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Abstract. Semiclassical width of resonances of the Schrödinger operator in a neigh-
borhood of a fixed energy is closely related with the set of trapped trajectories of the
underlying classical mechanics.

We consider the case where the trapped set consists of homoclinic trajectories associated
with a hyperbolic fixed point, and we obtain that the width of resonances is greater than
a constant multiple of the semiclassical parameter if the fixed point is anisotropic or the
dimension of the trapped set is smaller than the space dimension.

The key of the proof is the propagation formula of microlocal solutions near a hyperbolic
fixed point from the incoming stable manifold to the outgoing one, established in [4].

This note is a brief summary of the forthcoming paper [5].

1. Introduction

We consider the semiclassical Schrödinger operator in Rn

P := −h2∆ + V (x) = −h2
n∑
j=1

∂2

∂x2j
+ V (x), (1.1)

where h is a small positive parameter and V (x) is a potential satisfying:

(A0) V (x) is real-valued on Rn and analytic in a sector

S = {x ∈ Cn; | Imx| ≤ tan θ0 〈Rex〉},

for some positive θ0. Moreover V (x) tends to 0 as x tends to ∞ in S.

This condition enables us to define resonances of the operator P in the complex sector
Cθ := {E ∈ C \ {0}; argE ∈ (−2θ, 0)}, 0 < θ < θ0, of the spectral parameter E, as

eigenvalues of the non self-adjoint operator Pθ = UθPU−θ, where [Uθf ](x) := ei
nθ
2 f(eiθx)

for all x ∈ Rn. The set of resonances Γθ(h) in Cθ is independent of the angle θ in the sense
that Γθ(h) = Γθ′(h) in Cθ for θ < θ′ < θ0.
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On the other hand, we consider the corresponding classical mechanics described by the
classical Hamiltonian p(x, ξ) := ξ2 + V (x) for all (x, ξ) ∈ Rn × Rn. Let

Hp := ∂ξp · ∂x − ∂xp · ∂ξ = 2ξ · ∂x −∇V (x) · ∂ξ,

be the Hamiltonian vector field associated to p. Integral curves t 7→ exp(tHp)(x, ξ) of
Hp are called classical trajectories or bicharacteristic curves, and p is constant along such
curves. For a fixed positive energy E0, we define the trapped set:

K(E0) = {(x, ξ) ∈ p−1(E0); t 7→ exp(tHp)(x, ξ) is bounded}.

The geometry of the classical mechanics near the set K(E0) is closely related to the
asymptotic distribution of resonances in a complex neighborhood of E0. In particular,
the “smallness” of K(E0), or in other words the “weakness” of the trap, is reflected to
a large imaginary part of resonances, which implies the short life time of the quantum
particles. Among many important results about this subject, we refer only to a few of
those concerning resonances with large imaginary part:

First, if K(E0) is empty, there exists a constant ε > 0 such that there is no resonance
in the h-independent domain (E0 − ε, E0 + ε) − i(0, ε) for sufficiently small h (see [2]
and [12]). If the potential is only C∞ except near the infinity, there is no resonance in
(E0 − ε, E0 + ε)− i(0, Ch log 1

h
) for any C > 0 and sufficiently small h (see [14]).

In case where K(E0) consists of a hyperbolic fixed point (x0, ξ0), which occurs when
the potential V presents a unique global non-degenerate maximum at a point x = x0, the
precise asymptotic distribution of resonances was obtained independently by Briet, Combes
and Duclos [3], and Sjöstrand [16]. In fact, they proved that there exists a constant δ > 0
such that for any C > 0, there is no resonance in (E0 − Ch,E0 + Ch) − i(0, δh) for
sufficiently small h. Here δ is any constant smaller than 1

2

∑n
j=1 λj, where λ1, . . . , λn are

the positive eigenvalues of
√
−2V ′′(x0), or equivalently, ±λ1, . . . ,±λn are the eigenvalues

of the linearization of Hp at the fixed point.

In case where K(E0) consists of a hyperbolic periodic trajectory, which may occur when
V has two convex bumps, the precise asymptotic distribution of resonances was obtained
by Gérard and Sjöstrand (see [10]), and in particular they proved that there exist constants
δ, ε > 0 such that there is no resonance in (E0 − ε, E0 + ε)− i(0, δh) for sufficiently small
h. Here the optimal δ is determined by the eigenvalues of the linearized Poincaré map
associated to the periodic trajectory.

