i AP oy |2 Tal [B] 1

In addition, ||v||z~ = sup |v(y)| and ||Viv||z~ = sup |Viuv(y)|.
yeRN yeRN

In fact, we can see from the proof of Theorem 1 that s¢(e) depends only on
the size of initial data. We have the following result:

Theorem 1’ (Compactness) Consider (un)nen @ sequence of nonnegative so-
lutions of equation (1) such that for some T > 0 and for alln € N, u,, is defined
on [0,T) and blows-up at time T'. Assume also that [|un(0)||g2rn~y s bounded
uniformly in n. Then, Ye > 0, there exists to(€) < T such that Vt € [to(€),T),
Vn € N,

1
(s + (32 + ) oty sty ) (T =077,
(r—t)~ =1 t3)

| log(T—t)|2

l[un (@) o0

IVun (8) ]| o

IA

IA

where C; are defined in Theorem 1.

Remark: In the case N = 1, Herrero and Veldzquez [12] (Filippas and Kohn
[6] also) prove some estimates related to Theorem 1, using a Sturm property
first used by Chen and Matano [4] (the space oscillations number is a decreasing
function of time).

Remark: The constant g—: appearing in the term of order one in the estimates
on ||w(s)||p~ and ||u(t)||r~ is optimal. Indeed, there exist solutions of equation
(3) such that ||w(s)||pe = & + évT'; +0(%) as s = +oo (see Bricmont and
Kupiainen [3], Filippas and Kohn [6], Merle and Zaag [17]).

Remark: From the local (in time) regularity of the solution to the Cauchy
problem, we can obtain with the same proof an analogous compactness result
when the blow-up times are not the same. One has to replace T by T,, and [Jto(€)
such that V¢ € [to(€),T)] by [3ty(€) such that Vn € N, Vit € [T, — t(€), Tn)].
Remark: Other compactness results can be shown considering for example

equations of the type:

Ou
U _ A »
T u+ b(z)u

where b € C3(RY) (see [16]).

These estimates are in fact crucial for the understanding of the solution at
blow-up, especially, the shape of the singularity. Let us recall some results on
this question.

Let us consider 2o € RV a blow-up point of u(t), a solution of (1), that is a
point o € RY such that there exists (,,t,) — (20,T) such that u(z,,t,) —
+00 as n — +00. The question is to see whether u(t) (or w,(s) defined in (2))
has a universal behavior as t = T (or s = +00).

First, Giga and Kohn prove in [10] and [11] (see also [9]) that for a given
blow-up point zo € RV,

(7 lim wg,(y,s) = tlin]l’(T - t)ﬁu(mo +yvVT —t,t) =k
—

s—+4o0
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uniformly on compact subsets of RY . The result is pointwise in 2. Besides, for
ae. y, lim Vwg(y,s) =0.
s—+4o00

Filippas and Liu [7] (see also Filippas and Kohn [6]) and Veldzquez [18], [19]
(see also Herrero and Veldzquez [12], [14]) classify the behavior of w(y,s) (=
W, (Y, 8)) for |y| bounded. They prove that one of the following cases occurs:

- Case 1: non degenerate rate of blow-up:
there exists k € {0,1,..., N —1} and a N x N orthonormal matrix @) such that
VR > 0,

(8)  sup
ly|I<R

Wi (y, ) — [m * 508 ((N —k) - %yTAky)] ‘ =0 (S%)

as s = +o0o where § > 0,
_ In_p O -1

and Iny_yg is the (N — k) x (N — k) identity matrix,

- Case 2: degenerate rate of blow-up: VR > 0, sup |w(y,s) —k| < C(R)e™°?

ly|<R

for some ¢g > 0.
This yields a blow-up behavior classification in a small range scale. In some
sense and from a physical point of view, these results do not show the transition
between the singular zone (w > a where o > 0) and the regular one (w =~ 0)
well.
Using the renormalization theory, Bricmont and Kupiainen showed in [3] the
existence of a solution of (3) such that

(10) Vs > s, Yy € RN, ‘w(y,s) — fo (%)‘ < %

1

where fo(z) = (p -1+ %|z|2) "~ (see also [1]). We show in [17] the same
result through a reduction to a finite dimensional problem. We also obtained
there a stability result of this behavior with respect to initial data. This gives
a result in an intermediate scale z = %, which is more satisfactory since it
separates the blow-up region (w > a > 0) and non-blow-up ones (w =~ 0).

In [20], the second author showed that the behavior in the initial variable z is
known in the case where (10) occurs. More precisely, u(z,t) = u*(z) ast - T
uniformly on compact sets of RV \{0} and

1
N 8p|log |z|| 17T
(11) u*(z) ~ [%] as ¢ — 0.

Therefore, except in the small range variable (which does not precise from a
physical or analytical point of view the singular behavior), no result of classifi-
cation was known.

In a first step, we use the estimates of Theorem 1 on Vw and V2w in a
crucial way, and the results of Filippas and Liu, and Veldzquez concerning the
classification of blow-up behaviors for |y| bounded to establish a blow-up profile
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classification theorem in the variable z = \/ig (which is the intermediate scale
that separates the regular and singular parts in the non degenerate case):

Theorem 2 (Existence of a blow-up profile in the intermediate scale
for solutions of (1))

Let u(t) be a solution of (1) which blows-up at time T > 0 and satisfies u(0) €
HY(RN). Let zo be a blow-up point of u(t). Then, there exist k € {0,1,.., N}
and an orthonormal N x N matriz () such that

(12) VKo >0, sup |wg,(2vs,s)— fr(z)] = 0 as s — +oo,
|z <Ko
where }
—1)? Tp—1
(13) fu(z) = (p -1+ %z%‘lm)

and Ay, is defined in (9).

Remark: Veldzquez in [19] obtained a related profile existence result. He ex-
tended the |y| bounded convergence of [18] to the larger set |y| < Ko+/s, by
estimating the effect of the convective term —%y.Vw in the equation (3), in
LP spaces with a Gaussian measure. However, the convergence that he obtains
depends strongly on the considered blow-up point z. Let us point out that
the convergence we have in Theorem 2 can be shown to be independent of zg.
Indeed, by using the uniform estimates of Theorem 1, we can give a uniform
version of the result of [7] and [18], and obtain thanks to our techniques a conver-
gence independent of z¢ in Theorem 2. However, we use the result of [7] and
[18] in this paper, since this shortens the proof. We also notice that the proof
yields that if the case (12) occurs, then (8) occurs with the same A (if k= N,
then take Ay = 0) and conversely. See also Theorem 3.

Remark: In the case kK = N, this theorem yields k as asymptotic “profile”
of w(s) in the variable z = is: this is a degenerate blow-up behavior. In-
deed, in this case, the scale % is not good for describing the blow-up behavior.
One must refine this scale and exhibit other blow-up profiles in different scales
y ~exp [(42) s] for k = 2,3, ... (see for instance [3], [18]). However, we suspect
these profiles to be unstable with respect to initial data.

One interesting problem that follows from Theorem 2 is to find a relationship
between the different notions of profile in the scales: |y| < C, z = % < C and
|z — zo| small. We show in the following theorem that all these descriptions
are equivalent in the case of a solution u(t) of (1) that blows-up at some point
zo € RY in a non degenerate way (which is supposed to be the generic case):

k=OandAk=IN.

This answers many questions which were underlined on this problem in prece-
ding works.

Theorem 3 (Equivalence of different notions of blow-up profiles)

Let zg € RN be an isolated blow-up point of u(t) solution of (1) such that
ug € HY(RN). The following blow-up behaviors of u(t) near zo or w(s) = wy, ()
(defined in (2)) are equivalent:
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(A) VR > 0, sup

ly|I<R

w(y,s) — [n—i— XI;(N— %|y|2)H =o (%) as s = +oo

where k = (p — 1)‘%}

(B) 3eo > 0 such that Hw(y, s) — fo(—%)
fol2) = (p— 1+ L |22) 77,

(C) Fep > 0 such that if |z — zo| < €0, then u(z,t) = u*(z) ast — T and

*(p) ~ | Bplloglz—ao| |P—1
u*(z) [(p_1)2|m_m0|2 as T — xg.

— 0 as s = +oo with

‘L""(\y\ﬁfoes/z)

Remark: In [19], Veldzquez shows that (A) = (B) = (C) by estimating the
local effect to the term —y.Vw in equation (3) in L? with Gaussian measure.
The classification of [19] also yields that (C) = (A). Let us point that the
estimates in our proof are quite elementary and rely on localization effect and
uniform estimates. In addition, one can show from our proof and our uniform
techniques that the convergence speeds in (A), (B) and (C) depend only on each
other and on a bound on the C? norm of initial data ( and not on the initial
data itself).

Remark: In fact, (A) (or (B) or (C)) imply that z is an isolated blow-up point.
It is conjectured that the equivalence holds (in the case of the (supposed to be)
generic blow-up rate).

Remark: The techniques we introduce in the proof of Theorem 3 allow us to
obtain the same results as Veldzquez in the case where (8) occurs with £ < N.

Section 2 is devoted to the proof of the uniform estimates on w (Theorems
1 and 17). Section 3 deals with results on profiles (Theorems 2 and 3).

2 L*® estimates of order one for solutions of (3)

2.1 Formulation and reduction of the problem

We prove Theorems 1 and 1’ in this section. Let us first show Theorem 1.
Theorem 1’ follows from similar arguments.

Proof of Theorem 1: We consider u(t) a blow-up solution of (1) which blows-
up at time T > 0.

We can assume from regularizing effect of the heat flow that T < 1, ug €
C3(RN) N HY(RYN). We are interested in finding L* estimates of order one for
wo (= w) defined in (2). In [16], we have already proved L™ estimates of order
zero for w stated in (5). Note that with obvious simple adaptations of the proof
of (5), we have the following result:

(14) [lw(s)llze = & and [[Vw(s)||ze + [[VZw(s)l|z + [[VPw(s)]ze — 0

as s — +oo.

We now want to refine the estimates (14). More precisely, we want to show
that there exist positive constants Cy, C2 and C3 depending only on p such that
Ve > 0, dso(€) such that Vs > so(e),

lws)lze < &+ (55 +(N+1e)g,  [Vu(s)llr=

(15)
IV2w(s)lpe < <, V2w (s)l| oo

IAIA
SRS

o
|

~|
|
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For this purpose, we take an arbitrary € € (0,¢) (where g < 1 is small
enough) that we consider as fixed now, and introduce the following definitions:

Definition 2.1 For all A > 0 and s > —logT, we define Va(s) as being the
set of all w € W3 (RN) satisfying:

lwllee < K+, [Vwlle < %
5/4
V2wl < 4, V3wl < 27

and

VaeRY, - ZIy< [ Vu(y +a)p(y)dy
S RN

in the sense of symmetric N x N matrices, where the norms are introduced in
the remark after Theorem 1,

N
(19) (=7 + (N +De al) =5+ 2vb ald =7 +e
e‘#
(17) Iy is the N x N identity matriz and p(y) = am)v7e

Definition 2.2 For all s > —logT, we define
Va(s) = {w € C([-logT,s), Ws>(RN)) | Vr € [-logT,s), w(r) € Va(7)}.

