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Abstract. — We present here some results from [2]. We show how to construct
a quantum monodromy operator for a Schrödinger operator, in the case where the
corresponding hamiltonian vector field possesses a homoclinic orbit.

1. Introduction

In this talk, we shall explore one aspect of the correspondence between classical
and quantum mechanics. Let us recall that, if ξ denotes the classical momentum,
the classical energy E of a particle moving in the potential V (x) is given by E =
ξ2 + V (x). The equation of motion for such a particle is obtained considering E

as the hamiltonian: The particle moves along the integral curves of the hamiltonian
vector field HE(x, ξ) = ∂ξE∂x − ∂xE∂ξ. The corresponding quantum operator is
P (x, hD) = −h2∆ + V (x), and can be obtained, at least formally, by replacing ξ by
h
i ∂x.

In the case of a confining potential V for example, the classical energy E could
take any values in [Vmin,+∞[, where Vmin is the minimum of V . In the quantum
case however, the Schrödinger operator P has discrete spectrum, and the possible
energies of the particle are the different eigenvalues of P . In a scattering situation,
say when the potential vanishes at infinity, P has continuous spectrum in R+, but
one can define resonances for P as complex eigenvalues of a non-selfajoint operator
associated to P . The eigenvalues of P , or rather the corresponding eigenfunctions,
are interpreted as stationary states, and the resonant states, corresponding to some
resonances, are interpreted as temporary states (or metastable states), whose lifetime
is the inverse of the imaginary part of the resonance.

It is common knowledge in quantum mechanics, that to closed trajectories of Hp

should correspond eigenvalues or resonances. In their paper [11], J.Sjöstrand and
M. Zworski have shown how to associate a quantization of the Poincaré map to such
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a closed orbit. They have described how this quantum monodromy operator can
be used to obtain very precise information on the spectrum of P , as for example a
semiclassical trace formula. In a recent paper [10], J. Sjöstrand has used this idea
to compute the resonances associated to a hyperbolic orbit in p−1(E0), in a fixed
(independent of h) neighboorhood of E0, for a 2-dimensional Schrödinger operator.

In [2], borrowing many ideas from B. Helffer and J. Sjöstrand in [6], we study the
case where the hamiltonian vector field Hp associated with a Schrödinger operator
P possesses a homoclinic orbit. In particular we want to prove some results about
resonances for such an operator that we have conjectured in [1], and recover the
results that two of us have proved in the 1 dimensional case (see [4]). One of the
main difference with respect to the situation in [11], is that there is no Poincaré map
in the homoclinic case, or otherwise stated, that the motion of a classical particle on
such a trajectory is not periodic. However, thanks to tunneling, a quantum particle
cannot be (micro-)localized only on one branch of the homoclinic orbit, and one can
still define a quantum monodromy operator.

2. The example of Sjöstrand and Zworski

In order to explain what this monodromy operator is, and how useful it is for
eigenvalue problems, we reproduce here the discussion by J. Sjöstrand and M. Zworski
in the introduction of [11].

Let Q = h
i ∂x on L2(S1). We ask the question of the existence of the resolvent

(Q − z)−1 for z ∈ C, or in other words, that of the existence and uniqueness of the
solutions to

(1) (Q− z)u = f,

for f ∈ L2(S1). First, we try to solve (Q− z)u = 0. For what concerns uniqueness,
we are lead to define the operator R+ by R+u = u(0), and consider the problem, for
v ∈ C,

(2)
{

(P − z)u = 0
R+u = v

Now we want to examine the possible existence of a solution. First we forget about the
periodicity requirement, and, for a given initial data v ∈ C, we define two solutions:
I+(z)[v] : x 7→ eizx/hv on ]− ε, 2π − 2ε[, and I−(z)[v] : x 7→ eizx/hv on ]− 2π + 2ε, ε[.
It is convenient to say that I+(z)[v] is the forward solution with initial data v, and
that I−(z)[v] is the backward solution.

It is then very natural to define the operator M(z, h) : C → C, which associates to
a given initial data v ∈ C for the forward solution I+, the initial data ṽ for I− such
that

(3) I+(z)[v](π) = I−(z)[ṽ](−π)
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Figure 1. The forward and backward solutions.

In other words, the operator M(z, h) is defined by

(4) I+(z)[v](π) = I−(z)[M(z, h)v](−π).