If the number of bumps is more than 2, the trapped set K(E0) becomes a fractal set.
Under the condition that the flot is hyperbolic on K(E0) and that this set is ”sufficiently
small” (more precisely, they make an assumption on the topological pressure of K(E0)),
Nonnenmacher and Zworski (see [15]) proved that the width of resonances is also greater
than δh, with precise δ.

We will assume that K(E0) consists of homoclinic trajectories, i.e. a hyperbolic fixed
point (x0, ξ0) and trajectories that tend to this point as time tends to both +∞ and −∞.
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This situation is realized when, for example, the potential has two bumps of different
height, the smaller one of which has a non-degenerate maximum of value E0.

Let

δ0 :=
1

2

( n∑
j=1

λj − λ1d
)
, (1.2)

where again 0 < λ1 ≤ . . . ≤ λn are the eigenvalues of
√
−2V ′′(x0) and d is the dimension

of the set of homoclinic trajectories, which should be at most n. The quantity δ0 is positive
since δ0 = 1

2

(∑n
j=1(λj−λ1)+λ1(n−d)

)
, and δ0 = 0 if and only if λ1 = · · · = λn and d = n.

Then we will show in Theorem 2.4, under additional assumptions, that if the quantity δ0
is strictly positive, then there exists δ > 0 such that for any C > 0, there is no resonance
in (E0 − Ch,E0 + Ch) − i(0, δh) for sufficiently small h. In fact, the optimal δ coincides
probably with δ0 (see Remark 4.2).

This theorem says that the trapped set can be of large dimension out of the fixed point.
Instead, the smallness of the trapped set is required near the fixed point by the assumption
δ0 > 0 (see Remark 2.3).

A simplest example where δ0 = 0 is the case n = 1. The precise asymptotic distribution
of resonances in this case was studied in [9] and the width of resonances is of order h

| log h| .

The rest of this paper is organized as follows. In the next section, we state the precise
statement of the result, and in the third section, we give a sketch of the proof. It is
essentially based on the connection formula at the hyperbolic fixed point proved in [4],
which gives the WKB solution on the outgoing stable manifold in terms of that on the
incoming one via a Fourier integral operator. A brief survey of this formula will be given
in Appendix.

2. Result

In our result, we will need the analyticity of V (x) only in the vicinity of ∞, i.e.

(A1) V (x) ∈ C∞(Rn;R) and extends holomorphically in a sector

S̃ = {x ∈ Cn; | Imx| ≤ tan θ0 〈Rex〉, |Rex| > C},
for some positive constants θ0 and C. Moreover V (x) tends to 0 as x tends to ∞
in S̃.

In addition, we assume the following condition.

(A2) The origin is a non-degenerate maximal point with maximal value E0 > 0, i.e. for
a suitable choice of coordinates,

V (x) = E0 −
n∑
j=1

λ2j
4
x2j +O(x3) as x→ 0, (2.1)

for positive constants 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.
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Let ξ ∈ Rn denotes the momentum. Then (A2) means that the origin (0, 0) of the phase
space T ∗Rn = Rn

x×Rn
ξ is a hyperbolic fixed point for the Hamiltonian vector field Hp. The

fundamental matrix Fp, which is the linearization of Hp at the origin, is

Fp =

(
0 2Id

1
2
diag (λ21, . . . , λ

2
n) 0

)
,

and its eigenvalues are ±λ1, . . . ,±λn.

Let Ω be a small neighborhood of (0, 0). By the stable/unstable manifold theorem, there
exist the outgoing and incoming stable manifolds Λ+, Λ− associated to this fixed point:

Λ± := {(x, ξ) ∈ Ω; exp(tHp)(x, ξ)→ (0, 0) as t→ ∓∞} ⊂ p−1(E0).

They are tangent to the planes {(x, ξ); ξj = ±λjxj/2, 1 ≤ j ≤ n} respectively at
(0, 0), and Lagrangian manifolds with generating functions φ±(x) behaving like φ±(x) =

±
∑n

j=1
λj
4
x2j +O(x3) in a vicinity of 0, i.e.

Λ± = Λφ± = {(x, ξ) ∈ Ω; ξ =
∂φ±
∂x
}.

