3 % Computation of the maximal value of edge lengths
6 % q: Array of vertices coordinates, `2\times\nq` array. <br/>
8 % `\il`-th coordinate of the `j`-th vertex, `\il\in\{1,2\}` and
10 % me: Connectivity array, `3\times\nme` array (
'int32'). <br/>
11 % `\me(\jl,k)` is the storage index of the
12 % `\jl`-th vertex of the `k`-th triangle in the array `\q` of vertices coordinates, `\jl\in\{1,2,3\}` and
13 % `k\in{\ENS{1}{\nme}}`.
16 % h: maximal length of an edge in the mesh
19 U=q(:,me(1,:))-q(:,me(2,:));
20 V=q(:,me(2,:))-q(:,me(3,:));
21 W=q(:,me(3,:))-q(:,me(1,:));
23 h=sqrt(max([sum(U.^2,1),sum(W.^2,1),sum(W.^2,1)]));