This operator M(z, h) is called the quantum mondromy operator.
It is obvious here that M(z, h) = e2iπz/h. Of course, it is necessary for a 2π-

periodic solution to exist with initial value v at x = 0, that I+(z)[v] = I−(z)[v], and
we have obtained the following description for the eigenvalues of Q:

(5) ∃u ∈ L2(S1) solution to (1) ⇐⇒ ∃v ∈ C,M(z, h)v = v

Going back to (Q− z), we can get as easily (or see below) that

(6) (Q− z) is not invertible ⇐⇒ I −M(z, h) is not invertible.

Thus we have obtained a Bohr-Sommerfeld type quantization rule:

(7) z ∈ σ(Q) ⇐⇒ e2iπz/h = 1,

which immediately leads to σ(Q) = Z.
As a second, and perhaps more convincing application of this idea of monodromy

operator, we explain how Sjöstrand and Zworski derive the usual Poisson formula.
The point is that the equivalence (6) can be made more precise: (P − z)−1 can be
computed in terms of (I −M(z, h))−1.

Indeed, let χ ∈ C∞(S1) such that suppχ ⊂ [−ε, π+ε], and χ ≡ 1 on [−ε/2, π+ε/2].
If we put

(8) E+ = χI+(z) + (1− χ)I−(z),

a simple computation gives

(9) (P − z)E+ = [P, χ](I+(z)− I−(z)),
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so that

(10) (P − z)E+ + [P, χ]πI−(z)(I −M(z)) = 0,

Here we notice that the commutator [P, χ] can be written as a sum [P, χ]0 + [P, χ]π,
where each term denotes the contribution to the commutator of a neighboorhood of
0 and π respectively. It is clear that only the last one contributes to (9), since I+(z)
and I−(z) coincides at 0.

Now if we set R−(z) = [P, χ]πI−(z), and

(11) P(z) =
(

P − z R−(z)
R+(z) 0

)
,

we see that, for any v ∈ C, the Grusin problem

(12) P(z)
(

u

u−

)
=

(
0
v

)
has (u = E+v, u− = (I−M(z))v) for solution. In fact, one can show that the operator
P(z) on L2(S1)× C is invertible, with inverse

(13) E(z) = P(z)−1 =
(

E(z) E+(z)
E−(z) E−+(z)

)
.

Every entry of E(z) is holomorphic with respect to z, and we have seen that E−+(z) =
Id−M(z). Moreover we have the so-called Schur complement formula

(14) (P − z)−1 = E(z)− E+(z)E−1
−+(z)E−(z).

Now let f be a function such that supp f̂ ⊂ [−2πN, 2πN ] for some N ∈ N. Let
also Γ = Γa ∪ −Γ−a, where Γ±a = (R ± ia) (a > 0), be an oriented contour in the
complex plane around the real axis. Then we have∑

n

f(n) = tr f(P/h) =
1

2iπ

∫
Γ

f(z/h) tr(P − z)−1dz

= − 1
2iπ

∫
Γ

f(z/h) tr(E−E+E
−1
−+)dz(15)

Here we have used (14), removed the holomorphic parts which do not contribute to
the contour integral, and used the cyclicity of the trace. We can also show easily that
E−E+ = ∂zE−+, so that∑

n

f(n) = − 1
2iπ

∫
Γ

f(z/h) tr(∂zE−+E
−1
−+)dz

=
1

2iπ

∫
Γa

f(z/h) tr ∂zM(z)(I −M(z, h))−1dz

− 1
2iπ

∫
Γ−a

f(z/h) tr ∂zM(z)(I −M(z, h))−1dz(16)
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Then we write

(17) (I −M(z, h))−1 =
N∑
k=0

M(z, h)k +RN (z, h),

and with a Paley-Wiener estimate for f , we can get rid of the integral of RN on Γa
letting a→ +∞. A similar trick holds for the other integral, and we get, finally, the
Poisson formula:

(18)
∑
n

f(n) =
1

2iπ

N∑
k=−N

∫
R
f(z/h)e2iπkz/h∂z(e2iπz/h)dz =

N∑
k=−N

f̂(2πk).