Suppose (x±, ξ±) ∈ Λ±. By definition of Λ±, the curve exp(tHp)(x±, ξ±) → (0, 0) as
t→ ∓∞. More precisely, it was proved in [11] that they have asymptotic expansion:

exp(tHp)(x±, ξ±) ∼
∞∑
k=1

γ±k (t, x±, ξ±)e±µkt as t→ ∓∞,

where 0 < µ1 < µ2 < · · · are the linear combinations over N = {0, 1, . . .} of {λj}nj=1,

and in particular µ1 = λ1. The coefficients γ±k (t, x±, ξ±) are vector valued polynomials
in t depending on the initial point (x±, ξ±), and in particular γ1 is an eigenvector of Fp
corresponding to ±λ1, and it is independent of t. In our Schrödinger case, the x-space
projection of γ+1 (x+, ξ+) and γ−1 (x−, ξ−) coincide if x+ = x− = x, and we will denote it
simply by g(x).

Next we assume that the trapped set consists of the fixed point and the associated
homoclinic trajectories. Let Λ̃± be the evolution of Λ± by the Hamiltonian flow to large
±t. Let us denote the set of homoclinic trajectories Λ̃+∩Λ̃− byN and its x-space projection
by Nx. The third assumption is the following:

(A3) N is a non-empty manifold of dimension d (≤ n), and K(E0) = {(0, 0)} ∪ N .
Moreover, TρN = TρΛ̃+ ∩ TρΛ̃− for any ρ = (x, ξ) ∈ N .

Remark 2.1. In fact, the manifold Λ̃+ projects diffeomorphically on Rn
x near N in the

vicinity of 0, and hence has a generating function φ̃+(x), see [1, Appendix C] in the case
d = 1. The latter assumption (A3) implies that:

rank
[
∂2x
(
φ̃+(y)− φ−(y)

)]
= n− d, for all y ∈ Nx. (2.2)
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We assume also that:

(A4) g(y1) · g(y2) 6= 0 for y1, y2 ∈ Nx.
Remark 2.2. Let q ∈ {1, . . . , n} be the maximal number satisfying λ1 = · · · = λq. Then
(A4) implies that Nx is tangent to Rq

x1,...,xq
at (0, 0) as t→ +∞ and that any two vectors

tangent to Nx at (0, 0) are not orthogonal to each other.

As explained in the introduction (see (1.2)), we eventually assume that:

(A5) δ0 := 1
2

(∑n
j=1 λj − λ1d

)
is strictly positive.

Remark 2.3. This condition is equivalent to either λ1 < λn or d < n. Geometrically, this
means, under (A4), that the “angle” of Nx at x = 0 is 0,

lim
r→0

|Nx ∩ {|x| = r}|
rn−1

= 0.

Then our result is the following:

Theorem 2.4. Assume (A1), (A2), (A3), (A4) and (A5). Then there exists a constant
δ with 0 < δ ≤ δ0 such that for any C > 0, there exists h0 > 0 such that, for any h ∈]0, h0],
P has no resonance in

Rδ,h :=]E0 − Ch,E0 + Ch[−i[0, δh[. (2.3)

Moreover, for χ ∈ C∞0 (Rn), there exist positive constants N,K and h0 such that, for any
E in Rδ,h and 0 < h < h0, one has

||χ(P − E)−1χ|| ≤ Kh−N .

3. Sketch of proof

It is enough to prove that ‖(Pθ − E)−1‖ ≤ Kh−N for E ∈ Rδ,h. For this, we proceed
by contradiction (as in [7] for the limiting absorption principle). If this did not hold, then
there would exist u = u(x, h) satisfying ||u|| = 1 and

(Pθ − E)u = O(h∞). (3.1)

We suppose that u satisfies (3.1) for ||u|| = 1 and E ∈ Rδ,h with δ = min(δ0, δ1) where δ1
is given in Theorem 4.1 below. We will show that:

||u|| = O(h∞). (3.2)

Let us look at u microlocally in the phase space. We say that u is microlocally 0 at a
point ρ = (x, ξ) in R2n

x,ξ if
||Oph (ψ)u|| = O(h∞),

for some ψ ∈ C∞0 (R2n) with ψ = 1 near ρ, where Oph (ψ) is an h-pseudodifferential operator
with symbol ψ given by:

Oph (ψ)u =
1

(2πh)n

∫ ∫
ei(x−y)·ξ/hψ(

x+ y

2
, ξ)u(y)dydξ.
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By the ellipticity, u is microlocally 0 outside the energy surface p−1(E0). Moreover, the
fact (3.1) with ||u|| ≤ 1 implies that u is microlocally 0 in the incoming region{

(x, ξ) ∈ p−1(E0); |x| � 1, cos(x, ξ) :=
x · ξ
|x||ξ|

< −1

2

}
,

see [6, Theorem 2]. Then, with the standard propagation of singularities, it turns out that
u is microlocally 0 outside Λ̃+, see for example [13]. In particular, on Λ−, u is localized
only on N .