Let us remark that condition (16) is in some sense a lower bound on V2w(a).
Indeed, if w € V4(s), then we have Va € RV,

(18) | . V2u(y + a)p(y)dy — V?w(a)| < C*(N)||VPw| Lo
5/4
(19) and éINZV2w(a)2— C—2+C*(N)AST Iy
s s s

where C*(N) = [ |ylp(y)dy.

Proof of (18) and (19): Using a Taylor expansion, we have: Vy € RV, VZw(y +

a) — V2w(a) = fol V3w(a + ty)(y)dt. Hence,

IV2w(y + a) — V2w(a)| < |y||VPw||z= < |y|4r . This yields (18) and (19) by

integration (use [ p(y)dy = 1). |
Notice that the lower bound on V2w(a) is (consider the order 1) independent

of A, which will be crucial in the proof.

Theorem 1 is in fact a consequence of the following proposition:

Proposition 2.1 (Reduction) There exist A(p) > 0 and €(p) € (0,1) such
that for all € € (0,¢p), there exists S(A,€) so that the following property is true:
Assume that w is a solution of (3) defined for all time s > —logT and satisfying
w(—logT) € HY(RN). Assume in addition that w € V4(3) for some 3 > S(A,€),
then:

P)w@E) gOVa@),

i) Vs > —log T, w(s) € Va(s).
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Proposition 2.1 implies Theorem 1:

Let € € (0,€0), A = A(p) and S(A4, €) defined in Proposition 2.1. Our strategy
is to find no(e) = no € N such that Vs > —logT, w(s + no) € Va(s). Indeed,
one can easily check the following result:

Lemma 2.1 Assume for all € € (0,1), there exists no(e) € N such that Vs >
—logT, w(s +mng) € Va(s). Then, (15) is satisfied with

Cr = ;p +44/p, Cs = 2A(p) and Cs = 2A(p)*/*.
Let us consider W = w(. + n). Then, W satisfies (3) for all s > —logT
and W (—1logT) = w(n —logT) € HY(RY) from the solving of the initial value
problem for w. .
We claim the following: for n large, we have w(. +n) € Va(S(4,¢)). Indeed,
let § =

(20) 1 min Co (5] C2 A A5/4
41+ C (V) S(A,6)’ /S(A,e) S(A,e)’ S(A,€)” S(A, )3/

where C*(N) is defined in (19). (14) implies that there exists ng € N such that

Vn > ng, Vs € [—logT,S(A,e€)], [lw(s + n)|[ze < k+6 < 6+ 32, [[Vw(s +

n)llpe <6 < 2, [IV2w(s+n)lle <0< 4L and V2w (s+n)l|pe <6 < £
Let s € [~ logT,S(A,€)] and a € RY. According to (18), we have

Jon Vw(y+a, s+n)p(y)dy > — (|V2w(a,s + n)| + C*(N)||V3w(s + n)|| 1) In

> —(6+C*(N)O)In > — 12 In. Thus, w(. +no) € Va(S(4,€)). Applying Pro-

position 2.1, we see from ) that

Vs € [-logT, +00), w(s + ng) € Va(s).
This concludes the proof of Theorem 1. |

Proof of Theorem 1.

For all n € N, we introduce w, = wyo defined from u, by (2). Then, by
simple obvious adaptations of the proof of Theorem 1’ in [16], we claim that
sup ||wn(s)||z= — & and sup ||Viwn(s)||r=~ — 0 as s — +oc for i = 1,2 and 3.
neN neN

Hence, there exists ng € N such that Vn € N, Vs € [—1og T, S(A4, €)], ||lwn(s+
no)|lz= < K+ 6 and ||Viw,(s + no)|lL= < d for i = 1,2,3 where § is defined
in (20). Hence, as for the proof of Theorem 1, we get Vn € N, w,(. + ng) €

~

V4(S(A4,¢€)). Thus,
Vn eN, Vs € [—logT,+00), wn(s+no) € Va(s)
by i) of Proposition (2.1). This concludes the proof of Theorem 1°. |

Therefore, the question reduces to prove Proposition 2.1.
Proof of Proposition 2.1:

i) = 1i1): By contradiction, we assume that there exists s > —logT such
that w(s) & Va(s). Let s’ be the lowest s satisfying this. Then, s’ > 3 > S(4,¢),
w € Va(s') and w(s') € 9Va(s'). This contradicts 7).
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Proof of i): Let us argue by contradiction. We suppose that for all A > 0,
there is a sequence s, — 400 and a solution of (3) w, defined for all s >
—logT such that w,(—1logT) € HY(RN), Vs € [~ logT, sn], wn(s) € Va(s) and
Wn(Sn) € OVa(sy).

Let us denote w, by w to simplify the notations. We claim the following

Proposition 2.2 (Characterization of OVa(s,)) There ezists y, € RY such
that one of the following cases must occur:
Case 1: w(yn, $n) = K + &,

Case 2: [Vw(yn, sn)| = \/cf—n’

Case 3: there exists a unitary o, € RY such that
901711 f]RN V2w(y + Yns Sn) p(¥)dypn, = _:_:’
Case 4: |Vw(yn,sn)| = &

8n’
5/4
Case 5: |V3w(yn;3n)| = :13/2 .

Proof:

Let us remark that since w(—1logT) € H!(RY), we can assume from the
regularizing effect of the heat flow that w(—logT,y) — 0 and
Viw(—logT,y) — 0 as |y| — +oo for i = 1,2 and 3. Hence, we have by
classical estimates w(y,s) — 0 and Viw(y,s) — 0 as |y| = +oo uniformly in
$ € [$n, $n + 1]. Hence, by Lebesgue’s Theorem, [ VZw(y + a, s)p(y)dy — 0 as
la] = +o0.

This insures that one of the five cases of Proposition 2.2 occurs. |

We now use the classification of Proposition 2.2 and consider in the following
subsection all the five cases in order to reach a contradiction.
Let us notice that we reduce to the case

Yn = 0.

Indeed, from (2) and the translation invariance of (1), we define for all y € RV
and s > —logT":

(21) W(y,s) =w(y +yne 2 ,5).

We still have:
- W is solution of (3) defined for s € [—logT, +o0),
- W(s) € Va(s) for all s € [—1logT, s,],
- W(sp) € OVa(sn).

We will denote W by w and ¢, by ¢.

We now claim that there exist eo(p) > 0 and A(p) > 0 such that for all
€ € (0,€0), there is S(A, €) such that all the cases 1, 2, 3, 4 and 5 do not occur
if s, > S(A,€), which will conclude the proof of Proposition 2.1.

2.2 Proof of the boundary estimates

There exist €g(p) and Ag(p) such that Ve € (0,€), YA > Ag(p), 3S = S(4,¢€)
such that Cases 1,2,3,4 and 5 do not occur if s, > S(A,€).



L®° estimates of order one for solutions of (3) 239

Let us show the following lemma

Lemma 2.2 (Taylor expansions) Assume that w(s) € Va(s). Then,
Vy € RV:

2 5/4
@)= B2 (2400255 ) <o) —w(0.9) - 5.0(0.9) < G2

(23) ‘w(y,s) —w(0,5) — y. Va0, 5) - 1yTv2w<o,s)y‘ < Lypd?
2 6 §3/2
2y [Tt oy - vu0.5)| < 00,
(25) and |w(y, s) —w(0,s)| < %m
where C*(N) = [ |y|p(y)

Proof. By a Taylor expansion of w(y, ) to the second order near y = 0, we
write: w(y, s) —w(0,s) —y.Vw(0, s) fo (1 —t)yTV2w(ty, s)ydt. Using (19) we
get the first inequality.

The second and the forth inequalities are obtained in the same way by
expanding w(y, s) respectively until the third and the first order, and using

5/4
IV3w(s)llz= < Go7z and [[Va(s)llz= < .
For the third inequality, we write for all y € RN, Vw(y, s) — Vw(0,s) =

Y. fo V2w(ty, s)dt. Using || V?w(s)||= < 2, we obtain
[Vw(y, s) — Vw(0, s)| < |y|é Integrating this inequality with respect to pdy,
we get the conclusion. |

Case 1: w(s,) can not reach k + £

For all e > 0 and A > 0, there exists S1(A,€) such that if s, > S1(A,e€),
Case 1 in Proposition 2.2 does not occur.

Proof: This estimate is in fact crucial and it follows from a blow-up argument.
Assume that

(26) w(0, $,) = K + :—0

Since w(sy) € Va(sn), we have ||w(sy, )|z~ < £+ $> and 0 is a global maximum
for w(sy). Therefore, Vw(0, s,) = 0. Hence, (22) ylelds

w(y,sn) > K+ 5o — : (sc—j + C*(N) 3/2) |y|2 and

Jwly sa)p)dy > s+ & — 3 (& + 0 (N) A7) [lyPp(v)dy

= K+ w NC*(N )A;//: =K+ 5 - NC”"(N)%/Z4 > k for s, large

(sn > Si(A,€) = W)
This contradicts the global (in time) existence of w. Indeed, we have the follo-
wing blow-up criterion for nonnegative solutions of (3):

Lemma 2.3 (A blow-up criterion for nonnegative solutions of (3))
Consider W > 0 a solution of (8) and suppose that for some sg € R,
J W (y,s0)p(y)dy > k, then W blows-up in finite time S > sq.
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Proof: See Proposition 3.5 in [16]. |

Therefore, w blows-up in finite time S, which is a contradiction for s, >
Sl (A, E) .

Thus, Case 1 of Proposition 2.2 can not occur.

Case 2: |Vw(s,)| can not reach \/”sl_n

There ezist e2(p) > 0 such that Ve € (0,e2(p)), VA > 0, 3S2(A, €) such that
if s, > Sa(A,€), then Case 2 in Proposition 2.2 can not occur.

Proof: Tt follows from the bounds of w(s,) and Vw(s,).
In this case, |Vw(0, s,)| = (22) with

On = 2\/_+6)\/§|§Z Z:;:gl we get:
W(Gny5n) 2 0+ (2y/B+ €)y/Fusgs = 5 (2 +C*(N) 477 ) (2B + )25
:n+2pe+0(62)+0(
e2(p) > 0, thenw(yn,sn)>m+pe+0(

1 ) as n — +oo. Therefore, if € < ez(p) for some

) Hence,

¢
n—f—s—o > ||lw(sn)l| Lo Zlﬁ+p6+0<
n

1
Vsn /)’
which is a contradiction if s, > S3(A, €) for some S3(A4,€).

Thus, Case 2 of Proposition 2.2 can not occur.
Case 3: o7 [y VZw(y, sn)p(y)dyp > -

Ve > 0, VA > 0, 3S3(A4,€) such that if s, 2 S3(A,¢€), then Case 8 in Propo-
sition 2.2 does not occur.