3. Assumptions and some results

Let us detail the framework of [2]. We shall denote by P the Schrödinger operator
on L2(Rd) defined by

(19) P (x, hD) = −h
2

2
∆ + V (x),

where V is a smooth function on Rd. The trapped set K(E) at energy E is defined
by

(20) K(E) = {(x, ξ) ∈ p−1(E), exp tHp(x, ξ) 6→ ∞ as t→ +∞ and as t→ −∞},

where p(x, ξ) = ξ2 + V (x) is the semiclassical symbol of P .
We suppose that, for some energy level E0, we have

(A1) : p(0, 0) = E0, and (0, 0) is an hyperbolic fixed point for Hp,
(A2) : p(x, ξ) = E0 ⇒ dp(x, ξ) 6= 0 except for (x, ξ) = (0, 0).
(A3) : K(E0) = {(0, 0)} ∪ γ, where γ is an integral curve for Hp, homoclinic for

(0, 0):

γ : ]−∞,+∞[→ T ∗Rd, with γ(t) → (0, 0) both as t→ −∞ and t→ +∞.

Since V has a local maximum at 0, we also have, in suitable coordinates,

(21) V (x) = V (0)− 1
2

d∑
j=1

λ2
jx

2
j +O(x3),

where we have ordered the eigenvalues of ∇2V (0) such that

(22) 0 < λ1 ≤ λ2 ≤ · · · ≤ λd.

We make the following generic assumption on the λj ’s:

(A4) : We have 0 < λ1 < λ2.
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From now on we decide that E0 = V (0) = 0. In the (x, ξ) coordinates, the
linearized vector field Fp of Hp at (0, 0) is simply

(23) Fp = d(0,0)Hp =
(

0 I

L2 0

)
,

where L is the d × d matrix defined as L = diag(λ1, . . . , λd). The eigenvalues of Fp
are the λj ’s and the −λj ’s.

Associated to the hyperbolic fixed point, we have therefore a natural decomposition
of T(0,0)(T ∗Rd) = R2d in a direct sum of two linear subspaces Λ0

+ and Λ0
−, of dimension

d, associated respectively to the positive and negative eigenvalues of Fp. These spaces
Λ0
± are given by

(24) Λ0
± : ξj = ±λjxj , j = 1 . . . d.

The stable/unstable manifold theorem gives us the existence of two Lagrangian
manifolds Λ+ and Λ−, defined in a vicinity Ω of (0, 0), which are stable under the Hp

flow and whose tangent space at (0,0) are precisely Λ0
+ and Λ0

−. In particular, we see
that these manifolds can be written as

(25) Λ± : ξ = ∇φ±(x),

for some smooth functions φ+ and φ−, which can be chosen so that

(26) φ±(x) = ±
d∑
j=1

λjx
2
j +O(x3).

We shall say that Λ+ is the outgoing Lagrangian manifold, as Λ− will be refered
to as the incoming Lagrangian manifold associated to the hyperbolic fixed point.
Indeed Λ+ (resp. Λ−) can be characterized as the set of points (x, ξ) ∈ Ω such that
exp tHp(x, ξ) → (0, 0) as t→ −∞ (resp. as t→ +∞).

In particular the points of the homoclinic curve γ which are in Ω belong either to
Λ+ or to Λ−. Thus we can write γ∩Ω = γ+∪γ− with γ± ⊂ Λ± respectively. Because
of the positions of Λ0

±, this is of course a disjoint union (here we may have to shrink
Ω). We can further suppose that, in Ω, the curve γ lies in the half-space x1 > 0.
Then, if (x, ξ) ∈ γ+ (resp. (x, ξ) ∈ γ−), we have ξ1 > 0 (resp. ξ1 < 0), thanks to (24)
(See Figure 1). Notice that since we are working with a Schrödinger operator, and
since we suppose that there is no other homoclinic curve in p−1(0), the homoclinic
curve γ is symmetric with respect to ξ = 0.

Using the flow of Hp, we can extend Λ± as Lagrangian manifolds outside of Ω: we
define Λext

± as

(27) Λext
± =

⋃
t≥0

exp(±tHp)(Λ±)

The manifold Λext
+ (resp. Λext

− ) can be characterized as the set of points (x, ξ) ∈ T ∗Rd
such that exp tHp(x, ξ) → (0, 0) as t → −∞ (resp. as t → +∞). Then it is clear
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Figure 2. The geometry at the singular point

that the homoclinic curve γ belongs to both Λext
+ and Λext

− . Here enters our fifth
assumption:

(A5) : Λext
+ and Λext

− intersect transversally along γ.

