OptFEM3DP1 Toolbox  V1.0
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 3D
 All Files Functions Variables Pages
ComputeGradientVec.m File Reference

Compute, for each tetraedra, the gradients of the 4 local $P_1$-Lagrange basis functions multiply by $6|T|$. More...

Go to the source code of this file.

Functions

function G = ComputeGradientVec (q, me)
 Compute, for each tetraedra, the gradients of the 4 local $P_1$-Lagrange basis functions multiply by $6|T|$.
 

Detailed Description

Compute, for each tetraedra, the gradients of the 4 local $P_1$-Lagrange basis functions multiply by $6|T|$.

Definition in file ComputeGradientVec.m.

Function Documentation

function G = ComputeGradientVec (   q,
  me 
)

Compute, for each tetraedra, the gradients of the 4 local $P_1$-Lagrange basis functions multiply by $6|T|$.

Parameters
qArray of vertices coordinates, 3-by-nq array. q(il,j) is the il-th coordinate of the j-th vertex, il in {1,3} and j in {1,...,nq}.
meConnectivity array, $4\times\nme$ array.
$\me(\jl,k)$ is the storage index of the $\jl$-th vertex of the $k$-th tetrahedron in the array $\q$ of vertices coordinates, $\jl\in\{1,2,3,4\}$ and $k\in{\ENS{1}{\nme}}$.
Return values
Garray of 4 cells. each cell is an 3-by-nme array.
G{il}(,k)is $6|T_k|$ times the gradient of the local $P_1$-Lagrange basis function associated to point ${\q}^{\me(\il,k)}$ on the the tetrahedron $T_k$.
CopyrightSee License issues

Definition at line 17 of file ComputeGradientVec.m.