Proof: We assume that o7 [ v V2w (y, sn)p(y)dyp = — 32 for some unitary

¢ € RV, We proceed in two steps: in Step 1, we derive a differential equation on
J V2uw(y, s)p(y)dy. In Step 2, we conclude the proof by a contradiction between
this equation and the fact that w is globally defined in time.

Step 1: Equation on [ V2uw(y, s)p(y)dy
We recall that w is a solution of

ey A P
(27) Lw ’ 1w+w

where £ = A — 33.V + 1 is a self-adjoint operator on D(£) C L2(RY) with p
defined in (17). The spectrum of £ consists of eigenvalues

specﬁz{l—%hnel\l}.

Let us recall that in dimension 1, the eigenvalues are simple and the eigenfunc-
tion corresponding to 1 — % is

(28) hnly) = Y s (< 1)y
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where h, satisfies [ hmhjpdy = 250
In dimension N, we write the spectrum of £ as

mi + ... +my

(29) spec £ ={1— 5

| mi,...,my € N}.

For (m,...,my) € N, the eigenfunction corresponding to 1 — w is

(30) Y = By (Y1) Py (YN)-

Since the eigenfunctions of £ constitute a total orthonormal family of
L2(RN), we can write

(31)  w(y,s) =wo(s) +wi(s).y + (%yTUQ (s)y — trws (s)) +w_(y,s)

where:

=

p € R (eigenvalue 1),
-wi(s) = [w(y,s)4p(y)dy € RN (eigenvalue 1),

- wa(s) = [w(y,s)M(y)p(y)dy is a N x N symmetric matrix (eigenvalue 0)
. 1 1

(32) with Mi;(y) = 74iy; — 5054,

- w_ = P_(w) and P_ is the L? projector on the negative subspace of L.

Our purpose is to write an equation satisfied by ws(s). We claim the follo-
wing:

Lemma 2.4 (Equation satisfied by ws(s)) For n large enough, we have:
i) wi(s) = [ Vw(y,s)p(y)dy and ws(s) = [ V*w(y, s)p(y)dy, »
A

i) [wi(sn)] < Fh=, lwa(sn)l < £, Vy € RY, Jw_(y,80)] < O(N) S5 (1 +
ly|?) and do < wo(sn) < Kk where &g =

ii)

3
m fOT‘ some C(N) > 0.

won) = (s, = 25 ) uas)

p(p — Dwo(sn)? 72 [2w2(sn)? + w1 (8n) ® w1(sn)]

lwi (sn)| 1
O( 3/2 +0 5/2 | °
Sn Sn

Proof: see Appendix A.
Remark: - If 4 and v are in RY, then we recall that « ® v is the N x N matrix
such that (u ® v); ; = u;v; and O(f) stands for a function which is bounded by
C(A,p,e)f asn — +o0.

(33)

+

Step 2: Conclusion for Case 3
Let m(s) = ¢Twa(s)¢. Then, m is C!, and since w(s) € Va(s) for all s €
[—1ogT, s,], we have: m(s,) = —2 and Vs € [~1ogT, s,], m(s) > —<2. Thus,

(34) m(sn) = —2 and m'(s,) < =

Sn s2°



242 Refined uniform estimates at blow-up and applications

Multiplying (33) by ¢ on the left and ¢ on the right, we find:

ml(sn) = pwo(sn)p_l - ﬁ m(sn)

+p(p — Do (50) 2 [2m(s0)? + (wn (s0)-9)°| + 0 (22821) + 0 ().

S’II. n

Therefore, since (w1 (sy,).)? > 0, we have

pwo(sn)P ™" = 527 > s \ = m(s0) + 20(p — Do (50)7 2 m(s0)?

w0 (2852) +0 () )
With (341), we obtain

1 Sn c2

C2 _
> <—+—(——+2 1 r—22
wo(sn) > P S e (p — Dwo(sn) 52

- + o) (1))

Now, we claim that the following lemma yields the conclusion:

Lemma 2.5 There exists positive constants C(A,p,¢€) and C'(A,p,€) such that

(36) (0, 5,) — K| < @
(37) and  |wi(se)| < M.

Indeed, if we inject (36) and (37) in (35), then we get
1
2 —1
wo(sn) > (ﬁ + o2 (—p— +2p— DG 4o (L))) »~T which yields

wo(sn) > Kk +2 (cz — %) é +o (ﬁ) Since ¢; > 37, we obtain

wo(sn) > K
for s, large enough, which contradicts by lemma 2.3 the fact that w is globally
defined on [—1log T, +00).
Proof of lemma 2.5: 1
We derive from i) of lemma 2.4 and (35): wo(sn) > (ﬁ 10 (i))ﬁ _

k+ 0 (ﬁ) Since w is globally defined for s € [—logT, +0), lemma 2.3 gives
wo(sn) < k. Hence,

(38) wo(sn) = K+ O (i> .

Sn

Integrating (22) with respect to pdy, we obtain: |wo(s,) — w(0,s,)| < O (é)
Together with (38), this gives (36).

Now, we claim that |Vw(0, s,)| < 5 with
B = \/2¢2(3¢co + C(A,p,€)). Indeed, if not, then we use the left inequality of

(22) and write for j, = Z T
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Sn

/
> k- Chpd B 12 o N)4n) g

C28n 8n [

~ ~ c * / A
W(Gns $n) 2 (0, 50) + G- V(0 50) = (2 + C*(N) 452 ) 2

=k+32 40 (ﬁ) Therefore,

c 2¢
Bt > fu(sn) 1o > ot =2

n n

if s,, is large enough, which is a contradiction. Hence, |Vw(0, s,)| < g. Using

(24), we find wi (s,)| < CAL with C'(A,p,€) = B+C*(N)A. This concludes

the proof of lemma 2.5. [ |
Thus, Case 3 can not occur.

Case 4: ||V2w(s,)||z~ can not reach 2

There exists Ay(p) such that for all A > Ay, and € > 0, 3S4(A,€) such that
if sn > S4(A,€), then Case 4 of Proposition 2.2 can not occur.

Proof: Tt follows from the bounds on w and V3w. We have |V?w(0, s,)| = 2.

Sn
Hence, there exists 79 € {—1,1} and a unitary vector 1, € RY such that
bEV2w(0, sn)¢n = Mo 2. Let us notice that if A > 35 then we have from (19)
1o = 1 for n large enough.
Using (23) with g, = m Al—‘/ﬁwn where 71 € {—1,1} is chosen so that
n-Vw(0,s,) > 0, we write:
W(Jn, $n) 2 w(0,5,) + Jn.Vw(0, s,) + %ZLTV%U(O, 8n)0n — %|@n|3%//24

3/2 5/4
>0+0+ 2%% — ;‘;WI:?.T = @. If A > 36k2, then we have

C
Kt = > [lw(sn)llpe > 26
Sn

which is a contradiction for s, large enough. |
Thus, Case 4 can not occur.

Case 5: ||V3w(s,)||L~ can not reach %
Sn

We first give a crucial uniform ODE comparison result for w in V4(s). Such
a result has been shown in [16] for a fixed solution (see (6)). We claim that these
estimates are in fact uniform for w € Vy(s).

We have the following proposition:

Proposition 2.3 (ODE like behavior in V4(s)) For a given A > 0,
Vn > 0, 3Cy, > 0 such that for all s* > —log T, for all solution w of (3) defined
for all s > —logT and satisfying w € Va(s*), we have Vz € RN, Vt € [0, %],

@(:L', t) — u(z,t)?

= < nu(z,1)" + C,

where t* =T —e™*" and u(z,t) = (T — t)ﬁw (\/%, —log(T — t))
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Proof: Tt is mainly the same as in [16] (Theorem 3), and it uses a compactness

procedure. See Appendix B. |
Now, we begin the treatment of Case 5.
We have
, 5/4
(39) [V2w(0, sp)| = poE and Vs € [—logT, s,], w(s) € Va(s).
n

Since w(s,) € Va(sn), we have 0 < w(0,s,) < & + $2. Therefore, we can
assume that
w(0,s,) = a € [0,k] as n — +oo0.

We will consider the case where a is small in Part I, and let the case where it is
not small for Part II. We first claim the following lemma:

Lemma 2.6 VS >0, sup |w(0,5) — @a(s—sn)| = 0 as n — +oo where
$€[8n—S,8n]
(g 15 the solution of

Ph(s) = —22d 4o (syP
‘Pa(o) = a

al~P

(40) that is pa(s) = & <1 + (p — " 1) es) . if a> 0, and po(s) = 0.
Proof: Let z,(s) = w(0, s), then we have from (3) Vs € [s,, — S, s]

{ 2h(s) + 28 — 2 (5)? = Aw(0,5)

p—1
2n(8n) = a.

Since Vs € [s,— S, sn], w(s) € Va(s), we get [Aw(0, s)| < N||V2w(s)||p~ < XA,
Hence, Vn > 0, we have for n large enough and s € [s,, — 5, s,]:

{ [2h(s) + 2 — za(s)?| <
|zn(sn) —al <.

Therefore, by classical continuity arguments on ordinary differential equations,
w(0,8) = 2zn(s) = @u(s — sn) as n — +oo, uniformly on [s, — S, s,]. This
concludes the proof of lemma 2.6. |

Part I: Case where a < 4(p)

There exists 6(p) € (0,k) and Ss(p) such that if A > 1, s, > Ss(p) and
a < 0(p), then Case 5 of Proposition 2.2 can not occur.

This result follows from local estimates in new variables (£, 7) defined below
and scaling arguments. We assume a < §(p) where 6(p) will be fixed later small
K

enough, lower than .

Step 1: Setting of the problem:

For each n € N, we introduce s;, = max{%} U {s € [, 5,] | w(0,5) > §}.
Let us remark that w(0,s;,) < k and if s, > %2, then w(0,s},) = 5.

We have the following lemma:

Lemma 2.7 There exists S(0) — +oco as § — 0 such that for n large enough,
S(0) <sp—sp, < o2
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Proof: Since s;, > %, we have s, — s, < 2.
We get from (40) S > 0 such that Vs € [-5,0], a < ¢4(s) < § and § — +oc as
a — 0. Hence, S — 400 as § — 0, since a < 4.