In this talk, we shall concentrate only on the singular part of the monodromy
operator, that we define below.

We work in a domain of energies of the form D(0, Ch) ⊂ C for some C > 0
small enough. Let (x0, ξ0) be a point on γ− ⊂ Ω. For hz ∈ D(0, Ch), we denote
by K(x0,ξ0)(z) the set of distributions microlocally defined near (x0, ξ0), such that
(P − hz)u = 0. Let also S be the sphere on Rd with center at 0 and of radius ‖x0‖,
or rather its lift in Λ−. Of course (x0, ξ0) ∈ S.

We consider the following problem

(28)


(P − hz(h))u = 0 in Ω,
u = u0 microlocally close to (x0, ξ0),
u = 0 microlocally close to any (x, ξ) 6= (x0, ξ0) in S.

First, in the analytic category, provided V extends holomorphically in a strip around
Rd, we have the following uniqueness result :

Theorem 1. — Let us denote by Γ ⊂ C the set given by

Γ = {−i
d∑
j=1

λj(nj +
1
2
), nj ∈ N}

If there is a δ > 0 such that d(z(h),Γ) ≥ δ, the problem (28) has a at most one

solution.

Roughly speaking, the exceptional set Γ corresponds to values of z for which there
exist purely outgoing solutions, that is solutions which are microlocalized on Λ+ only.
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The definition of this set can be guessed by the results of J.Sjöstrand on barrier top
resonances [9], and the proof of Theorem 1 is based on arguments from that paper
(and also from [3]).

Notice that, since p is of principal type away from (0, 0), the microlocal kernel
K(x0,ξ0)(z) is isomorphic to D′(H0), where H0 ⊂ Rd is given by x1 = x1

0 (here, and
from now on, we shall write points in T ∗Rd as (x, ξ) = (x1, x′, ξ1, ξ′) with x1, ξ1 in R,
x′ and ξ′ in Rd−1). Indeed, there exists a h-Fourier integral operator (for short FIO)
U , defined in a neighborhood of (x0, ξ0) such that, U−1PU = hDx1 (see e.g. [11],
Proposition 3.5). Then if we choose a hypersurface H̃0 of Rd which is transverse to
{x1 = 0}, any element u0 of K(x0,ξ0)(z) can be associated to a unique initial data ũ0

defined on H0 ∼ Rd−1.
Now let u0 ∈ D′(H0), and suppose that there exists a function u solution to (28).

We denote by v0 the distribution defined microlocally close to (x0,−ξ0) ∈ γ+ obtained
by restriction of u, or rather the element of D′(H0) it defines.

We call ”singular part of the monodromy operator”, and we denote by Is(z), the
operator on D′(H0) which associates v0 to u0. Our aim here is to compute this
operator Is(z). Of course, this amounts to find a solution to (28). Following ideas
from B. Helffer and J. Sjöstrand in [6], we have been able to show the

Theorem 2. — There exist a neighborhood ω of 0 in Rd, a neighborhood V of ξ′0 in

Rd−1, a phase function φ(t, x, η) and a symbol a(t, x, η, h) defined on [0,+∞[×ω× V
such that

(29) u(x, h) =
∫∫

T∗Rd−1

∫ +∞

0

ei(φ(t,x,η)−yη)/ha(t, x, η, h)u0(y)dtdy
dη

(2πh)d−1
,

is a solution to (28).

Then, examining carefully the properties of the phase function φ, it appears that
Is(z)(u0) is the ”t = +∞” part in the above integral, and we have obtained the

Theorem 3. — Suppose d(z(h),Γ) > δ for some δ > 0. Then the operator Is(z) is

well-defined, and it is a h-Fourier integral operator on H0 ∼ Rd−1, associated to the

canonical relation

C = {(x′,∇φ̃+(x′), y′,∇φ̃−(y′)), x′, y′ ∈ Rd−1},

where, for x′ ∈ Rd−1, φ̃±(x′) = φ±(x1
0, x

′), and φ± are the generating functions of Λ±
given in (26).