Let u± be the restriction of u on N ∩Λ± respectively. We can relate these two microlocal
solutions in two ways: from u− to u+ passing through the fixed point, and from u+ to u−
following the homoclinic trajectories. For the first connection, we use the results in [4],
which will be recalled briefly in Appendix, and for the second, we use the standard Maslov
theory, see [8].

We first apply Theorems 4.1 and 4.4 of Appendix in order to obtain u+ from u−. It
is possible because we took δ ≤ δ1 and the assumption (H) needed for Theorem 4.4 is
guaranteed by (A4).

By assumption, we have ||u−|| ≤ 1. By a first use of those theorems, we see that u+ is
a Lagrangian distribution of order h−C for some C,

u+ ∈ I(Λ+\{(0, 0)}, h−C).

Next, using the Maslov’s theory along Ω̃+ a small neighborhood of N , we see that u is
always Lagrangian of the same order:

u− ∈ I(Λ̃+, h
−C). (3.3)

Then, by a second use of Theorem 4.4, we obtain

u+ ∈ I(Λ+\{(0, 0)}, h−C+α), (3.4)

where α := (δ0 − | Im z|)/λ1 and E = E0 + hz. Let us check this estimate.

First, we look at the prefactor in power of h of the integral (4.2). Its absolute value is
h(β−| Im z|)/λ1 with β := 1

2

∑n
j=1(λj − λ1).

Next, we look at the integral part of (4.2). (3.3) implies that:

u− = b(x;h)eiφ̃+(x)/h, (3.5)

where φ̃+(x) is a generating function of Λ̃+ near N ∩Λ−, see Remark 2.1. Then the integral
part of (4.2) reads

eiφ+(x)/h

∫
Rn−1

ei(φ̃+(ε,y′)−φ−(ε,y′))/hd(x, y′;h)b(ε, y′;h)dy′. (3.6)

Assumption (A3) means that the integral (3.6) has (n − d) directions along which the

phase [φ̃+(ε, y′) − φ−(ε, y′)] has non-degenerate critical points on N , see (2.2). Then, by

the stationary phase, this integral is of order h
(n−d)

2 .
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Thus the order of the Lagrangian distribution u+ is higher by (δ0−| Im z|)/λ1 =: α than
the order of u−, and we get (3.4).

Since α is positive for E ∈ Rδ,h, we conclude that u− is O(h∞) by repeating the same

argument. Again by Theorem 4.1, u is microlocally 0 on Λ̃+, and hence everywhere in the
phase space. This is equivalent to (3.2).

4. Appendix

This section is a short survey of the results in [4], which were used for the proof of
Theorem 2.4.

We consider a Schrödinger operator P whose potential V is smooth near x = 0 with
Taylor expansion (2.1) with E0 = 0. We use the same notations as in Section 3.

For ε > 0 small, we consider the microlocal Cauchy problem, with E = hz,{
Pu = hzu in Ω,

u = u0(x) on C := Λ− ∩ {|x| = ε}. (4.1)

Remark that the initial surface C is transversal to the Hamiltonian vector field for suffi-
ciently small ε.

Theorem 4.1. There exists a constant δ1 > 0 such that if u0 = 0 and if z(h) is in
] − C,C[−i[0, δ1[ for any constant C > 0, then the solution u ∈ L2(Rn) of (4.1) with
‖u‖ ≤ 1, is microlocally 0 in a neighborhood Ω′ of the origin.

Remark 4.2. More precisely, Theorem 4.1 holds for z(h) outside any small neighborhood
of size h of some discrete set. On the other hand, Theorem 4.1 holds also in the analytic
category, changing of course the notion of C∞-microsupport to that of analytic microsupport
and in this case the exceptional discrete set is known to be −iE0 where

E0 =
{ n∑

j=1

λj(αj +
1

2
); (α1, . . . , αn) ∈ Nn

}
,

is the set of eigenvalues of the harmonic oscillator −∆ +
∑n

j=1

λ2j
4
x2j . In particular, δ1 can

be taken to be
(
1
2

∑n
j=1 λj − a

)
, for any small a > 0, which is greater than δ0.