Since w(0, 8) = @4 (s—s,) asn — +oo uniformly on [s,—S, s,] by lemma 2.6,
we obtain for n large enough Vs € [s, — S, s,], w(0,s) < §. Thus, s;, < s, — S.
This concludes the proof of lemma 2.7. |

Let us define for eachn € N, £ € RN and 7 € [-1,1),

U"(&aT) = 6_1%11, (ge_%7T + (7- _ 1)6_8’">
(1 - T)_ﬁw <\/1€__T

where u is defined from w by (2) (take a = 0), and introduce 7, € [0, 1] defined
by s!, —log(1 — 7,,) = s,. Then, v, satisfies: V¢ € RV, V1 € [-1,1)

v
(42) 8—: = Av, + 0P

From (39) and the definition of s, we get: v,(£,0) = w(§, s,),

(41)

, 50 — log(1 — 7'))

va(0,0) < 5, [[Voa(O)|lze £ -,
(43) : W s Y
Vo O)llz < 5y [IVP0R(O)lze < S

Note that if s}, > %=, then v,(0,0) = %.
Step 2: Estimates in v variable

We claim the following lemmas:

Lemma 2.8 (First estimate) For n large enough, we have:
i) V7 € [=1,7], VI¢] < 250" val(€,7) < ().
ii) For alli = 1,2,3, V7 € [—%,7.], V|¢] < 2sn/*, |Viv, (€, 7)| < C'().

Lemma 2.9 (Refined estimate) Assume that s;, > %&. Then,

i) ¥7 € [0,7], VIl < sa”", § < wa(6,7) < O
it) There exist positive constants Ces(p), C7(p) and Cs(p) such that if A > 1
then V1 € [0, 75]:

/4

Sn C
(44) V¢l < 0 [Von(§,7)] < 63,))’
/4
Sn Cr(p)A
(45) Vel < T W) < S0,
/4 5/4
Sn Cs(p)A
(46) V¢l < B V20 (E, 7)< %
Sn

Proof of lemma 2.8:
i) By Proposition 2.3, we have: Vi > 0, Vo € RV, Vt € [0,T — e~*»)
ou

E(x,t) —u(z,t)?| < nu(z,t)P + C,.
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Therefore, we get from (41): Vi > 0, we have for n large enough: V¢ € RV,
V1 € [-1, 7]

ov _ P
) |52 e | S r 4 G S n(anler? 4 ).
Using a Taylor expansion and (43), we get for n large enough: V|¢| < 25/
2
(48) [0n(€,0) = (0,0 < ety and v (€,0) < .
Sn

We take n = n(p) > 0 small enough such that v, (7) and V;(7) defined by
3K
4
are well defined for all 7 € [—1,1] and satisfy max (V,(7),v,(7)) < 2v9(1) =

C(p)-
Hence, for n large enough: V|¢| < 23;11/4,

vy(0) = V5(0) = —, vy, = L+ n)vf +n, and V;; = (1 =) V7 —n.

(49) V71 €[0,7], vn(§,7) < wy(7), and V7 € [-1,0], vn(&, 1) < Vp(7).

Therefore, v, (€,n) < C(p) for all 7 € [-1, 7,]. This concludes the proof of 7).
1) We use a classical result (see Theorem 3 p. 406 in Friedman [8], see also
Douglis and Nirenberg [5]):

Lemma 2.10 Assume that h solves

Oh
Pl Ah+a(& T)h

for (¢,7) € D where D = B(0,3) X (—70,7«) and 70,7 € [%,1]. Assume in
addition that ||al|Le + |a|a,p is finite, where

|a(£77—) B a(é-I’TI)|
(e e (1€ = €|+ |m —7[1/2)

lala,p =

and o € (0,1). Then,
Ikllc2(pry + IV hla,por < K||Bl| (D)
where K = K (”a”Loc(D) + |a|a,D) and D' = B(0,1) X [-19 + %,T*).

Since vy, is bounded on B(0,2s;11/4) x [—1,7,] (see 7)), and since v, and Vo,

satisfy

% = Av, +a1(§,7)vn
or
and oy
S = A(Von) + a2, 7)Von

for all (¢,7) € B(O,2sg/4) x [-1,7,], with as = pa; = pvP~!, it is enough to
prove that |vn|1 B /4 3 is finite and to apply lemma 2.10 successively
,B(0,25, ") x(—=%,7n)

to v, and Vv, in order to conclude the proof of ii).
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For this purpose and from translation invariance, we restrict ourselves to
€| < 3 and write for all (£,7) € D = B(0,3) x (—1,7,), vn = hy + hy where:
- hy is a solution of

{ %ﬁ = Ahy for (§,7) €D

M(7) = va(&7) for |¢] =3 and 7 € (~1,7,)
hl(ga _1) = vn(£7 _1) for |§| < 3;

- hg is a solution of

50 %hrz = Ahy + f(z,t) for (§,7) € RN x (=1,7,)
0 ha(§,—1) = Oforall £ € RY

with

(51) f(é.aT) = Un(f, T)p]‘{(E,T)ED} S C(p)

From maximum principle, hs is bounded by C(p) on RV, hence on D. Therefore,
hy is bounded by C(p) also. Applying lemma 2.10 with h = h1 and a = 0, we
see that in particular |hi|1,pr < C(p) where D' = B(0,1) x [-3,7,).

We have from (50): V(£,7) € RY x [—1,7,),

(52) ha(€,7) = /_ 1 =9 F(5)do

We claim that
(53) |h2|1,RNX[—1,Tn) < C(p)7

which concludes the proof.

Proof of (53):
Let us recall that for all ¢ € L®(RY): |[e™® |z~ < [l¢llze,

a o
(54) Vel g < ||<p||Loo, and II—e Apllpe < =@l
VT v

In order to prove (53), it is enough to estimate |Vha(€, 7)| and
tha(€ma)—ha(E.m2)| for a]) ¢ € RN and 7,71, 7 € [—1, 7).

[T1—72|1/2

By (52), (54) and (51), we have:

(Vha(6,7)] = |[7, Ve f(o)do| < [T, Sl (0) 1= do
<20(p)VT+1<C(p).

Now, we take 75 < 71 and introduce 73 = max(—1,7 — /71 — 72). Then,
M) hEm)| — ( JT1 eI f(0)do — [T e =R f(o)do
ST+ IT+ 111 with I = (1 —1)~% [ ||e(m=DAf(0) || poe do,

IT = (1 — 1) 7% [ ||~ D)2 f(0)|| L~ do and
III = f_Ti |e(71_")Af( ) — el™=9)A f(g) |da

From (54) and (51), we have:

I1<(n—m)"% [71C(p)do = C(p)(r — ) % (r1 — 73)

< Cp)(r — 1) 3 (r — o+ 11 — 1) < C(p).
Similarly, IT < C(p). |

T — ’7'2)_%
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For I11, we write
I = (1 — )72 [(do | [177 522 f(0)do

<(n—m)"% [Bdo [777 Ldoy by (54),

T2—0 01

<(m —1)~ f " do C((;l_;f)

< C(Tl — 7'2) (7’3 + 1)(7’2 —7'3)_1 < C(Tl —Tg)% X 2 X (\/W)_l =C.
Thus, V¢ € RN, Vi, 7 € [-1,70),
1
|ho (&, 71) — ha(§, )| < Clm — 1ol =.
This concludes the proof of (53) and the proof of lemma 2.8 also. |

Proof of lemma 2.9
In this case, v,(0,0) =

5
)As1n1emma26 (47) an

d (48) yield sup |vn(€,7) —v(T)] = 0 as
€/ <sh /% ref0.a]
n — +00, where v is the solution of

V(1) = v(7)?, v(0) = g, that is v(t) = K (2P7! — 7-)_P1T1 .
Since V7 € [0,1], v(7) > &, we have for n large enough:
(55) Vil < si/1 vr e [0,1), 7 < onl67).
i) of lemma 2.8 yields the upper bound.
i1) Let us recall the following lemma:
Lemma 2.11 Assume that z(£,7) satisfies V|£| < 4By, V7 € [0, 7.]:

(56) { 22 < Az+ Azt

2(£,0) < 20, 2(§,7) < By

where 7, < 1. Then, V|€| < By, V7 € [0, 7],

B2
Z(&,T) < e (Zo +u+CBze_T1> .

Proof: See Appendix C. |

Estimate on Vv, (&, 7):
We estimate h(£,7) = |V, (€, 7).a| where a is a unitary vector of RY.
/4

From (42), Kato’s inequality, (43) and lemma 2.8, we see that V|{| < sn’,
V7 € [0, 7],

(57)

gh < Ah+pvR~th < Ah + pC(p)P~1h,
he0) < f hET) < C').

J,

Sn

h(g,7) < ePC@ (\/_ +CC'(p)e” ,14/2)

which yields (44) since ¢; < % + 2,/p.
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Estimate on Vv, (&, 7):
We estimate §(¢,7) = |a?'V2v, (€, 7)a| where a is a unitary vector in RY .
From (42) and Kato’s inequality, we have: V¢ € RV, V7 € [0,1),

il < A+ puP~10 + p(p — 1)wE 2|V, .
-

Using (44), lemma 2.8, i) of lemma 2.9 and (43), we claim that V|¢| < *a

Vr € [0, ), !
% < AG+ C(p) + C(p) Celel,
(f 0)< &, 66,7 < C'(p )

By lemma 2.11, we obtain, V|{| < 812 , V7 €0, 7],

21/
0(£,r)se0<p><s + O )CS() + O (p)e=5 )

n n

Since A > 1, this yields (45).

Estimate on V3v, (&, 7):
We estimate v(£,7) = |V3v,(€,7)(a, 8,7)| where a, 3 and v are unitary vectors
in RV,

From (42) and Kato’s inequality, we have: V¢ € RV, V7 € [0,1),

0
2L < Av o+ 3p(p — 1082Vl V0] + p(p — Dlp — 20052 | Vo

S11/4

Using (44), (45), lemma 2.8, ) of lemma 2.9 and (43), we get: V[{| < =25,
V7 € [0, 7n].

3
% < Ay + C(p)v + C(p) (Cotw) tg‘}‘gp)cm) :
5/4
v(§,0) < 47z, (&, 7) < C'().
Applying again lemma 2.11, we obtain: V|{| < S”i#, vr € [0,1),

S (Azjz + 0 +,3C/62(p)07(p ) 4 corpye —/r> .

Since A > 1, this yields (46).
This concludes the proof of lemma 2.9. |

Step 3: Conclusion of the proof
From (41), we have

1

(58) V3w(0,s,) = (1 — Tn)(ﬁ

w|w

)V30,(0, 1),
where 7, is defined by s!, — log(1 — 7,,) = s,.
-Ifs;, = %, thenl—7, = en—%» = ¢=% . Hence, (58) and lemma 2.8 yield:

1

V3w (0, sn)| < e~ F(FT+3) 07 (p).
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This contradicts (39) for s,, large enough.