In the two last sections, we explain briefly how to construct the phase function φ

in Theorem 2, and we describe some of it properties leading to Theorem 3.
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4. The phase function

Here we sketch the construction of the function φ in Theorem 2. We recall that H0

is the hyperplane x1 = ε in Rd, where we denote ε = x1
0, since we want to emphasize

the fact that we can work in a sufficiently small neighboorhood Ω of (0, 0) in Rd. We
also recall that (x0, ξ0) is the only point of γ− above H0.

Since γ− is a simple characteristic for the operator p, by usual Hamilton-Jacobi
theory we have first the

Proposition 4. — For all η ∈ Rd−1 close enough to ξ′0, there is a unique function

ψη : Rd → R, defined in a neighborhood ω0 of x0 such that

(30)


p(x,∇ψη(x)) = 0,

ψη(x) = x′.η, x ∈ H0 ∩ ω0,

∇ψη(x) is close to ξ0.

If we denote by Ληψ the corresponding Lagrangian manifold

(31) Ληψ = {(x, ξ) ∈ T ∗Rd, x ∈ ω0, ξ = ∇ψη(x)},

we have the following

Proposition 5. — The Lagrangian manifolds Λ− and Ληψ intersect along an integral

curve γη for Hp, and they intersect transversally. This curve is γ− when η = ξ′0.

Again, one can see that, for η close enough to ξ′0 there is exactly one point ρ(η) =
(ρx(η), ρξ(η)) in γη above H0. If we denote by Γη0 the set of level ψη(ρx(η)) for ψη

(32) Γη0 = {(x, ξ) ∈ Ληψ, ψη(x) = ψη(ρx(η))},

we can produce a Lagrangian manifold Λη0 , which contains Γη0 , such that Λη0 and Ληψ
intersect transversally along Γη0 . Moreover, we can choose this Lagrangian manifold
Λη0 such that it projects nicely on the x-space. Therefore there is a smooth function
φ0 such that, locally near ρ(η), Λη0 is given by

(33) ξ = ∇xφ0(x, η).

We denote by φ(t, x, η) the solution of the following eikonal equation

(34)

{
∂tφ(t, x, η) + p(x,∇xφ(t, x, η)) = 0,

φ(0, x, η) = φ0(x, η),

and we consider the associated Lagrangian manifold Ληt , given, for any t ≥ 0 small
enough, by

(35) ξ = ∇xφ(t, x, η).

Notice that we have of course

(36) Ληt = exp(tHp)(Λ
η
0).
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Figure 3. The Lagrangian manifolds.

It can be shown that, for any t ≥ 0, Ληt also projects itself nicely on the x-space in
a neighborhood of ρt(η) ∈ Ληt , where ρt(η) = exp(tHp)ρ(η) ∈ γη. If we define

(37) Γηt = exp(tHp)Γ
η
0 ,

we have the

Proposition 6. — For each x close enough to γη, there is a unique time t = t(x, η)
such that x ∈ ΠxΓ

η
t . Moreover, it is the only critical point for the function t 7→

φ(t, x, η), and it is a non-degenerate critical point.

As a consequence of Proposition 6, we get in particular that, in ω0 where both
these functions are defined, we have

(38) ∇xψη(x) = ∇x(φ(t(x, η), x)).

Therefore x 7→ ψη(x) and x 7→ φ(t(x), x) differ by a constant. Until now however, the
function φ0 is also defined up to a constant, as well as φ, and we can choose φ0 such
that

(39) φ(t(x, η), x, η) = ψη(x),

and in particular, we get

(40) φ(t(x, η), x, η) = x′.η

for any x ∈ H0 ∩ ω0.
Now we go back to the representation formula (29), where φ is the function we

have defined above. For x ∈ H0∩ω0, a stationary phase expansion shows that, taking
(40) into account, if u is the function defined by (29), we can choose the symbol a on
H0 such that u(x, h) = u0(x′). Summing up, we have arranged so that the two last
conditions in (28) are satisfied.
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In order that the function u in (29) satisfies the first equation in (28), and since
the phase φ is a solution to the eikonal equation (34), we only have to construct a
symbol a =

∑
j ajh

j which satisfies the usual transport equations, for the initial data
on H0 we have fixed above. We shall not comment further on that point here.

5. Computation of Is(z)

We explain now how we compute the restriction v0 to a microlocal neighborhood
of (x0,−ξ0) ∈ γ+, of the solution u defined in (29). Roughly, one could say that, as
u0(x) is the contribution of the integral at the critical point t(x), v0 is the contribution
of the integral at t = +∞.