Theorem 4.1 says that the data u0 given on Λ− ∩ {|x| = ε} uniquely determines the
solution u at any point ρF = (x, ξ) on Λ+ (if it exists). Next theorem enables us to
represent u near ρF in terms of u0 which, restricted to the initial surface C, has its support
in a small neighborhood of a point ρI = (y, η) ∈ C.

We make an assumption on the initial point ρI = (y, η) ∈ C and the final point ρF =
(x, ξ) ∈ Λ+:

(H) g(x) · g(y) 6= 0.
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Remark 4.3. Let φ1(x) be the function defined from ρI by{
2∇φ+ · ∇φ1 − λ1φ1 = 0,
∇φ1(0) = −λ1g(y).

Then (H) implies φ1(x) 6= 0.

We assume, without loss of generality, that g(y) is parallel to x1-axis. Since p is of
real principal type near ρI , we can modify the initial surface C so that it is given by
{x1 = ε} ∩ Λ− near ρI . Hence, denoting y = (ε, y′), the initial data u0 on C is a function
of x′ localized in a small neighborhood of x′I .

Let ψ(x) be the solution to the Cauchy problem of the eikonal equation:{ |∇ψ|2 + V (x) = 0,

ψ|x1=ε = η′ · x′, where η′ = ∂φ−(ε,y′)
∂y′

.

Then, ψ(x) behaves like

ψ(x) = −λ1
4
x21 +

n∑
j=2

λj
4
x2j +O(x3) as x→ 0,

and the integrals

I∞+ (x) :=

∫ −∞
0

(∆φ+(x(τ))− ν) dτ and I∞− (y) :=

∫ +∞

0

(∆ψ(y(τ))− ν + λ1) dτ,

converge. Here ν := 1
2

∑n
k=1 λk.

Theorem 4.4. Assume z ∈]−C,C[−i[0, δ1[ and (H). Then the microlocal Cauchy problem
(4.1) has a unique solution u, and near ρF = (x, ξ), it has the integral representation:

u(x, h) =
hS(z)

(2πh)n/2

∫
Rn−1

ei(φ+(x)−φ−(ε,y′))/hd(x, y′;h)u0(y
′)dy′. (4.2)

Here S(z) =
(
1
2

∑n
j=1(λj − λ1) − iz

)
/λ1 and the symbol d ∈ S0

h(1) has the asymptotic
expansion

d(x, y′;h) ∼
∞∑
k=0

dk(x, y
′, lnh)hµ̂k/λ1 , (4.3)

where 0 = µ̂0 < µ̂1(= µ2 − µ1) < µ̂2 < · · · is a numbering of the linear combinations
of {µk − µ1}∞k=0 over N, and dk(x, y

′, lnh) are polynomials in lnh. In particular, d0 is
independent of lnh and given by

d0(x, y) =e−i
πn
4 λ

1
2
−S(z)

1 exp
(
− π

2
i σ S(z)

)
Γ (S(z))

× eI∞+ (x)−I∞− (y)
√
| det∇2

y′φ−(y)| · |g(y)|
|g(x) · g(y)|S(z)

, (4.4)

where σ = sgn
(
g(x) · g(y)

)
. Here sgn(t) = t

|t| for all t ∈ R \ {0}.
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[4] J.-F. Bony, S. Fujiié, T. Ramond, and M. Zerzeri, Microlocal kernel of pseudodifferential operators
at a hyperbolic fixed point, J. Funct. Anal. 252 (2007), no. 1, 68–125.

[5] , Semiclassical width of resonances created by homoclinic orbits, in preparation.
[6] J.-F. Bony and L. Michel, Microlocalization of resonant states and estimates of the residue of the

scattering amplitude, Comm. Math. Phys. 246 (2004), no. 2, 375–402.
[7] N. Burq, Semi-classical estimates for the resolvent in non trapping geometries, Int. Math. Res.

Not., 5, (2002) pp.221–241
[8] M. Fedoriuk and V. Maslov, Semiclassical approximation in quantum mechanics, Mathematical

Physics and Applied Mathematics, vol. 7, D. Reidel Publishing Co., Dordrecht, 1981, Translated
from the Russian by J. Niederle and J. Tolar, Contemporary Mathematics, 5.
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