- If 53, > %, then we have by lemma 2.7 s;, —s,, < —S(0) for n large enough.
Therefore, (58) and lemma 2.9 yield

3
(59)  [$2VPw(0,8n)] < AY1Cy(p)elshsm) (FEr+E) (8_>

!
S’I’L

3/2
< AB/4 -5@)(2:+3) [ Bn .
< A°"Cs(p)e /2

Since S(§) — +o00 as § — 0, we fix d(p) > 0 such that

Ca(p)e SO+ < 2

Therefore, (59) yields |53/2 w(0,s,)| < %/4. This contradicts (39).

Thus, Case 5 can not occur if a < §(p).

Part II: Case where a > §(p)

There exists Ag(p) > 0 and S¢(p) such that for all A > Ag(p), if sn > Ss(p),
then Case 5 of Proposition 2.2 can not occur if a > §(p).

This follows from linear estimates on w, for the spectrum of the linear part
of the equation on V3w is fully negative.
Let us remark that in this case, we have:

(60) Vs € [sn — 1,54], V]y| < i - < w(y,s) <k + 1.

Indeed, the upper bound follows from the fact that w(s) € V4(s). For the
lower bound, we notice that since a > 4, we have from lemma 2.6 and (40):
Vs € [sp — 1, 8p], w(0,s) > % for s, large enough. Therefore, we have by (25):

c 5 ¢
w(y,s) > w(0,s) — Kly| > § - FL 9 = 4.

From (39), we have the existence of a, 3, 7 € RY such that |a| = |8] = |y| =
1 and
3 A5/4
(61) [Vw(0, 8n)(ex, B,7) = —77-
Sn

Our strategy is to derive from (3) an equation on g(y,s) = V3w(y, s)(a, 3,7)
and to do a priori estimates on it in order to contradict (61). We in fact define

(62) G(y,s) = F(y,s)x(y,s), F(y,s) =lg(y,s)| = [V w(y,s)(e, B,7)],

_ . (8alyl
(63) xs) = o (5
and xo € C*([0, +00), R") satisfies xo(z) =1 for |z] < 1, xo(2) = 0 for |z] > 2.

From (3), we see that

% = (E—ngpw(y,S)”_l—p%l)g
+ plp—Duw(y, s)*? ((a.Vw) (8T VZwy) + (8.Vw)(y" Viwa)
+ ('y.Vw)(aTvzwﬁ))
£ o= 1)(p - Dy, 5P (.Vw) (B.Vw) (7. Vw).
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We see from (39) and definition 2.1 that for s,, large enough, we have:
- Yy € RV, Vs € [sn — 1, 8n], pw(y, )P~ — 227 < §

—1 = 1>
-0< & <ecie) < 5 +2y/pforallec (0, 1)
Therefore, F' satisfies the following inequality: Vy € RY | Vs € [s,, — 1, 8],
oF 5 C(p)A -2, Cp) p—3
63 (‘c - Z)F + $3/2 w(yas) + $3/2 ’U)(y,S) .

Hence, by (63) and (60), G satisfies the following inequality: Vy € RN, Vs €
[Sn - ]-7 Sn]
96 < (£-3)G+ LB\ w(y, 5)P~> + LB xw(y, s)7~3 + F(ZX + Ax + 1y.Vy) -
QV (FVx).
< (L= 5)G + 0T +CW) 4Ly, s 0y — 2V(FVX).

Using an integral formulation of this 1nequahty between s, —n and s,, where
n(p) is fixed such that

52 52 1
4 1) and > z
(64) ne 0. and somm ==y Z g ra —e ) ~ 1
we obtain
(65) G0,8,) < IT+IT+ITIT+IV
where

1= [e"e=DG (s, — )] (0)
11 = [, dtete==0E=Do(p) D] (0),

[ sn o —8)(L— A3/4 4
1= [fsn—ndte( D) Ly, |z‘é£}] (0) and

- [—2 Jor dieln=DE=DY, (FVX)] (0).

Let us recall that the kernel of £ is: Vs > 0,

e

L= () ) — . lye™3 —af?
%) w2 (47r(1—e—s))N/2ep< 4(1—6—3))

and that for all ¢ € L>®°(RY),

Ble

C(N)

_5 _s _5
67) 1Dl < e ligllu, DVl < =l

From (67), (62) and (39), we have
_n _n 5/4
I <e )|G(sn =)L < 7% 25w

Again, by (67), we have

Sn _(sn—t)
I1< [i dte C(p) 5t < Cn) 25 mn < C(p) 55547 by (64).

By (66), we have:

(sn—t)

IIT = fs:_n dt(41r(1—e_(sn_t)))N/2 f{‘z‘z‘;T\/l?}dxeXp( I(—e- (sn—_t))) C(p)

For |z| > %T\/f and t € [s, — 1, S,], we have

|2 _ 22 |z
AP\ T aTemmy ) T P\ TRy ) KPR
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< ex ——2762’5 ex e < e fex S | from
S XD\ Trng——em ) EP\ Tsa—cGn-y ) = P\ 7s—c-Gn—1)

(64).
Therefore,

A5/4 Sn d | |2
1S COETE 1 s (<)

/4e Sn
:C(p)g‘j_wf , dt [ dXemIXP

/4
= C(P)WU <C(p )f‘s_w by (64).
From (66) and integration by parts, we have:
IV <C(N )f \/ﬁHF(t)Vx(t)HLoo. From (62), (39) and (63), we have
F(z,t) < A3 //2 and |Vy]| < . Therefore,

5/4 5/4
IV < .5 ol \/1_5;4 < Crh=mCVi < Chzgy by (64).

From (65) and (62), we then get:
5/4 _n _5n
1900,50)] = G(0,50) < A% (7% + Clp)e™F + =)
Now, we take A > As(p) such that C(p)(A +1) < (e"% —
Sn > Ss(p) such that
m (e—% +C(p)e= T + \/sf;—n) < 3/2 .If s, > S5(p), then we have:

[V3w(0, s,) (e, B,7)| = 9(0,85)| < e_%‘::—//; < A://Z . This contradicts (61).

C(p) %

e~ %) A%/4) and

T
=
+

€

—

Thus, Case 5 can not occur if a > §(p).

3 Blow-up profile notions for equation (1)

In this section, we prove Theorems 2 and 3.
Let us first show the existence of a profile in the intermediate variable z = %

Proof of Theorem 2:
The theorem is a consequence of:

- the behavior of the solution w(y, s) for ¥ bounded,

- the pointwise estimates on Aw(y, s) in Theorem 1, which will enable us to
treat this term in equation (3) as a perturbation.

Let u(t) be a solution of (1) which blows-up at time 7' > 0 and satisfies
u(0) € HY(RY). Let zo be a blow-up point of u(t) and consider w,, defined by
(2). We just write w for wy,.

The proof is in two steps:

Step 1: Reduction of the problem
According to Filippas and Liu [7] and Veldzquez [18],
- either VR > 0, sup |w(y,s) — k| < C(R)e™%* for some § > 0,
ly|<R
- or there exists k € {0,...,N —1} and a N x N orthonormal matrix @ such
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that VR > 0, sup
ly|<R

K 1 1
— — (N —k) = =47 = -
w(y, s) |:I€+ 205 <( k) 5Y Aw)” o (s)
as s — +o0o0 where

(68) a=a( g 0o

and In_y is the (VN — k) x (N — k) identity matrix.
By direct calculations, we summarize both cases by:

(69) VR >0, sup [u(y,s) - fi (i) LI (1>

yI<R Vs) s s
where
_ _ (p_ 1)2 T T . H,(N—k)
(1) o) = (p L R . )

k€ {0,1,...,N} and Ay, is defined in (68) (take Ay = 0).
We claim now that (69) implies that the convergence is uniform on larger
sets:

Proposition 3.1 (Convergence extension to space-time parabolas) As-
sume that w is a solution of (3) which satisfies (69). Then, YKy > 0,

sup |w(zvs,s) — fr(z)] = 0 as s & +o0.
|z|<Ko

It is immediate that Theorem 2 is a direct consequence or Proposition 3.1. Thus,
we now focus on the proof of Proposition 3.1.

The main feature in the proof is an a priori estimate on

(71) ;) = vy, 9) = fil 7).

We consider the equation satisfied by ¢ as a perturbation of a hyperbolic
equation (the size of the perturbation is crucially controlled by Theorem 1). We
claim the following result:

Proposition 3.2 (Hyperbolic estimate on ¢(y,s) for A < |y| < Kov/s)
Assume (69). Then, for any Ko > 0, there exist Ag(Ko) > 0 and B(Kp) > 0
such that for all A > Ay, there exists So(Ko, A) with the following property: If
we SN~ 59> 8y, then

8§—S8
e 0

Vs € [sa, $1], |q(Ae¥w,s)| <B .
0

where s1 > sg is defined by

81—

(72) Ae™ 7" = Ko/

Let us first show how this proposition concludes the proof of Proposition 3.1.
Remark: We notice that it directly follows from Proposition 3.2 that for Sy
larger, we have

s—

s 2BK?
(73) Vs € [so0,51], |g(Ae™2 -

A2

0w,s)|§
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Indeed we have Vs € [so, 1], Ae 7t < Ko+/s < Ko/s1. Therefore,

lg(Ae ™= w, s)| < BY—— < Bﬁo 2. If Ko and A are fixed, then it is easy to
see that s; ~ sg as 30 —> +00. One might take So(Ko, A) larger to have 2 1 <2,

which yields |g(4e ™= " w, s)| < 2BK°.

We now prove Proposition 3.1.
Let Ko > 0 and € > 0. Fix A > A(Kp) so that ZBKO <e
By (69), there exists sga(€) such that

s—sq

(74) Vs 2 s02, VY| < A, lq(y, s)| < €.

Let so3(Kop, A) > Sp be defined by Ae B0 — Ky+/s03. We claim that Vs >

max (so2(€), s03(Ko, 4)), V|y| < Kov/s, la(y, s)| <.
Indeed, if |y| < A, then the conclusion follows from (74). If A < |y| < K4/,

we define so(|y,s) by |y| = Ae 2. By construction of 303(K0,A), we have

so(Jyl,s) > So(Ko, A). We also have s < s < s1, since Ae 7t = = |y| < Kov/s
and Ae" 7" = Ko+/s1. Applying the remark (73) coming after Proposition

3.2 gives |q(y, s)| = |g(Ae =" ﬁ,sﬂ < 2]?412{0 < e. This is the conclusion of

Proposition 3.1 and that of Theorem 2 also. Let us now prove proposition 3.2.

Step 2: Hyperbolic estimates: Proof of Proposition 3.2

Define »
— K27

(75) B(Kp) = 3(|la| + 1+ Cy) [1 + %}
with Cy = Cs + 1|2.V f(2)||L=, Cs is the constant given by Theorem 1 such
that [|[Aw(s)||L~ < % and a is defined in (70).

We consider A > Ag(Ko) and so > So(Ko, A) (Ao(Kop) and Sp(Kop, A) will
be defined later).

