![]() |
OptFEM2DP1 Toolbox
V1.2
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
|
00001 function M=MassWAssembling2DP1base(nq,nme,me,areas,Tw) 00002 % function M=MassWAssembling2DP1base(nq,nme,me,areas,Tw) 00003 % Assembly of the Weighted Mass Matrix by `P_1`-Lagrange finite elements 00004 % - Basic version (see report). 00005 % 00006 % The Weighted Mass Matrix `\MasseF{w}` is given by 00007 % ``\MasseF{w}_{i,j}=\int_\DOMH w(\q)\FoncBase_i(\q) \FoncBase_j(\q) d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2`` 00008 % where `\FoncBase_i` are `P_1`-Lagrange basis functions. 00009 % Parameters: 00010 % nq: total number of nodes of the mesh, also denoted by `\nq`, 00011 % nme: total number of triangles, also denoted by `\nme`, 00012 % me: Connectivity array, `3\times\nme` array.<br/> 00013 % `\me(\jl,k)` is the storage index of the 00014 % `\jl`-th vertex of the `k`-th triangle in the array `\q`, `\jl\in\{1,2,3\}` and 00015 % `k\in{\ENS{1}{\nme}}`. 00016 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle. 00017 % Tw: Array of vertices weight `w` function values, 00018 % `1\times\nq` array.<br/> 00019 % `Tw(i)=w(\q^i),` `\forall i\in\ENS{1}{\nq}`. 00020 % 00021 % Return values: 00022 % M: Global weighted mass matrix, `\nq\times\nq` sparse matrix. 00023 % 00024 % Example: 00025 % @verbatim 00026 % Th=SquareMesh(10); 00027 % w=@(x,y) cos(x+y); 00028 % Tw=w(Th.q(1,:),Th.q(2,:)); 00029 % Mw=MassWAssembling2DP1base(Th.nq,Th.nme,Th.me,Th.areas,Tw); 00030 % @endverbatim 00031 % 00032 % See also: 00033 % #ElemMassWMat2DP1 00034 % Copyright: 00035 % See \ref license 00036 M=sparse(nq,nq); 00037 for k=1:nme 00038 for il=1:3 00039 i=me(il,k); 00040 Twloc(il)=Tw(i); 00041 end 00042 E=ElemMassWMat2DP1(areas(k),Twloc); 00043 for il=1:3 00044 i=me(il,k); 00045 for jl=1:3 00046 j=me(jl,k); 00047 M(i,j)=M(i,j)+E(il,jl); 00048 end 00049 end 00050 end