OptFEM2DP1 Toolbox  V1.2
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
base/MassWAssembling2DP1base.m File Reference

Assembly of the Weighted Mass Matrix by $P_1$-Lagrange finite elements. More...

Go to the source code of this file.

Functions

function M = MassWAssembling2DP1base (nq, nme, me, areas, Tw)
 Assembly of the Weighted Mass Matrix by $P_1$-Lagrange finite elements.

Detailed Description

Assembly of the Weighted Mass Matrix by $P_1$-Lagrange finite elements.

  • Basic version (see report).

Definition in file MassWAssembling2DP1base.m.


Function Documentation

function M = MassWAssembling2DP1base (   nq,
  nme,
  me,
  areas,
  Tw 
)

Assembly of the Weighted Mass Matrix by $P_1$-Lagrange finite elements.

  • Basic version (see report).

The Weighted Mass Matrix $\MasseF{w}$ is given by

\[\MasseF{w}_{i,j}=\int_\DOMH w(\q)\FoncBase_i(\q) \FoncBase_j(\q) d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2\]

where $\FoncBase_i$ are $P_1$-Lagrange basis functions.

Example
        Th=SquareMesh(10);
        w=@(x,y) cos(x+y);
        Tw=w(Th.q(1,:),Th.q(2,:));
        Mw=MassWAssembling2DP1base(Th.nq,Th.nme,Th.me,Th.areas,Tw);
      
See also:
ElemMassWMat2DP1
Copyright
See License issues
Parameters:
nqtotal number of nodes of the mesh, also denoted by $\nq$,
nmetotal number of triangles, also denoted by $\nme$,
meConnectivity array, $3\times\nme$ array.
$\me(\jl,k)$ is the storage index of the $\jl$-th vertex of the $k$-th triangle in the array $\q$, $\jl\in\{1,2,3\}$ and $k\in{\ENS{1}{\nme}}$.
areasArray of areas, $1\times\nme$ array. areas(k) is the area of the $k$-th triangle.
TwArray of vertices weight $w$ function values, $1\times\nq$ array.
$Tw(i)=w(\q^i),$ $\forall i\in\ENS{1}{\nq}$.
Return values:
MGlobal weighted mass matrix, $\nq\times\nq$ sparse matrix.

Definition at line 17 of file MassWAssembling2DP1base.m.

 All Files Functions