Let w € SV~! and introduce

(76) y(A’UJJSOJS) = Ae¥w and h(Aaw’507S) = Q(y(A,W,SmS):S) .

For simplicity, we will just write y(s) and h(s). Let us define so4(Ko, A) (inde-
pendent of w) such that Vs > so4(Ko, A), s1 (introduced in (72)) is well defined
and satisfies 51 < 2sg, and
laj+1 B
< J—
So S0

(77) |h(s0)| = |¢(Aw, s0)| <

by definition of B(Kjp) (This follows directly from (69)).

The proof of Proposition 3.2 reduces now to prove that Vsg > So(Ko, A),
Vs € [so0, 81], |h(s)] < Bes ® . We proceed by a priori estimates.

We suppose by contradlctlon the existence of some s, € [sg, s1] such that

Be®—9%0 Bes+—950

d |h
— and ()| = =

(78) Vs € [s0,54), |h(s)] <

Since fy, is a solution of 0 = —1y.V fi,(2) — fk(z) + fr(2)P, we derive from (71)
and (3) an equation satisfied by ¢: Vy € RV, Vs > —logT:

% - —%y.Vq-i— (pfk (%) - 1%1) g+ N(q) +r(y,s)
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where N(q) = (fi + @) = f—pff " "qand 1(y, ) = } 2=V i (%) +Aw(y, ).
Therefore, we derive from (76) an equation satisfied by h:

p—1
% - (pfk (%) - ﬁ) h(s) + N(h) +r(y(s), s)-

From (75) and homogeneity, we write Vs € [so,s«], |[N(h)] < C*(Ko)|h|? <
C*(Ko) B |h| and [r(y(s),s)| < G-
Therefore, if g(s) = |h(s)|, then g(s) satisfies:

Vs € [s0,84], g'(s) < «a(s)g(s Cs
(79) { € lso, 2] 5(;3 < (\Sw)r%( )5
with

_ y(s) p_l_L , Bef™*0
(50) ot = (U2) - 25+ 0t P

Using Gronwall’s inequality, we write
Vs € [s0,54], g(s) < I +1I

where

(s1) I:exp(/s:a)g(so)andff:c4L:{§exp(/crsa).

We estimate in the following lemma exp (f; a) for sg <o <s< 5.

Lemma 3.1 There exists A1(Ko) > 0 such that VA > A;(Ko), Jsos5(Ko, A)
such that Vso > so5(Ko, A), if so <o < s< s1, then

s g2 PR
exp /a < 3poo |14 P DEGITT
- 2 4p

We let the proof of this lemma to the end, and finish the proof of Proposition
3.2.

Now, we define Ag(Ky) = A1(Ko) and for each A > Ag(Ky), So(Ko, A) =
max (804 (Ko, A), s05(Ko, A)). For A > Ag(Kp) and s > So(Ko, A), we use (79)
and lemma 3.1 to bound I and IT (see (81)) for s € [sq, $«]:

_p
1< (o] +1)3 [1 + (p—l)Kg] P gtms0 g

4p S0

_P_ P
II< 04% [1 + (P—413Kg:| p—1 fs do ps—c < %C4 [1 + (p—;;Kg] p—1 gs—sq .

80 O S0

Hence, for s = s,,
_1)K2] FET geues sx—s
|h(3*)| = g(s*) <J+IT< %(|a|+1+04) [1 + (p 41’31(0] =1 - o0 _ B(;(o) e - 0
(see (75)).

This contradicts (78) and concludes the proof of Proposition 3.2, Proposition
3.1 and Theorem 2 also.

Proof of lemma 3.1
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From (80), (70) and (76), we have
- 9 1 * 550 .
a(s) = p—Ll+bw)A? 50 p=1 + C*(Ko) B4, — with
(p—1)?
4p

(82) b(w) = bwT Apw and b=

Therefore,

f; a(r)dr = [7’ +1In (p — 1+ b(w)A? —eT:O)_ﬁ +C* (Ko)—Be;O_SO]
oc—sQ

—1+b(w) A2 e 71
=s—o+1In (%) + C*(Ko)g (e*~%0 — e?~%0). This implies
1

that
o—sg

8\ _ _s—o I’_I‘H’(“’)Aze? Pt * B (,s—s0 _ ,0—s0
exp (f,;) =e (—p_ler(w)Azesﬂso exp (C (Ko) 5 (e e ))-

Since ¢ < s < s; and Ae? Tt = Ky\/s1, we have Ae™ = < Kpy4/31 and

Ae =" < Ky+/51 . Therefore,

exp (f7) < e [1+ ;I_((ﬂpjexp (C*(%ﬁzgm‘) (note that b(w) < b, see
(82)).
We now introduce A;(Kj) > 0 such that for all A > A;(Kj),

* 2
exp (%"2) < % and consider A > A;(Kj). Then, we introduce

s05(Ko, A) such that for all so > so5(Ko, A), s1 < 2s9. Then,
bK?
p—1

_p
for s > s05(Kj, A), we have exp (f;) < Zese [1 + ] "' which concludes

the proof of lemma 3.1.

Proof of Theorem 3:

The proof will follow from Proposition 3.1 and localization estimates. We
consider u(t) a solution of (1) which blows-up at time T" > 0 at some point
zo € RN. By translation invariance, we take zo = 0. We assume 0 to be an
isolated blow-up point of u(t). Therefore, there exists ¢y > 0 such that 0 is the
unique blow-up point u(t) in B(0, 2¢p).

We aim at proving the equivalence of the following behaviors for u(t) near
0 and for wo (=w) defined in (2):

:o(%) as s — 400,

1
() VR> 0, s (y,5) = [+ 508 = L)
(B) Jeo > 0 such that |go(y, 8)l| ;oo |y <egesr2) = 0 as s = +o0o where

ly <R 2ps

(83) 90y, s) = w(y,s) — fo(%)
and e
(84) fol2) = -1+ %Wr#fu

(C) Jeo > 0 such that if |z| < €, then u(z,t) - u*(z) as ¢ - T and
u*(z) ~ U(z) as £ — 0 where

(85) U(z) = [(iplkl)ggsz] " .
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For further purpose, we introduce a weaker version of (B) (which will be in
fact equivalent):

(B’) VKq > 0, ||q0(y,s)||Loo(‘y|§Ko\/§) —0as s — 4oo.

The proof will be over if we prove the following implications:

(A) = (B) = (C) = (B) = (A).

We first prove some useful technical estimates. We then use them to prove
the different implications.

Part I: Preliminary results for subcritical values of w (w < k)
We crucially use the localization result proved in [16].

Lemma 3.2 Assume that 0 is the only blow-up point of u(t) in B(0,2¢) for
some €9 > 0. Consider (yn,sn) a sequence in RN x [—logT,+o00) satisfying
lyn| < €0e®m/? and suppose that w(yn,s,) — | € (0,£) and s, — 400 as
n — +00.
If £, = yne /2 and z, = \l?/’%, then:

i) xn = 0 as n — 400,

it) Yn € N, u(zp,t) - u*(z,) ast = T and

1

2 p-1 1
u*(zn) ~ [—’%[] (=P —p+1)" 7" asn — +o0.
222 |log 121

Proof: We proceed by contradiction in order to prove that x, — 0 as n — +oo.
If not, then we have z,» > § > 0 for some subsequence z,. Since u(t) does
not blow-up for § < |z| < €, there exists C(6) > 0 such that if t € [£,T) and
0 < |z| < €o, then |u(z,t)| < C(d). Therefore, (2) implies that 0 < w(yn’, snr) <
e_PL—IlC((D — 0 as n — +o00o, which contradicts the fact that [ > 0. Thus,
z, = 0asn — +oo.

Let us find an equivalent of u*(z,,).

We define for each (¢,7) € RV x [0,1)

vp(€,T) = e_%u(mn+§e_sT",T+(T—1)e_s")
yn+£

\/T_T,sn —log(1 —7)).

(86) (1—71)7Tw(

Then v, satisfies: V€ € RV, Vr € [0,1)
ovy,

— = Auv, + 0.

or
According to (6), Ve > 0, 3C, > 0 such that

% (0,7) — vn(0,7)P| < v, (0,7)P + Cee™7-1,¥7 € [0,1),
vn(0,0) — 1.

Let us define first v(7) as the solution of

V(1) —v(1)P =0, v(0) =1,
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that is v(r) = (I — 7(p — 1)) 7.
Thus, if we denote v,(0,7) by y,(7), we have: Ve > 0, there exists ng(e) such
that Vn > ng(e)

{ lyn(T) —yn(T)P| < €(yh +1), VT €[0,1)
|yn(0) _l| < e

Since v(0) < v(1) < v(1) < 400, it follows from continuity results on ordinary
differential equations that sup |y,(7) — v(7)| < d(€) with d(e¢) = 0 as e — 0.
T€[0,1)

In particular,
1

lim v, (0,7) = lim y,(t) > v(1) = (' P —p+1) 7" asn — +oo.
T—1 t—=T o
From (86), we have u*(zy,) = lim u(z,,t) = lim e?-Tv,(0, 7). Therefore,
t—=T T—1

1

(87) e Tu (2,) ~ (P —p+1)"7 1 asn - 4oo.
Since
(38) Bl e,
we get
(89) 5 ~ 2 llog 2
Zn
and then

9 T p-1
er=T1 ~ [L] as n — +oo.

Combining this with (87) concludes the proof of lemma 3.2. |
Corollary 3.1 Under the assumptions of lemma 3.2, if 15(;:)) —+1asn —
+00, then w(yn, $n) — fo(\/—%) — 0, where fo is defined in (84).

Proof: Let us show that 1[‘;((;:)) — 1 implies that fo(\?/’;‘—") — [. From (85) and

lemma 3.2, we get

'?—p+1  (p—17

90 ~ as n — +oo.
(90) 2o 2= W llogl

We claim that s

(91) log f| ~ 2.

Indeed, (90) and (89) imply that z, ~ % [log |zy||. Using (88), we get from

this |z,]e? ~ C(p,1)/|log |zn|| which gives [log|zy|| ~ .
Combining (90), (89) and (91) gives

2 4p(I'~? —p+1)
" -1

that is fo(zn) =l as n — +oo (by (84)). |
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Part II: Proof of Theorem 3
Now, we are able to prove the equivalence.

(A) = (B):
One can easily see from (84) that VR > 0,

Yy K | 9 1)
su ——=)—k—— =0 ).
\y|§pR fO(\/E) ( 4p3|y| )‘ (32
. Y Nk (1)
By (A), it follows that VR > 0, sup |w(y,s) — fo(—=) —=—| =0 - ).
v (4) sup w(,9) = fol 72) zps‘ .

Proposition 3.1 applied with £ = 0 (and A = In) yields by (83): VK, > 0,
llgo (4 $)l| oo (|y| < kov/5) — O @s s = +oo, which is (B’).

