OptFEM2D  0.1
Matlab optimized FEM2D
 All Files Functions Groups Pages
validMassWP1.m File Reference

Validation function for MassWAssembling P1 functions. More...

Go to the source code of this file.

Functions

function  validMassWP1 ()
 Validation function for MassWAssembling P1 functions.
 
function  validMassWP1>checkTest1 (Test)
 
function  validMassWP1>checkTest2 (Test)
 
function  validMassWP1>checkTest3 (h, error)
 

Detailed Description

Validation function for MassWAssembling P1 functions.

Definition in file validMassWP1.m.

Function Documentation

function validMassWP1>checkTest1 (   Test)

Definition at line 133 of file validMassWP1.m.

function validMassWP1>checkTest2 (   Test)

Definition at line 148 of file validMassWP1.m.

function validMassWP1>checkTest3 (   h,
  error 
)

Definition at line 171 of file validMassWP1.m.

function validMassWP1 ( )

Validation function for MassWAssembling P1 functions.

The Mass Weight Matrix, $\MasseF{w}$, is given by

\[\MasseF{w}_{i,j}=\int_\DOMH w(\q)\FoncBase_i(\q) \FoncBase_j(\q) d\q,\ \forall (i,j)\in\ENS{1}{\nq}^2\]

where $\FoncBase_i$ are $P_1$-Lagrange basis functions. This Matrix is computed by functions MassWAssemblingP1{Version} where {Version} is one of base, OptV0, OptV1 and OptV2.

  • Test 1: compute MassW Matrix using previous functions and give errors and cputimes
  • Test 2: compute

    \[\int_\DOM w(x,y) u(x,y) v(x,y) dxdy \approx \DOT{\MasseF{w} \vecb{U}}{\vecb{V}}\]

    where $\vecb{U}_i=u(\q^i)$ and $\vecb{V}_i=v(\q^i)$. Use fonctions $u$, $v$ and $w$ defined in valid_FEMmatrices.
  • Test 3: retrieve order 2 of $P_1$-Lagrange integration

    \[|\int_\DOM uvw -\Pi_h(u)\Pi_h(v)\Pi_h(w)d\DOM| \leq C h^2\]

See Also
MassWAssemblingP1base, MassWAssemblingP1OptV0, MassWAssemblingP1OptV1, MassWAssemblingP1OptV2
Author
Francois Cuvelier
Date
2012-11-26

Definition at line 17 of file validMassWP1.m.