At this point, we need some general results from [6], here in a η-dependent setting.

5.1. Expandible symbols. — Let (µj)j≥0 be the strictly growing sequence of
linear combinations over N of the λj ’s. For a function w(t, x, η) defined on R+×ω×V ,
ω ⊂ Rd, V ⊂ Rd−1, we shall write

(41) w(t, x, η) = Õ(e−µt|x|M )

when

(42) ∀ε > 0, w(t, x, η) = O(e−(µ−ε)t|x|M ),

uniformly with respect to η ∈ V .

Definition 1. — We say that u : [0,+∞[×ω × V → R, a smooth function, is ex-

pandible, if, for any N ∈ N, α ∈ Nd,

(43) ∂kt ∂
α
x

u(t, x, η)− N∑
j=1

uj(t, x, η)e−µjt

 = Õ(e−µN+1t)

for a sequence of (uj) smooth functions, which are polynomials in t. We shall write

u(t, x, η) ∼
∑
j≥1

uj(t, x, η)e−µjt

when (43) holds.

As the following result shows, this symbol class is the suitable one for our geometric
setting at (0, 0).

Proposition 7. — (see [6], Section 3)

Let ν(t, x) be a time-dependent vector field. Suppose that there exists a matrix-valued

map x 7→ A(x) from ω to Md(R) such that

1. A(0) = diag(λ1, λ2, . . . , λd), with 0 < λ1 ≤ λ2 ≤ · · · ≤ λd.

2. (t, x) 7→ ν(t, x)−A(x)x is a smooth real expandible matrix.
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Then, if v(t, x) is expandible and vanishes at x = 0, the solution u(t, x) to the Cauchy

problem

(44)

 ∂tu+ ν(t, x)u = v, t ≥ 0, x ∈ ω,

u|t=0 = 0,

is expandible.

In particular, this result shows that the function t 7→ γ−(t) is expandible:

(45) γ−(t) ∼
∑
j≥1

γj(t)e−µjt.

Moreover, one can see that the function γ1 is a constant vector from ker(d(0,0)Hp+λ1),
and we have to make the generic assumption that

(A6) : γ1 6= 0.

5.2. Asymptotic behaviour of the phase. — We have defined the function φ

as a solution to the eikonal equation (34). In particular, we can only assume that it
is defined in a small t-interval. But for each η fixed, we are in the situation of [6],
Section 2, and the results there apply to the present case. Summing up, one can prove
that φ is well-defined for all t > 0, and that

Proposition 8. — There exists a neighborhood V of ξ′0 in Rd−1 such that (t, x) 7→
φ(t, x, η) is expandible:

φ(t, x, η)− (φ+(x) + ψ̃(η)) ∼
∑
j≥1

e−µjtφj(t, x, η).

Here ψ̃ is a generating function for Λ−, in the sense that, the projection of Λ− onto

T ∗H0 can be written as the set of (∇ψ̃(η), η)’s, with η ∈ V .

Writing

u(x, h) =
∫ ∫ +∞

0

eiφ(t,x,η)/ha(t, x, η, h)û0(η)dt
dη

(2πh)d−1
,

and considering the t = +∞ part of the integral, we obtain

(46) Is(z)u0(x) = eiφ+(x)/h

∫
e−iψ̃(η)/ha∞(x, η, h)û0(η)dt

dη

(2πh)d−1
,

and this is what we have summed up in Theorem 3.
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[9] Sjöstrand, J. : Semiclassical resonances generated by non-degenerate critical points,
Lecture Notes in Maths 1256 , Springer, 1987, pp. 402–429.

[10] Sjöstrand, J. : Resonances associated to a closed hyperbolic trajectory in dimension 2,
Asymptotic Analysis 36 (2003), pp. 93–113.

[11] Sjöstrand, J., Zworski, M. : Quantum monodromy and semiclassical trace formulæ, J.
Math. Pure Appl. 81 (2002), pp. 1-33.

J.-F. Bony, Laboratoire MAB, CNRS, Université de Bordeaux I
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T. Ramond, Mathématiques - Université Paris XI - UMR CNRS 8628
E-mail : thierry.ramond@math.u-psud.fr
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