(B’) = (C):

Since 0 is the only blow-up point of u in B(0, 2¢g), we can define u*(z) =
tli_)rr:}’ u(z,t) for all 0 < |z| < €. Let (z,,) be any sequence tending to zero in RY.
Let us prove that u*(z,) ~ U(z,) as n — +o0o where U is defined in (85).

Fix 19 > 0. If n is large enough, we can uniquely define s, - +o00 and y,
by roe~*"/2,/3, = |z,| and y,, = z,e*/2. Since z, = l’}’T"—J =7y > 0, it follows
from (B’) and (83) that w(yn, sn) = fo(re) € (0,k). Applying lemma 3.2 yields

1-p _(p_1)= (=172
From (84), we have fy(rg) (p—1) = 15 Therefore,

1

_12 n2
(o) ~ | @Dl
Sp‘log%

which is equivalent to U(z,) by (85).

(C) = (B):

We want to prove that ||go(y, s)|| peo(|y|<eoesr2) — 0 as s = +00. We proceed
by contradiction and assume the existence of € > 0, s, = +00 and |y, | < eoe’n/?
such that
(92) |go(Yn, Sn)| > € as n — +o0.

We can assume that w(yn,,s,) — I1 and fo (\%‘_n) — I. According to Theo-

rem 1 and (84), l1,l2 € [0, k]. Note that (92) yields
(93) llh — 12| > €.

Let us consider three cases:

Case 1: 1, € (0,k). From (93), w(yn, sn) — fo (\7/’;_“) does not go to 0. Hence,
u* (zn)

from lemma 3.2 and corollary 3.1, z, = y,e~*"/?> — 0 and Tlz) does not go
to 1 as n — +o0. This contradicts (C).
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Case 2: 1y = k. Note that (93) implies that Iy < k—e. We claim the existence
of y!, such that

(94) lyn| < lyn| and w(yy, sn) = % (f" (%) ”)

for large n. Indeed, w and fy are continuous, and we have

. (fo (22) +0) >

(y—"eges"/2 ) _ fO S"/2 +k) <0
[Yn| Iynl V5n

and

for large n (use (84) and write w(|Z"|eges"/ sn) = e -Tu( ey, T — e~ %)

[Yn]
< C(eg)e” #=1 since u(t) does not blow-up for |z| = €).

We can assume that w(y,,,sn) — |} € [0,«] (Theorem 1) and fo ( "n) -
1}, € [0, k]. Since fo is decreasing and |y, | < |y),|, we get I}, <y < k. Using (94),
we get I} = 1(Iy + k) € [, )and |ty — 13| = $|s = 1] > 0.

Therefore, w(yl,, sn) — fo (

) does not go to 0. Hence, from lemma 3.2 and

corollary 3.1, z!, = ¢/ e™*»/2 — 0 and % (( )) does not go to 1 as n — +oo. This

contradicts (C).

Case 8:1; = 0. Note that (93) implies that lo > e. We claim the existence of
ys, such that

1 Y,
> |y ! 8n) == n
(95) ] > o and it ) = 550 (22 )

for large n. Indeed, w and fy are continuous,

. 1 Yn ly €
— — =< ——
W [w(y’“s") o /o (ﬁ)] 2= 2

and
K

w(0, 5,) — %fo(o) -2

(w(0,s,) — K according to (7), since 0 is a blow-up point for u(t)). We can

assume that w(y.,,s,) = 2f0< "n) — 1] < % asn — 4oc. Since |y,| > |y;,],

we have fo ( ) fo ( ) and 21 > I, > € > 0. Therefore, I} € (0,%) and

w(yl,sn) — fo (\/r — =1} < 0. According to lemma 3.2 and corollary 3.1,

z! =yle /2 - 0 and U((; )) does not go to 1 as n — +oc. This contradicts

(C).
(B) = (A):

According to (69), there exists k¥ € {0,1,..., N} and a N x N orthonormal
matrix @ such that

(96) VR >0, sup lu(y,s) - f (%) - :0(9
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where fi, and a are defined in (70).
Applying Proposition 3.1, we see that VKq > 0,

sup |wz S, 8) — fk(z)|—>0ass—>+oo.
2| <Ko

Together with (B), this gives fr = fo. Therefore, k = 0 and a = ]g—z’f. Thus,
(96) yields (A).

This concludes the proof of Theorem 3. |

A Proof of lemma 2.4

i): - According to (32), Vi, j €{1,...,N},
w2 m( ) f (ya ) (4?/1?!] 5 ,J) (y)dy
Just remark that (3 4ylyj 16 ,J) ply) = 35 %= and do two integrations by parts

to get wa(s) = [ V2w(y, s)p ( )dy. The estimate for w; is similar.

i1): The estimates on w; and wy follow directly from %) since
||Vw(8n)|| < o and ||[Vw(sp)llp= < £

- By (23), we write: Vy € RV,
w(y, sn) = w(0,sn) +y.Vw(0,s,) + %yTV2w(O, sn)y + @(y, sn) where

1 A5/4
(97) 600, 52)] < g S5z ol

According to (31), (30) and (28),

(98) w_=P_(w) = P_(9) = ¢_
with notations similar to (31). From (31) and (97), we have
|¢m(sn)| C'(N)4 3/2 > for m = 0,1,2. Therefore, (31) yields |¢—(y,sn)| <

Spn

O(N) 4577 (1 + [y[*). Using (98), we get [w—(y, sa)| < C(N) 475 (1 + lyl?).

- Slnce w(s) is well defined for all s > —logT and satisfies (3), lemma 2.3
3
implies that wo(s,) < k. Let us show that wg(s,) > d = We

C
1280(1\{2)2,45/2 :
proceed by contradiction and assume that wo(s,) < do.

C2+/8n

Consider g, = T)W@ where ¢ is unitary and satisfies o7 ws(s,)p = —

Sn
(use %) and Proposition 2.2), and n € {—1,1} is chosen so that
w1 (8n).Yn < 0. Therefore, from (31) and the bounds on wy, wy, we and w_, we
get:

W(fn, 5n) = wO(Sn) +wi(sn)-In + (;?);{wZ(Sn)?}n - trw2(5n)) +w_(y,sn)

" C'"(NYA |, C(N)A5/* c3s3/2
< 60 + 0 2 160(3%;2145/2 Sn + ( ) + (83)/2 (1 + 640(N)3A15/4)

= §y — W + O (Z) = —(50 + O (i) < 0 for s, large enough. This
contradicts the fact that w is nonnegative. Thus, wg(s,) > do-
144): Since M (y) defined in (32) is the matrix of eigenfunctions corresponding

to the null eigenvalue of £, we find the following equation if we multiply (27)
by M (y)p(y), integrate the expression over R and use (31):

wh(sa) = = Lrwa(sn) + [ w5 Mol
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Thus, we focus on the computation of [ w(y, sn)? M (y)p(y)dy. Since 0 < §p <
wo(sn) < k and 0 < w(y,sn) < k+ 1, we can Taylor expand w(y, s,) around
wo(spn) until the third order and use (31) to write:

Jw(y,sn)PM(y)p(y)dy = I+ I+ 11T+ 1V +V + VI where

I = [wo(sa)?M(y)p(y)dy =0,

IT = [ pwo(sn)*~'V(y, sn) M (y)p(y)dy,

LTI = [ BE o (50)P >V (y, 50)* M (v)p(y)dy,

IV = [ == (5,)P =5V (3, 50)° M (1) ply)dy

V =0 ([V(y,sa)*|M(y)|p(y)dy) and

99 Vsn) = walsn)ar+ 3t wa(sa)y — trua(en) ) + - (v,50).

Using (99), the orthogonality (in L2(R")) of y and M(y) on one hand, and
M (y) and w_(y, s,) on the other, we write:

IT = pwo(sn)"~" [ (3yTwa(sn)y — trwa(sn)) M(y)p(y)dy
= pwo(s,)P " tws(s,) by integration by parts.

From (99), we have:
III = p(pgl)wo(sn)p_z I [(wl(sn).y)2 + (%yng(sn)y — trwg(sn))2

Fw_(y, sn)? + 2w1(sn).y (3yTwa(sn)y — trwe(sn)) + 2wi(sn).yw—(y, sn)

+2 (5" w2(sn)y — trwz(sn)) w—(y, sn)] M (y)p(y)dy.
Using i1), parity and simple but long calculations (based on integration by parts,
(32) and (17)) that we omit, we find:

1V = 2D gy (s,,)P~2 [2w1 (sn) ® wi(sn) + dwz(sn)* + O (é) +0
10 <%) +0 (821/2)]. Hence,

L1 = p(p— Dwo(s)P~ [w1(sn) @ w1 (sn) + 2ws(50)?] + O (L285)])
0 ()

n

As for II1, one can expand V (y, s,,)® and V (y, s,)*, and use i) to get: IV =
0 (Si%) +0 (—'w1§f;)‘) and V =0 (321,2) +0 (—'w1§7;)|).

sn s7l.

Gathering all the previous bounds on I, II, ITI, IV and V yields 4i¢). This
concludes the proof of lemma 2.4. |

B Proof of Proposition 2.3

In [16], the same result has been proved in the case of one fixed solution
(Theorem 3). Hence, we should adopt here the same strategy as for the proof of
Theorem 3 in [16]. In fact, we will focus only on points which are different from
[16] (energy estimates and a compactness procedure), and summarize the other
arguments. We give the proof in two steps. We first use a compactness procedure
and then proceed by contradiction in a second step in order to conclude the
proof.

Step 1: Compactness Procedure
We proceed by contradiction and assume that for some 79 > 0 and for
all £ € N, there are s; > —logT, wy solution of (3) defined for all s >
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—logT and satisfying wy € Va(s}), zx € RY and t; € [0,t;] such that

|Aug(zk, te)| > nour(zr,tr)? + k where t; = T — e~ and uy(z,t) = (T —
1

t) =1 W (\/%, — log(T — t))

Let us introduce Ug(z,t) = ug(z + z,t) and Wi(y,s) = e 7 1U(ye=3,T —

e~ ?). Therefore, Uy, is a solution of (1), W}, is a solution of (3),

(100) Vs € [—logT, s3], Wi(s) € Va(s),

(101) and |AUL(0,tg)| > noUr(0,t5)P + k
where t;, € [0,t;].

We first notice that
tr > T as k — +oo.

Indeed, if not, then t; < T — §y where do > 0 for some subsequence t;. The-
refore, (100) implies that |AU(0,tx )| < C(T — &o) for k' large enough, which
contradicts (101).

From (101) and (100), we have
1 1 i
Uk (0,t) < (%)P < (A) P (I=te) P Therefore,

7 log(T—tx)|

(102) Wi (0, 81) = (T — t4) 7T U (0, ) — 0 as k — +00

where s, = —log(T'—tx). From Definition 2.1, (100) and compactness procedure,
we derive the existence of U solution of (1) in C2(RN x [0, 7)) such that Uy — U
as k — +oo in C?(K) for all compact subset of RY x [0,7).

Step 2: Energy estimates on U
We claim that U blows-up at time 7" at the point z = 0.
Let us first introduce the following localized energy for w:

ga,t(u) = tﬁ_%"'l/[%|VU($)|2_I%U($)|1D+1 P(.T\;Ea)d:v
(103) + 2(p1_ 1)t}%_%/|u($)|2p(m\;za)dx

where p is introduced in (17).
It was proved in [11] that if the energy is small at some point a € RY | then u
does not blow-up at a. More precisely,

Proposition B.1 (Giga-Kohn) Let u be a solution of equation (1).

i) If for all x € B(z,9), Ez,7—t,(u(to)) < o, then Vz € B(mo,%), vVt €
(2L T, |u(t,z)| < n(o)(T — t)_ﬁ where (o) < ca®, § > 0, and ¢ and 6
depend only on p.

it) (Merle) Assume in addition thatVx € B(zo,d), |u(22EL, z)| < M. There
etists oo = o9(p) > 0 such that if o < g, then Vz € B(zo,$), Vt € (2FL,T),
|u(t, )| < M* where M* depends only on M, §, T and ty.
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Proof: see Proposition 3.5 and Theorem 2.1 in [11] (see also [15]). u

Suppose that U(z,t) does not blow-up at (z,t) = (0,7), then [11] shows
that &,7—¢ (U(t)) — 0 as t — T. Therefore, we choose to > T such that
ol

Eo,1—10 (U(to)) < % where oy is introduced in Proposition B.1. From a conti-

nuity argument in z, there is Ry > 0 such that if |z| < Ry, then &, 17—, (U(to)) <
a0

Szince Ur(to) — Ul(to) as k = 0 in C?(K) for all K compact subset and
Uk (to)lwr. < C(to) by (100), we have for all || < Ry, & 17—, (Uk(to)) < 0
for k large enough. From (100), we have ||Uy, (23L) || < Cl(to) for k large
enough.

Applying Proposition B.1, we get for k large enough: V|z| < Ry, Vt € (t("{T,T),
|Uk(z,t)| < M(to,Ro). By parabolic regularity (see lemma 2.10 and its proof

for a sketch of the technique), we get

3to+ T

Vit e ( 1

,T), |AUL(0,8)] < M'(to)

for k large enough, which contradicts (101). Therefore, U blows-up at time T
at z =0.

Step 3: Conclusion of the proof
We now follow the same ideas as for the Theorem 3 in [16]. We claim the
existence of ¢}, < t such that

(104) # = T and Wy (0, s}) = (T — 1) 7T Ux(0, }) = Ko

where s}, = —log(T — t},), ko € (0, ) satisfies V¢t > 0, Va € RV, £, (not_ﬁ)
1
= 2(:—§1) — '::6? < % and oy is defined in Proposition B.1. Since U blows-up at
1

z=0,U(0,t)(T —t)»-1 = k ast — T by [11]. Hence, if § > 0 is small enough,
then 65-1U(0,T — §) > 2550 Since Uy(0,T — 8) — U(0,T — &) as k — +oo,
we get 671U (0,T — &) > £4h0 for k large enough.

By (102) and continuity arguments, we have the existence of t; ;, € [T'— 9, 1]
such that (T — ¢ k)ﬁU %(0,t5 ) = ro. The existence of t; follows then from a
diagonal process.

Let us define for all £ € RN and 7 € [0,1),

(105) vp(€,7) = (T—t}e)ﬁUk (§ T—tjc,t§c+T(T—t§€)) .

Then, vy is a solution of (1), and vg(£,0) = (T — t;c)P_ilUk(fw/T—tje,t;) =
Wi (&, s},), where s}, = —log(T — t},) < s. Since t}, + 3(T —t},) < tx <t} (the
second estimate is true by construction, and the first follows from (102), (104)
and techniques similar to those in lemma 2.7), it follows from (100) and (104)

that v (0,0) = Ko and V7 € [0, 3]

C(p)er C(p)A
(106)  [[Vor(7)[|L= < NSl [V20r (7) || L < Tlog(T — )]’
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and for k large enough and for all [¢| < 4| log(T —t;)|*/%, &1 (v (0)) < 28¢.1 (ko)

< 09 . Therefore, from Proposition B.1 (applied with § = 1 and using translation

invariance), we have V7 € [3,1], V|¢| < 2|log(T — t)|Y/4, |vk(€,7)| < M (p).
Now using arguments similar to those of lemma 2.8, we get

3
(107) vr € [3,1), VI&] < [log(T — )['/*, [vk] + [Vor| +[V*0e| < M(p).

By arguments similar to those of lemma 2.9, we get from (106) and (107) for k
large enough,

sup |A¢vg(0,7)] = 0 as k = +oo.
T€[0,1]

Therefore, since vy, is a solution of (1), we have
Ko
VT € [07 1)7 ’Uk(O,T) > 7
for k large enough. Hence
(108) V7 €[0,1), [A¢vi(0,7)| < Foi(0,7)?

for k large enough, and this yields a contradiction.
Indeed, taking 7, = t:,’i_;tt,’“, we get from (108) and (105): Vk > ko,
k
|AUL(0,tx)] = (T — t},)” 777 |Agvr (0, 7))
< BT - t%)_ﬁvk (0,7%)? = LU (0,)P, which contradicts (101).

This concludes the proof of Proposition 2.3.

C Proof of lemma 2.11
Define x1(§) = XO(%) where o is defined in (63). Then, V¢ € RV,

C C
(109) [Vx1(8)| < B—11{|g|2231} and [Ax;(§)] < ?1{\5\2231}-
1

Let Z(&,7) = x1(€)e ™ M2z(&,7). Then, we have from (56): V&€ € RN, V7 € [0, 7],

(110) 82 < AZ+p+ 27 Axq — 267V (2Vx1),
Z(f,O) S 20, Z(€7T) S B2-

We now take |£| < B; and use an integral formulation of (110) to write Z(&,7) <
I+ II+1III+ 1V where

I = (e22(0)) (&), IT = [] dse"=*)2p, ITI = [ dse("=92e~32(s)Ax, and
IV = =2 [ dse(7=2e=2V . (2(s)Vx1).

From the maximum principle and (110), we have I < zg and 1] < fOT ds <
L.

The treatment of 111 and IV is similar. However, handling I'V is a bit more
delicate.
By an integration by parts, we have:
IV = =2 [ dse **VelT=2)22(s)Ax1
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2
l€—=]

= -2 fO dSC_ASfd.’L'( Z(T_ms))) (4;(7_4(‘;);1)\]/2 ($7 S)Axl(m)
From (110) and (109), we obtain:
e —=|?

T |€—z| “i(=-s) CB
Iv < fO ds f{\z\>2B1} dz T—8§ (47er('r—s))N/2 ?22

le=al® el _Je=a|®
Since [£| < By, |m| >2Bjand0 < 7—s<1,wehavee -5 = ¢ 8(—sle 8(7—9)
le—=|2 By
< e 8G-m1¢e” T Therefore,

eal o HEH
—x e 8(r—s
dz VT—s (4n(T—5))N/2

[1X]e~1XPdX < OBye= .

CB _B_12 T
1V < St |;

< CBZ e__ Jo

ds f
VT—58 {\m|>231}

ds
VT—s
2
Similarly, we obtain: 111 < CBze_B%.

Combining the bounds on I, II, III and IV, we get the conclusion of lemma
2.11. |
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Résumé: On s’intéresse au phénomeéne d’explosion en temps fini dans les équations
du type:

(1) El Au+ |ufP " u

ot u: (z,t) ERY x[0,T) =R, 1<p, (N—-2)p<N+2.

Dans une premiere direction, on construit pour (1) une solution u qui explose en
temps fini T > 0 en un seul point d’explosion zo € RY, et on décrit complétement le
profil (ou comportement asymptotique) de u & l'explosion. Cette construction s’appuie
sur la technique d’estimations & priori des solutions explosives de (1) qui permet une
réduction en dimension finie du probléme, et sur un lemme de type Brouwer. La mé-
thode utilisée permet de dégager un résultat de stabilité du comportement de la solution
construite par rapport a des perturbations dans les données initiales ou dans le terme
non linéaire de réaction. De plus, la méthode se généralise & des équations vectorielles
de type chaleur avec non-linéarité sans structure de gradient, ainsi qu’au traitement
d’un probléme de reconnexion d’un vortex avec la paroi en supra-conductivité.

Dans une seconde direction, on s’intéresse a ’équation suivante associée a (1):

ow 1 w
2 — =Aw-yVw— — + v’
(2) s 5Y o1 :
et on démontre un Théoréeme de Liouville qui donne une classification des solutions
de (2) globales en temps et en espace et uniformément bornées. On obtient également
une propriété de localisation de 1’équation (1) (si u > 0) qui permet de la comparer
de facon précise a la solution de I’équation différentielle associée.

Enfin, on s’intéresse de nouveau a la notion de profil et on utilise les estimations
qui découlent du Théoreme de Liouville pour prouver un résultat d’équivalence de
différentes notions de profils d’explosion ou de développement asymptotique de u au

.. . 5 . : _ z—zg — T—xq
voisinage de zo point d’explosion, en variable z, y = T ouz N =D
Mots clés: équation de la chaleur, singularité, explosion en temps fini, extinction en
temps fini, profil, développement asymptotique, équations vectorielles, supra-conductivité.

Abstract: We are interested in finite-time blow-up phenomena for heat equations of
the type (1).

We first construct for (1) a solution u which blows-up in finite time T at only one
blow-up point zo € RY, and describe completely its blow-up profile (or asymptotic
behavior). This construction is based on a prior: estimates’ technique which reduces
the problem to a finite-dimensional one, and on a Brouwer type lemma. This me-
thod allows us to derive a stability result of the behavior of u with respect to initial
data or perturbation of the nonlinearity. In addition, we generalize the method to the
case of vector-valued equations with a non gradient nonlinearity, as well as a vortex
reconnection with the boundary in super-conductivity.

In a second step, we consider the equation (2) derived form (1), and prove a
Liouville Theorem which classifies all uniformly bounded globally (in space and time)
defined solutions of (2). We then obtain a localization property of equation (1) (if
u > 0) which allows a precise comparison with solutions of the associated ordinary
differential equation.

In a third step, we use a consequence of the Liouville Theorem to prove the equi-

valence of different notions of blow-up profile or asymptotic behavior near a blow-up
r—xg L—2Q

point zg of u, namely in variables z, y = T Or z2 = N =T

Key words: heat equation, singularity, finite time blow-up, finite time quenching,
profile, asymptotic behavior, vector-valued equations, super-conductivity.



